JP4943714B2 - High strength aluminum alloy plate for wide-mouth bottle can cap - Google Patents

High strength aluminum alloy plate for wide-mouth bottle can cap Download PDF

Info

Publication number
JP4943714B2
JP4943714B2 JP2006048195A JP2006048195A JP4943714B2 JP 4943714 B2 JP4943714 B2 JP 4943714B2 JP 2006048195 A JP2006048195 A JP 2006048195A JP 2006048195 A JP2006048195 A JP 2006048195A JP 4943714 B2 JP4943714 B2 JP 4943714B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
strength
ear
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006048195A
Other languages
Japanese (ja)
Other versions
JP2007224380A5 (en
JP2007224380A (en
Inventor
優 野村
洋 横井
清一 平野
智康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2006048195A priority Critical patent/JP4943714B2/en
Publication of JP2007224380A publication Critical patent/JP2007224380A/en
Publication of JP2007224380A5 publication Critical patent/JP2007224380A5/ja
Application granted granted Critical
Publication of JP4943714B2 publication Critical patent/JP4943714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、広口ボトル缶用のPP(pilfer proof)キャップに好適に使用されるAl−Mg−Mn−Si−Fe(アルミニウム−マグネシウム−マンガン−ケイ素−鉄)系合金板に関する。   The present invention relates to an Al—Mg—Mn—Si—Fe (aluminum-magnesium-manganese-silicon-iron) -based alloy plate suitably used for a PP (pilfer proof) cap for a wide-mouth bottle can.

PPキャップは、一般に、素材であるアルミニウム合金板に塗装・印刷を施してから、複数の円筒状のカップを同時に成形し、各カップの耳部をトリミングした後、裾部にミシン目を加工するという工程で製造する。こうして成形されたキャップは、飲料容器に内容物を充填後、その容器のネジ部に巻締めされ、市場に出される。   PP caps are generally coated and printed on a material aluminum alloy plate, then formed into a plurality of cylindrical cups at the same time, trimmed at the ears of each cup, and then processed into perforations at the hem. It is manufactured by the process. The cap formed in this way is filled with the contents in the beverage container, wound around the threaded portion of the container, and put on the market.

これまで、直径28mm以下の小口のPPキャップには、主にAl−Mn系の3105合金(特許文献1参照)、あるいはAl−Fe系の8011合金が使われていた(非特許文献1参照)。一方、直径38mm等の広口キャップには、強度がより高い必要性があることから、Al−Mg系の5151合金(Al−1.5〜2.1%Mg合金)が使われている。
しかし、例えば内容物が炭酸である場合のように、内容物により高内圧がかかる場合には、キャップの変形による内容物の漏れ、ブローオフ(一気にキャップが吹き飛ぶ)、及び自動販売機での落下衝撃に伴う変形の恐れがある。そのため、より高強度でかつ開栓性の良い板が期待されている。
Until now, Al-Mn 3105 alloy (see Patent Document 1) or Al-Fe 8011 alloy has been mainly used for PP caps with a diameter of 28 mm or less (see Non-Patent Document 1). . On the other hand, Al-Mg-based 5151 alloy (Al-1.5 to 2.1% Mg alloy) is used for a wide-mouth cap having a diameter of 38 mm or the like because it needs to have higher strength.
However, when high internal pressure is applied by the contents, for example, when the contents are carbonic acid, the contents are leaked due to deformation of the cap, blow-off (cap blows off at once), and the drop impact at the vending machine There is a risk of deformation. Therefore, a plate having higher strength and better openability is expected.

このような高強度で開栓性の良いという期待に応えうる合金として、Al−Mg−Mn系合金がある。Al−Mg−Mn系合金板の最終冷間圧延率と結晶粒径を限定した先行技術(特許文献2参照)では、200MPa以上の引張強さとして263MPaの実施例があるが、その場合の伸びは2%であり、広口ボトル缶用のPPキャップとしては成形時に割れ等の不具合を発生するおそれがある。   As an alloy that can meet the expectation of such high strength and good openability, there is an Al-Mg-Mn alloy. In the prior art (refer to Patent Document 2) in which the final cold rolling rate and the crystal grain size of the Al—Mg—Mn alloy plate are limited, there is an example of 263 MPa as a tensile strength of 200 MPa or more. Is 2%, and PP caps for wide-mouth bottle cans may cause problems such as cracking during molding.

また、Al−Mg−Mn系合金の均質化処理から仕上げ焼鈍までの条件を限定した先行技術(特許文献3参照)では、引張強さは最大でも実施例で141MPa、比較例で152MPaであり、強度が低すぎて広口ボトル缶用PPキャップには適用できない。
さらにまた、急速加熱冷却による最終焼鈍条件を限定した先行技術(特許文献4参照)においても、引張強さの最大が185MPaであり、強度が低すぎる。
Moreover, in the prior art (refer patent document 3) which limited the conditions from the homogenization process of Al-Mg-Mn type alloy to finish annealing (refer patent document 3), the tensile strength is 141 MPa in an example at the maximum, and 152 MPa in a comparative example, The strength is too low to apply to PP caps for wide-bottle cans.
Furthermore, even in the prior art (see Patent Document 4) in which the final annealing conditions by rapid heating and cooling are limited (see Patent Document 4), the maximum tensile strength is 185 MPa, and the strength is too low.

一方、引張強さの高いAl−Mg−Mn系合金の例として、200MPaを超える実施例を示している先行技術(特許文献5参照)があるが、深絞りによるPPキャップ用ではなく、リングプルによる引き裂きで開栓する浅絞り広口キャップ用であり、スコア加工部の引き裂き性を重視したものであり、本発明とは用途が異なる。   On the other hand, as an example of an Al-Mg-Mn alloy having high tensile strength, there is a prior art (see Patent Document 5) showing an example exceeding 200 MPa, but it is not for a PP cap by deep drawing but by a ring pull. It is for shallow-drawn wide-mouthed caps that are opened by tearing, and emphasizes the tearability of the score processing part, and is used differently from the present invention.

また、冷間圧延加工度の増加、最終熱処理温度や時間の低下等の方法によって高強度化を行うと、伸びが不足するという問題がある。このような場合には、成形時に割れる、キャップ胴部の凸凹(スクリュー形状)ができにくい等の成形性の低下、開栓時にミシン目部が破断しにくい等の不具合を生じる。   Further, when the strength is increased by a method such as an increase in the degree of cold rolling and a decrease in the final heat treatment temperature and time, there is a problem that the elongation is insufficient. In such a case, problems such as a decrease in moldability such as cracking at the time of molding, difficulty in forming unevenness (screw shape) of the cap body portion, and a perforation portion being difficult to break at the time of opening the plug occur.

特許第3153541号公報Japanese Patent No. 3153541 特開昭58−224142号公報JP 58-224142 A 特開平9−25546号公報Japanese Patent Laid-Open No. 9-25546 特開2000−282195号公報JP 2000-282195 A 特開2000−282164号公報JP 2000-282164 A 住友軽金属技報、vol.23(1982),P.36.Sumitomo Light Metal Technical Report, vol. 23 (1982), p. 36.

本発明はかかる従来の問題点に鑑みてなされたもので、材料設計(成分、強度、伸びの最適化)及び材料組織の限定によって、成形性、強度、開栓性に優れた広口ボトル缶キャップ用高強度アルミニウム合金板を提供しようとするものである。   The present invention has been made in view of such conventional problems, and has a wide mouth bottle can cap which is excellent in moldability, strength and openability by limiting the material design (optimization of components, strength and elongation) and the material structure. An object of the present invention is to provide a high-strength aluminum alloy sheet for use.

