JP4941348B2 - Article removal monitor - Google Patents
Article removal monitor Download PDFInfo
- Publication number
- JP4941348B2 JP4941348B2 JP2008037368A JP2008037368A JP4941348B2 JP 4941348 B2 JP4941348 B2 JP 4941348B2 JP 2008037368 A JP2008037368 A JP 2008037368A JP 2008037368 A JP2008037368 A JP 2008037368A JP 4941348 B2 JP4941348 B2 JP 4941348B2
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- detection signal
- detection
- surface sensor
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 271
- 238000007689 inspection Methods 0.000 claims description 47
- 238000012544 monitoring process Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 13
- 238000011109 contamination Methods 0.000 claims description 9
- 239000012857 radioactive material Substances 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 description 38
- 238000012545 processing Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 18
- 230000005250 beta ray Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 239000003973 paint Substances 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000941 radioactive substance Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
Description
この発明は、原子力発電所など放射性物質取扱施設の管理区域から搬出される物品の放射性物質による汚染(放射能汚染)の有無を検査する物品搬出モニタに関する。 The present invention relates to an article carry-out monitor for inspecting whether or not an article carried out from a management area of a radioactive material handling facility such as a nuclear power plant is contaminated with radioactive substances (radioactive contamination).
従来技術による大物物品および中物物品用の物品搬出モニタに係る従来技術としては、例えば、特許文献1(特開平11−211834号公報,発明の名称:物品搬出モニタ)に記載されたものが知られている。特許文献1の図1で示すように、中央のモニタ本体(特許文献1の図1の本体部10a)と、モニタ本体の前後に配置されて検査対象物品を搬送するコンベアとしての複数のローラーと、を備え、搬送される検査対象物品をモニタ本体がモニタリングを行う、というものである。
As a conventional technique related to an article carry-out monitor for a large article and a medium article according to the prior art, for example, one described in Patent Document 1 (Japanese Patent Laid-Open No. 11-211834, title of the article: article carry-out monitor) is known. It has been. As shown in FIG. 1 of
また、モニタリング時の検査方法に係る従来技術としては、例えば、特許文献2(特開2006−23162号公報,発明の名称:放射性汚染検査方法および装置)に記載されたものも知られている。この従来技術では、特許文献2の図1で示すように、検査対象物品から放射される放射線を測定する複数の放射線検出器がコンベアベルトの進行方向に沿って配置されることで、コンベアに積載され連続移動している被検査物の放射性汚染検査において単位時間あたりの処理量を確保しつつ良好な検出限界を得るようにした、というものである。
Further, as a conventional technique related to an inspection method at the time of monitoring, for example, one described in Patent Document 2 (Japanese Patent Laid-Open No. 2006-23162, title of invention: radioactive contamination inspection method and apparatus) is also known. In this prior art, as shown in FIG. 1 of
物品搬出モニタは、大量の検査対象物品に対して速く確実なモニタリングを行い、持ち出し基準を満たすか否かについて判断することが要求されている。しかしながら、将来的に放射線管理が厳格(Co−60で0.8Bq/cm2の管理基準に準拠した管理)になることに伴い、検査対象物品の全面から放射される放射線を確実に検出する必要があった。そして、このように放射線を確実に検出するためにはコンベア速度を遅くする必要があり、モニタリングの高速化に影響を及ぼしていた。 The article removal monitor is required to perform fast and reliable monitoring on a large number of inspection target articles and determine whether or not the take-out standard is satisfied. However, as radiation management becomes stricter (management based on the 0.8 Bq / cm 2 management standard at Co-60) in the future, it is necessary to reliably detect radiation emitted from the entire surface of the inspection object. was there. And in order to detect radiation reliably in this way, it is necessary to slow down the conveyor speed, which affects the speeding up of monitoring.
さらに、物品搬出モニタにおける中物や大物の検査対象物品としては、例えば、放射性物質取扱施設内で足場を組むためのパイプや足場板が主であるが、パイプは断面リング状、足場板は板に3本の梁がある断面略Ш字状であって、検出対象面が多面にわたり存在するため検出が容易でなかった。特許文献2に記載の検出方法では、パイプや足場板を検出する場合には、搬送方向に対して垂直方向に幅狭なパイプ、逆に垂直方向に幅広な足場板に対応して検出することは容易ではなかった。検出器の位置が調整できないため、パイプや足場板の放射能汚染をともに良好に検出できるような物品搬出モニタは存在しなかった。パイプや足場板の放射能汚染をともに良好に検出できるようにした物品搬出モニタが必要とされていた。
また、検出が可能な最低限度を示す放射線の検出感度をより低くしたいという要請があった。一般的に、検出感度を低くするとバックグラウンドノイズに影響されやすくなるが、バックグラウンドノイズに影響されないようにし、天然核種が広く薄く付着しただけで汚染されていない足場板等が「汚染」と判定されにくくしたいという要請もあった。
さらにまた、コンベアの搬送速度を速くしたいという要請もあった。
Furthermore, the inspection items for medium and large items in the article carry-out monitor are mainly pipes and scaffolding plates for assembling scaffolds in radioactive material handling facilities, but the pipes are ring-shaped in cross section and the scaffolding plates are plates. The cross-section is generally in the shape of a letter with three beams, and detection is not easy because there are many faces to be detected. In the detection method described in
In addition, there has been a demand for lowering the detection sensitivity of radiation indicating the minimum possible detection level. In general, if the detection sensitivity is lowered, it becomes more susceptible to background noise, but it is not affected by background noise. There was also a request to make it difficult.
Furthermore, there has been a request to increase the conveying speed of the conveyor.
基準の厳格化に伴い、具体的には、Co−60線源のβ線エネルギーで検出器(β線)を構成した場合、パイプ断面の上下左右方向、足場板断面の上下左右方向および梁の左右方向の線源に対して、(1)物品搬出速度を40mm/sec以上、(2)平均機器効率純βで評価、の条件で検出下限値0.8Bq/cm2を確保したいという要請があった。 Along with the stricter standards, specifically, when a detector (β-ray) is configured with β-ray energy of a Co-60 source, the pipe cross-section vertical and horizontal directions, the scaffold cross-section vertical and horizontal directions, and the beam There is a demand for securing a detection lower limit of 0.8 Bq / cm 2 on the condition that (1) the article carry-out speed is 40 mm / sec or more and (2) the average equipment efficiency is pure β for the source in the left-right direction. there were.
そこで、本発明は上記した問題に鑑みてなされたものであり、その目的は、コンベアの搬送速度を速くしつつ検出感度を低くし、さらにパイプや足場板というように搬送方向に対して垂直方向に幅が異なるような検査対象物品に対しても良好に検出できるような物品搬出モニタを提供することにある。 Therefore, the present invention has been made in view of the above-described problems, and its object is to reduce the detection sensitivity while increasing the conveying speed of the conveyor, and further to a direction perpendicular to the conveying direction such as a pipe or a scaffold plate. Another object of the present invention is to provide an article carry-out monitor that can detect well an article to be inspected having a different width.
上記課題を解決するため、本発明の請求項1に係る発明の物品搬出モニタは、
放射性物質取扱施設の管理区域から搬出される物品の、放射性物質による汚染の有無を検査するために、少なくとも、放射線の検出器を内蔵してモニタリングを行うモニタ部と、このモニタ部へ検査対象物品を搬入する搬入コンベアと、モニタ部から検査対象物品を搬出する搬出コンベアと、を有する物品搬出モニタにおいて、
モニタ部の検出器は、
検査対象物品の搬送経路に対して前下側にあってn個(nは4以上の自然数)の前側下面センサ(n)が搬送経路の略垂直方向に並べられて配置された前側下面検出器と、
検査対象物品の搬送経路に対して前上側にあってn個の前側上面センサ(n)が搬送経路の略垂直方向に並べられて配置された前側上面検出器と、
検査対象物品の搬送経路に対して後下側にあってn個の後側下面センサ(n)が搬送経路の略垂直方向に並べられて配置された後側下面検出器と、
検査対象物品の搬送経路に対して後上側にあってn個の後側上面センサ(n)が搬送経路の略垂直方向に並べられて配置された後側上面検出器と、
を有し、モニタ部は、
n個の前側下面センサ(n)からのnの前側下面検出信号、n個の前側上面センサ(n)からのnの前側上面検出信号、n個の後側下面センサ(n)からのnの後側下面検出信号、および、n個の後側上面センサ(n)からのnの後側上面検出信号を入力し、検査対象物品の種類および搬送位置に応じてこれら信号を選択の上で合算した検出信号を用いてモニタリングすることを特徴とする。
In order to solve the above-described problem, an article carry-out monitor according to
At least a monitor unit with a built-in radiation detector for inspecting the items carried out from the management area of the radioactive material handling facility for contamination by radioactive materials, and the items to be inspected to this monitor unit In an article carry-out monitor having a carry-in conveyor for carrying in and a carry-out conveyor for carrying out an inspection object from the monitor unit,
The monitor detector is
A front lower surface detector which is arranged on the front lower side with respect to the conveyance path of the inspection target article, and n (n is a natural number of 4 or more) front lower surface sensors (n) arranged in a substantially vertical direction of the conveyance path. When,
A front upper surface detector disposed on the front upper side with respect to the conveyance path of the article to be inspected and having n front upper surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
A rear lower surface detector arranged on the rear lower side with respect to the conveyance path of the article to be inspected and having n rear lower surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
A rear upper surface detector disposed on the rear upper side with respect to the conveyance path of the article to be inspected and having n rear upper surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
The monitor unit has
n front lower surface detection signals from n front lower surface sensors (n), n front upper surface detection signals from n front upper surface sensors (n), n from n rear lower surface sensors (n) Input the rear lower surface detection signal and n rear upper surface detection signals from the n rear upper surface sensors (n), and select and add these signals according to the type of article to be inspected and the transport position. Monitoring is performed using the detected signal.
