JP4941435B2 - Method for producing compound semiconductor epitaxial wafer - Google Patents

Method for producing compound semiconductor epitaxial wafer Download PDF

Info

Publication number
JP4941435B2
JP4941435B2 JP2008228423A JP2008228423A JP4941435B2 JP 4941435 B2 JP4941435 B2 JP 4941435B2 JP 2008228423 A JP2008228423 A JP 2008228423A JP 2008228423 A JP2008228423 A JP 2008228423A JP 4941435 B2 JP4941435 B2 JP 4941435B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal substrate
epitaxial wafer
compound semiconductor
nucleation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008228423A
Other languages
Japanese (ja)
Other versions
JP2010062443A (en
Inventor
三智子 松田
丈士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008228423A priority Critical patent/JP4941435B2/en
Publication of JP2010062443A publication Critical patent/JP2010062443A/en
Application granted granted Critical
Publication of JP4941435B2 publication Critical patent/JP4941435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化合物半導体エピタキシャルウェハの製造方法に係り、特に、下地基板の反りに応じたエピタキシャル層成長方法を設定できる化合物半導体エピタキシャルウェハの製造方法に関する。   The present invention relates to a method for manufacturing a compound semiconductor epitaxial wafer, and more particularly to a method for manufacturing a compound semiconductor epitaxial wafer in which an epitaxial layer growth method can be set in accordance with the warp of a base substrate.

化合物半導体として、III族窒化物半導体は、そのバンドギャップの広さを特徴とし、紫外から可視光の広範囲の波長領域をカバーする高効率発光デバイスの材料に用いられている。   As a compound semiconductor, a group III nitride semiconductor is characterized by its wide band gap and is used as a material for a high-efficiency light-emitting device that covers a wide wavelength range from ultraviolet to visible light.

また、III族窒化物半導体は、高い飽和電子速度と高い絶縁破壊電界を有するため、高周波領域で使用される電子デバイス用材料として、開発が進められる一方、実用化されつつあり、化合物半導体エピタキシャルウェハからなる電子デバイスへの社会的な期待度は大きい。   Group III nitride semiconductors have high saturation electron velocities and high breakdown electric fields, so that they are being developed as electronic device materials for use in high-frequency regions, and are being put into practical use. Social expectations for electronic devices consisting of

従来、窒化物半導体を成長させる際には、基板と窒化物半導体エピタキシャル層との間の格子不整合を緩和する目的で、基板上に直接形成する核生成層の温度条件に関する技術の報告がされている。   Conventionally, when a nitride semiconductor is grown, a technique related to the temperature condition of the nucleation layer directly formed on the substrate has been reported for the purpose of relaxing the lattice mismatch between the substrate and the nitride semiconductor epitaxial layer. ing.

核生成層としてAlN層を形成する際の成長温度は、特許文献1で示されるとおり、1200℃が最も望ましいことが報告されている。この温度でAlN層を形成すると、AlNの表面が一番平坦となるとしている。   It has been reported that the growth temperature at the time of forming the AlN layer as the nucleation layer is most preferably 1200 ° C. as shown in Patent Document 1. When the AlN layer is formed at this temperature, the AlN surface is flattened.

特開2005−32823号公報JP 2005-32823 A

この特許文献1では、基板の反りに関係なく、AlN核生成層の最適成長温度を1200℃としており、デバイス特性が良好となることを報告している。しかし、単結晶基板の反りにより、ウェハに面内バラツキが生じると、デバイスの歩留が大幅に低下する問題が生じる。   This Patent Document 1 reports that the optimum growth temperature of the AlN nucleation layer is 1200 ° C., regardless of the warpage of the substrate, and that the device characteristics are good. However, when in-plane variation occurs in the wafer due to warpage of the single crystal substrate, there arises a problem that the yield of the device is greatly reduced.

すなわち、複数元素からなる単結晶基板は、高温中では熱膨張し、反りが発生する。反りによる成長中の基板形状変化は、核生成層と、その上の窒化物半導体層の成長時におけるエピタキシャル結晶の成長面温度を変化させ、その結果、ウェハ面内の結晶成長分布に変動バラツキ(例えば、チップ化後の電気特性のバラツキ)を発生させるという問題の原因になる。   That is, a single crystal substrate composed of a plurality of elements thermally expands at a high temperature and warps. The substrate shape change during growth due to warpage changes the growth surface temperature of the epitaxial crystal during the growth of the nucleation layer and the nitride semiconductor layer thereon, and as a result, the crystal growth distribution in the wafer surface varies ( For example, this causes a problem of generating variation in electrical characteristics after chip formation.

基板の反りが原因で面内バラツキが発生するという問題の報告例は見られないが、温度が高くなるほど反りは顕著になり、またウェハサイズが大きくなるほど反りの影響が大きく現れるようになる。   Although there is no report on the problem of in-plane variation due to the warpage of the substrate, the warpage becomes more prominent as the temperature increases, and the influence of the warpage becomes larger as the wafer size increases.