本発明は、塗装・印刷後に、直径28mmを超える円筒状のカップに成形し、該カップの耳部をトリミングした後、裾部にミシン目を加工し、その後、内容物が充填された飲料容器のネジ部に巻き締めされる広口ボトル缶キャップ用の高強度アルミニウム合金板であって、
Mg:1.0〜2.0%(重量%、以下同じ)、
Mn:0.2〜1.0%、
Si:0.01〜0.5%、
Fe:0.01〜0.69%を含み、残部が不可避的不純物とアルミニウムからなり、
MgとMnとの合計量が1.5〜2.5%、
SiとFeとの合計量が0.2〜0.7%であり、
上記アルミニウム合金板の元板の引張強さが200〜270MPa、耐力が170〜240MPa、伸びが3〜8%であり、
上記元板に対して、200℃の温度で10分間保持する熱処理を施した空焼板の引張強さが200〜270MPa、耐力が160〜230MPa、伸びが5〜10%であり、
大きさが0.5μm以上である金属間化合物の分布密度が3000〜10000個/mm2であると共に、上記金属間化合物の面積率が、0.5〜3.0%であり、
大きさが3μm以上である金属間化合物の分布密度が300〜1500個/mm2であることを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板にある(請求項1)。
The present invention, after painting / printing, is formed into a cylindrical cup having a diameter of more than 28 mm, trims the ear of the cup, then processes the perforation at the hem, and then the beverage container filled with the contents It is a high-strength aluminum alloy plate for a wide-mouth bottle can cap that is wound around the screw part of
Mg: 1.0 to 2.0 % (% by weight, the same applies hereinafter)
Mn: 0.2 to 1.0%
Si: 0.01 to 0.5%,
Fe: 0.01 to 0.69% included, the balance is made of inevitable impurities and aluminum,
The total amount of Mg and Mn is 1.5 to 2.5%,
The total amount of Si and Fe is 0.2-0.7%,
The base plate of the aluminum alloy plate has a tensile strength of 200 to 270 MPa, a proof stress of 170 to 240 MPa, and an elongation of 3 to 8%.
With respect to the base plate, the tensile strength of the blank plate subjected to heat treatment held at a temperature of 200 ° C. for 10 minutes is 200 to 270 MPa, the proof stress is 160 to 230 MPa, and the elongation is 5 to 10%.
The distribution density of the intermetallic compound having a size of 0.5 μm or more is 3000 to 10,000 pieces / mm 2 , and the area ratio of the intermetallic compound is 0.5 to 3.0%,
A high-strength aluminum alloy plate for a wide-mouth bottle can cap, characterized in that the distribution density of intermetallic compounds having a size of 3 μm or more is 300 to 1500 / mm 2 (Claim 1).

まず、本発明における化学組成の限定理由について説明する。
Mgは、本発明の必須の成分であり、その含有量を1.0〜2.5%に限定することにより、強度および成形性を良好に保つことができる。
Mg含有量が1.0%未満の場合、高内圧の内容物対応あるいはゲージダウン対応には強度不足になるため、広口ボトル缶キャップ(以下、適宜、単にキャップという。)として所定の耐圧を得ることができない。また、成形したキャップにおけるネジ部の剛性向上と天面のドーミング防止効果が十分に得られないという問題もある。また、圧延方向に対し0°、90°、180°および270°方向の4箇所の耳が発達しやすくなるため、安定して低い耳率の材料を得ることが難しく、文字曲がりのしにくいキャップを量産していくことは容易ではない。ここで言う文字曲がりとは、平板状態で印刷を施した後にカップ状に成形するキャップの製造方法の特性上、素材の変形の仕方によって、印刷した絵柄や文字等が曲がって表示される現象のことをいう。
Mg含有量が多いほど結晶粒が細かくなるので、Mg含有量を高めて結晶粒微細化効果を高めることで、カップ成形時の肌荒れも抑制しやすくなる。
First, the reason for limiting the chemical composition in the present invention will be described.
Mg is an essential component of the present invention, and by limiting its content to 1.0 to 2.5%, strength and formability can be kept good.
When the Mg content is less than 1.0%, the strength is insufficient to cope with high internal pressure contents or gauge down, so that a predetermined pressure resistance is obtained as a wide-mouth bottle can cap (hereinafter simply referred to as a cap). I can't. In addition, there is a problem that the rigidity of the threaded portion in the molded cap and the effect of preventing doming on the top surface cannot be sufficiently obtained. In addition, four ears in the 0 °, 90 °, 180 °, and 270 ° directions with respect to the rolling direction are easily developed, so it is difficult to stably obtain a material with a low ear rate, and it is difficult to bend characters. It is not easy to mass-produce. Character bending referred to here is a phenomenon in which printed pictures and characters are bent and displayed depending on how the material is deformed due to the characteristics of the method of manufacturing a cap that is molded into a cup shape after printing in a flat state. That means.
The larger the Mg content, the finer the crystal grains. By increasing the Mg content and increasing the crystal grain refining effect, it becomes easy to suppress rough skin during cup molding.

一方、Mg含有量が2.5%を超える場合、強度が高すぎて、開栓時に多大な力を要するため、開栓しにくくなってしまう。そのため、Mg含有量は2.5%以下が好ましい。なお、Mg含有量は、上述の異方性と強度をバランスよく満足し製造しやすくするために、より好ましくは1.3%超え、2.2%未満、さらに好ましくは1.5%超え、2.0%未満がよい。   On the other hand, when the Mg content exceeds 2.5%, the strength is too high, and a great amount of force is required at the time of opening, so that it is difficult to open the plug. Therefore, the Mg content is preferably 2.5% or less. The Mg content is preferably more than 1.3%, less than 2.2%, more preferably more than 1.5%, in order to satisfy the above-described anisotropy and strength in a balanced manner and facilitate production. Less than 2.0% is good.

Mnは、強度と成形性を良好に保つために、本発明の必須の成分である。また、Feなどの元素とともに金属間化合物を形成し、キャップ開栓によるミシン目破断時の亀裂の起点、伝播経路となりうる。Mn含有量は0.01〜1.0%に限定する。Mn含有量が0.01%未満の場合、強度不足でキャップとして所定の性能を得にくく、高純度の地金を使用する必要がある。また、1.0%超えの場合、強度が高すぎて開栓時に多大な力を要し開栓しにくくなったり、鋳造時にFeなどの元素とともに巨大な金属間化合物を作りやすい。   Mn is an essential component of the present invention in order to maintain good strength and moldability. In addition, an intermetallic compound is formed together with an element such as Fe, which can be a starting point and a propagation path of a crack when a perforation breaks due to cap opening. The Mn content is limited to 0.01 to 1.0%. When the Mn content is less than 0.01%, it is difficult to obtain a predetermined performance as a cap due to insufficient strength, and it is necessary to use a high purity metal. On the other hand, if it exceeds 1.0%, the strength is so high that a large amount of force is required at the time of opening and it is difficult to open, or a huge intermetallic compound is easily formed together with elements such as Fe at the time of casting.

Mn含有量は、好ましくは0.01〜0.8%とする。このようなMn量の上限抑制の理由は、Mg含有量が多いほど成形性維持のまま高強度化できるが、鋳塊を高温で均質化処理できず、耳率に影響するMn系析出物の制御がしにくくなるからである。   The Mn content is preferably 0.01 to 0.8%. The reason for suppressing the upper limit of the amount of Mn is that the higher the Mg content, the higher the strength while maintaining the formability, but the ingot cannot be homogenized at high temperature, and the Mn-based precipitates that affect the ear rate are affected. This is because it becomes difficult to control.