また、本発明の請求項2に係る発明の物品搬出モニタは、
請求項1に記載の物品搬出モニタにおいて、
前記検査対象物品がパイプである場合、jを自然数とすると、
パイプの中心軸が前側下面検出器の前側下面センサ(j)と前側下面センサ(j+1)との境界面、前側上面検出器の前側上面センサ(j)と前側上面センサ(j+1)との境界面、後側下面検出器の後側下面センサ(j)と後側下面センサ(j+1)との境界面、および、後側上面検出器の後側上面センサ(j)と後側上面センサ(j+1)との境界面、を通過するようにし、
パイプの左側の面の検出は、前側下面センサ(j)からの前側下面検出信号(j)、前側上面センサ(j)からの前側上面検出信号(j)、後側下面センサ(j)からの後側下面検出信号(j)、および、後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用い、
パイプの右側の面の検出は、前側下面センサ(j+1)からの前側下面検出信号(j+1)、前側上面センサ(j+1)からの前側上面検出信号(j+1)、後側下面センサ(j+1)からの後側下面検出信号(j+1)、および、後側上面センサ(j+1)からの後側上面検出信号(j+1)を合算した信号を用い、
パイプの上側の面の検出は、前側上面センサ(j)からの前側上面検出信号(j)および後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用い、
パイプの下側の面の検出は、前側下面センサ(j)からの前側下面検出信号(j)および後側下面センサ(j)からの後側下面検出信号(j)を合算した信号を用い、
モニタリングを行うことを特徴とする。
Moreover, the article carry-out monitor of the invention according to
The article carry-out monitor according to
When the inspection object is a pipe and j is a natural number,
The central axis of the pipe is the boundary surface between the front lower surface sensor (j) and the front lower surface sensor (j + 1) of the front lower surface detector, and the boundary surface between the front upper surface sensor (j) and the front upper surface sensor (j + 1) of the front upper surface detector. The rear lower surface sensor (j) of the rear lower surface detector and the rear lower surface sensor (j + 1), and the rear upper surface sensor (j) and rear upper surface sensor (j + 1) of the rear upper surface detector. And pass through the boundary surface,
The left side surface of the pipe is detected from the front lower surface detection signal (j) from the front lower surface sensor (j), the front upper surface detection signal (j) from the front upper surface sensor (j), and the rear lower surface sensor (j). Using the signal obtained by adding the rear lower surface detection signal (j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j),
The right side surface of the pipe is detected from the front lower surface detection signal (j + 1) from the front lower surface sensor (j + 1), the front upper surface detection signal (j + 1) from the front upper surface sensor (j + 1), and the rear lower surface sensor (j + 1). Using the sum of the rear lower surface detection signal (j + 1) and the rear upper surface detection signal (j + 1) from the rear upper surface sensor (j + 1),
The upper surface of the pipe is detected using a signal obtained by adding the front upper surface detection signal (j) from the front upper surface sensor (j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j).
The lower surface of the pipe is detected using a signal obtained by adding the front lower surface detection signal (j) from the front lower surface sensor (j) and the rear lower surface detection signal (j) from the rear lower surface sensor (j).
It is characterized by monitoring.
また、本発明の請求項3に係る発明の物品搬出モニタは、
請求項2に記載の物品搬出モニタにおいて、
パイプを搬送する搬入コンベアおよび搬出コンベアは、パイプが嵌め込まれる溝であるパイプ用載置部を備え、パイプ用載置部に載置されたパイプを検出部の検出位置へ誘導することを特徴とする。
Moreover, the article carry-out monitor of the invention according to
In the article carry-out monitor according to
A carry-in conveyor and a carry-out conveyor that convey pipes include a pipe placement section that is a groove into which a pipe is fitted, and guide the pipe placed on the pipe placement section to a detection position of the detection section. To do.
また、本発明の請求項4に係る発明の物品搬出モニタは、
請求項3に記載の物品搬出モニタにおいて、
パイプを搬送する搬入コンベアおよび搬出コンベアは、多数のローラを並べたものであり、このローラは半径が大きい大径部と半径が小さい小径部とが交互に形成され、前記溝部は小径部であることを特徴とする。
Moreover, the article carry-out monitor of the invention according to
In the article carry-out monitor according to
A carry-in conveyor and a carry-out conveyor for conveying pipes are arranged with a large number of rollers. The rollers are alternately formed with a large-diameter portion having a large radius and a small-diameter portion having a small radius, and the groove portion is a small-diameter portion. It is characterized by that.
また、本発明の請求項5に係る発明の物品搬出モニタは、
請求項1〜請求項4の何れか一項に記載の物品搬出モニタにおいて、
前記検査対象物品が上面に三本の梁があるような足場板である場合、kを自然数とすると、
足場板の上面の左側の第1の梁が前側上面検出器の前側上面センサ(4k−3)と前側上面センサ(4k−2)との境界面、および、後側上面検出器の後側上面センサ(4k−3)と後側上面センサ(4k−2)との境界面を通過し、
足場板の上面の中央の第2の梁が前側上面検出器の前側上面センサ(4k−2)と前側上面センサ(4k−1)との境界面、および、後側上面検出器の後側上面センサ(4k−2)と後側上面センサ(4k−1)との境界面を通過し、
足場板の上面の右側の第3の梁が前側上面検出器の前側上面センサ(4k−1)と前側上面センサ(4k)との境界面、および、後側上面検出器の後側上面センサ(4k−1)と後側上面センサ(4k)との境界面を通過し、
足場板の下面が前側下面検出器の前側下面センサ(4k−2)および前側下面センサ(4k−1)の検出面の上、ならびに、後側下面検出器の後側下面センサ(4k−2)および後側下面センサ(4k−1)の検出面の上を通過し、
足場板の下側の左側の面の検出は、前側下面センサ(4k−3)からの前側下面検出信号(4k−3)および前側下面センサ(4k−2)からの前側下面検出信号(4k−2)を合算した信号を用い、
足場板の下側の中央の面の検出は、後側下面センサ(4k−2)からの後側下面検出信号(4k−2)および後側下面センサ(4k−1)からの後側下面検出信号(4k−1)を合算した信号を用い、
足場板の下側の右側の面の検出は、前側下面センサ(4k−1)からの前側下面検出信号(4k−1)および前側下面センサ(4k)からの前側下面検出信号(4k)を合算した信号を用い、
足場板の第1の梁の最左側の面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)、および、後側上面センサ(4k−3)からの後側上面検出信号(4k−3)を合算した信号を用い、
足場板の第3の梁の最右側の面の検出は、前側上面センサ(4k)からの前側上面検出信号(4k)、および、後側上面センサ(4k)からの後側上面検出信号(4k)を合算した信号を用い、
足場板の第1の梁と第2の梁との間にある上側の略コ字状の面の検出は、前側上面センサ(4k−2)からの前側上面検出信号(4k−2)および後側上面センサ(4k−2)からの後側上面検出信号(4k−2)を合算した信号を用い、
足場板の第2の梁と第3の梁との間にある上側の略コ字状の面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用い、
足場板の第1の梁の上側の面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)および前側上面センサ(4k−2)からの前側上面検出信号(4k−2)を合算した信号を用い、
足場板の第2の梁の上側の面の検出は、後側上面センサ(4k−2)からの後側上面検出信号(4k−2)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用い、
足場板の第3の梁の上側の面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および前側上面センサ(4k)からの前側上面検出信号(4k)を合算した信号を用い、
モニタリングを行うことを特徴とする。
Moreover, the article carry-out monitor of the invention according to
In the article carry-out monitor according to any one of
When the inspection object is a scaffolding plate having three beams on the upper surface, when k is a natural number,
The first beam on the left side of the upper surface of the scaffold plate is a boundary surface between the front upper surface sensor (4k-3) and the front upper surface sensor (4k-2) of the front upper surface detector, and the rear upper surface of the rear upper surface detector. Passing through the boundary surface between the sensor (4k-3) and the rear upper surface sensor (4k-2),
The second beam in the center of the upper surface of the scaffold plate is a boundary surface between the front upper surface sensor (4k-2) and the front upper surface sensor (4k-1) of the front upper surface detector, and the rear upper surface of the rear upper surface detector. Passing through the boundary surface between the sensor (4k-2) and the rear upper surface sensor (4k-1),
The third beam on the right side of the upper surface of the scaffolding plate is a boundary surface between the front upper surface sensor (4k-1) and the front upper surface sensor (4k) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector ( 4k-1) and the rear upper surface sensor (4k),