実際に、核生成層であるAlN層の成長温度が高い場合は、その上に成長したAlGaN層において、ウェハ中心付近のAl組成が高く、基板外周のAl組成が低い結果となった。しかし、核生成層の成長温度が低い場合には、その上に成長したAlGaN層のAl組成が、面内でほぼ均一となった。   Actually, when the growth temperature of the AlN layer as the nucleation layer was high, the AlGaN layer grown thereon had a high Al composition near the center of the wafer and a low Al composition around the substrate. However, when the growth temperature of the nucleation layer was low, the Al composition of the AlGaN layer grown thereon was almost uniform in the plane.

成長中の反りを緩和することは、結晶品質の面内分布の制御に大きく関わってくるため、反りと温度の相関に関する知見はエピタキシャルウェハの製造に不可欠である。   Since mitigating warpage during growth greatly affects control of the in-plane distribution of crystal quality, knowledge about the correlation between warpage and temperature is indispensable for the production of epitaxial wafers.

そこで、本発明の目的は、個々の単結晶基板の反りに対する核生成層の最適な成長温度を設定することにより、ウェハ面内の結晶成長分布のバラツキを低減し、デバイスを製造する際の歩留の向上を図った化合物半導体エピタキシャルウェハの製造方法を提供することにある。   Accordingly, an object of the present invention is to set the optimum growth temperature of the nucleation layer with respect to the warpage of each single crystal substrate, thereby reducing variations in the crystal growth distribution in the wafer surface and making a step in manufacturing a device. It is an object of the present invention to provide a method for producing a compound semiconductor epitaxial wafer with improved yield.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、複数元素からなる単結晶基板に、核生成層を形成し、その核生成層上に、単層或いは複数層の窒化物半導体層を形成する化合物半導体エピタキシャルウェハの製造方法において、前記核生成層を形成する前の室温の状態で単結晶基板の反りα(μm)を測定し、前記核生成層を形成する際の成長温度T(℃)を、前記単結晶基板の反りα(μm)に対し、T<4α+1180とする化合物半導体エピタキシャルウェハの製造方法である。
The present invention was devised to achieve the above object, and the invention of claim 1 forms a nucleation layer on a single crystal substrate composed of a plurality of elements, and a single layer or a nucleation layer is formed on the nucleation layer. In a compound semiconductor epitaxial wafer manufacturing method for forming a plurality of nitride semiconductor layers, a warp α (μm) of a single crystal substrate is measured at room temperature before forming the nucleation layer, and the nucleation layer is This is a method for producing a compound semiconductor epitaxial wafer in which the growth temperature T (° C.) during formation is T <4α + 1180 with respect to the warp α (μm) of the single crystal substrate.

請求項2の発明は、前記核生成層が、AlNからなる請求項1に記載の化合物半導体エピタキシャルウェハの製造方法である。   The invention of claim 2 is the method for producing a compound semiconductor epitaxial wafer according to claim 1, wherein the nucleation layer is made of AlN.

請求項3の発明は、前記単結晶基板の径が、100mm以上である請求項1又は2に記載の化合物半導体エピタキシャルウェハの製造方法である。   The invention according to claim 3 is the method for producing a compound semiconductor epitaxial wafer according to claim 1 or 2, wherein the diameter of the single crystal substrate is 100 mm or more.

請求項4の発明は、前記単結晶基板が、SiCからなる請求項1〜3のいずれかに記載の化合物半導体エピタキシャルウェハの製造方法である。   Invention of Claim 4 is a manufacturing method of the compound semiconductor epitaxial wafer in any one of Claims 1-3 in which the said single crystal substrate consists of SiC.

請求項5の発明は、前記単結晶基板の厚さが、350μm以上450μm以下である請求項1〜4のいずれかに記載の化合物半導体エピタキシャルウェハの製造方法である。   The invention of claim 5 is the method for producing a compound semiconductor epitaxial wafer according to any one of claims 1 to 4, wherein the thickness of the single crystal substrate is 350 μm or more and 450 μm or less.

請求項6の発明は、前記核生成層を形成する前の室温での反りが異なる複数の単結晶基板を用意し、その単結晶基板の反り毎に複数の成長温度で核生成層を形成した後、その核生成層上に窒化物半導体層を形成して得られた複数の各ウェハについて、シート抵抗の面内バラツキ(%)を測定すると共に、バラツキ6%未満をバラツキ良好、6%以上をバラツキ不良とし、このバラツキ結果を成長温度とりをパラメータとしてプロットしてバラツキ良好とバラツキ不良の分布を求め、そのバラツキ良好とバラツキ不良の境界の近似式を求める請求項1に記載の化合物半導体エピタキシャルウェハの製造方法である。
The invention of claim 6, prepared anti Riga different single crystal substrate at room temperature before forming the nucleation layer, the nucleation layer by a plurality of growth temperature for each reaction Ri of the single crystal substrate After the formation, the in-plane variation (%) of the sheet resistance is measured for each of the plurality of wafers obtained by forming the nitride semiconductor layer on the nucleation layer, and the variation is less than 6%. the 6% or more and variation defective claim 1 this variation results were plotted as growth temperature and anti Rio parameters determine the variation good and variations of poor distribution, an approximate expression for the variation excellent and dispersion defect of the boundary It is a manufacturing method of the compound semiconductor epitaxial wafer of description.