Siは、MnやFeと化合物を形成し、晶出物を形成するために、本発明に必須の成分である。Si含有量は0.01〜0.5%に限定する。Si含有量が0.01%未満の場合、純度の高い地金を使用する必要があり、コストアップとなる。また、Si含有量が0.5%を超える場合には、前記晶出物が多くなり、キャップ成形性を劣化させる。   Si forms a compound with Mn and Fe and forms a crystallized product, and is an essential component in the present invention. Si content is limited to 0.01 to 0.5%. If the Si content is less than 0.01%, it is necessary to use a high purity metal, which increases costs. Moreover, when Si content exceeds 0.5%, the said crystallized substance will increase and cap moldability will deteriorate.

Feは、結晶粒微細化による成形性に影響を及ぼすために、本発明に必須の成分である。Fe含有量は0.01〜0.69%に限定する。Fe含有量が0.01%未満の場合、その効果が得られないばかりでなく、純度の高い地金を使用する必要があり、コストアップとなる。また、Fe含有量が0.69%を超える場合には、結晶粒微細化効果は飽和し、後述するSi+Fe量の適正範囲を超えてしまう。   Fe is an essential component in the present invention in order to affect the formability by crystal grain refinement. Fe content is limited to 0.01 to 0.69%. When the Fe content is less than 0.01%, not only the effect is not obtained, but also it is necessary to use a high-purity bullion, resulting in an increase in cost. Further, when the Fe content exceeds 0.69%, the crystal grain refining effect is saturated and exceeds the appropriate range of Si + Fe amount described later.

さらに、MgとMnとの合計値、及びSiとFeとの合計値の限定理由につき説明する。
MgとMnとの合計値(Mg+Mn)は1.5〜2.5%に限定する。Mg+Mnが1.5%未満の場合には、高強度が得られない。また、Mg+Mnが2.5%を超える場合には、強度が高すぎて、開栓時に多大な力を要するため、開栓しにくくなるという問題がある。
Furthermore, the reasons for limiting the total value of Mg and Mn and the total value of Si and Fe will be described.
The total value of Mg and Mn (Mg + Mn) is limited to 1.5 to 2.5%. When Mg + Mn is less than 1.5%, high strength cannot be obtained. Further, when Mg + Mn exceeds 2.5%, the strength is too high, and a great amount of force is required at the time of opening, so that there is a problem that it is difficult to open.

SiとFeとの合計値(Si+Fe)は0.2〜0.7%に限定する。Si+Feが0.2%未満の場合には、開栓時に必要な金属間化合物の量が確保できない。また、Si+Feが0.7%を超える場合には、金属間化合物の量が過剰になり、伸びの低下を招き、成形時に割れやすくなる。   The total value of Si and Fe (Si + Fe) is limited to 0.2 to 0.7%. When Si + Fe is less than 0.2%, the amount of intermetallic compound necessary for opening the plug cannot be secured. On the other hand, when Si + Fe exceeds 0.7%, the amount of intermetallic compound becomes excessive, leading to a decrease in elongation, and easily cracking during molding.

次に、上記元板とは、本発明のアルミニウム合金板そのもの、すなわち製造したままの状態であり、キャップ製造工程に供給される前の状態の板をいう。そして、上記空焼板とは、この元板に、上記の熱処理を施して、便宜上キャップ製造工程における印刷後の状態をある程度反映させた状態の板をいう。   Next, the base plate refers to the aluminum alloy plate of the present invention itself, that is, the plate in the state as manufactured and before being supplied to the cap manufacturing process. The blank plate is a plate in which the base plate is subjected to the heat treatment as described above, and the state after printing in the cap manufacturing process is reflected to some extent for convenience.

上記元板の強度は、引張強さが200〜270MPa、耐力が170〜240MPa、伸びが3〜8%の範囲に限定する。そして、かつ、上記空焼板の強度は、引張強さが200〜270MPa、耐力が160〜230MPa、伸びが5〜10%の範囲に限定する。
上記元板の引張強さ及び耐力が上記範囲にないと、空焼後に目的とする強度を得ることが困難となる。
The strength of the base plate is limited to a range where the tensile strength is 200 to 270 MPa, the proof stress is 170 to 240 MPa, and the elongation is 3 to 8%. And the intensity | strength of the said baked board is limited to the range whose tensile strength is 200-270 MPa, yield strength is 160-230 MPa, and elongation is 5-10%.
If the tensile strength and proof stress of the base plate are not within the above ranges, it will be difficult to obtain the desired strength after baking.

上記空焼板の引張強さが200MPa未満の場合及び耐力が10MPa未満の場合には、成形したキャップにおいて所定の耐圧を得ることができない。一方、空焼板の引張強さが270MPaを超える場合及び耐力が230MPaを超える場合には、成形したキャップの開栓がしにくくなるという問題がある。上記空焼板の伸びが5%未満の場合には、キャップ成形時に割れなどの成形不良が出やすくなり、また、10%を超える場合には、
開栓時にミシン目部が切れにくく、開栓角度が大きくなり、開栓しにくくなるという問題がある。
If the tensile strength of the Sorasho plate may, and yield strength of less than 200MPa than 1 6 0 MPa can not obtain a predetermined breakdown voltage in molded cap. On the other hand, when the tensile strength of the blank plate exceeds 270 MPa and when the proof stress exceeds 230 MPa, there is a problem that it is difficult to open the molded cap. If the elongation of the blank plate is less than 5%, molding defects such as cracks are likely to occur during cap molding, and if it exceeds 10%,
There is a problem that the perforation is difficult to cut when opening, the opening angle is increased, and opening is difficult.

次に、本発明では、大きさが0.5μm以上である金属間化合物の分布密度を3000〜10000個/mm2、面積率を0.5%以上、3.0%以下に限定し、さらに、大きさが3μm以上である金属間化合物の分布密度を300〜1500個/mm2に限定している。
上記特定の大きさの金属間化合物の分布密度が上記の範囲の下限を下回る場合には、キャップ開栓時に上記金属化合物が亀裂の起点、伝播経路になりにくい。また、上限を上回る場合には、伸びが小さく、成形時に割れやすくなるおそれがある。
Next, in the present invention, the distribution density of the intermetallic compound having a size of 0.5 μm or more is limited to 3000 to 10,000 pieces / mm 2 , the area ratio is limited to 0.5% or more and 3.0% or less, The distribution density of intermetallic compounds having a size of 3 μm or more is limited to 300-1500 pieces / mm 2 .
When the distribution density of the intermetallic compound having the specific size is below the lower limit of the above range, the metal compound is less likely to become a crack starting point or propagation path when the cap is opened. Moreover, when exceeding an upper limit, elongation is small and there exists a possibility that it may become easy to break at the time of shaping | molding.

本発明においてはMn含有量は0.2%以上である。これにより、所定の強度や金属間化合物を得やすいという効果が得られる。また、缶ボディ材3004合金、3104合金をリサイクルして使いやすいという効果が得られる。 In the present invention, the Mn content is 0.2% or more . Thereby , the effect that it is easy to obtain predetermined intensity | strength and an intermetallic compound is acquired. In addition, the can body material 3004 alloy and 3104 alloy can be recycled for easy use.

また、上記アルミニウム合金板は、さらにCu:0.01〜0.25%、Cr:0.01〜0.25%、Zn:0.01〜0.25%、Ti:0.005〜0.05%のうち1種または2種以上を含むことが好ましい(請求項2)。 Moreover, the said aluminum alloy plate is further Cu: 0.01-0.25%, Cr: 0.01-0.25%, Zn: 0.01-0.25%, Ti: 0.005-0. It is preferable to contain one or more of 05% ( claim 2 ).

