JP4946309B2 - Bi-based superconductor, superconducting wire and superconducting equipment - Google Patents

Bi-based superconductor, superconducting wire and superconducting equipment Download PDF

Info

Publication number
JP4946309B2
JP4946309B2 JP2006258721A JP2006258721A JP4946309B2 JP 4946309 B2 JP4946309 B2 JP 4946309B2 JP 2006258721 A JP2006258721 A JP 2006258721A JP 2006258721 A JP2006258721 A JP 2006258721A JP 4946309 B2 JP4946309 B2 JP 4946309B2
Authority
JP
Japan
Prior art keywords
superconducting
annealing
comparative example
critical temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006258721A
Other languages
Japanese (ja)
Other versions
JP2008074686A (en
Inventor
淳一 下山
浩平 山崎
武志 加藤
慎一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006258721A priority Critical patent/JP4946309B2/en
Publication of JP2008074686A publication Critical patent/JP2008074686A/en
Application granted granted Critical
Publication of JP4946309B2 publication Critical patent/JP4946309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、Bi系超電導体、超電導線材および超電導機器に関し、特に、臨界温度が110Kよりも高いBi系超電導体に関する。   The present invention relates to a Bi-based superconductor, a superconducting wire, and a superconducting device, and more particularly to a Bi-based superconductor having a critical temperature higher than 110K.

超電導相としてBi2212(Bi2Sr2Ca1Cu28+δをいう、以下同じ)、Bi2223(Bi2Sr2Ca2Cu310+δをいう、以下同じ)などを含むBi系超電導体は、臨界温度が高く、高温酸化物超電導体の代表的なものとして、超電導線材などの用途に用いられている。 Bi-based superconductivity including Bi2212 (referring to Bi 2 Sr 2 Ca 1 Cu 2 O 8 + δ , hereinafter the same), Bi2223 (referring to Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ , hereinafter the same) and the like as the superconducting phase. The body has a high critical temperature and is used for applications such as superconducting wire as a typical high-temperature oxide superconductor.

かかるBi系超電導体の中でも、Bi2223は臨界温度が高いものとして知られている。しかし、Bi2223の単相を得ることが非常に難しい。一方、このBi2223のBiサイト(超電導体結晶においてBiが配置される場所をいう、以下同じ)にPbを多量にドーピングすることによりBiサイトのBi原子の一部がPb原子により置換された(Bi,Pb)2223((Bi1-pPbp2Sr2Ca2Cu310+δ、ここで0<p<0.25、以下同じ)は、容易に単相が得られることが確認され、かかる(Bi,Pb)2223について臨界温度を向上させるための検討が進められている。特に、原材料を焼結して得られた(Bi,Pb)2223をアニールすることにより、臨界温度を110Kより高くできることが報告されている(たとえば、非特許文献1を参照)。 Among such Bi-based superconductors, Bi2223 is known to have a high critical temperature. However, it is very difficult to obtain a single phase of Bi2223. On the other hand, a part of Bi atoms in the Bi site is substituted by Pb atoms by doping a large amount of Pb in the Bi site of Bi2223 (referring to the place where Bi is arranged in the superconductor crystal, hereinafter the same). , Pb) 2223 ((Bi 1-p Pb p ) 2 Sr 2 Ca 2 Cu 3 O 10 + δ , where 0 <p <0.25, the same applies hereinafter) confirms that a single phase can be easily obtained. Therefore, studies for improving the critical temperature of such (Bi, Pb) 2223 are underway. In particular, it has been reported that the critical temperature can be made higher than 110 K by annealing (Bi, Pb) 2223 obtained by sintering raw materials (see, for example, Non-Patent Document 1).

しかし、(Bi,Pb)2223を含む臨界温度が108.2KのBi系超電導体を700℃で酸素分圧21kPa(0.2気圧)の条件で100時間のアニールを行なったところ、常電導体から超電導体に転移(以下、超電導転移という)し始める温度(以下、転移開始温度という)は、114.8Kにまで高められたが、臨界温度は106.4Kと低下してしまった。これは、アニールによって、超電導転移の急峻さが失われてしまったものと考えられる。
Jie Wang,他4名,“Enhancement of TC in (Bi,Pb)-2223 superconductor by vacuum encapsulation and post-annealing”,Physica C 208,(1993),p323-327
However, when a Bi superconductor having a critical temperature of 108.2 K including (Bi, Pb) 2223 was annealed at 700 ° C. under an oxygen partial pressure of 21 kPa (0.2 atm) for 100 hours, a normal conductor was obtained. The temperature at which the transition to the superconductor (hereinafter referred to as the superconducting transition) starts (hereinafter referred to as the transition start temperature) has been increased to 114.8K, but the critical temperature has decreased to 106.4K. This is considered that the steepness of the superconducting transition has been lost by annealing.
Jie Wang and 4 others, “Enhancement of TC in (Bi, Pb) -2223 superconductor by vacuum encapsulation and post-annealing”, Physica C 208, (1993), p323-327

本発明は、超電導転移が急峻で臨界温度が110Kよりも高いBi系超電導体、このBi系超電導体を含む超電導線材および超電導機器を提供することを目的とする。   An object of the present invention is to provide a Bi-based superconductor having a steep superconducting transition and a critical temperature higher than 110 K, a superconducting wire including the Bi-based superconductor, and a superconducting device.