The lower surface of the scaffold plate is above the detection surface of the front lower surface sensor (4k-2) and the front lower surface sensor (4k-1) of the front lower surface detector, and the rear lower surface sensor (4k-2) of the rear lower surface detector. And passes over the detection surface of the rear lower surface sensor (4k-1),
Detection of the lower left surface of the scaffold plate is performed by detecting the front lower surface detection signal (4k-3) from the front lower surface sensor (4k-3) and the front lower surface detection signal (4k−) from the front lower surface sensor (4k-2). Using the signal summed up 2),
The lower center surface of the scaffolding plate is detected by detecting the rear lower surface detection signal (4k-2) from the rear lower surface sensor (4k-2) and the rear lower surface detection from the rear lower surface sensor (4k-1). Using the sum of the signals (4k-1),
To detect the lower right surface of the scaffolding plate, the front lower surface detection signal (4k-1) from the front lower surface sensor (4k-1) and the front lower surface detection signal (4k) from the front lower surface sensor (4k) are added together. Signal
The detection of the leftmost surface of the first beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the rear surface sensor (4k-3). Using the sum of the side upper surface detection signals (4k-3),
The detection of the rightmost surface of the third beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k) from the front upper surface sensor (4k) and the rear upper surface detection signal (4k) from the rear upper surface sensor (4k). )
The upper substantially U-shaped surface between the first beam and the second beam of the scaffolding plate is detected by detecting the front upper surface detection signal (4k-2) and the rear surface from the front upper surface sensor (4k-2). Using the sum of the rear upper surface detection signals (4k-2) from the side upper surface sensors (4k-2),
The upper substantially U-shaped surface between the second beam and the third beam of the scaffold plate is detected by detecting the front upper surface detection signal (4k-1) from the front upper surface sensor (4k-1) and the rear surface. Using the sum of the rear upper surface detection signals (4k-1) from the side upper surface sensors (4k-1),
The detection of the upper surface of the first beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the front upper surface detection signal (4k-2) ( 4k-2) is used as the total signal
The detection of the upper surface of the second beam of the scaffold plate is performed by detecting the rear upper surface detection signal (4k-2) from the rear upper surface sensor (4k-2) and the rear side from the rear upper surface sensor (4k-1). Using the sum of the upper surface detection signals (4k-1),
Detection of the upper surface of the third beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-1) from the front upper surface sensor (4k-1) and the front upper surface detection signal (4k) from the front upper surface sensor (4k). Using the signal summed together,
It is characterized by monitoring.
また、本発明の請求項6に係る発明の物品搬出モニタは、
請求項5に記載の物品搬出モニタにおいて、
前記足場板を搬送する搬入コンベアおよび搬出コンベアにおいて、足場板を載置する箇所を表示する足場板用載置部を形成し、足場板用載置部に載置された足場板を検出部の検出位置へ誘導することを特徴とする。
Moreover, the article carry-out monitor of the invention according to
The article carry-out monitor according to
In the carry-in conveyor and the carry-out conveyor for conveying the scaffold board, a scaffold board placement part for displaying a place on which the scaffold board is placed is formed, and the scaffold board placed on the scaffold board placement part is It is characterized by guiding to the detection position.
また、本発明の請求項7に係る発明の物品搬出モニタは、
請求項6に記載の物品搬出モニタにおいて、
前記足場板を搬送する搬送する搬入コンベアおよび搬出コンベアは、多数のローラを並べたものであり、このローラは足場板を載置する足場板用載置部を表示する第1の色彩で表示され、また、他の箇所は足場板を設置しない箇所を表す第2の色彩で表示され、色分けすることを特徴とする。
Moreover, the article carry-out monitor of the invention according to
The article carry-out monitor according to
The carry-in conveyor and the carry-out conveyor for carrying the scaffold board are arranged with a large number of rollers, and these rollers are displayed in a first color that displays a scaffold board placement part on which the scaffold board is placed. In addition, the other portions are displayed in a second color representing a portion where the scaffold board is not installed, and are color-coded.
以上のような本発明によれば、コンベアの搬送速度を速くしつつ検出感度を低くし、さらにパイプや足場板というように搬送方向に対して垂直方向に幅が異なるような検査対象物品に対しても良好に検出できるような物品搬出モニタを提供することができる。 According to the present invention as described above, it is possible to reduce the detection sensitivity while increasing the conveying speed of the conveyor, and to inspect the inspection target article whose width is different in the vertical direction with respect to the conveying direction, such as a pipe or a scaffold plate. However, it is possible to provide an article carry-out monitor that can be satisfactorily detected.
続いて、本発明を実施するための最良の形態について、図を参照しつつ説明する。図1は本形態の物品搬出モニタの正面図である。図2は本形態の物品搬出モニタの説明図であり、図2(a)はモニタ部の内観図、図2(b)は物品搬出モニタの平面図である。図3は本形態の物品搬出モニタのA−A断面図である。 Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a front view of an article carry-out monitor according to the present embodiment. FIG. 2 is an explanatory diagram of the article carry-out monitor according to the present embodiment, FIG. 2 (a) is an interior view of the monitor unit, and FIG. 2 (b) is a plan view of the article carry-out monitor. FIG. 3 is an AA cross-sectional view of the article carry-out monitor of the present embodiment.
このような物品搬出モニタ1は、原子力発電所等の放射性物質取扱施設内から搬出されるはしごや足場板、パイプ、クランプ材という物品のうち特に数が多いパイプや足場板(以下、総称する場合は単に検査対象物品という。)の検出に特化し、検査対象物品が放射性物質によって汚染されているか否かを検査するために用いられる。特に足場板、パイプという検査対象物品は長く、物品搬出モニタ1は長尺の検査対象物品に対応できるようになされている。物品搬出モニタ1は、放射性物質取扱施設の搬出口まで移送され、そこに設置されて使用される。
Such an article carry-out
本形態の物品搬出モニタ1は、図1で示すように、モニタ本体10、搬入コンベア20、搬出コンベア30、移動台車40を備える。
モニタ本体10は、放射線の検出器を内蔵して検査操作を実行するものであり、入出力部11、モニタ部12、モニタ本体入口13(図3参照)、状態表示部14(図3参照)を備えている。
As shown in FIG. 1, the article carry-out
The monitor
入出力部11は、検査対象物品が足場板かパイプかを設定する設定スイッチ、故障および異常が復旧した後に警報をリセットする警報リセットスイッチ、測定を開始させる測定開始スイッチ、測定を終了させる測定終了スイッチ、不良品を払い出すための不良品払出スイッチ、非常停止するための非常停止スイッチ(以上、入力部)、機器の故障や異常等の各種情報を表示するLCDによる操作表示器、検査結果を印字するプリンタ(以上、出力部)を備える。 The input / output unit 11 includes a setting switch for setting whether the article to be inspected is a scaffold board or a pipe, an alarm reset switch for resetting an alarm after recovery from a failure and abnormality, a measurement start switch for starting measurement, and an end of measurement for ending the measurement. Switch, defective product discharge switch for paying out defective products, emergency stop switch for emergency stop (above, input section), operation display by LCD that displays various information such as equipment failures and abnormalities, inspection results A printer for printing (hereinafter, an output unit) is provided.