Cu:0.01〜0.25%;
Cuは、材料強度に影響を及ぼす元素である。0.01%未満の場合、その効果が得られないばかりでなく、純度の高い地金を使用する必要があり、コストアップとなる。0.25%を超えての添加は、圧延加工しにくくなる。
Cu: 0.01 to 0.25%;
Cu is an element that affects the material strength. If it is less than 0.01%, not only the effect cannot be obtained, but it is necessary to use a high purity metal, resulting in an increase in cost. Addition exceeding 0.25% makes rolling difficult.

Cr:0.01〜0.25%、Zn:0.01〜0.25%、;
Cr、Znは、結晶粒微細化による成形性に影響を及ぼす元素である。それぞれ上記下限未満の場合、その効果が得られないばかりでなく、純度の高い地金を使用する必要があり、コストアップとなる。一方、上記上限を超える場合、結晶粒微細化効果は飽和するため、添加に要するコストアップを考慮すると上記上限とすることが好ましい。
Cr: 0.01-0.25%, Zn: 0.01-0.25%;
Cr and Zn are elements that affect the formability by crystal grain refinement. If each of these is less than the above lower limit, not only the effect cannot be obtained, but it is necessary to use a high purity metal, resulting in an increase in cost. On the other hand, when the above upper limit is exceeded, the crystal grain refining effect is saturated. Therefore, the upper limit is preferably taken into consideration in view of the cost increase required for addition.

Ti:0.005〜0.05%;
Tiは、鋳塊組織微細化による成形性向上に影響を及ぼす元素である。0.005%未満の場合、その効果が得られない。0.05%を超えると、未固溶のAl−Ti系化合物が最終製品の表面欠陥として現れやすくなる。
なお、鋳塊組織微細化剤としてAl−Ti−B中間合金を添加する場合は、Bが含有されるが、Bは0.02%以下の範囲で添加されるのが好ましい。
Ti: 0.005 to 0.05%;
Ti is an element that affects the improvement of formability by refining the ingot structure. If it is less than 0.005%, the effect cannot be obtained. If it exceeds 0.05%, an insoluble Al—Ti compound tends to appear as a surface defect in the final product.
In addition, when adding an Al-Ti-B intermediate alloy as an ingot structure | tissue refiner, B contains, but it is preferable to add B in 0.02% or less of range.

次に、上記元板又は上記空焼板の耳率試験に使用する絞りカップの開口部に発生する耳のうち、圧延方向に対し45°方向の4箇所、あるいは0°、90°、180°、270°方向の4箇所に発生する耳の耳率が2.5%以下であり、かつ圧延方向に対し0°と180°方向の2箇所に発生する耳の耳率が2.0%以下であることが好ましい(請求項3)。 Next, among the ears generated at the opening of the drawing cup used for the ear ratio test of the base plate or the blank plate, four locations in the 45 ° direction with respect to the rolling direction, or 0 °, 90 °, 180 ° Ears of ears occurring at four locations in the 270 ° direction are 2.5% or less, and ears of ears occurring at two locations of 0 ° and 180 ° with respect to the rolling direction are 2.0% or less. ( Claim 3 ).

上記45°方向4箇所の耳の耳率が2.5%を超えた場合、成形したキャップの裾部の印刷文字等の曲がりは45°方向において顕著となり、防止が困難となる。耳率は小さければ小さい程、つまり下限は0%であるのがよいが、金属板の性質上困難である。実際のところ0.5%〜2.0%の耳率であればより好ましい。   When the ear rate of the four ears in the 45 ° direction exceeds 2.5%, bending of printed characters or the like at the skirt portion of the molded cap becomes noticeable in the 45 ° direction and is difficult to prevent. The smaller the ear ratio, that is, the lower limit is preferably 0%, but it is difficult due to the nature of the metal plate. Actually, an ear rate of 0.5% to 2.0% is more preferable.

また、0°、90°、180°、270°方向の4箇所に発生する耳の耳率が2.5%を超えた場合においても、上記45°方向4箇所における耳率が2.5%を超えた場合と同様に、印刷文字等の曲がりが顕著になる。   Further, even when the ear rate of the ears generated at the four locations in the 0 °, 90 °, 180 °, and 270 ° directions exceeds 2.5%, the ear rate at the four locations in the 45 ° direction is 2.5%. As in the case of exceeding, bending of printed characters or the like becomes remarkable.

さらに、圧延方向に対し0°と180°方向の2箇所に発生する耳の耳率が2.0%を超えた場合にも、成形したキャップ裾部の印刷文字等の曲がりを防止することが困難となる。Al−低Mg系合金の絞り加工の場合、圧延方向に対し特に0°と180°方向の耳が発生しやすく、この方向の耳を制御することがポイントとなる。そして、より確実に印刷文字等の曲がりを抑制するには、圧延方向に対し0°と180°に発生する耳の耳率を1.5%以下とすることが好ましい。   Furthermore, even when the ear-ear ratio occurring at two locations in the 0 ° and 180 ° directions with respect to the rolling direction exceeds 2.0%, it is possible to prevent bending of printed characters and the like on the molded cap hem portion. It becomes difficult. In the case of drawing of an Al-low Mg alloy, ears in the directions of 0 ° and 180 ° are particularly likely to occur with respect to the rolling direction, and it is important to control the ears in this direction. And in order to suppress the bending of printed characters and the like more reliably, it is preferable to set the ear ratio of the ears generated at 0 ° and 180 ° with respect to the rolling direction to 1.5% or less.

耳率の発生状態及び強度特性は、Mg、Mn、Si、Feの含有量だけではなく、その他の製造条件などによっても調整できる。   The generation state and strength characteristics of the ear rate can be adjusted not only by the contents of Mg, Mn, Si, and Fe but also by other manufacturing conditions.

ここで、上記絞りカップは、上記キャップ用Al−Mg系合金板より切り出したブランクを所定の条件で絞り加工して得られるカップ状の試験材である。この絞りカップの開口端において、軸方向に突出した部分を耳、耳と耳との間において最も窪んだ部分を谷という。そして、絞りカップの底から耳先端までの距離を耳高さとし、絞りカップの底から谷先端までを谷高さとする。そして耳率は、次のようにして算出することができる。   Here, the drawn cup is a cup-shaped test material obtained by drawing a blank cut out from the cap Al—Mg alloy plate under predetermined conditions. At the opening end of the throttle cup, the portion protruding in the axial direction is called an ear, and the most depressed portion between the ears is called a valley. The distance from the bottom of the squeeze cup to the tip of the ear is defined as the ear height, and the distance from the bottom of the squeeze cup to the tip of the valley is defined as the valley height. The ear rate can be calculated as follows.

<45°方向4箇所の耳の耳率>
45°耳高さ=A、135°耳高さ=B、225°耳高さ=C、315°耳高さ=D、
45°と135°の間の最小の谷高さ=E、
135°と225°の間の最小の谷高さ=F、
225°と315°の間の最小の谷高さ=G、
315°と45°の間の最小の谷高さ=H、
耳部の平均:M45=(A+B+C+D)/4、
谷部の平均:V45=(E+F+G+H)/4とすると、
耳率=〔(M45−V45)/{(M45+V45)/2}〕×100(%)
<Ear rate of ears at 45 points in 45 ° direction>
45 ° ear height = A, 135 ° ear height = B, 225 ° ear height = C, 315 ° ear height = D,
Minimum valley height between 45 ° and 135 ° = E,
Minimum valley height between 135 ° and 225 ° = F,
Minimum valley height between 225 ° and 315 ° = G,
Minimum valley height between 315 ° and 45 ° = H,
Ear average: M45 = (A + B + C + D) / 4,
Average valley: V45 = (E + F + G + H) / 4
Ear rate = [(M45−V45) / {(M45 + V45) / 2}] × 100 (%)