本発明によれば、個々の単結晶基板の反りに対する核生成層の最適な成長温度を設定することにより、ウェハ面内の結晶成長分布のバラツキを低減し、デバイスを製造する際の歩留の向上を図った化合物半導体エピタキシャルウェハが得られる。   According to the present invention, by setting the optimum growth temperature of the nucleation layer with respect to the warp of each single crystal substrate, variation in the crystal growth distribution in the wafer surface is reduced, and the yield in manufacturing the device is reduced. An improved compound semiconductor epitaxial wafer can be obtained.

以下、本発明の好適な一実施の形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

図1は、本発明の好適な実施の形態を示す化合物半導体エピタキシャルウェハ製造方法により製造する化合物半導体エピタキシャルウェハの断面図である。   FIG. 1 is a cross-sectional view of a compound semiconductor epitaxial wafer manufactured by a compound semiconductor epitaxial wafer manufacturing method showing a preferred embodiment of the present invention.

図1に示すように、化合物半導体エピタキシャルウェハ10は、SiCからなる単結晶基板1と、その単結晶基板1上に形成され、AlNからなる核生成層2と、その核生成層2上に形成され、AlGaNを含む窒化物半導体層3とで構成される。   As shown in FIG. 1, a compound semiconductor epitaxial wafer 10 is formed on a single crystal substrate 1 made of SiC, a nucleation layer 2 made of AlN, and formed on the nucleation layer 2. And a nitride semiconductor layer 3 containing AlGaN.

単結晶基板1は、窒化物半導体を成長させる土台である。また、単結晶基板1としては、その径が100mm以上のものを用いる。これは、径が100mm未満の単結晶基板では、反りα(μm)が小さいので、バラツキが発生しにくく、対策を講じる必要性が薄いためである。さらに、単結晶基板1の厚さは、350μm以上450μm以下である。これは、径が100mm程度の単結晶基板1は、一般に、この範囲の厚さとなるからである。   Single crystal substrate 1 is a base on which a nitride semiconductor is grown. As the single crystal substrate 1, a substrate having a diameter of 100 mm or more is used. This is because a warp α (μm) is small in a single crystal substrate having a diameter of less than 100 mm, so that variations are unlikely to occur and the need for taking countermeasures is small. Furthermore, the thickness of the single crystal substrate 1 is 350 μm or more and 450 μm or less. This is because the single crystal substrate 1 having a diameter of about 100 mm generally has a thickness in this range.

核生成層2は、単結晶基板1と窒化物半導体層3との格子不整合を緩和するためのものである。   The nucleation layer 2 is for relaxing the lattice mismatch between the single crystal substrate 1 and the nitride semiconductor layer 3.

本発明は、核生成層2を形成する前に、単結晶基板1の反りα(μm)を測定し、核生成層2を形成する際の成長温度T(℃)を、単結晶基板1の反りα(μm)に対し、T<4α+1180としたものである。   In the present invention, the warp α (μm) of the single crystal substrate 1 is measured before the nucleation layer 2 is formed, and the growth temperature T (° C.) at the time of forming the nucleation layer 2 is determined. For the warp α (μm), T <4α + 1180.

図4、5は、反りα(μm)の測定方法を説明する図である。   4 and 5 are diagrams for explaining a method of measuring warpage α (μm).

図4、5に示すように、反りα(μm)は、アンクランプ状態で、単結晶基板1の表面中心の高さから、焦表面(表面3点基準)までの距離dで定義され、表面基準より下に凸の場合はマイナス、上に凸の場合はプラスの値をとる。   As shown in FIGS. 4 and 5, the warp α (μm) is defined by a distance d from the height of the center of the surface of the single crystal substrate 1 to the focal surface (based on three points on the surface) in the unclamped state. It takes a negative value if it is convex below the reference, and a positive value if it is convex upward.

以下、単結晶基板1の反りα(μm)と核生成層2を形成する際の成長温度Tとの関係の根拠について述べる。   Hereinafter, the basis of the relationship between the warp α (μm) of the single crystal substrate 1 and the growth temperature T when forming the nucleation layer 2 will be described.