本発明は、超電導相として(Bi,Pb)2223を含むBi系超電導体であって、(Bi,Pb)2223のc軸に平行な方向に磁場が印加されている状態で測定され50Kで規格化された磁化率が−0.5となる第1の臨界温度T1Cが110.0Kより高く、磁化率が−0.1となる第2の臨界温度T2Cと第1の臨界温度T1Cとの差|T2C−T1C|が1.0K以下であるBi系超電導体である。 The present invention is a Bi-based superconductor including (Bi, Pb) 2223 as a superconducting phase, measured in a state in which a magnetic field is applied in a direction parallel to the c-axis of (Bi, Pb) 2223, and standardized at 50K. The first critical temperature T 1C at which the susceptibility becomes −0.5 is higher than 110.0K, and the second critical temperature T 2C and the first critical temperature T 1C at which the susceptibility becomes −0.1 are obtained. This is a Bi-based superconductor having a difference | T 2C −T 1C | of 1.0 K or less.

本発明にかかるBi系超電導体において、さらに、磁化率が−0.001となる第3の臨界温度T3Cと前記第1の臨界温度T1Cとの差|T3C−T1C|が3.0K以下とすることができる。 In the Bi-based superconductor according to the present invention, the difference | T 3C −T 1C | between the third critical temperature T 3C at which the magnetic susceptibility is −0.001 and the first critical temperature T 1C is 3. It can be 0K or less.

また、本発明は、上記Bi系超電導体を含む超電導線材である。さらに、本発明は、この超電導線材を含む超電導機器である。   Moreover, this invention is a superconducting wire containing the said Bi type | system | group superconductor. Furthermore, this invention is a superconducting apparatus containing this superconducting wire.

本発明によれば、超電導転移が急峻で臨界温度が110Kよりも高いBi系超電導体、このBi系超電導体を含む超電導線材および超電導機器が提供できる。   According to the present invention, it is possible to provide a Bi-based superconductor having a steep superconducting transition and a critical temperature higher than 110K, a superconducting wire including the Bi-based superconductor, and a superconducting device.

(実施形態1)
本発明にかかるBi系超電導体の一実施形態は、図1を参照して、超電導相として(Bi,Pb)2223を含むBi系超電導体であって、(Bi,Pb)2223のc軸に平行な方向に磁場が印加されている状態で測定され50Kで規格化された磁化率(以下、−M/M(50K)という)が−0.5となる第1の臨界温度T1Cが110.0Kより高く、−M/M(50K)が−0.1となる第2の臨界温度T2Cと第1の臨界温度T1Cとの差|T2C−T1C|が1.0K以下である。好ましくは、さらに−M/M(50K)が−0.001となる第3の臨界温度T3Cと第1の臨界温度T1Cとの差|T3C−T1C|が3.0K以下である。ここで、50Kで規格化するとは、その物質の任意の温度における磁化率の大きさを50Kにおける磁化率に対する比で表すことをいう。
(Embodiment 1)
One embodiment of a Bi-based superconductor according to the present invention is a Bi-based superconductor including (Bi, Pb) 2223 as a superconducting phase with reference to FIG. The first critical temperature T 1C at which the magnetic susceptibility (hereinafter referred to as −M / M (50K)) measured with a magnetic field applied in a parallel direction and normalized at 50K becomes −0.5 is 110. The difference | T 2C −T 1C | between the second critical temperature T 2C and the first critical temperature T 1C at which −M / M (50K) is −0.1 is higher than 0.0K and 1.0K or less. is there. Preferably, the difference | T 3C −T 1C | between the third critical temperature T 3C and the first critical temperature T 1C at which −M / M (50K) is −0.001 is 3.0K or less. . Here, normalization at 50K means that the magnitude of the magnetic susceptibility of the substance at an arbitrary temperature is expressed as a ratio to the magnetic susceptibility at 50K.

本実施形態のBi系超電導体は、T1Cが110.0Kより高く|T2C−T1C|が1.0K以下であり、好ましくはさらに|T3C−T1C|が3.0K以下であることから、超電導転移が急峻で臨界温度が110Kを超える優れた超電導特性を有する。 In the Bi-based superconductor of the present embodiment, T 1C is higher than 110.0K, | T 2C −T 1C | is 1.0K or less, and preferably | T 3C −T 1C | is 3.0K or less. For this reason, the superconducting transition is steep and the superconducting property has an excellent superconducting characteristic with a critical temperature exceeding 110K.

(Bi,Pb)2223などの高温超電導物質においては、その物質の一部が常電導体から超電導体に転移(以下、超電導転移という)し始める温度(以下、転移開始温度という)と、その物質の全部が超電導体となる温度(以下、転移終了温度という)に差が生じる。したがって、臨界温度を高めるためには、転移開始温度を高くするのみではなく、急峻な超電導転移を実現することが必要である。   In a high-temperature superconducting material such as (Bi, Pb) 2223, a temperature at which a part of the material starts to transition from a normal conductor to a superconductor (hereinafter referred to as a superconducting transition) (hereinafter referred to as a transition start temperature), and the material There is a difference in the temperature at which all of these become superconductors (hereinafter referred to as transition end temperature). Therefore, in order to increase the critical temperature, it is necessary not only to increase the transition start temperature, but also to realize a steep superconducting transition.