<0°、90°、180°、270°方向4箇所の耳の耳率>
0°耳高さ=A’、90°耳高さ=B’、180°耳高さ=C’、270°耳高さ=D’、0°と90°の間の最小の谷高さ=E’、
90°と180°の間の最小の谷高さ=F’、
180°と270°の間の最小の谷高さ=G’、
270°と0°の間の最小の谷高さ=H’、
耳部の平均:M’=(A’+B’+C’+D’)/4、
谷部の平均:V’=(E’+F’+G’+H’)/4とすると、
耳率=〔(M’−V’)/{(M’+V’)/2}〕×100(%)
<Ear rate of ears at 4 locations in 0 °, 90 °, 180 °, 270 ° direction>
0 ° ear height = A ′, 90 ° ear height = B ′, 180 ° ear height = C ′, 270 ° ear height = D ′, minimum valley height between 0 ° and 90 ° = E ',
Minimum valley height between 90 ° and 180 ° = F ′,
Minimum valley height between 180 ° and 270 ° = G ′,
Minimum valley height between 270 ° and 0 ° = H ′,
Ear average: M ′ = (A ′ + B ′ + C ′ + D ′) / 4
Average valley: V ′ = (E ′ + F ′ + G ′ + H ′) / 4
Ear rate = [(M′−V ′) / {(M ′ + V ′) / 2}] × 100 (%)

<0°と180°方向2箇所の耳の耳率>
カップの平均高さ=P(開口端の高さを1000点測定した平均高さ)、
0°耳高さ=Q、180°耳高さ=R、
耳部の平均:S=(Q+R)/2、
耳率={(S−P)/P}×100(%)
<Ear ratio of ears at two locations at 0 ° and 180 °>
Average height of cup = P (average height obtained by measuring the height of the open end at 1000 points),
0 ° ear height = Q, 180 ° ear height = R,
Ear average: S = (Q + R) / 2,
Ear rate = {(SP) / P} × 100 (%)

<カップ絞り成形条件>
ダイス径33.6mm、ポンチ径33mm、ポンチ肩R1.5mmの金型を用い、供試材ブランク径55mmとして、絞り比1.67でカップ絞りを実施。
<Cup drawing molding conditions>
Using a die with a die diameter of 33.6 mm, a punch diameter of 33 mm, and a punch shoulder R of 1.5 mm, a cup blank was carried out with a drawing material blank diameter of 55 mm and a drawing ratio of 1.67.

また、上記アルミニウム合金板は、結晶粒径が50μm以下であることが好ましい(請求項4)。
この場合には、キャップ成形時に肌荒れが起こりにくいという効果が得られる。
Further, the aluminum alloy plate is preferably crystal particle diameter of 50μm or less (claim 4).
In this case, an effect that rough skin hardly occurs at the time of cap molding can be obtained.

また、上記アルミニウム合金板は、90°繰り返し曲げ回数が14〜18回であることが好ましい(請求項5)。
90°繰り返し曲げは、後述する実施例に示すように、水平状態から所定の位置を基点として、曲げR=1.0mmの条件下で、一方に90°折り曲げ(これを1回と数える)、次いで、水平状態に戻した後(これも一回と数える)、反対方向に90°折り曲げる(これも1回と数える)ことを繰り返し、割れに至るまでの曲げ回数を評価し、キャップ開栓時のせん断力の指標とする試験である。
曲げ回数が14回未満の場合には、ミシン目部がせん断破壊しやすいため、内容物による内圧により、内容物の漏れやブローオフの危険性を有するキャップとなる可能性がある。
また、曲げ回数が18回を超える場合には、ミシン目部がせん断破壊し難いため、開栓しにくいキャップとなる場合がある。
Further, the aluminum alloy plate is preferably 90 ° cyclic bending number 14-18 times (claim 5).
As shown in the examples described later, the 90 ° repeated bending is performed by bending 90 ° in one direction (counting this once) under the condition of bending R = 1.0 mm from a predetermined position from the horizontal state. Next, after returning to the horizontal state (this is also counted as one time), bending 90 ° in the opposite direction (this is also counted as one time) was repeated, and the number of times of bending until cracking was evaluated, and the cap was opened. This is a test used as an index of the shearing force.
When the number of times of bending is less than 14, the perforated portion is likely to be sheared and broken, and the internal pressure by the content may result in a cap that has a risk of content leakage or blow-off.
Further, when the number of times of bending exceeds 18, the perforated portion is difficult to shear and may become a cap that is difficult to open.

次に、本発明のアルミニウム合金板を得るための好ましい製造条件について説明する。
基本的な製造工程は、鋳塊を均質化熱処理した後、熱間圧延をして板を形成し、焼鈍、冷間圧延、焼鈍、冷間圧延を順次行って製品板厚とし、最後に強度の安定化のために安定化熱処理することである。なお、この安定化熱処理の前あるいは後において、脱脂、化成処理等の表面処理をすることが多い。
Next, preferable production conditions for obtaining the aluminum alloy plate of the present invention will be described.
The basic manufacturing process is to homogenize and heat the ingot, then hot-roll to form a plate, and then anneal, cold-roll, anneal, and cold-roll sequentially to obtain the product thickness, and finally strength In order to stabilize the heat treatment, stabilization heat treatment is performed. In many cases, surface treatment such as degreasing and chemical conversion treatment is performed before or after the stabilization heat treatment.

上記均質化熱処理は、鋳塊を450〜550℃の温度に1〜24時間保持する条件である。保持温度450℃未満あるいは保持時間が1時間未満であると耳の生成が不安定となり制御が困難となる。保持温度が550℃超えあるいは保持時間が24時間超えの場合、表面にMgが拡散しやすく、表面の酸化Mg層が厚くなり、面削量を過度に多くする必要があり非経済的である。   The said homogenization heat processing is the conditions which hold | maintain an ingot at the temperature of 450-550 degreeC for 1 to 24 hours. If the holding temperature is less than 450 ° C. or the holding time is less than 1 hour, the ear formation becomes unstable and control becomes difficult. When the holding temperature exceeds 550 ° C. or the holding time exceeds 24 hours, Mg easily diffuses on the surface, the Mg oxide layer on the surface becomes thick, and the amount of chamfering needs to be excessively increased, which is uneconomical.

続いて、例えば、熱間圧延−焼鈍1−冷間圧延1−焼鈍2−冷間圧延2−安定化熱処理を順次行う。この工程で、所定の強度と耳率を得ることができる。
上記焼鈍1、2では、300〜550℃の温度に保持する条件で行う。保持温度が300℃未満の場合、最終板で所定の耳率が得られず、また、強度が高くなりすぎて成形性に劣る。保持温度が550℃超えの場合、表面が酸化しやすくなり好ましくない。なお、保持時間は特に限定しないが、連続焼鈍ラインなどによる急速加熱・急速冷却の比較的高温での焼鈍の場合、保持0〜20秒、バッチ式焼鈍炉による比較的低温での焼鈍の場合保持30分〜5時間が適当である。
Subsequently, for example, hot rolling, annealing, cold rolling, annealing, cold rolling, and stabilizing heat treatment are sequentially performed. In this step, a predetermined strength and ear rate can be obtained.
In the said annealing 1 and 2, it carries out on the conditions hold | maintained at the temperature of 300-550 degreeC. When the holding temperature is less than 300 ° C., a predetermined ear ratio cannot be obtained with the final plate, and the strength becomes too high and the moldability is poor. When the holding temperature exceeds 550 ° C., the surface tends to be oxidized, which is not preferable. The holding time is not particularly limited, but when annealing at a relatively high temperature such as rapid heating / cooling using a continuous annealing line or the like, holding is performed for 0 to 20 seconds, holding when annealing at a relatively low temperature using a batch annealing furnace. 30 minutes to 5 hours is appropriate.