本発明者等は、複数元素からなる径100mmの単結晶基板について、使用する単結晶基板の反りα(μm)に着目し、単結晶基板のウェハ面内の結晶成長分布のバラツキとの相関を調べたところ、反りα(μm)の大きな単結晶基板を使用すると面内バラツキが大きくなり、反りα(μm)の少ない単結晶基板を使用すると面内バラツキが比較的小さくなり、また、成長温度を下げて核生成層の成長を行ったところ、面内バラツキが低減することを突き止めた。   The present inventors pay attention to the warp α (μm) of a single crystal substrate to be used for a single crystal substrate having a diameter of 100 mm made of a plurality of elements, and correlate with the variation in the crystal growth distribution in the wafer surface of the single crystal substrate. As a result of the investigation, when a single crystal substrate having a large warp α (μm) is used, the in-plane variation becomes large, and when a single crystal substrate having a small warp α (μm) is used, the in-plane variation becomes relatively small. As a result of growing the nucleation layer with lowering, it was found that the in-plane variation was reduced.

以上から、面内バラツキは、使用する単結晶基板の反りα(μm)と核生成層の成長温度T(℃)に依存することが分かった。   From the above, it was found that the in-plane variation depends on the warp α (μm) of the single crystal substrate used and the growth temperature T (° C.) of the nucleation layer.

図2は、単結晶基板の反りにより生じる問題について説明する図である。   FIG. 2 is a diagram for explaining a problem caused by warpage of a single crystal substrate.

図2(a)に示すように、単結晶基板1に反りα(μm)がない場合は、単結晶基板1を加熱して結晶成長させる際、単結晶基板1を固定・加熱するサセプタ4と単結晶基板1との熱の授受が略均一であり、単結晶基板1の温度が略均一になるので、単結晶基板1面内での結晶の成長速度や、Alドープのバラツキは起こりにくい。   As shown in FIG. 2A, when the single crystal substrate 1 has no warp α (μm), when the single crystal substrate 1 is heated to grow crystals, the susceptor 4 for fixing and heating the single crystal substrate 1 Since the heat transfer to and from the single crystal substrate 1 is substantially uniform and the temperature of the single crystal substrate 1 is substantially uniform, the crystal growth rate within the single crystal substrate 1 surface and variations in Al doping are unlikely to occur.

しかしながら、図2(b)に示すように、単結晶基板1に反りα(μm)がある場合(反りα(μm)が大きい場合)には、サセプタ4と単結晶基板1との熱の授受が単結晶基板1面内で均一ではないので、成長温度の異なった結晶が形成される。つまり、この結晶の外周側は、設計値通りの温度で成長しないことになる。   However, as shown in FIG. 2B, when the single crystal substrate 1 has a warp α (μm) (when the warp α (μm) is large), heat is transferred between the susceptor 4 and the single crystal substrate 1. Is not uniform within the surface of the single crystal substrate 1, crystals with different growth temperatures are formed. That is, the outer peripheral side of the crystal does not grow at the temperature as designed.

従って、結晶の成長速度や、Alドープにバラツキが生じ、結果的に、所定の特性(電気特性など)が得られない問題が生じる。また、単結晶基板1に反りα(μm)がある場合には、単結晶基板1を加熱することにより、さらに、反りα(μm)が大きくなることがある。   Therefore, the crystal growth rate and Al doping vary, resulting in a problem that predetermined characteristics (such as electrical characteristics) cannot be obtained. When the single crystal substrate 1 has a warp α (μm), the warp α (μm) may be further increased by heating the single crystal substrate 1.

そこで、本発明者等は、単結晶基板1上にエピタキシャル成長を行う前に、エピタキシャル層の結晶品質の均一性に注目し、均一性の良い結晶を製造できる最適な成長温度の予測を試みた。   Accordingly, the inventors of the present invention focused on the uniformity of the crystal quality of the epitaxial layer before performing epitaxial growth on the single crystal substrate 1 and tried to predict the optimal growth temperature at which crystals with good uniformity can be produced.

図3は、以下に示す(1)〜(3)の条件で化合物半導体エピタキシャルウェハを製造したときのシート抵抗の面内バラツキの測定結果を、面内バラツキ良好(6%未満)と不良(6%以上)について、単結晶基板の反りα(μm)および核生成層の成長温度T(℃)の2つのパラメータをもとにまとめたものである。   FIG. 3 shows the results of measurement of in-plane variation in sheet resistance when a compound semiconductor epitaxial wafer is manufactured under the conditions (1) to (3) shown below. % Or more) are summarized based on the two parameters of the warp α (μm) of the single crystal substrate and the growth temperature T (° C.) of the nucleation layer.

(1)単結晶基板の窒化物半導体層成長前の室温での反りα(μm)が、それぞれ10,3,−8,−16,−24(μm)である場合に、核生成層を1100℃で成長させた後、その上に窒化物半導体層を成長させた。   (1) When the warp α (μm) at room temperature before growth of the nitride semiconductor layer of the single crystal substrate is 10, 3, −8, −16, −24 (μm), respectively, the nucleation layer is 1100 After growing at 0 ° C., a nitride semiconductor layer was grown thereon.