超電導体の臨界温度は、その物質の電気抵抗を測定する他に、その物質の磁化率を測定することによっても求めることができる。磁化率測定による臨界温度は、物質が常電導体から超電導体に変化する際に、その物質の磁化率が0からその物質固有の磁化率Mに変化する現象を利用して算出されるものである。電気抵抗測定による臨界温度は、抵抗が減少を開始する温度の判断が難しく、また抵抗が0になる温度が試料の状態に依存するという問題点がある。これに対して、磁化率測定による臨界温度には、電気抵抗測定による臨界温度の場合の上記問題点がなく、容易に正確な測定が行なえる。   The critical temperature of a superconductor can be determined by measuring the magnetic susceptibility of the material in addition to measuring the electrical resistance of the material. The critical temperature by susceptibility measurement is calculated using the phenomenon that when a substance changes from a normal conductor to a superconductor, the susceptibility of the substance changes from 0 to the intrinsic susceptibility M of the substance. is there. The critical temperature based on the electrical resistance measurement has a problem that it is difficult to determine the temperature at which the resistance starts to decrease, and the temperature at which the resistance becomes 0 depends on the state of the sample. On the other hand, the critical temperature based on the magnetic susceptibility measurement does not have the above-described problems in the case of the critical temperature based on the electrical resistance measurement, and can be easily and accurately measured.

ここで、(Bi,Pb)2223を含む超電導体の磁化率の測定においては、(Bi,Pb)2223のc軸に対して、平行な方向の磁場(以下、c軸に平行な方向の磁場という)が印加されている状態で測定する方法と、垂直な方向の磁場(以下、c軸に垂直な方向の磁場という)が印加されている状態で測定する方法とがある。(Bi,Pb)2223は、その結晶構造から、c軸に平行な方向の量子化磁束のピニング力がc軸に垂直な方向の量子化磁束のピニング力に比べて弱い。このため、c軸に平行な方向の磁場が印加されている状態で測定された超電導体の磁化率から算出された臨界温度は、c軸に垂直な方向の磁場が印加されている状態で測定された超電導体の磁化率から算出された臨界温度より低くなる。すなわち、(Bi,Pb)2223を含む超電導体においては、c軸に平行な方向に磁場が印加されている状態で測定された磁化率から算出された臨界温度は、より厳しい条件で測定された臨界温度といえる。   Here, in the measurement of the magnetic susceptibility of a superconductor including (Bi, Pb) 2223, a magnetic field in a direction parallel to the c-axis of (Bi, Pb) 2223 (hereinafter, a magnetic field in a direction parallel to the c-axis). And a method of measuring in a state where a magnetic field in a vertical direction (hereinafter referred to as a magnetic field in a direction perpendicular to the c-axis) is applied. In (Bi, Pb) 2223, the pinning force of the quantized magnetic flux in the direction parallel to the c axis is weaker than the pinning force of the quantized magnetic flux in the direction perpendicular to the c axis because of its crystal structure. For this reason, the critical temperature calculated from the magnetic susceptibility of the superconductor measured in a state in which a magnetic field in the direction parallel to the c-axis is applied is measured in a state in which a magnetic field in the direction perpendicular to the c-axis is applied. It becomes lower than the critical temperature calculated from the magnetic susceptibility of the superconductor. That is, in the superconductor including (Bi, Pb) 2223, the critical temperature calculated from the magnetic susceptibility measured in a state where a magnetic field is applied in a direction parallel to the c-axis was measured under more severe conditions. It can be said to be a critical temperature.

ここで、本発明においては、図1を参照して、−M/M(50K)が−0.5となる第1の臨界温度T1Cをその超電導体の臨界温度とする。また、−M/M(50K)が−0.1となる第2の臨界温度T2Cおよび−M/M(50K)が−0.001となる第3の臨界温度T3Cを定義して、T2CとT1Cとの差|T2C−T1C|およびT3CとT1Cとの差|T3C−T1C|を、超電導転移の急峻さの指標とする。すなわち、|T2C−T1C|および|T3C−T1C|が小さいほど超電導転移が急峻であることを示す。また、第3の臨界温度T3Cは、物質の一部が常電導体から超電導体に転移し始める転移開始温度に相当する。 Here, in the present invention, referring to FIG. 1, the first critical temperature T 1C at which −M / M (50K) becomes −0.5 is defined as the critical temperature of the superconductor. Further, a second critical temperature T 2C at which −M / M (50K) is −0.1 and a third critical temperature T 3C at which −M / M (50K) is −0.001 are defined, The difference between T 2C and T 1C | T 2C −T 1C | and the difference between T 3C and T 1C | T 3C −T 1C | are used as indicators of the steepness of the superconducting transition. That is, the smaller the | T 2C −T 1C | and | T 3C −T 1C |, the steeper the superconducting transition. The third critical temperature T 3C corresponds to the transition start temperature at which a part of the material starts to transition from the normal conductor to the superconductor.

1Cが110.0Kより高く、|T2C−T1C|が1.0K以下であり、好ましくは|T3C−T1C|が3.0K以下であるBi系超電導体は、たとえば、以下の方法により製造することができる。まず、Bi原子、Pb原子、Sr原子、Ca原子、Cu原子およびO原子を含み、粉末全体として(Bi1-pPbp2Sr2Ca2Cu310+δ(0<p<0.25)の化学組成を有する原材料の粉末を熱処理して、(Bi,Pb)2223を形成する。 T 1C is higher than 110.0K, | T 2C -T 1C | is less 1.0K, preferably | T 3C -T 1C | of Bi-based superconductor or less 3.0K, for example, the following It can be manufactured by a method. First, Bi atoms, Pb atoms, Sr atoms, Ca atoms, Cu atoms and O atoms are included, and (Bi 1-p Pb p ) 2 Sr 2 Ca 2 Cu 3 O 10 + δ (0 <p <0) as a whole powder. .25) raw material powder having a chemical composition is heat treated to form (Bi, Pb) 2223.