モニタ部12は、図1,図2(a),(b)で示すように、前側下面のβ線検出器121、前側上面のβ線検出器122、後側下面のβ線検出器123、後側上面のβ線検出器124、中間ローラ125、不図示の信号処理回路を備えている。モニタ部12内へ搬送された検査対象物品の上下面に対してβ線検出器121,122,123,124がそれぞれ放射線検査を行う。なお、β線検出器121,122,123,124の詳細な構成・機能については後に詳述する。
中間ローラ125は、β線検出器121,123の間に配置される。詳しい機能については後述する。
モニタ本体入口13は、図3で示すように、モニタ部12内への入口であり、反対側には不図示のモニタ本体出口も設けられている。
As shown in FIGS. 1, 2A and 2B, the monitor unit 12 includes a β-ray detector 121 on the front lower surface, a β-ray detector 122 on the front upper surface, a β-ray detector 123 on the rear lower surface, A β-ray detector 124 on the rear upper surface, an intermediate roller 125, and a signal processing circuit (not shown) are provided. The β-ray detectors 121, 122, 123, and 124 respectively perform radiation inspection on the upper and lower surfaces of the inspection target article conveyed into the monitor unit 12. The detailed configuration and function of the β-ray detectors 121, 122, 123, and 124 will be described in detail later.
The intermediate roller 125 is disposed between the β-ray detectors 121 and 123. Detailed functions will be described later.
As shown in FIG. 3, the monitor main body inlet 13 is an inlet into the monitor unit 12, and a monitor main body outlet (not shown) is also provided on the opposite side.
状態表示部14は、図3で示すように、検査対象物品がモニタ本体10から全て搬出されて装置内部滞留等の異常がなくなったときに音声発生部(図示せず)の「ピンポン」という音の発生とともに点灯され、モニタ本体10へ次の検査対象物品を搬送可能であることを告げる。作業者が次の検査対象物品を搬入コンベア20へ載置し、入出力部11の測定開始ボタンの操作によってモニタ本体10へ検査対象物品が搬送され、モニタ部12で放射能汚染の有無が検査される。検査結果や設定値等は入出力部11のプリンタ(図示せず)で印刷される。
このようなモニタ本体10の入出力部11、モニタ部12、状態表示部14は信号処理や制御駆動を行う図示しない中央処理装置と接続され、信号処理・制御・駆動が一括して行われる。モニタ本体10はこのようなものである。
As shown in FIG. 3, the status display unit 14 sounds a “ping-pong” sound from a sound generation unit (not shown) when all the inspection target articles are unloaded from the monitor
The input / output unit 11, the monitor unit 12, and the status display unit 14 of the monitor
搬入コンベア20は、モニタ本体10へ検査対象物品を搬入するものであり、多数のローラ21、脚22を備える。これらローラ21は、外枠に回転自在に支持され、例えば、駆動部により回転駆動させられて検査対象物品を搬入コンベア20の搬入経路上で搬入する駆動ローラであったり、さらには駆動ローラと従動ローラとを併せ持つようなローラである。この駆動ローラの駆動部は先に説明した図示しない中央処理装置と接続されて駆動制御される。脚22は搬入コンベア20を床面に対して支持する。
The carry-in
搬出コンベア30は、モニタ本体10から検査対象物品を搬出するものであり、多数のローラ31、脚32を備える。これらローラ31は、外枠に回転自在に支持され、駆動部により回転駆動させられて検査対象物品を搬出コンベア30の搬出経路上で搬出する駆動ローラであったり、さらには駆動ローラと従動ローラとを併せ持つようなローラである。この駆動部は先に説明した図示しない中央処理装置と接続されて駆動制御される。脚32は搬出コンベア30を床面に対して支持する。
The carry-out conveyor 30 carries the inspection object from the monitor
移動台車40は、図1,図2,図3で示すように、タイヤ41、ドローバ42、横方向走行車輪43、ハンドル44、車輪止め45(図3参照)を備えている。
タイヤ41は、モニタ本体10の四隅付近で移動台車40の四カ所に設けられ、搬送方向と同じ方向(図1,図2では左右方向)に移動台車40を移動させる。
ドローバ42は、搬入側(図1では左側)のタイヤ41の車軸に連結されており、モニタ本体10を積載した移動台車40を移動させる際にかじ取りをする部材である。
As shown in FIGS. 1, 2, and 3, the
The tires 41 are provided at four locations of the moving
The drawbar 42 is connected to the axle of the tire 41 on the carry-in side (left side in FIG. 1), and is a member that steers when the
横方向走行車輪43は、モニタ本体10の四隅付近の前後両側の4ヵ所に備えられる。タイヤ41の移動方向に対して直角方向である横方向(図2では上下方向)に移動させる車輪である。
ハンドル44も、モニタ本体10の四隅付近の前後両側の4ヵ所に備えられる。
車輪止め45は横方向走行車輪43を停止させる。
The
The
このような移動台車40では、あるハンドル44と、その付近にある横方向走行車輪43とは、図示しない横方向走行車輪昇降手段と機械的に連動するように構成されており、ハンドル44の操作により、横方向走行車輪43がタイヤ41を持ち上げて移動台車40を支える位置まで横方向走行車輪43を下降させる。
In such a
この状態においては、横方向走行車輪43が移動台車40を移動させるため、物品搬出モニタ1は人力によっても容易に横方向へ移動する。また、タイヤ41が移動台車40を支えて移動させる位置まで横方向走行車輪43を上昇させたりする。この状態においては、タイヤ41が移動台車40を移動させるため、物品搬出モニタ1は人力によっても容易に搬送方向へ移動する。
In this state, since the
このような移動台車40により、入り込んだ狭い場所の正面に物品搬出モニタ1を横付けして設置する場合、物品搬出モニタ1が設置状態と平行な状態になるように、入り込んだ狭い場所の正面の前方の広い場所まで、物品搬出モニタ1をタイヤ41及びドローバ42で移動させ、この場所において、ハンドル44を操作して横方向走行車輪昇降手段によって横方向走行車輪43を下降させてタイヤ41を持ち上げた後、横方向走行車輪43によって設置位置まで物品搬出モニタ1を横方向移動させて所望の位置に設置する。その後に、横方向走行車輪43は、図3で示すように車輪止め45に載置されて移動しないようにする。移動台車40はこのようなものである。
When the article carry-out
続いて、β線検出器121,122,123,124の詳細な構成について説明する。
図4は、検出器の詳細を説明する説明図である。モニタ部12の検出器は、図4に示すように、β線検出器121である前側下面検出器121、β線検出器122である前側上面検出器122、β線検出器123である後側下面検出器123、β線検出器124である後側上面検出器124を備える。このモニタ部12の検出器を検査対象物品2が通過する。
Next, the detailed configuration of the β-ray detectors 121, 122, 123, and 124 will be described.