(2)単結晶基板の窒化物半導体層成長前の室温での反りα(μm)が、それぞれ8,2,−11,−13,−19,−25(μm)である場合に、核生成層を1150℃で成長させた後、その上に窒化物半導体層を成長させた。   (2) Nucleation when the warpage α (μm) at room temperature before the growth of the nitride semiconductor layer of the single crystal substrate is 8, 2, -11, -13, -19, and -25 (μm), respectively. After the layer was grown at 1150 ° C., a nitride semiconductor layer was grown thereon.

(3)単結晶基板の窒化物半導体層成長前の室温での反りα(μm)が、それぞれ7,3,−1,−9,−12,−19(μm)である場合に、核生成層を1200℃で成長させた後、その上に窒化物半導体層を成長させた。   (3) Nucleation when warp α (μm) at room temperature before growth of the nitride semiconductor layer of the single crystal substrate is 7, 3, −1, −9, −12, −19 (μm), respectively. After the layer was grown at 1200 ° C., a nitride semiconductor layer was grown thereon.

上述した(1)〜(3)それぞれにおける反りα(μm)は、レーザー光照射により生じた光の位相差を解析することにより求めた。   The warp α (μm) in each of the above (1) to (3) was determined by analyzing the phase difference of light generated by laser light irradiation.

図3の実験結果から、バラツキ良好、バラツキ不良の境界は、単結晶基板1の反りα(μm)と核生成層2の成長温度Tをパラメータにとり、T=4α+1180で表された。   From the experimental results shown in FIG. 3, the boundary between good and bad variations was expressed as T = 4α + 1180 using the warp α (μm) of the single crystal substrate 1 and the growth temperature T of the nucleation layer 2 as parameters.

このT=4α+1180で表される直線上に位置する温度は、単結晶基板1が急激に反ってしまう温度の境界であると考えられ、この境界を表す直線式が均一性の良い結晶を製造できる最適温度の予測を可能にする。   The temperature located on the straight line represented by T = 4α + 1180 is considered to be a temperature boundary at which the single crystal substrate 1 warps sharply, and the linear equation representing this boundary can produce a crystal with good uniformity. Enables prediction of optimum temperature.

これらの理由から、核生成層2を形成する際の成長温度Tを、T<4α+1180とした。   For these reasons, the growth temperature T when forming the nucleation layer 2 is set to T <4α + 1180.

この本発明の化合物半導体エピタキシャルウェハ10によれば、単結晶基板1の反りα(μm)を測定し、核生成層2を形成する際の成長温度T(℃)を、単結晶基板1の反りα(μm)に対し、T<4α+1180とすることで、化合物半導体エピタキシャルウェハ10面内の結晶成長分布のバラツキを低減できる。   According to the compound semiconductor epitaxial wafer 10 of the present invention, the warp α (μm) of the single crystal substrate 1 is measured, and the growth temperature T (° C.) at the time of forming the nucleation layer 2 is determined as the warp of the single crystal substrate 1. By setting T <4α + 1180 with respect to α (μm), variations in crystal growth distribution in the surface of the compound semiconductor epitaxial wafer 10 can be reduced.

すなわち、面内バラツキのよいウェハを取得する割合が増加し、バラツキの大きなウェハの取得率を低減できる。   That is, the ratio of acquiring wafers with good in-plane variation increases, and the acquisition rate of wafers with large variations can be reduced.

従って、化合物半導体エピタキシャルウェハ10をデバイスの材料に用いることでデバイスを製造する際の歩留を向上できる。   Therefore, the yield at the time of manufacturing a device can be improved by using the compound semiconductor epitaxial wafer 10 as a device material.

次に、本発明のより具体的な化合物半導体エピタキシャルウェハ10の製造方法をさらに説明する。   Next, a more specific method for manufacturing the compound semiconductor epitaxial wafer 10 according to the present invention will be further described.

化合物半導体エピタキシャルウェハ10は、SiCからなる単結晶基板1の反りα(μm)を測定し、その単結晶基板1上に、AlNからなる核生成層2を成長温度T(T<4α+1180)で形成し、その核生成層2上に、AlGaNを含む窒化物半導体層3を形成すると得られる。   Compound semiconductor epitaxial wafer 10 measures warp α (μm) of single crystal substrate 1 made of SiC, and forms nucleation layer 2 made of AlN on growth rate T (T <4α + 1180) on single crystal substrate 1. Then, the nitride semiconductor layer 3 containing AlGaN is formed on the nucleation layer 2.

窒化物半導体層3を形成する際の成長温度は、従来知られているような温度(例えば、1100℃程度)にするとよい。   The growth temperature at the time of forming the nitride semiconductor layer 3 is preferably set to a conventionally known temperature (for example, about 1100 ° C.).