次に、この(Bi,Pb)2223を、以下の条件でアニールする。図2を参照して、このアニール条件は、酸素分圧x(kPa)とアニール温度y(℃)とが以下の式(1−1)〜式(1−6)の線分で囲まれる領域(各式の線分を含む)に存在し、
x=0.01 (620≦y≦680) ・・・(1−1)
y=34.744×ln(x)+840 (0.01≦x≦0.1)
・・・(1−2)
y=0.0663x5−1.3297x4+9.9628x3−35.166x2+62.864x+754.66 (0.1≦x≦7) ・・・(1−3)
y=−4.3429×ln(x)+600 (0.01≦x≦0.1)
・・・(1−4)
y=−0.0294x5+0.5136x4−2.2529x3−5.4341x2+63.824x+602.41 (0.1≦x≦7) ・・・(1−5)
x=7 (750≦y≦810) ・・・(1−6)
かつ、アニール時間を1時間以上とする。アニール時間は、20時間以上であることが好ましい。
Next, this (Bi, Pb) 2223 is annealed under the following conditions. Referring to FIG. 2, this annealing condition is a region where oxygen partial pressure x (kPa) and annealing temperature y (° C.) are surrounded by line segments of the following formulas (1-1) to (1-6). (Including line segments for each expression)
x = 0.01 (620 ≦ y ≦ 680) (1-1)
y = 34.744 × ln (x) +840 (0.01 ≦ x ≦ 0.1)
... (1-2)
y = 0.0663x 5 -1.3297x 4 + 9.9628x 3 -35.166x 2 + 62.864x + 754.66 (0.1 ≦ x ≦ 7) (1-3)
y = −4.3429 × ln (x) +600 (0.01 ≦ x ≦ 0.1)
... (1-4)
y = −0.0294x 5 + 0.5136x 4 −2.2529x 3 −5.4341x 2 + 63.824x + 602.41 (0.1 ≦ x ≦ 7) (1-5)
x = 7 (750 ≦ y ≦ 810) (1-6)
And annealing time shall be 1 hour or more. The annealing time is preferably 20 hours or longer.

上記の条件のアニールを行うことにより、(Bi,Pb)2223の単位結晶格子におけるc軸長さ、a軸長さおよびb軸長さが伸び、(Bi,Pb)2223および(Bi,Pb)2212内のCuO2面の平坦性が増大するため、超電導転移が急峻となり臨界温度も高くなるものと考えられる。また、上記のアニールにより、(Bi,Pb)2223の結晶相の間に存在する非結晶相が低減することも、超電導転移が急峻となり臨界温度も高くなるひとつの原因と考えられる。 By performing annealing under the above conditions, the c-axis length, a-axis length, and b-axis length in the unit crystal lattice of (Bi, Pb) 2223 are extended, and (Bi, Pb) 2223 and (Bi, Pb) Since the flatness of the CuO 2 surface in 2212 increases, it is considered that the superconducting transition is steep and the critical temperature is also increased. In addition, a decrease in the amorphous phase existing between the crystalline phases of (Bi, Pb) 2223 due to the above-described annealing is considered to be one cause that the superconducting transition is steep and the critical temperature is increased.

(実施形態2)
本発明にかかる超電導線材の一実施形態は、上記実施形態1のBi系超電導体を含む線材である。実施形態1のBi系超電導体は超電導転移が急峻で臨界温度が110Kを超えているため、超電導転移が急峻で臨界温度が110Kを超える超電導線材が得られる。
(Embodiment 2)
One embodiment of the superconducting wire according to the present invention is a wire including the Bi-based superconductor of the first embodiment. Since the Bi-based superconductor of Embodiment 1 has a steep superconducting transition and a critical temperature exceeding 110K, a superconducting wire having a steep superconducting transition and a critical temperature exceeding 110K can be obtained.

本実施形態の超電導線材の製造方法は、特に制限はなく、以下のようにして行なうことができる。まず、原料としてBi23、SrCO3、CaCO3、CuOおよびPbOを、(Bi1-pPbp2Sr2Ca2Cu310+δ(0<p<0.25)の化学組成となるように配合、混合した後、700℃〜860℃の温度で焼成し、得られた多結晶体を粉砕して原材料の粉末を得る。ここで、原材料の粉末は、粉末全体として、(Bi1-pPbp2Sr2Ca2Cu310+δ(0<p<0.25)の化学組成を有する。 There is no restriction | limiting in particular in the manufacturing method of the superconducting wire of this embodiment, It can carry out as follows. First, Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO and PbO are used as raw materials, and the chemistry of (Bi 1-p Pb p ) 2 Sr 2 Ca 2 Cu 3 O 10 + δ (0 <p <0.25) After blending and mixing so as to have a composition, firing is performed at a temperature of 700 ° C. to 860 ° C., and the obtained polycrystal is pulverized to obtain a raw material powder. Here, the raw material powder has a chemical composition of (Bi 1-p Pb p ) 2 Sr 2 Ca 2 Cu 3 O 10 + δ (0 <p <0.25) as a whole.

次に、上記の方法により得られた原材料粉末をAgなどの金属管に充填し伸線する。伸線した線材を圧延(これを1次圧延という、以下同じ)した後、800℃〜850℃の熱処理を加えて、(Bi,Pb)2223を形成させる(これを1次焼結という、以下同じ)。   Next, the raw material powder obtained by the above method is filled in a metal tube such as Ag and drawn. After rolling the drawn wire (this is referred to as primary rolling, the same applies hereinafter), heat treatment at 800 ° C. to 850 ° C. is performed to form (Bi, Pb) 2223 (this is referred to as primary sintering, hereinafter referred to as “primary sintering”). the same).