FIG. 4 is an explanatory diagram illustrating details of the detector. As shown in FIG. 4, the detector of the monitor unit 12 includes a front lower surface detector 121 that is a β-ray detector 121, a front upper surface detector 122 that is a β-ray detector 122, and a rear side that is a β-ray detector 123. A lower surface detector 123 and a rear upper surface detector 124 which is a β-ray detector 124 are provided. The
前側下面検出器121は、検査対象物品2の搬送経路に対して前下側にあってn個(nは4以上の自然数)の前側下面センサ(n)が搬送経路の略垂直方向に並べられて配置される。本形態ではn=10として、左側から前側下面センサ(1)〜前側下面センサ(10)が並べられて配置される。
The front lower surface detector 121 is on the lower front side with respect to the conveyance path of the
前側上面検出器122は、検査対象物品2の搬送経路に対して前上側にあってn個の前側上面センサ(n)が搬送経路の略垂直方向に並べられて配置される。本形態ではn=10として、左側から前側上面センサ(1)〜前側上面センサ(10)が並べられて配置される。
The front upper surface detector 122 is arranged on the front upper side with respect to the conveyance path of the
後側下面検出器123は、検査対象物品2の搬送経路に対して後下側にあってn個の後側下面センサ(n)が搬送経路の略垂直方向に並べられて配置される。本形態ではn=10として、左側から後側下面センサ(1)〜後側下面センサ(10)が並べられて配置される。
The rear side lower surface detector 123 is located on the lower rear side with respect to the conveyance path of the
後側上面検出器124は、検査対象物品2の搬送経路に対して後上側にあってn個の後側上面センサ(n)が搬送経路の略垂直方向に並べられて配置される。本形態ではn=10として、左側から後側上面センサ(1)〜後側上面センサ(10)が並べられて配置される。
The rear upper surface detector 124 is arranged on the rear upper side with respect to the conveyance path of the
本形態では前後上下で10個ずつ計40個のセンサが並べられている。10個の前側下面センサ(1)〜前側下面センサ(10)から10の前側下面検出信号(1)〜前側下面検出信号(10)が、10個の前側上面センサ(1)〜前側上面センサ(10)から10の前側上面検出信号(1)〜前側上面検出信号(10)が、10個の後側下面センサ(1)〜後側下面センサ(10)から10の後側下面検出信号(1)〜後側下面検出信号(10)が、および、10個の後側上面センサ(1)〜後側上面センサ(10)から10の後側上面検出信号(1)〜後側上面検出信号(10)が、図示しない中央処理装置に入力される。中央処理装置は、検査対象物品2の種類および搬送位置に応じてこれら信号を選択の上で合算した検出信号とし、モニタリングを行う。なお、検査対象物品2の種類は入出力部11の設定スイッチにより判定され、また、検査対象物品2の搬送位置は、例えば、図示しない検査対象物品検出センサ等により容易に判定される。
In the present embodiment, a total of 40 sensors are arranged 10 by 10 in the front, rear, top and bottom. Ten front lower surface sensors (1) to front lower surface sensors (10) to ten front lower surface detection signals (1) to front lower surface detection signals (10) are divided into ten front upper surface sensors (1) to front upper surface sensors ( 10 to 10 front upper surface detection signals (1) to front upper surface detection signals (10) are converted from 10 rear lower surface sensors (1) to rear lower surface sensors (10) to 10 rear lower surface detection signals (1). ) To rear side lower surface detection signal (10) and ten rear upper surface sensors (1) to rear upper surface sensor (10) to ten rear upper surface detection signals (1) to rear upper surface detection signals ( 10) is input to a central processing unit (not shown). The central processing unit performs monitoring by selecting these signals as a combined detection signal according to the type of the
このように分割した前側下面センサ(1)〜前側下面センサ(10)、前側上面センサ(1)〜前側上面センサ(10)、後側下面センサ(1)〜後側下面センサ(10)、および、後側上面センサ(1)〜後側上面センサ(10)を配置して、検出信号の上下合算、前後合算、左右合算を行うため以下のような利点が見込める。 The front lower surface sensor (1) to the front lower surface sensor (10), the front upper surface sensor (1) to the front upper surface sensor (10), the rear lower surface sensor (1) to the rear lower surface sensor (10) divided in this way, and Since the rear upper surface sensor (1) to the rear upper surface sensor (10) are arranged and the detection signals are summed up and down, front and rear, and left and right, the following advantages can be expected.
上下合算の利点としては、例えば、
(a)上下センサでの合算処理による側面感度向上、
(b)上下センサでのアンチコインシデンス処理によるγBGの影響低減、
が挙げられる。
As an advantage of summing up and down, for example,
(A) Improvement of side sensitivity by the summation process by the upper and lower sensors,
(B) Reducing the influence of γBG by anti-coincidence processing by the vertical sensor,
Is mentioned.
上記(a)について、検査対象物品2として側面が曲面状であるパイプや、側面が垂直面状である足場板のように、上下に放射線が照射される側面を有する場合には、上下センサで検出して合算処理を行うため、検査対象物品2に対する側面感度を向上させることができる。
また、上記(b)について、上下センサで検出してアンチコインシデンス処理を行うため、γBGの影響を低減させることができる。
For (a) above, if the
Further, since the anti-coincidence process is performed by detecting the above (b) with the upper and lower sensors, the influence of γBG can be reduced.
前後合算の利点として、例えば、
(c)前後のセンサでの合算処理による全体感度の向上、
(d)全体感度の向上による搬送速度の高速化、
が挙げられる。
As an advantage of summation before and after, for example,
(C) Improvement of the overall sensitivity by the summation process of the front and rear sensors,
(D) Increasing the conveyance speed by improving the overall sensitivity,
Is mentioned.
上記(c),(d)について、前後のセンサでの合算処理により全体感度を向上させて検査対象物品2の搬送方向の検出機会を増やすことができるため、搬入コンベア20および搬出コンベア30の搬送速度を上昇させることができる。
搬送速度と検出能力との関係は次式(JIS式)のようになる。
Regarding (c) and (d) above, since the overall sensitivity can be improved by the summation process of the front and rear sensors and the detection opportunities in the conveyance direction of the
The relationship between the conveyance speed and the detection capability is as shown in the following formula (JIS formula).
条件は以下のようになる。
・使用線源 :Co−60
・線源面積 :100×100mm
・検出器効率:平均機器効率(純β線での効率)
・線源効率 :0.25
・BG :0.1μSv/h
The conditions are as follows.
・ Used source: Co-60
-Radiation source area: 100 x 100 mm
-Detector efficiency: Average instrument efficiency (efficiency with pure beta rays)
-Radiation source efficiency: 0.25
BG: 0.1 μSv / h
このうち搬送速度が速くなれば測定時間Tは少なくなるため、最小検出表面積M1は大きくなり、センサの検出感度Yは高くなる。一方、搬送速度が遅くなれば測定時間Tは多くなるため、最小検出表面積M1は小さくなり、センサの検出感度は低くなる。本形態では前後検出により、測定時間Tを多くしており、検出感度を低くしている。この点については、上記のJIS式に基づく、図5の搬送速度と検出感度との関係を示す特性図にも表されている。先に説明したCo−60で0.8Bq/cm2の管理基準を満たすためには、検出感度が約0.5Bq/cm2確保できるコンベヤ速度40mm/sec以上、検出感度が約0.6Bq/cm2確保できるコンベヤ速度60mm/sec以下の速度を選択できる。これにより、比較的高速な搬送速度、および、管理基準を満たすような検出感度を確保できる。 Since these transport speed is reduced measurement time T the faster, the minimum detection area M 1 is increased, the detection sensitivity Y of the sensor is increased. Meanwhile, since the increased measurement time T if slow transport speed, the minimum detection area M 1 is reduced, the detection sensitivity of the sensor decreases. In this embodiment, the measurement time T is increased by the front-rear detection, and the detection sensitivity is lowered. This point is also represented in the characteristic diagram showing the relationship between the conveyance speed and the detection sensitivity in FIG. 5 based on the above JIS formula. In order to satisfy the control standard of 0.8 Bq / cm 2 with Co-60 described above, a conveyor speed of 40 mm / sec or more that can secure a detection sensitivity of about 0.5 Bq / cm 2 , and a detection sensitivity of about 0.6 Bq / A conveyor speed of 60 mm / sec or less that can secure cm 2 can be selected. As a result, it is possible to ensure a relatively high conveyance speed and detection sensitivity that satisfies the management standard.
例えば、個々のセンサの大きさが搬送方向で310mm、コンベヤ速度40mm/secとした場合、前後のセンサを合算するため、測定時間は、310mm×2/40mm/sec=15.5secとなる。測定時間15.5sec、コンベア速度40mm/sec、検出距離50mmでの検出感度はCo−60で約0.5Bq/cm2となり、管理基準である0.8Bq/cm2よりも低くなり、管理基準を十分に満足する。 For example, when the size of each sensor is 310 mm in the conveyance direction and the conveyor speed is 40 mm / sec, the measurement time is 310 mm × 2/40 mm / sec = 15.5 sec because the sensors before and after are added up. The detection sensitivity at a measurement time of 15.5 sec, a conveyor speed of 40 mm / sec, and a detection distance of 50 mm is approximately 0.5 Bq / cm 2 for Co-60, which is lower than the management standard of 0.8 Bq / cm 2 , and is a management standard. Fully satisfied.
一般化すれば前側下面検出器の前側下面センサ(i)からの前側下面検出信号(i)および後側下面検出器の後側下面センサ(i)からの後側下面検出信号(i)を合算し、または、前側上面検出器の前側上面センサ(i)からの前側上面検出信号(i)および後側上面検出器の後側上面センサ(i)からの後側上面検出信号(i)を合算するようにする。これにより搬送方向の検出機会を増やすとともに、搬入コンベアおよび搬出コンベアの搬送速度を上昇させることができる。 If generalized, the front lower surface detection signal (i) from the front lower surface sensor (i) of the front lower surface detector and the rear lower surface detection signal (i) from the rear lower surface sensor (i) of the rear lower surface detector are added together. Or the front upper surface detection signal (i) from the front upper surface sensor (i) of the front upper surface detector and the rear upper surface detection signal (i) from the rear upper surface sensor (i) of the rear upper surface detector. To do. Thereby, while increasing the detection opportunity of a conveyance direction, the conveyance speed of a carrying-in conveyor and a carrying-out conveyor can be raised.