上記焼鈍2後の冷間圧延2は、30〜70%の範囲で行えばよい。圧延率が30%未満では所定の強度を得にくく、所定の耳率を得にくくなる。圧延率が70%超えでは、成形性が低下し強度が高すぎて開栓しにくくなり、また、圧延集合組織が発達しすぎて45°方向の耳が大きくなる。   What is necessary is just to perform the cold rolling 2 after the said annealing 2 in 30 to 70% of range. When the rolling rate is less than 30%, it is difficult to obtain a predetermined strength, and it becomes difficult to obtain a predetermined ear rate. If the rolling rate exceeds 70%, the formability is lowered, the strength is too high and it is difficult to open the plug, and the rolling texture is developed so much that the ears in the 45 ° direction become large.

キャップ用素材としての性能は冷間圧延のままでほぼ達成されるが、Al−Mg系合金の場合、冷間圧延のままの状態で室温放置すると、強度が次第に低下する現象が起こる。それを防止し強度を安定化させるために、100〜300℃の温度で30分以上加熱する熱処理(安定化熱処理)が必要である。100℃未満では強度が安定せず、上限の300℃を超えると、軟化が大きくなり所定の強度を得ることができない。   The performance as a cap material is almost achieved with cold rolling, but in the case of an Al-Mg alloy, when the cold rolling is left at room temperature, a phenomenon in which the strength gradually decreases occurs. In order to prevent this and stabilize the strength, a heat treatment (stabilized heat treatment) for heating at a temperature of 100 to 300 ° C. for 30 minutes or more is necessary. If it is less than 100 ° C., the strength is not stable, and if it exceeds the upper limit of 300 ° C., softening increases and a predetermined strength cannot be obtained.

本例の内容を具体的な実施例により説明するが、以下は本発明の一実施例を示したものであり、本発明はこれに限定されるものではない。
(実施例及び参考例
表1に示す化学成分を含有する厚さ500mm、幅800mm、長さ2000mmのアルミニウム合金鋳塊をDC鋳造にて造塊し、表面の偏析層を15mm切削後、500℃で12時間保持する均質化熱処理し、均質化熱処理炉から出してすぐに熱間圧延を450℃で開始した。板厚3mmまで熱間圧延を行い、250℃で終了した。その後、380℃で1時間、バッチ式焼鈍炉を用いて焼鈍を行うことで再結晶組織を得た後に、板厚0.5mmまで冷間圧延し、さらに500℃で3秒、連続焼鈍ラインを用いて中間焼鈍して再結晶組織とした後、40%の圧延率で、板厚0.3mmまで冷間圧延し、安定化熱処理を200℃で2時間行い、供試材とした。
得られた6種類の供試材E1〜E6を用い、以下の評価試験をした。一部の試験片は、材料組織観察をした。
The contents of this example will be described with reference to specific examples, but the following shows one example of the present invention, and the present invention is not limited to this.
(Examples and Reference Examples )
A 500 mm thick, 800 mm wide, 2000 mm long aluminum alloy ingot containing the chemical components shown in Table 1 is formed by DC casting, and the segregation layer on the surface is cut by 15 mm and then kept at 500 ° C. for 12 hours. The hot rolling was started at 450 ° C. immediately after the heat treatment. Hot rolling was performed to a plate thickness of 3 mm, and the process was terminated at 250 ° C. Then, after obtaining a recrystallized structure by annealing at 380 ° C. for 1 hour using a batch annealing furnace, it was cold-rolled to a thickness of 0.5 mm, and further a continuous annealing line at 500 ° C. for 3 seconds. After using the intermediate annealing to obtain a recrystallized structure, it was cold-rolled at a rolling rate of 40% to a plate thickness of 0.3 mm, and subjected to a stabilization heat treatment at 200 ° C. for 2 hours to obtain a test material.
The following evaluation tests were performed using the obtained six types of test materials E1 to E6. Some specimens were observed for material structure.

Figure 0004943714
Figure 0004943714

<強度>
JIS5号試験片にて、引張試験を行い、引張強さ、耐力、伸びを測定した。
<耳率>
ダイス径33.6mm、ポンチ径33mm、ポンチ肩R1.5mmの金型を用い、供試材ブランク径55mmとして、絞り比1.67でカップ絞りを実施。
耳率は、前述の条件により成形したカップを、前述の式から、45°方向4箇所(A方向)の耳の耳率、0°、90°、180°、270°方向4箇所(B方向)の耳の耳率、及び0°と180°方向2箇所の耳の耳率を測定した。
<結晶粒径>
供試材板面を電解研磨し、偏光顕微鏡で結晶粒を観察した。ASTMカードを用いて、比較法から、結晶粒径を求めた。
<繰り返し曲げ>
繰り返し曲げ試験は、まず、図1に示すごとく、圧延方向を長手とする長さ200mm、幅12.5mmの供試材1をチャック5で保持し、供試材1が撓むことなく荷重がかかるようにする。そして、供試材1に、耐力の約15%程度の応力を負荷した状態で、同図に示すごとく、上記チャック5を回転させて曲げR=1.0mmの曲げを与えることで行う。
すなわち、上記繰り返し曲げ試験は、基点から一方に90°折り曲げ(a)、次いで、基点に戻した後(b)、反対方向に90°折り曲げ(c)、再び基点に戻す(d)ことを繰り返す両振り試験である。
曲げ回数は、90度折り曲げる度に1回とカウントし、割れに至るまでの繰り返し曲げ回数を評価した。
<Strength>
A tensile test was performed on a JIS No. 5 test piece, and the tensile strength, proof stress, and elongation were measured.
<Ear rate>
Using a die with a die diameter of 33.6 mm, a punch diameter of 33 mm, and a punch shoulder R of 1.5 mm, a cup blank was carried out with a drawing material blank diameter of 55 mm and a drawing ratio of 1.67.
The ear rate is calculated based on the above-mentioned conditions, and the ear rate of the ears at 45 locations in the 45 ° direction (A direction), 4 locations at the 0 °, 90 °, 180 °, and 270 ° directions (in the B direction) ) And two ears at 0 ° and 180 ° directions were measured.
<Crystal grain size>
The plate surface of the test material was electropolished and the crystal grains were observed with a polarizing microscope. The crystal grain size was determined from the comparative method using an ASTM card.
<Repeated bending>
In the repeated bending test, first, as shown in FIG. 1, a specimen 1 having a length of 200 mm and a width of 12.5 mm with the rolling direction as a longitudinal direction is held by a chuck 5, and a load is applied without the specimen 1 being bent. Do so. Then, the test material 1 is subjected to a bending of R = 1.0 mm by rotating the chuck 5 as shown in the figure with a stress of about 15% of the proof stress being applied.
That is, the repeated bending test repeats 90 ° bending from the base point to one side (a), then returning to the base point (b), 90 ° bending in the opposite direction (c), and returning to the base point again (d). This is a swing test.
The number of times of bending was counted as one time every 90 degrees, and the number of times of repeated bending until cracking was evaluated.

上記繰り返し曲げ試験においては、割れが発生して荷重に変化が起きると曲げが止まるように構成してある。繰り返し曲げ回数は次のようにして算出する。
90°曲げた回数をXとし、X回繰り返し曲げを行った後、繰り返し曲げ試験機が止まるまでに動いた角度を90°で割ったものをYとする。そして、繰り返し曲げ回数=X+Yとして、小数点以下1桁までの数字を採用する。また、各供試材において、割れに至るまでの繰り返し試験を5回行った平均値を測定結果とする。
In the repeated bending test, the bending is stopped when a crack occurs and the load changes. The number of repeated bending is calculated as follows.
The number of times of 90 ° bending is defined as X, and Y is obtained by dividing the angle moved until the repeated bending tester stops by 90 ° after performing bending repeatedly X times. Then, the number of repeated bends = X + Y, and numbers up to one decimal place are adopted. Moreover, in each test material, an average value obtained by repeating the repeated test up to cracking five times is taken as a measurement result.