次に、熱処理後の線材を圧延(これを2次圧延という、以下同じ)した後、800℃〜850℃の熱処理を加えて、(Bi,Pb)2223の結晶を粒接合させる(これを2次焼結という、以下同じ)。さらに、酸素分圧x(kPa)とアニール温度y(℃)とが、上記の式(1−1)〜式(1−6)の線分で囲まれる領域(各式の線分を含む)に存在し、アニール温度が1時間以上の条件でアニールを行なう。   Next, after the heat-treated wire rod is rolled (this is referred to as secondary rolling, the same applies hereinafter), a heat treatment at 800 ° C. to 850 ° C. is performed to crystallize (Bi, Pb) 2223 crystals (this is 2 The same applies to the subsequent sintering). Further, a region where the oxygen partial pressure x (kPa) and the annealing temperature y (° C.) are surrounded by the line segments of the above formulas (1-1) to (1-6) (including the line segments of the respective formulas). The annealing is performed under the condition that the annealing temperature is 1 hour or more.

(実施形態3)
本発明にかかる超電導機器は、超電導転移が急峻で臨界温度が110.0Kより高い実施形態2の超電導線材を含んでいるため、優れた超電導特性を有する。ここで、超電導機器は、上記超電導線材を含むものであれば特に制限なく、超電導ケーブル、超電導コイル、超電導変圧器、超電導限流器、超電導電力貯蔵装置などが挙げられる。
(Embodiment 3)
Since the superconducting device according to the present invention includes the superconducting wire according to the second embodiment having a steep superconducting transition and a critical temperature higher than 110.0 K, the superconducting device has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the superconducting wire, and examples thereof include a superconducting cable, a superconducting coil, a superconducting transformer, a superconducting current limiter, and a superconducting power storage device.

(比較例1)
原料として、Bi23、SrCO3、CaCO3、CuOおよびPbOを、Bi1.8Pb0.3Sr1.9Ca2.0Cu3.010+δの組成となるような化学量論比で配合、混合した後、830℃で24時間焼成して得られた多結晶体を粉砕して原材料粉末を調整した。この原材料粉末を直径46mmの銀管に充填した後、伸線加工して、直径4.4mmのクラッド線を得た。このクラッド線61本を束ねて再び直径46mmの銀管に挿入し、伸線加工して、原材料粉末がフィラメント状となった多芯線を得た。
(Comparative Example 1)
As raw materials, Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO and PbO were blended and mixed in a stoichiometric ratio so as to have a composition of Bi 1.8 Pb 0.3 Sr 1.9 Ca 2.0 Cu 3.0 O 10 + δ , The raw material powder was prepared by pulverizing the polycrystal obtained by firing at 830 ° C. for 24 hours. The raw material powder was filled into a 46 mm diameter silver tube and then drawn to obtain a 4.4 mm diameter clad wire. The 61 clad wires were bundled and inserted again into a silver tube having a diameter of 46 mm and drawn to obtain a multi-core wire in which the raw material powder was in the form of a filament.

次に、上記多芯線について1次圧延、1次焼結、2次圧延および2次焼結を行い、銀比1.5で61芯のフィラメントで構成された幅4.2mm、厚さ0.24mmのテープ状の超電導線材を得た。ここで、1次および2次の焼結は、820℃〜850℃で行なった。これらの焼結により、上記フィラメント状の原材料粉末から(Bi,Pb)2223を含むBi系超電導体が形成される。なお、銀比とは、線材の横断面(幅×厚さ方向の断面)におけるフィラメント部分の面積に対する銀部分の面積の比をいう。   Next, primary rolling, primary sintering, secondary rolling, and secondary sintering were performed on the multifilamentary wire, and the width was 4.2 mm and the thickness was 0.4 mm composed of 61-core filaments with a silver ratio of 1.5. A 24 mm tape-shaped superconducting wire was obtained. Here, primary and secondary sintering were performed at 820 ° C to 850 ° C. By the sintering, a Bi-based superconductor containing (Bi, Pb) 2223 is formed from the filament raw material powder. In addition, silver ratio means ratio of the area of the silver part with respect to the area of the filament part in the cross section (width x thickness cross section) of a wire.

得られた超電導線材をZFC(Zero Field Cooling Mode)で50Kまで冷却し、超電導線材のテープ面(幅4.2mmの面)に垂直な方向(これは、(Bi,Pb)2223のc軸に平行な方向である)に0.2Oe(15.8A/m)の磁界を印加して、50Kから昇温させながら、その磁化率をSQUID(超電導量子干渉計)型磁束計(Quantum Design社製MPMS-XL5S)を用いて測定し、T1C、T2C、およびT3Cを算出した。T1Cは108.2K、T2Cは108.8K、T3Cは110.0Kであった。したがって、|T2C−T1C|は0.6K、|T3C−T1C|は1.8Kであった。ここで、超電導線材の昇温速度は、0.3K/minとしていたため、T1C、T2C、およびT3Cのいずれの精度も±0.1K以内と考えられる。結果を表1にまとめた。 The obtained superconducting wire is cooled to 50K by ZFC (Zero Field Cooling Mode), and the direction is perpendicular to the tape surface (width of 4.2 mm) of the superconducting wire (this is the c-axis of (Bi, Pb) 2223. Applying a magnetic field of 0.2 Oe (15.8 A / m) to the parallel direction) and increasing the temperature from 50 K, the magnetic susceptibility is measured by a SQUID (superconducting quantum interferometer) type magnetometer (manufactured by Quantum Design) MPMS-XL5S) and T 1C , T 2C , and T 3C were calculated. T 1C was 108.2K, T 2C was 108.8K, and T 3C was 110.0K. Therefore, | T 2C −T 1C | was 0.6K, and | T 3C −T 1C | was 1.8K. Here, since the heating rate of the superconducting wire was set to 0.3 K / min, the accuracy of T 1C , T 2C , and T 3C is considered to be within ± 0.1K. The results are summarized in Table 1.