左右合算の利点としては、例えば、
(e)検出するバックグラウンドノイズの低減、
(f)左右で隣接するセンサとの合算処理によりセンサつなぎ目の感度低下防止、
(g)検査対象物品2の幅に応じた最適な検出、
が挙げられる。
As an advantage of adding left and right, for example,
(E) Reduction of detected background noise,
(F) Prevention of sensitivity reduction at sensor joints by summing with adjacent sensors on the left and right,
(G) Optimal detection according to the width of the
Is mentioned.
上記(e)について、例えば、本形態の10個のセンサと同じ面積となる一個の大型のセンサを用いたとするとこの大型のセンサはバックグラウンドノイズを広い面積で拾うため検出信号がノイズに埋もれるおそれがあるが、本形態では左右方向でセンサを分割して個々のセンサの検出面積を少なくしており、また、合算しても検出面積は全面よりも少ないものであり、その結果、検出するバックグラウンドノイズを少なくできるという利点がある。 Regarding (e) above, for example, if one large sensor having the same area as the ten sensors of this embodiment is used, this large sensor picks up background noise in a wide area, so that the detection signal may be buried in the noise. However, in this embodiment, the detection area of each sensor is reduced by dividing the sensor in the left-right direction, and even if added up, the detection area is smaller than the entire surface. There is an advantage that ground noise can be reduced.
上記(f)について、各センサはセンサ全面で検出できるようにして、左右で隣接するセンサとの合算処理をおこなっており、センサつなぎ目の感度低下防止できるという利点がある。 With regard to the above (f), each sensor can be detected on the entire surface of the sensor, and a summing process is performed with adjacent sensors on the left and right sides, and there is an advantage that it is possible to prevent a decrease in sensitivity of the sensor joint.
上記(g)について、検査対象物品2がパイプのように横方向に幅が狭い場合や、足場板のように横方向に幅が広い場合でも、横方向のセンサからの出力を適宜合算することで、検査対象物品2の幅に応じた必要かつ最少限の検出領域が確保でき、最適な検出ができるという利点がある。
Regarding (g) above, the output from the lateral sensor should be summed as appropriate even when the
このように本発明の物品搬出モニタ1ではユニット化したセンサを上下・前後・左右に多く並べ、センサからの信号に対し信号処理の工夫をすることで測定対象物に応じて最も効率良く測定する方式としたものであり、
(a)上下センサでの合算処理による側面感度向上、
(b)上下センサでのアンチコインシデンス処理によるγBGの影響低減、
(c)前後のセンサでの合算処理による全体感度の向上、
(d)全体感度の向上による搬送速度の高速化、
(e)検出するバックグラウンドノイズの低減、
(f)左右で隣接するセンサとの合算処理によりセンサつなぎ目の感度低下防止、
(g)検査対象物品2の幅に応じた最適な検出、
を実現する。
As described above, in the article carry-out
(A) Improvement of side sensitivity by the summation process by the upper and lower sensors,
(B) Reducing the influence of γBG by anti-coincidence processing by the vertical sensor,
(C) Improvement of the overall sensitivity by the summation process of the front and rear sensors,
(D) Increasing the conveyance speed by improving the overall sensitivity,
(E) Reduction of detected background noise,
(F) Prevention of sensitivity reduction at sensor joints by summing with adjacent sensors on the left and right,
(G) Optimal detection according to the width of the
To realize.
続いて検査対象物品がパイプである場合の物品搬出モニタの動作・機能について図を参照しつつ説明する。図6はモニタ部におけるパイプの検出位置を説明する説明図であり、図6(a)は平面図、図6(b)は背面図、図6(c)は側面図である。図7はモニタ部におけるセンサとパイプと位置関係を説明する説明図である。図8はセンサの合算関係を説明する説明図であり、図8(a)はA面,B面の検出の説明図、図8(b)はC面,D面の検出の説明図である。 Next, the operation / function of the article removal monitor when the inspection target article is a pipe will be described with reference to the drawings. FIGS. 6A and 6B are explanatory views for explaining a pipe detection position in the monitor unit, in which FIG. 6A is a plan view, FIG. 6B is a rear view, and FIG. 6C is a side view. FIG. 7 is an explanatory diagram for explaining the positional relationship between the sensor and the pipe in the monitor unit. 8A and 8B are explanatory diagrams for explaining the summation relationship of the sensors. FIG. 8A is an explanatory diagram for detecting the A plane and the B plane, and FIG. 8B is an explanatory diagram for detecting the C plane and the D plane. .
センサは横方向に10個並べられており、jを1から9までの自然数とすると、図6(a),(b),(c)からも明らかなように、パイプ(j)は、パイプ(j)の中心が前側下面検出器の前側下面センサ(j)と前側下面センサ(j+1)との境界面、前側上面検出器の前側上面センサ(j)と前側上面センサ(j+1)との境界面、後側下面検出器の後側下面センサ(j)と後側下面センサ(j+1)との境界面、および、後側上面検出器の後側上面センサ(j)と後側上面センサ(j+1)との境界面、を通過するようにしている。 As shown in FIGS. 6 (a), 6 (b), and 6 (c), pipe (j) is a pipe, where 10 sensors are arranged in the horizontal direction and j is a natural number from 1 to 9. The center of (j) is the boundary surface between the front lower surface sensor (j) and the front lower surface sensor (j + 1) of the front lower surface detector, and the boundary between the front upper surface sensor (j) and the front upper surface sensor (j + 1) of the front upper surface detector. Surface, the boundary surface between the rear lower surface sensor (j) and the rear lower surface sensor (j + 1), and the rear upper surface sensor (j) and the rear upper surface sensor (j + 1) of the rear upper surface detector. ) And the boundary surface.
例えばj=1を考えると、図6,図7でも明らかなように、パイプ(1)の中心が前側下面検出器の前側下面センサ(1)と前側下面センサ(2)との境界面、前側上面検出器の前側上面センサ(1)と前側上面センサ(2)との境界面、後側下面検出器の後側下面センサ(1)と後側下面センサ(2)との境界面、および、後側上面検出器の後側上面センサ(1)と後側上面センサ(2)との境界面、を通過する。 For example, considering j = 1, as is clear from FIGS. 6 and 7, the center of the pipe (1) is the boundary surface between the front lower surface sensor (1) and the front lower surface sensor (2) of the front lower surface detector, and the front side. A boundary surface between the front upper surface sensor (1) and the front upper surface sensor (2) of the upper surface detector, a boundary surface between the rear lower surface sensor (1) and the rear lower surface sensor (2) of the rear lower surface detector, and It passes through the boundary surface between the rear upper surface sensor (1) and the rear upper surface sensor (2) of the rear upper surface detector.
また、j=2を考えると、図6,図7でも明らかなように、パイプ(2)の中心が前側下面検出器の前側下面センサ(2)と前側下面センサ(3)との境界面、前側上面検出器の前側上面センサ(2)と前側上面センサ(3)との境界面、後側下面検出器の後側下面センサ(2)と後側下面センサ(3)との境界面、および、後側上面検出器の後側上面センサ(2)と後側上面センサ(3)との境界面、を通過する。以下、j=3,4,・・・,8,9において同様となる。 Considering j = 2, as is apparent from FIGS. 6 and 7, the center of the pipe (2) is the boundary surface between the front lower surface sensor (2) and the front lower surface sensor (3) of the front lower surface detector, A boundary surface between the front upper surface sensor (2) and the front upper surface sensor (3) of the front upper surface detector, a boundary surface between the rear lower surface sensor (2) and the rear lower surface sensor (3) of the rear lower surface detector, and The rear upper surface sensor (2) passes through the boundary surface between the rear upper surface sensor (3) and the rear upper surface sensor (3). The same applies to j = 3, 4,.
続いて、各面の検出について説明する。ここにパイプ(j)は左面をA面、右面をB面、上面をC面、下面をD面としている。それぞれ4分割した円弧状の面である。
パイプ(j)の左側のA面の検出は、前側下面センサ(j)からの前側下面検出信号(j)、前側上面センサ(j)からの前側上面検出信号(j)、後側下面センサ(j)からの後側下面検出信号(j)、および、後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用いる。
Subsequently, detection of each surface will be described. Here, the pipe (j) has a left surface as an A surface, a right surface as a B surface, an upper surface as a C surface, and a lower surface as a D surface. Each of them is an arcuate surface divided into four parts.