表2にこれらの評価結果を示す。なお、同表の耳率におけるA、Bは、A:45°方向4箇所、B:0°、90°、180°、270°方向4箇所の耳の耳率であることを示している(表4においても同様である。)。
本例の供試材E1〜E6は、引張強さ、耐力、伸び、耳率、結晶粒径というすべての評価項目において、いずれも広口ボトル缶キャップ用のキャップ材として良好な結果を示した。
Table 2 shows the evaluation results. In addition, A and B in the ear rate in the same table indicate that A: 4 points in the 45 ° direction and B: 4 points in the ears at the 0 °, 90 °, 180 °, and 270 ° directions. The same applies to Table 4.)
The test materials E1 to E6 of this example all showed good results as cap materials for wide-mouth bottle can caps in all evaluation items of tensile strength, yield strength, elongation, ear rate, and crystal grain size.

Figure 0004943714
Figure 0004943714

(比較例
表3に示す本発明の請求範囲外である成分を有するアルミニウム合金鋳塊を、前述の実施例及び参考例と同じ条件で製造し、供試材C1〜C6を得た。
(Comparative example )
Aluminum alloy ingots having components that are outside the scope of the present invention shown in Table 3 were produced under the same conditions as in the above Examples and Reference Examples, and specimens C1 to C6 were obtained.

Figure 0004943714
Figure 0004943714

これらの評価結果を表4に示す。
表4から知られるように、試料C1は、Mg及びMg+Mnの含有量が本発明の上限を超えているため、引張強さ、耐力が大きく、強度が高すぎになる。また、異方性のバランスが悪くなり、45°方向4箇所の耳の耳率が本発明の好ましい範囲の上限を超えるため、文字曲がりの防止が困難となる。また、繰り返し曲げ回数が本発明の好ましい範囲の下限を下回っているため、ミシン目部がせん断破壊しやすいため、内容物による内圧により、内容物の漏れやブローオフの危険性を有するキャップとなる可能性がある。
These evaluation results are shown in Table 4.
As can be seen from Table 4, since the content of Mg and Mg + Mn exceeds the upper limit of the present invention, the sample C1 has high tensile strength and proof stress and is too strong. Moreover, since the balance of anisotropy is deteriorated and the ear ratio of the ears at the four positions in the 45 ° direction exceeds the upper limit of the preferable range of the present invention, it is difficult to prevent the character from being bent. In addition, since the number of repeated bending is less than the lower limit of the preferred range of the present invention, the perforation portion is likely to be sheared and broken, so that it is possible to become a cap having the risk of content leakage and blow-off due to internal pressure due to the content There is sex.

また、試料C2は、Mg及びMg+Mnの含有量が、本発明の下限を下回っているため、引張強さ、耐力を得ることができず、強度が不足し、所定の耐圧を得ることができない。また、結晶粒組織が本発明の好ましい範囲の上限を超えているため、キャップ成形時に肌荒れが起こりやすくなる。   Moreover, since the content of Mg and Mg + Mn is less than the lower limit of the present invention in the sample C2, the tensile strength and the yield strength cannot be obtained, the strength is insufficient, and the predetermined withstand pressure cannot be obtained. Moreover, since the crystal grain structure exceeds the upper limit of the preferred range of the present invention, rough skin tends to occur during cap molding.

試料C3は、Mg+Mnの含有量が本発明の上限を超えているため、引張強さ、耐力が大きく、強度が高すぎになり、また、異方性のバランスが悪くなり、45°方向4箇所の耳の耳率が本発明の好ましい範囲の上限を超えるため、文字曲がりの防止が困難となる。また、繰り返し曲げ回数が本発明の好ましい範囲の下限を下回っているため、ミシン目部がせん断破壊しやすいため、内容物による内圧により、内容物の漏れやブローオフの危険性を有するキャップとなる可能性がある。   In sample C3, the content of Mg + Mn exceeds the upper limit of the present invention, so the tensile strength and proof stress are large, the strength is too high, and the balance of anisotropy is deteriorated, resulting in four locations in the 45 ° direction. Since the ear rate of the ear exceeds the upper limit of the preferred range of the present invention, it is difficult to prevent the bending of characters. In addition, since the number of repeated bending is less than the lower limit of the preferred range of the present invention, the perforation portion is likely to be sheared and broken, so that it is possible to become a cap having the risk of content leakage and blow-off due to internal pressure due to the content. There is sex.

試料C4は、Mg+Mnの含有量が本発明の下限を下回っているため、引張強さ、耐力を得ることができず、強度が不足し、所定の耐圧を得ることができない。また、繰り返し曲げ回数が本発明の好ましい範囲の上限を上回っているため、ミシン目部がせん断破壊し難いため、開栓しにくいキャップとなる可能性がある。
また、0°と180°方向2箇所の耳の耳率が本発明の好ましい範囲の上限を超えるため、文字曲がりの防止が困難となる。
In Sample C4, the Mg + Mn content is below the lower limit of the present invention, so that the tensile strength and the yield strength cannot be obtained, the strength is insufficient, and the predetermined withstand pressure cannot be obtained. Moreover, since the number of times of repeated bending exceeds the upper limit of the preferred range of the present invention, the perforation portion is difficult to shear and break, so that it may be difficult to open the cap.
Moreover, since the ear ratios of the ears at two locations in the directions of 0 ° and 180 ° exceed the upper limit of the preferable range of the present invention, it is difficult to prevent character bending.

試料C5は、Si+Feの含有量が本発明の上限を超えており、さらに0.5μm以上である金属間化合物の分布密度及び面積率が本発明の上限を超え、また、大きさが3μm以上である金属間化合物の分布密度が本発明の上限を超えているため、金属間化合物の量が過剰になり、伸びの低下や、成形時に割れやすくなる。   In Sample C5, the content of Si + Fe exceeds the upper limit of the present invention, and the distribution density and area ratio of the intermetallic compound that is 0.5 μm or more exceed the upper limit of the present invention, and the size is 3 μm or more. Since the distribution density of a certain intermetallic compound exceeds the upper limit of the present invention, the amount of the intermetallic compound becomes excessive, resulting in a decrease in elongation and easy cracking during molding.

また、試料C6は、Si+Feの含有量が本発明の下限を下回るため、開栓時に必要な金属間化合物の量が確保できない。すなわち、表2に示すごとく、0.5μm以上である金属間化合物の分布密度及び面積率、また大きさが3μm以上である金属間化合物の分布密度が本発明の下限を下回る。そのため、キャップ開栓時の亀裂の起点、伝播経路となる金属間化合物が少ないため、開栓し難いキャップとなる可能性がある。   Moreover, since the content of Si + Fe is less than the lower limit of the present invention in sample C6, the amount of intermetallic compound necessary for opening the plug cannot be ensured. That is, as shown in Table 2, the distribution density and area ratio of intermetallic compounds having a size of 0.5 μm or more, and the distribution density of intermetallic compounds having a size of 3 μm or more are below the lower limit of the present invention. Therefore, since there are few intermetallic compounds which become the starting point of a crack at the time of cap opening and a propagation path, it may become a cap which is hard to open.

Figure 0004943714
Figure 0004943714

繰り返し曲げ試験機を示す説明図。Explanatory drawing which shows a repeated bending test machine.