(比較例2)
比較例1と同様にして、(Bi,Pb)2223を含むBi系超電導体のフィラメントを有する超電導線材(以下、(Bi,Pb)2223を含む超電導線材という)を形成した後、この超電導線材を、酸素分圧21kPa、700℃で100時間アニールをした後、比較例1と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは106.4K、T2Cは110.9K、T3Cは114.8Kであり、|T2C−T1C|は3.5K、|T3C−T1C|は8.4Kであった。本比較例のアニール条件においては、超電導転移は緩慢であり、比較例1に比べて、T2CおよびT3Cは高くなったが、T1Cは低くなった。結果を表1にまとめた。
(Comparative Example 2)
In the same manner as in Comparative Example 1, after forming a superconducting wire having a Bi-based superconductor filament containing (Bi, Pb) 2223 (hereinafter referred to as a superconducting wire containing (Bi, Pb) 2223), this superconducting wire After annealing for 100 hours at an oxygen partial pressure of 21 kPa and 700 ° C., the magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 1. T 1C is 106.4K, T 2C is 110.9K, T 3C is 114.8K, | T 2C -T 1C | is 3.5K, | T 3C -T 1C | it was 8.4K. Under the annealing conditions of this comparative example, the superconducting transition was slow, and T 2C and T 3C were higher than those of Comparative Example 1, but T 1C was lower. The results are summarized in Table 1.

(実施例1)
アニール条件を、酸素分圧1kPa、アニール温度660℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.2K、T2Cは110.0K、T3Cは113.2Kであり、|T2C−T1C|は0.8K、|T3C−T1C|は3.0Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
Example 1
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 660 ° C., and an annealing time of 100 hours. T 1C is 110.2K, T 2C is 110.0K, T 3C is 113.2K, | T 2C -T 1C | is 0.8K, | T 3C -T 1C | it was 3.0k. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例2)
アニール条件を、酸素分圧1kPa、アニール温度680℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.4K、T2Cは110.0K、T3Cは113.0Kであり、|T2C−T1C|は0.6K、|T3C−T1C|は2.6Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 2)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 680 ° C., and an annealing time of 100 hours. T 1C is 110.4K, T 2C is 110.0K, T 3C is 113.0K, | T 2C -T 1C | is 0.6K, | T 3C -T 1C | it was 2.6K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例3)
アニール条件を、酸素分圧1kPa、アニール温度700℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは111.2K、T2Cは111.8K、T3Cは113.6Kであり、|T2C−T1C|は0.6K、|T3C−T1C|は2.4Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 3)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 700 ° C., and an annealing time of 100 hours. T 1C was 111.2K, T 2C was 111.8K, T 3C was 113.6K, | T 2C -T 1C | was 0.6K, and | T 3C -T 1C | was 2.4K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例4)
アニール条件を、酸素分圧1kPa、アニール温度730℃、アニール時間を24時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.1K、T2Cは110.5K、T3Cは112.1Kであり、|T2C−T1C|は0.4K、|T3C−T1C|は2.0Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT2CおよびT3Cは低くなったがT1Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
Example 4
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 730 ° C., and an annealing time of 24 hours. T 1C is 110.1K, T 2C is 110.5K, T 3C is 112.1K, | T 2C -T 1C | is 0.4K, | T 3C -T 1C | was 2.0 K. Under the annealing conditions of this example, the superconducting transition was steep and T 2C and T 3C were lower than those of Comparative Example 2, but T 1C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例5)
アニール条件を、酸素分圧1kPa、アニール温度730℃、アニール時間を70時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.6K、T2Cは111.1K、T3Cは112.6Kであり、|T2C−T1C|は0.5K、|T3C−T1C|は2.0Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 5)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 730 ° C., and an annealing time of 70 hours. T 1C is 110.6K, T 2C is 111.1K, T 3C is 112.6K, | T 2C -T 1C | is 0.5K, | T 3C -T 1C | was 2.0 K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例6)
アニール条件を、酸素分圧1kPa、アニール温度730℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.9K、T2Cは111.5K、T3Cは113.1Kであり、|T2C−T1C|は0.6K、|T3C−T1C|は2.2Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 6)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 730 ° C., and an annealing time of 100 hours. T 1C is 110.9K, T 2C is 111.5K, T 3C is 113.1K, | T 2C -T 1C | is 0.6K, | T 3C -T 1C | it was 2.2K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例7)
アニール条件を、酸素分圧1kPa、アニール温度730℃、アニール時間を170時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは111.1K、T2Cは111.7K、T3Cは113.2Kであり、|T2C−T1C|は0.6K、|T3C−T1C|は2.1Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 7)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 1 kPa, an annealing temperature of 730 ° C., and an annealing time of 170 hours. T 1C is 111.1K, T 2C is 111.7K, T 3C is 113.2K, | T 2C -T 1C | is 0.6K, | T 3C -T 1C | it was 2.1K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例8)
アニール条件を、酸素分圧0.02kPa、アニール温度630℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは111.2K、T2Cは111.5K、T3Cは113.2Kであり、|T2C−T1C|は0.3K、|T3C−T1C|は2.0Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 8)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 0.02 kPa, an annealing temperature of 630 ° C., and an annealing time of 100 hours. T 1C was 111.2K, T 2C was 111.5K, T 3C was 113.2K, | T 2C -T 1C | was 0.3K, and | T 3C -T 1C | was 2.0K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例9)
アニール条件を、酸素分圧0.02kPa、アニール温度700℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは111.2K、T2Cは111.7K、T3Cは113.3Kであり、|T2C−T1C|は0.5K、|T3C−T1C|は2.1Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
本実施例のアニール条件においては、超電導転移は急峻であり、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
Example 9
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 0.02 kPa, an annealing temperature of 700 ° C., and an annealing time of 100 hours. T 1C was 111.2K, T 2C was 111.7K, T 3C was 113.3K, | T 2C -T 1C | was 0.5K, and | T 3C -T 1C | was 2.1K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.
Under the annealing conditions of this example, the superconducting transition was steep, and T 1C , T 2C, and T 3C were all higher than those of Comparative Example 1. The results are summarized in Table 1.