以上要するに、本発明の化合物半導体エピタキシャルウェハ10の製造方法によれば、個々の単結晶基板1の反りα(μm)に応じて核生成層2の最適な成長温度T(T<4α+1180)を設定することにより、ウェハ面内の結晶成長分布のバラツキを低減し、デバイスを製造する際の歩留を向上できる化合物半導体エピタキシャルウェハ10を得られる。   In short, according to the method of manufacturing the compound semiconductor epitaxial wafer 10 of the present invention, the optimum growth temperature T (T <4α + 1180) of the nucleation layer 2 is set according to the warp α (μm) of each single crystal substrate 1. By doing so, it is possible to obtain the compound semiconductor epitaxial wafer 10 that can reduce the variation in the crystal growth distribution in the wafer surface and improve the yield when manufacturing the device.

本実施の形態では、窒化物半導体層3を単層としたが、複数層としてもよい。   Although the nitride semiconductor layer 3 is a single layer in the present embodiment, it may be a plurality of layers.

(実施例1)
単結晶基板1には100mm径半絶縁性SiC単結晶(厚さ365μm)を用い、その単結晶基板1の窒化物半導体層3成長前の室温での反りα(μm)が、それぞれ10,3,−8,−16,−24(μm)である場合に、核生成層2を1100℃で成長させた後、その上に窒化物半導体層3を成長させ、シート抵抗の面内バラツキを測定した。反りα(μm)は、レーザー光照射により生じた光の位相差を解析し、アンクランプ状態での、ウェハ表面中心の高さから、焦表面(表面3点基準)までの距離として求めた。
Example 1
The single crystal substrate 1 is a 100 mm diameter semi-insulating SiC single crystal (thickness 365 μm), and the warpage α (μm) at room temperature before the growth of the nitride semiconductor layer 3 of the single crystal substrate 1 is 10, 3 respectively. , −8, −16, −24 (μm), after the nucleation layer 2 is grown at 1100 ° C., the nitride semiconductor layer 3 is grown thereon, and the in-plane variation in sheet resistance is measured. did. The warping α (μm) was determined as a distance from the height of the wafer surface center in the unclamped state to the focal surface (3-point reference surface) in the unclamped state by analyzing the phase difference of the light generated by laser light irradiation.

面内バラツキ6%未満をバラツキ良好、6%以上を不良と仮定したとき、単結晶基板1の反りα(μm)が−16を境に、それ以上の値の反りα(μm)を有するエピタキシャルウェハはバラツキ良好、それ未満の値の反りα(μm)を有するエピタキシャルウェハはバラツキ不良の結果となった。   Assuming that the in-plane variation is less than 6% and that the variation is 6% or more, the single crystal substrate 1 has a warp α (μm) larger than that at the boundary of −16. The wafer had good variation, and the epitaxial wafer having a warp α (μm) less than that resulted in poor variation.

(実施例2)
単結晶基板1には100mm径半絶縁性SiC単結晶(厚さ368μm)を用い、その単結晶基板1の窒化物半導体層3成長前の室温での反りα(μm)が、それぞれ8,2,−11,−13,−19,−25(μm)である場合に、核生成層2を1150℃で成長させた後、その上に窒化物半導体層3を成長させ、シート抵抗の面内バラツキを測定した。反りα(μm)は、レーザー光照射により生じた光の位相差を解析し、アンクランプ状態での、ウェハ表面中心の高さから、焦表面(表面3点基準)までの距離として求めた。
(Example 2)
The single crystal substrate 1 is a 100 mm diameter semi-insulating SiC single crystal (thickness: 368 μm), and the warp α (μm) at room temperature before the growth of the nitride semiconductor layer 3 of the single crystal substrate 1 is 8, 2 respectively. , −11, −13, −19, −25 (μm), after the nucleation layer 2 is grown at 1150 ° C., the nitride semiconductor layer 3 is grown on the nucleation layer 2 to increase the in-plane sheet resistance. Variation was measured. The warping α (μm) was determined as a distance from the height of the wafer surface center in the unclamped state to the focal surface (3-point reference surface) in the unclamped state by analyzing the phase difference of the light generated by laser light irradiation.

面内バラツキ6%未満をバラツキ良好、6%以上を不良と仮定したとき、単結晶基板1の反りα(μm)が−13を境に、それ以上の値の反りα(μm)を有するエピタキシャルウェハはバラツキ良好、それ未満の値の反りα(μm)を有するエピタキシャルウェハはバラツキ不良の結果となった。   Assuming that the in-plane variation is less than 6% and that the variation is 6% or more, the single crystal substrate 1 has a warp α (μm) greater than that at the boundary of −13. The wafer had good variation, and the epitaxial wafer having a warp α (μm) less than that resulted in poor variation.