The left side A of the pipe (j) is detected by detecting the front lower surface detection signal (j) from the front lower surface sensor (j), the front upper surface detection signal (j) from the front upper surface sensor (j), and the rear lower surface sensor ( A signal obtained by adding the rear lower surface detection signal (j) from j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j) is used.
パイプ(j)の右側のB面の検出は、前側下面センサ(j+1)からの前側下面検出信号(j+1)、前側上面センサ(j+1)からの前側上面検出信号(j+1)、後側下面センサ(j+1)からの後側下面検出信号(j+1)、および、後側上面センサ(j+1)からの後側上面検出信号(j+1)を合算した信号を用いる。 The right side B of the pipe (j) is detected by detecting the front lower surface detection signal (j + 1) from the front lower surface sensor (j + 1), the front upper surface detection signal (j + 1) from the front upper surface sensor (j + 1), and the rear lower surface sensor ( A signal obtained by adding the rear lower surface detection signal (j + 1) from j + 1) and the rear upper surface detection signal (j + 1) from the rear upper surface sensor (j + 1) is used.
このようにパイプ(j)の側面であるA面,B面の検出時には、放射面が複雑な形状であることに加えてセンサまでの距離が長いため、上下合算および前後合算を行うようにして、検出能力を高めている。 As described above, when detecting the A and B surfaces, which are the side surfaces of the pipe (j), the radiation surface has a complicated shape and the distance to the sensor is long. , Has increased detection ability.
パイプ(j)の上側のC面の検出は、前側上面センサ(j)からの前側上面検出信号(j)および後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用いている。なお、jでなくj+1としても良い。
パイプ(j)の下側のD面の検出は、前側下面センサ(j)からの前側下面検出信号(j)および後側下面センサ(j)からの後側下面検出信号(j)を合算した信号を用いている。なお、jでなくj+1としても良い。
The detection of the upper C surface of the pipe (j) is a signal obtained by adding the front upper surface detection signal (j) from the front upper surface sensor (j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j). Is used. Note that j + 1 may be used instead of j.
To detect the lower D surface of the pipe (j), the front lower surface detection signal (j) from the front lower surface sensor (j) and the rear lower surface detection signal (j) from the rear lower surface sensor (j) are added together. The signal is used. Note that j + 1 may be used instead of j.
このようにパイプ(j)の上下面であるC面,D面の検出時には、放射面が複雑な形状であるがセンサまでの距離が短いため、前後合算のみを行うようにして、側面の検出能力に近いような検出能力を確保して、全体の検出能力を平坦化している。センサを左右合算しないため、効率は1/2となるが、前後のセンサを合算することにより、測定時間を2倍とし、搬送速度を高速化できる。 As described above, when detecting the C and D planes that are the upper and lower surfaces of the pipe (j), since the radiation surface has a complicated shape but the distance to the sensor is short, only the summation of the front and rear is performed to detect the side surface. The detection capability close to the capability is secured, and the overall detection capability is flattened. Since the sensors are not combined left and right, the efficiency is halved. However, by adding the front and rear sensors, the measurement time can be doubled and the conveyance speed can be increased.
例えば、図8(a)で示すように、上記したパイプ(1)の左側のA面の検出は、波線を付したセンサにより行われ、前側下面センサ(1)からの前側下面検出信号(1)、前側上面センサ(1)からの前側上面検出信号(1)、後側下面センサ(1)からの後側下面検出信号(1)、および、後側上面センサ(1)からの後側上面検出信号(1)を合算した信号を用いる。 For example, as shown in FIG. 8 (a), the detection of the left side A of the pipe (1) is performed by a sensor with a wavy line, and a front lower surface detection signal (1) from the front lower surface sensor (1). ), Front upper surface detection signal (1) from the front upper surface sensor (1), rear lower surface detection signal (1) from the rear lower surface sensor (1), and rear upper surface from the rear upper surface sensor (1). A signal obtained by adding the detection signals (1) is used.
また、パイプ(1)の右側のB面の検出は、白色を付したセンサにより行われ、前側下面センサ(2)からの前側下面検出信号(2)、前側上面センサ(2)からの前側上面検出信号(2)、後側下面センサ(2)からの後側下面検出信号(2)、および、後側上面センサ(2)からの後側上面検出信号(2)を合算した信号を用いる。 Further, the detection of the right side B of the pipe (1) is performed by a white sensor, and the front lower surface detection signal (2) from the front lower surface sensor (2) and the front upper surface from the front upper surface sensor (2). The sum of the detection signal (2), the rear lower surface detection signal (2) from the rear lower surface sensor (2), and the rear upper surface detection signal (2) from the rear upper surface sensor (2) is used.
また、図8(b)で示すように、上記したパイプ(1)の上側のC面の検出は、斜線を付したセンサにより行われ、前側上面センサ(1)からの前側上面検出信号(1)および後側上面センサ(1)からの後側上面検出信号(1)を合算した信号を用いる。なお、前側上面検出信号(2)と後側上面検出信号(2)を合算した信号を用いても良い。
また、上記したパイプ(1)の下側のD面の検出は、点描を付したセンサにより行われ、前側下面センサ(1)からの前側下面検出信号(1)および後側下面センサ(1)からの後側下面検出信号(1)を合算した信号を用いる。なお、前側下面検出信号(2)と後側下面検出信号(2)を合算した信号を用いても良い。
Further, as shown in FIG. 8B, the detection of the upper C surface of the pipe (1) is performed by a hatched sensor, and the front upper surface detection signal (1) from the front upper surface sensor (1) is detected. ) And the rear upper surface detection signal (1) from the rear upper surface sensor (1). A signal obtained by adding the front upper surface detection signal (2) and the rear upper surface detection signal (2) may be used.
Further, the detection of the lower D surface of the pipe (1) is performed by a pointed sensor, and the front lower surface detection signal (1) and the rear lower surface sensor (1) from the front lower surface sensor (1). A signal obtained by adding the rear side lower surface detection signal (1) from is used. A signal obtained by adding the front lower surface detection signal (2) and the rear lower surface detection signal (2) may be used.
物品搬出モニタ1は、上記のようにパイプのモニタリングを行うことで、センサまでの距離の長短による影響を少なくして、パイプの各面における検出能力を平坦化しており、曲面形状に影響されることなく各面の検出を行うことができる。
さらに、パイプは全面が曲面であるため確実な検出を行うためには通常では搬送速度を小さくして検出する必要があるが、本形態ではいずれの場合も前後合算は必ず行うようにしているため、搬送速度を大きくすることができる。
The article carry-out
Furthermore, since the entire surface of the pipe is a curved surface, it is usually necessary to detect at a low conveyance speed in order to perform reliable detection. However, in this embodiment, the summation before and after is always performed in all cases. The conveyance speed can be increased.
なお、パイプとセンサとの位置関係は、厳しく決定される必要がある。そこで、ローラ上でパイプの位置決めが行われる。この点について図を参照しつつ説明する。図9はローラにおけるパイプ載置部の説明図である。図2で示す搬入コンベア20のローラ21にはパイプと曲率半径が同じであるような湾曲した溝であって断面で鼓状となるようなパイプ用載置部211が、および、搬出コンベア30のローラ31にも同様な形状のパイプ用載置部311が設けられる。また、図2(a)で示す中間ローラ125でも同様の形状のパイプ用載置部が採用され、β線検出器123,124の手前で再度位置決めが行われる。これらパイプ用載置部211,311内にパイプが載置されると、パイプ用載置部211,311に載置されたパイプが上記したようなセンサの検出位置へ誘導するように位置決めされる。このため、正確な検出が可能である。
The positional relationship between the pipe and the sensor needs to be determined strictly. Therefore, the pipe is positioned on the roller. This point will be described with reference to the drawings. FIG. 9 is an explanatory view of a pipe placing portion in the roller. The
続いて検査対象物品が足場板である場合の物品搬出モニタの動作・機能について図を参照しつつ説明する。図10はモニタ部における足場板の検出位置を説明する説明図であり、図10(a)は平面図、図10(b)は背面図、図10(c)は側面図である。図11,図12はモニタ部におけるセンサと足場板との位置関係を説明する説明図である。図13はセンサの合算関係を説明する説明図であり、図13(a)はA面の検出の説明図、図13(b)はF面の検出の説明図、図13(c)はB面,C面,D面,E面の検出の説明図である。 Next, the operation / function of the article carry-out monitor when the inspection target article is a scaffold board will be described with reference to the drawings. FIG. 10 is an explanatory diagram for explaining the detection position of the scaffolding plate in the monitor unit. FIG. 10 (a) is a plan view, FIG. 10 (b) is a rear view, and FIG. 10 (c) is a side view. 11 and 12 are explanatory diagrams for explaining the positional relationship between the sensor and the scaffolding plate in the monitor unit. 13A and 13B are explanatory diagrams for explaining the summation relationship of the sensors. FIG. 13A is an explanatory diagram for detecting the A plane, FIG. 13B is an explanatory diagram for detecting the F plane, and FIG. It is explanatory drawing of a detection of a surface, C surface, D surface, and E surface.