(実施例10)
アニール条件を、酸素分圧0.1kPa、アニール温度630℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.5K、T2Cは111.1K、T3Cは112.8Kであり、|T2C−T1C|は0.6K、|T3C−T1C|は2.3Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 10)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 0.1 kPa, an annealing temperature of 630 ° C., and an annealing time of 100 hours. T 1C is 110.5K, T 2C is 111.1K, T 3C is 112.8K, | T 2C -T 1C | is 0.6K, | T 3C -T 1C | it was 2.3K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例11)
アニール条件を、酸素分圧0.1kPa、アニール温度750℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.6K、T2Cは111.1K、T3Cは112.9Kであり、|T2C−T1C|は0.5K、|T3C−T1C|は2.3Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT3Cは低くなったがT1CおよびT2Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 11)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 0.1 kPa, an annealing temperature of 750 ° C., and an annealing time of 100 hours. T 1C is 110.6K, T 2C is 111.1K, T 3C is 112.9K, | T 2C -T 1C | is 0.5K, | T 3C -T 1C | it was 2.3K. Under the annealing conditions of this example, the superconducting transition was steep and T 3C was lower than that of Comparative Example 2, but T 1C and T 2C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例12)
アニール条件を、酸素分圧5kPa、アニール温度750℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.2K、T2Cは110.6K、T3Cは112.4Kであり、|T2C−T1C|は0.4K、|T3C−T1C|は2.2Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT2CおよびT3Cは低くなったがT1Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 12)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 5 kPa, an annealing temperature of 750 ° C., and an annealing time of 100 hours. T 1C is 110.2K, T 2C is 110.6K, T 3C is 112.4K, | T 2C -T 1C | is 0.4K, | T 3C -T 1C | it was 2.2K. Under the annealing conditions of this example, the superconducting transition was steep and T 2C and T 3C were lower than those of Comparative Example 2, but T 1C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

(実施例13)
アニール条件を、酸素分圧5kPa、アニール温度800℃、アニール時間を100時間としたこと以外は、比較例2と同様にして、アニール後の超電導線材の磁化率を測定した。T1Cは110.3K、T2Cは110.7K、T3Cは112.7Kであり、|T2C−T1C|は0.4K、|T3C−T1C|は2.4Kであった。本実施例のアニール条件においては、超電導転移は急峻となり、比較例2に比べてT2CおよびT3Cは低くなったがT1Cを高くすることができた。また、比較例1に比べて、T1C、T2CおよびT3Cをいずれも高くすることができた。結果を表1にまとめた。
(Example 13)
The magnetic susceptibility of the superconducting wire after annealing was measured in the same manner as in Comparative Example 2 except that the annealing conditions were an oxygen partial pressure of 5 kPa, an annealing temperature of 800 ° C., and an annealing time of 100 hours. T 1C is 110.3K, T 2C is 110.7K, T 3C is 112.7K, | T 2C -T 1C | is 0.4K, | T 3C -T 1C | it was 2.4K. Under the annealing conditions of this example, the superconducting transition was steep and T 2C and T 3C were lower than those of Comparative Example 2, but T 1C could be increased. Moreover, compared with the comparative example 1, T1C , T2C, and T3C were all able to be made high. The results are summarized in Table 1.

Figure 0004946309
Figure 0004946309

また、実施例1〜13におけるアニール条件の酸素分圧x(kPa)とアニール温度y(℃)との関係を示す点を、それぞれS1〜13として図2中にプロットした。   Further, points indicating the relationship between the oxygen partial pressure x (kPa) of the annealing conditions and the annealing temperature y (° C.) in Examples 1 to 13 are plotted in FIG. 2 as S1 to 13, respectively.

表1および図2から明らかなように、酸素分圧x(kPa)とアニール温度y(℃)とが、上記の式(1−1)〜式(1−6)の線分で囲まれる領域(各式の線分を含む)に存在し、アニール温度が1時間以上の条件でアニールを行なうことにより、T1Cが110.0Kより大きく、|T2C−T1C|が1.0K以下で、|T3C−T1C|が3.0K以下である、(Bi,Pb)2223を含むBi系超電導体が得られた。 As is clear from Table 1 and FIG. 2, the region in which the oxygen partial pressure x (kPa) and the annealing temperature y (° C.) are surrounded by the line segments of the above formulas (1-1) to (1-6). (Including the line segments of each formula), and annealing is performed under the condition where the annealing temperature is 1 hour or more, T 1C is larger than 110.0K, and | T 2C −T 1C | A Bi-based superconductor containing (Bi, Pb) 2223 having | T 3C −T 1C | of 3.0K or less was obtained.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

(Bi,Pb)2223を含むBi系超電導体の温度と−M/M(50K)との関係(超電導転移曲線)を示す図である。It is a figure which shows the relationship (superconducting transition curve) of the temperature of Bi type | system | group superconductor containing (Bi, Pb) 2223, and -M / M (50K). (Bi,Pb)2223を含むBi系超電導体の一実施形態のアニールにおける酸素分圧x(kPa)とアニール温度y(℃)との関係を示す図である。It is a figure which shows the relationship between oxygen partial pressure x (kPa) and annealing temperature y (degreeC) in annealing of one Embodiment of Bi type superconductor containing (Bi, Pb) 2223.