(実施例3)
単結晶基板1には100mm径半絶縁性SiC単結晶(厚さ364μm)を用い、その単結晶基板1の窒化物半導体層3成長前の室温での反りα(μm)が、それぞれ7,3,−1,−9,−12,−19(μm)である場合に、核生成層2を1200℃で成長させた後、その上に窒化物半導体層3を成長させ、シート抵抗の面内バラツキを測定した。反りα(μm)は、レーザー光照射により生じた光の位相差を解析し、アンクランプ状態での、ウェハ表面中心の高さから、焦表面(表面3点基準)までの距離として求めた。
(Example 3)
The single crystal substrate 1 is a 100 mm diameter semi-insulating SiC single crystal (thickness: 364 μm), and the warpage α (μm) at room temperature before the growth of the nitride semiconductor layer 3 of the single crystal substrate 1 is 7, 3 respectively. , −1, −9, −12, −19 (μm), the nucleation layer 2 is grown at 1200 ° C., and then the nitride semiconductor layer 3 is grown on the nucleation layer 2 to increase the sheet resistance. Variation was measured. The warping α (μm) was determined as a distance from the height of the wafer surface center in the unclamped state to the focal surface (3-point reference surface) in the unclamped state by analyzing the phase difference of the light generated by laser light irradiation.

面内バラツキ6%未満をバラツキ良好、6%以上を不良と仮定したとき、単結晶基板1の反りα(μm)が7を境に、それ以上の値の反りα(μm)を有するエピタキシャルウェハはバラツキ良好、それ未満の値の反りα(μm)を有するエピタキシャルウェハはバラツキ不良の結果となった。   Epitaxial wafer having a warp α (μm) of a value higher than that at the boundary of the warp α (μm) of the single crystal substrate 1 assuming that the in-plane variation is less than 6% and that the variation is 6% or more. The epitaxial wafer having a good curvature and a warp α (μm) less than that resulted in a poor dispersion.

本発明により製造された化合物半導体エピタキシャルウェハの断面図である。It is sectional drawing of the compound semiconductor epitaxial wafer manufactured by this invention. 図2(a)、(b)は、単結晶基板の反りにより生じる問題について説明する図である。FIGS. 2A and 2B are diagrams for explaining a problem caused by warpage of a single crystal substrate. 化合物半導体エピタキシャルウェハのシート抵抗のバラツキについて、単結晶基板の反りと成長温度をパラメータとしてまとめた図である。It is the figure which put together the curvature and growth temperature of a single crystal substrate as a parameter about the variation in the sheet resistance of a compound semiconductor epitaxial wafer. 反りα(μm)の測定方法を説明する図である。It is a figure explaining the measuring method of curvature (alpha) (micrometer). 反りα(μm)の測定方法を説明する図である。It is a figure explaining the measuring method of curvature (alpha) (micrometer).

符号の説明Explanation of symbols

1 単結晶基板
2 核生成層
3 窒化物半導体層
10 化合物半導体エピタキシャルウェハ
DESCRIPTION OF SYMBOLS 1 Single crystal substrate 2 Nucleation layer 3 Nitride semiconductor layer 10 Compound semiconductor epitaxial wafer

Claims (6)

複数元素からなる単結晶基板に、核生成層を形成し、その核生成層上に、単層或いは複数層の窒化物半導体層を形成する化合物半導体エピタキシャルウェハの製造方法において、前記核生成層を形成する前の室温の状態で単結晶基板の反りα(μm)を測定し、前記核生成層を形成する際の成長温度T(℃)を、前記単結晶基板の反りα(μm)に対し、T<4α+1180とすることを特徴とする化合物半導体エピタキシャルウェハの製造方法。
In a method for producing a compound semiconductor epitaxial wafer, in which a nucleation layer is formed on a single crystal substrate composed of a plurality of elements, and a single layer or a plurality of nitride semiconductor layers are formed on the nucleation layer, the nucleation layer is formed The warp α (μm) of the single crystal substrate is measured at room temperature before forming, and the growth temperature T (° C.) when forming the nucleation layer is determined with respect to the warp α (μm) of the single crystal substrate. , T <4α + 1180, A method for producing a compound semiconductor epitaxial wafer.
前記核生成層が、AlNからなる請求項1に記載の化合物半導体エピタキシャルウェハの製造方法。   The method for producing a compound semiconductor epitaxial wafer according to claim 1, wherein the nucleation layer is made of AlN. 前記単結晶基板の径が、100mm以上である請求項1又は2に記載の化合物半導体エピタキシャルウェハの製造方法。   The method for producing a compound semiconductor epitaxial wafer according to claim 1 or 2, wherein the diameter of the single crystal substrate is 100 mm or more. 前記単結晶基板が、SiCからなる請求項1〜3のいずれかに記載の化合物半導体エピタキシャルウェハの製造方法。   The method for producing a compound semiconductor epitaxial wafer according to claim 1, wherein the single crystal substrate is made of SiC. 前記単結晶基板の厚さが、350μm以上450μm以下である請求項1〜4のいずれかに記載の化合物半導体エピタキシャルウェハの製造方法。   The method for producing a compound semiconductor epitaxial wafer according to claim 1, wherein the single crystal substrate has a thickness of 350 μm or more and 450 μm or less. 前記核生成層を形成する前の室温での反りが異なる複数の単結晶基板を用意し、その単結晶基板の反り毎に複数の成長温度で核生成層を形成した後、その核生成層上に窒化物半導体層を形成して得られた複数の各ウェハについて、シート抵抗の面内バラツキ(%)を測定すると共に、バラツキ6%未満をバラツキ良好、6%以上をバラツキ不良とし、このバラツキ結果を成長温度とりをパラメータとしてプロットしてバラツキ良好とバラツキ不良の分布を求め、そのバラツキ良好とバラツキ不良の境界の近似式を求める請求項1に記載の化合物半導体エピタキシャルウェハの製造方法。
After the anti Riga different single crystal substrate at room temperature before forming the nucleation layer was prepared to form a nucleation layer by a plurality of growth temperature for each Ri anti of the single crystal substrate, the nucleus For each of a plurality of wafers obtained by forming a nitride semiconductor layer on the generation layer, in-plane variation (%) of sheet resistance is measured, and variation less than 6% is good, and variation of 6% or more is bad. obtains a variation good and variations of failure distribution by plotting this variation results in growth temperature and anti Rio parameters, a compound semiconductor epitaxial wafer according to claim 1 for obtaining an approximate expression for the variation excellent and dispersion defect of the boundary Manufacturing method.
JP2008228423A 2008-09-05 2008-09-05 Method for producing compound semiconductor epitaxial wafer Active JP4941435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228423A JP4941435B2 (en) 2008-09-05 2008-09-05 Method for producing compound semiconductor epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228423A JP4941435B2 (en) 2008-09-05 2008-09-05 Method for producing compound semiconductor epitaxial wafer