符号の説明Explanation of symbols

1 供試材
5 チャック
1 Test material 5 Chuck

Claims (5)

塗装・印刷後に、直径28mmを超える円筒状のカップに成形し、該カップの耳部をトリミングした後、裾部にミシン目を加工し、その後、内容物が充填された飲料容器のネジ部に巻き締めされる広口ボトル缶キャップ用の高強度アルミニウム合金板であって、
Mg:1.0〜2.0%(重量%、以下同じ)、
Mn:0.2〜1.0%、
Si:0.01〜0.5%、
Fe:0.01〜0.69%を含み、残部が不可避的不純物とアルミニウムからなり、
MgとMnとの合計量が1.5〜2.5%、
SiとFeとの合計量が0.2〜0.7%であり、
上記アルミニウム合金板の元板の引張強さが200〜270MPa、耐力が170〜240MPa、伸びが3〜8%であり、
上記元板に対して、200℃の温度で10分間保持する熱処理を施した空焼板の引張強さが200〜270MPa、耐力が160〜230MPa、伸びが5〜10%であり、
大きさが0.5μm以上である金属間化合物の分布密度が3000〜10000個/mm2であると共に、上記金属間化合物の面積率が、0.5〜3.0%であり、
大きさが3μm以上である金属間化合物の分布密度が300〜1500個/mm2であることを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板。
After painting and printing, the cup is molded into a cylindrical cup with a diameter of more than 28 mm, the ear of the cup is trimmed, the perforation is processed in the hem, and then the beverage container filled with the contents is threaded. A high-strength aluminum alloy plate for a wide-mouth bottle can cap to be wound ,
Mg: 1.0 to 2.0 % (% by weight, the same applies hereinafter)
Mn: 0.2 to 1.0%
Si: 0.01 to 0.5%,
Fe: 0.01 to 0.69% included, the balance is made of inevitable impurities and aluminum,
The total amount of Mg and Mn is 1.5 to 2.5%,
The total amount of Si and Fe is 0.2-0.7%,
The base plate of the aluminum alloy plate has a tensile strength of 200 to 270 MPa, a proof stress of 170 to 240 MPa, and an elongation of 3 to 8%.
With respect to the base plate, the tensile strength of the blank plate subjected to heat treatment held at a temperature of 200 ° C. for 10 minutes is 200 to 270 MPa, the proof stress is 160 to 230 MPa, and the elongation is 5 to 10%.
The distribution density of the intermetallic compound having a size of 0.5 μm or more is 3000 to 10,000 pieces / mm 2 , and the area ratio of the intermetallic compound is 0.5 to 3.0%,
A high-strength aluminum alloy plate for wide-mouth bottle can caps, wherein the distribution density of intermetallic compounds having a size of 3 μm or more is 300 to 1500 / mm 2 .
請求項1において、上記アルミニウム合金板は、さらにCu:0.01〜0.25%、Cr:0.01〜0.25%、Zn:0.01〜0.25%、Ti:0.005〜0.05%のうち1種または2種以上を含むことを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板。  In Claim 1, the said aluminum alloy plate is further Cu: 0.01-0.25%, Cr: 0.01-0.25%, Zn: 0.01-0.25%, Ti: 0.005 A high-strength aluminum alloy plate for wide-mouth bottle can caps, comprising one or more of 0.05%. 請求項1又は2において、上記元板又は上記空焼板の耳率試験に使用する絞りカップの開口部に発生する耳のうち、圧延方向に対し45°方向の4箇所、あるいは0°、90°、180°、270°方向の4箇所に発生する耳の耳率が2.5%以下であり、かつ圧延方向に対し0°と180°方向の2箇所に発生する耳の耳率が2.0%以下であることを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板。  In Claim 1 or 2, among the ear | edge which generate | occur | produces in the opening part of the draw cup used for the ear | edge rate test of the said base plate or the said baked plate, four places of 45 degrees direction with respect to a rolling direction, or 0 degree, 90 The ear rate of ears occurring at four locations in the directions of °, 180 °, and 270 ° is 2.5% or less, and the ear rate of ears occurring at two locations in the directions of 0 ° and 180 ° with respect to the rolling direction is 2. A high-strength aluminum alloy plate for a wide-mouth bottle can cap, characterized by being 0.0% or less. 請求項1〜3のいずれか1項において、上記アルミニウム合金板の結晶粒径が50μm以下であることを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板。  The high-strength aluminum alloy plate for a wide-mouth bottle can cap according to any one of claims 1 to 3, wherein the crystal grain size of the aluminum alloy plate is 50 µm or less. 請求項1〜4のいずれか1項において、上記アルミニウム合金板の90°繰り返し曲げ回数が14〜18回であることを特徴とする広口ボトル缶キャップ用高強度アルミニウム合金板。  The high-strength aluminum alloy plate for a wide-mouth bottle can cap according to any one of claims 1 to 4, wherein the aluminum alloy plate has a 90 ° repetitive bending frequency of 14 to 18 times.
JP2006048195A 2006-02-24 2006-02-24 High strength aluminum alloy plate for wide-mouth bottle can cap Active JP4943714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048195A JP4943714B2 (en) 2006-02-24 2006-02-24 High strength aluminum alloy plate for wide-mouth bottle can cap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048195A JP4943714B2 (en) 2006-02-24 2006-02-24 High strength aluminum alloy plate for wide-mouth bottle can cap

Publications (3)

Publication Number Publication Date
JP2007224380A JP2007224380A (en) 2007-09-06
JP2007224380A5 JP2007224380A5 (en) 2009-01-22
JP4943714B2 true JP4943714B2 (en) 2012-05-30

Family

ID=38546454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048195A Active JP4943714B2 (en) 2006-02-24 2006-02-24 High strength aluminum alloy plate for wide-mouth bottle can cap

Country Status (1)

Country Link
JP (1) JP4943714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254874A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy sheet for packaging container and method of manufacturing the same
JP4995494B2 (en) * 2006-06-12 2012-08-08 住友軽金属工業株式会社 High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JP5882034B2 (en) * 2011-11-29 2016-03-09 三菱アルミニウム株式会社 Aluminum alloy plate for cap and method for producing the same
JP6224413B2 (en) * 2013-10-28 2017-11-01 株式会社Uacj Aluminum alloy plate for cap and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145758A (en) * 1987-11-07 1988-06-17 Kobe Steel Ltd Production of al alloy sheet for packaging
JP4334979B2 (en) * 2003-11-14 2009-09-30 住友軽金属工業株式会社 Aluminum alloy plate for wide-mouth bottle can cap
JP4246109B2 (en) * 2004-05-07 2009-04-02 住友軽金属工業株式会社 Aluminum alloy plate for wide-mouth bottle can cap

Also Published As

Publication number Publication date
JP2007224380A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
WO2012043582A1 (en) Cold-rolled aluminum alloy sheet for bottle can
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP4829988B2 (en) Aluminum alloy plate for packaging container lid
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP4943714B2 (en) High strength aluminum alloy plate for wide-mouth bottle can cap
JP4334979B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP2007023340A (en) Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP2016141886A (en) Aluminum alloy sheet for can top
JP5596337B2 (en) Aluminum alloy plate for ring-pull type cap and manufacturing method thereof
JP4763976B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP4995494B2 (en) High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JP4246109B2 (en) Aluminum alloy plate for wide-mouth bottle can cap
JP4393949B2 (en) High strength aluminum alloy plate for wide-mouth bottle can cap
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
WO2017065137A1 (en) Aluminum alloy plate for can end
JP4291642B2 (en) Method for manufacturing aluminum alloy plate for packaging container lid
JP2017166052A (en) Aluminum alloy sheet for packaging container tab
JP5498757B2 (en) Aluminum alloy plate for cap
JP2023006447A (en) Aluminum alloy coated sheet for tab
JP2016079502A (en) Aluminum alloy sheet for can-top

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250