Claims (4)

超電導相として(Bi,Pb)2223を含むBi系超電導体であって、
前記(Bi,Pb)2223のc軸に平行な方向に磁場が印加されている状態で測定され50Kで規格化された磁化率が−0.5となる第1の臨界温度T1Cが110.0Kより高く、
前記磁化率が−0.1となる第2の臨界温度T2Cと前記第1の臨界温度T1Cとの差|T2C−T1C|が1.0K以下であるBi系超電導体。
A Bi-based superconductor containing (Bi, Pb) 2223 as a superconducting phase,
The first critical temperature T 1C at which the magnetic susceptibility measured at 50 K and normalized by 50 K is −0.5 is 110 .1 when the magnetic field is applied in the direction parallel to the c-axis of the (Bi, Pb) 2223. Higher than 0K,
A Bi-based superconductor in which the difference | T 2C −T 1C | between the second critical temperature T 2C at which the magnetic susceptibility is −0.1 and the first critical temperature T 1C is 1.0 K or less.
さらに前記磁化率が−0.001となる第3の臨界温度T3Cと前記第1の臨界温度T1Cとの差|T3C−T1C|が3.0K以下である請求項1に記載のBi系超電導体。 2. The difference | T 3C −T 1C | between the third critical temperature T 3C at which the magnetic susceptibility is −0.001 and the first critical temperature T 1C is 3.0K or less. Bi-based superconductor. 請求項1または請求項2に記載のBi系超電導体を含む超電導線材。   A superconducting wire containing the Bi-based superconductor according to claim 1 or 2. 請求項3に記載の超電導線材を含む超電導機器。   A superconducting device comprising the superconducting wire according to claim 3.
JP2006258721A 2006-09-25 2006-09-25 Bi-based superconductor, superconducting wire and superconducting equipment Active JP4946309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258721A JP4946309B2 (en) 2006-09-25 2006-09-25 Bi-based superconductor, superconducting wire and superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258721A JP4946309B2 (en) 2006-09-25 2006-09-25 Bi-based superconductor, superconducting wire and superconducting equipment

Publications (2)

Publication Number Publication Date
JP2008074686A JP2008074686A (en) 2008-04-03
JP4946309B2 true JP4946309B2 (en) 2012-06-06

Family

ID=39347128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258721A Active JP4946309B2 (en) 2006-09-25 2006-09-25 Bi-based superconductor, superconducting wire and superconducting equipment

Country Status (1)

Country Link
JP (1) JP4946309B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120227A (en) * 1988-10-28 1990-05-08 Fujikura Ltd Production of bi-based oxide superconductor
US5114910A (en) * 1990-11-01 1992-05-19 Hughes Aircraft Company Passivation of thin film oxide superconductors
JPH06183822A (en) * 1992-09-29 1994-07-05 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Method of rapid synthesis of bi-based superconductor
KR100379725B1 (en) * 2000-05-08 2003-04-11 (주)나노하이브리드 Superconducting Colloids, Superconducting Thin Layers Produced Therefrom, and Processes for Producing Them
JP2002037626A (en) * 2000-07-27 2002-02-06 Internatl Superconductivity Technology Center Method for manufacturing bismuth type high temperature superconductor
JP4039260B2 (en) * 2003-02-07 2008-01-30 住友電気工業株式会社 Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire

Also Published As

Publication number Publication date
JP2008074686A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JPH07121805B2 (en) Superconducting composition object
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
Maňka et al. Effects of slight non-stoichiometry in Sm-Ba-Cu-O systems on superconducting characteristics
WO2006112195A1 (en) Process for producing bismuth-based oxide superconductor, and superconductive wire
JP4946309B2 (en) Bi-based superconductor, superconducting wire and superconducting equipment
Jabur Bi2-xHgxSr2-yBayCa2Cu2O10/Ag Sheath HTSC Wires,(Hg, Ba) Substitution Effect on The Critical Temperature
JP4696811B2 (en) Manufacturing method of Bi-based superconductor
JP4631813B2 (en) Bi-based superconductor and manufacturing method thereof, superconducting wire and superconducting equipment
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
EP2859560B1 (en) Superconductor article with directional flux pinning
Tarascon et al. Chemical doping and physical properties of the new high temperature superconducting perovskites
Balachandran et al. Progress in development of tapes and magnets made from Bi-2223 superconductors
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
Le Lay et al. Fabrication and performance of long (BixPb1− x) 2Sr2Ca2Cu3Oδ/Ag composite tapes
JP2007165207A (en) Manufacturing method of oxide superconducting wire rod
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP3313908B2 (en) Bi-based superconducting material, Bi-based superconducting wire having the same, and method of manufacturing the superconducting wire
WO1998032697A1 (en) Oxide superconductor
KR0174386B1 (en) Method for manufacturing high temperature superconducting multicore wire
JP4893117B2 (en) Oxide superconducting wire manufacturing method and superconducting equipment
LOBZHANIDZE et al. PREPARED 2 Ca 2 Cu BY 3 O VAPOR SUPERCONDUCTOR DIFFUSION PROCESS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250