Publications (2)

Publication Number Publication Date
JP2010062443A JP2010062443A (en) 2010-03-18
JP4941435B2 true JP4941435B2 (en) 2012-05-30

Family

ID=42188903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228423A Active JP4941435B2 (en) 2008-09-05 2008-09-05 Method for producing compound semiconductor epitaxial wafer

Country Status (1)

Country Link
JP (1) JP4941435B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462505B2 (en) * 2005-02-23 2008-12-09 Tekcore Co., Ltd. Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP4908886B2 (en) * 2006-03-23 2012-04-04 日本電信電話株式会社 Semiconductor device
JP2007059928A (en) * 2006-09-29 2007-03-08 Ngk Insulators Ltd High electron mobility transistor and epitaxial substrate therefor
JP4897956B2 (en) * 2006-12-20 2012-03-14 古河電気工業株式会社 Semiconductor electronic device

Also Published As

Publication number Publication date
JP2010062443A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5273741B2 (en) Epitaxial SiC single crystal substrate and method of manufacturing epitaxial SiC single crystal substrate
KR101823216B1 (en) Silicon carbide single crystal wafer and method of manufacturing a silicon carbide single crystal ingot
WO2010082267A1 (en) Inside reforming substrate for epitaxial growth; crystal film forming element, device, and bulk substrate produced using the same; and method for producing the same
JP2008311541A (en) Manufacturing method of silicon carbide semiconductor substrate
JP2006321707A (en) Silicon carbide single crystal wafer and process for producing the same
US10837124B2 (en) Gallium nitride substrate
WO2011093481A1 (en) Method for producing nitride compound semiconductor substrate, and nitride compound semiconductor free-standing substrate
JP6264768B2 (en) Semiconductor structure, semiconductor device, and method of manufacturing the semiconductor structure
CN106128937A (en) One the most epitaxially grown high-quality AlN thin film and preparation method thereof
JP2014192163A (en) METHOD FOR MANUFACTURING SiC EPITAXIAL WAFER
JP6758491B2 (en) SiC epitaxial wafer and its manufacturing method
JP4899911B2 (en) Group III nitride semiconductor substrate
JP6112712B2 (en) Method for manufacturing silicon carbide epitaxial wafer
JP4941435B2 (en) Method for producing compound semiconductor epitaxial wafer
CN112018199B (en) High-quality nonpolar AlGaN micro-nano composite structure and processing method thereof
CN102817074B (en) Based on the group III-nitride thick film self-separation method that in-situ stress controls
JP2013256440A (en) Method of manufacturing gallium nitride substrate, and gallium nitride substrate manufactured by method of manufacturing the same
CN106486339B (en) Preparation method of GaN film
KR101905860B1 (en) Method of fabrication wafer
JP6154604B2 (en) Nitride semiconductor epitaxial wafer
KR20130000303A (en) Method of fabrication wafer
CN118380317A (en) Silicon-based gallium nitride epitaxial wafer and preparation method thereof
KR102128495B1 (en) Epitaxial wafer
JP2013239588A (en) Method for manufacturing nitride semiconductor substrate and apparatus for manufacturing nitride semiconductor substrate
KR20130000297A (en) Method of fabrication wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350