センサは横方向に10個並べられており、また、足場板として前記検査対象物品が上面に三本の梁があるような足場板である場合、kを1,2,3という自然数とすると、図10(a),(b),(c)からも明らかなように、足場板(k)は、足場板の上面の左側の第1の梁が前側上面検出器の前側上面センサ(4k−3)と前側上面センサ(4k−2)との境界面、および、後側上面検出器の後側上面センサ(4k−3)と後側上面センサ(4k−2)との境界面を通過し、
足場板の上面の中央の第2の梁が前側上面検出器の前側上面センサ(4k−2)と前側上面センサ(4k−1)との境界面、および、後側上面検出器の後側上面センサ(4k−2)と後側上面センサ(4k−1)との境界面を通過し、
足場板の上面の右側の第3の梁が前側上面検出器の前側上面センサ(4k−1)と前側上面センサ(4k)との境界面、および、後側上面検出器の後側上面センサ(4k−1)と後側上面センサ(4k)との境界面を通過し、
足場板の下面が前側下面検出器の前側下面センサ(4k−2)および前側下面センサ(4k−1)の検出面の上、ならびに、後側下面検出器の後側下面センサ(4k−2)および後側下面センサ(4k−1)の検出面の上を通過するようにしている。
Ten sensors are arranged in the horizontal direction, and when the inspection target article is a scaffold plate having three beams on the upper surface as a scaffold plate, if k is a natural number of 1, 2, 3, As is clear from FIGS. 10 (a), (b), and (c), the scaffold plate (k) has a first beam on the left side of the upper surface of the scaffold plate, the front upper surface sensor (4k− 3) and a boundary surface between the front upper surface sensor (4k-2) and a boundary surface between the rear upper surface sensor (4k-3) and the rear upper surface sensor (4k-2) of the rear upper surface detector. ,
The second beam in the center of the upper surface of the scaffold plate is a boundary surface between the front upper surface sensor (4k-2) and the front upper surface sensor (4k-1) of the front upper surface detector, and the rear upper surface of the rear upper surface detector. Passing through the boundary surface between the sensor (4k-2) and the rear upper surface sensor (4k-1),
The third beam on the right side of the upper surface of the scaffolding plate is a boundary surface between the front upper surface sensor (4k-1) and the front upper surface sensor (4k) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector ( 4k-1) and the rear upper surface sensor (4k),
The lower surface of the scaffold plate is above the detection surface of the front lower surface sensor (4k-2) and the front lower surface sensor (4k-1) of the front lower surface detector, and the rear lower surface sensor (4k-2) of the rear lower surface detector. And it is made to pass on the detection surface of a rear side lower surface sensor (4k-1).
例えばk=1を考えると、図10,図11,図12でも明らかなように、足場板(1)は、足場板(1)の上面の左側の第1の梁が前側上面検出器の前側上面センサ(1)と前側上面センサ(2)との境界面、および、後側上面検出器の後側上面センサ(1)と後側上面センサ(2)との境界面を通過し、
足場板(1)の上面の中央の第2の梁が前側上面検出器の前側上面センサ(2)と前側上面センサ(3)との境界面、および、後側上面検出器の後側上面センサ(2)と後側上面センサ(3)との境界面を通過し、
足場板(1)の上面の右側の第3の梁が前側上面検出器の前側上面センサ(3)と前側上面センサ(4)との境界面、および、後側上面検出器の後側上面センサ(3)と後側上面センサ(4)との境界面を通過し、
足場板(1)の下面が前側下面検出器の前側下面センサ(2)および前側下面センサ(3)の検出面の上、ならびに、後側下面検出器の後側下面センサ(2)および後側下面センサ(3)の検出面の上を通過するようにしている。
For example, considering k = 1, as is clear in FIGS. 10, 11, and 12, the scaffold plate (1) is such that the first beam on the left side of the upper surface of the scaffold plate (1) is the front side of the front upper surface detector. Passing through the boundary surface between the upper surface sensor (1) and the front upper surface sensor (2), and the boundary surface between the rear upper surface sensor (1) and the rear upper surface sensor (2) of the rear upper surface detector,
The second beam at the center of the upper surface of the scaffold plate (1) is the boundary surface between the front upper surface sensor (2) and the front upper surface sensor (3) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector. Passing through the boundary between (2) and the rear upper surface sensor (3),
The third beam on the right side of the upper surface of the scaffold plate (1) is the boundary surface between the front upper surface sensor (3) and the front upper surface sensor (4) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector. Passing through the boundary surface between (3) and the rear upper surface sensor (4),
The lower surface of the scaffold plate (1) is above the detection surface of the front lower surface sensor (2) and the front lower surface sensor (3) of the front lower surface detector, and the rear lower surface sensor (2) and rear side of the rear lower surface detector. It passes over the detection surface of the lower surface sensor (3).
またk=2を考えると、図10,図11,図12でも明らかなように、足場板(2)は、足場板(2)の上面の左側の第1の梁が前側上面検出器の前側上面センサ(4)と前側上面センサ(5)との境界面、および、後側上面検出器の後側上面センサ(4)と後側上面センサ(5)との境界面を通過し、
足場板(2)の上面の中央の第2の梁が前側上面検出器の前側上面センサ(5)と前側上面センサ(6)との境界面、および、後側上面検出器の後側上面センサ(5)と後側上面センサ(6)との境界面を通過し、
足場板(2)の上面の右側の第3の梁が前側上面検出器の前側上面センサ(6)と前側上面センサ(7)との境界面、および、後側上面検出器の後側上面センサ(6)と後側上面センサ(7)との境界面を通過し、
足場板(2)の下面が前側下面検出器の前側下面センサ(5)および前側下面センサ(6)の検出面の上、ならびに、後側下面検出器の後側下面センサ(5)および後側下面センサ(6)の検出面の上を通過するようにしている。以下、k=3でも同様となる。
Further, considering k = 2, as is apparent from FIGS. 10, 11, and 12, the scaffold plate (2) is such that the first beam on the left side of the upper surface of the scaffold plate (2) is the front side of the front upper surface detector. Passing through the boundary surface between the upper surface sensor (4) and the front upper surface sensor (5), and the boundary surface between the rear upper surface sensor (4) and the rear upper surface sensor (5) of the rear upper surface detector,
The second beam in the center of the upper surface of the scaffold plate (2) is the boundary surface between the front upper surface sensor (5) and the front upper surface sensor (6) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector. Passing through the boundary surface between (5) and the rear upper surface sensor (6),
The third beam on the right side of the upper surface of the scaffold plate (2) is the boundary surface between the front upper surface sensor (6) and the front upper surface sensor (7) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector. Passing through the boundary surface between (6) and the rear upper surface sensor (7),
The lower surface of the scaffold plate (2) is on the detection surface of the front lower surface sensor (5) and the front lower surface sensor (6) of the front lower surface detector, and the rear lower surface sensor (5) and rear side of the rear lower surface detector. It passes over the detection surface of the lower surface sensor (6). The same applies to k = 3.
続いて、各面の検出について説明する。ここに足場板は板下面をA面、梁最外側面をB面、板上面をC面、梁内側右面をD面、梁内側左面をE面、梁上面をF面としている。
足場板(k)の下側のA面のうち左側の面の検出は、前側下面センサ(4k−3)からの前側下面検出信号(4k−3)および前側下面センサ(4k−2)からの前側下面検出信号(4k−2)を合算した信号を用いる。
足場板(k)の下側のA面のうち中央の面の検出は、後側下面センサ(4k−2)からの後側下面検出信号(4k−2)および後側下面センサ(4k−1)からの後側下面検出信号(4k−1)を合算した信号を用いる。
足場板(k)の下側のA面のうち右側の面の検出は、前側下面センサ(4k−1)からの前側下面検出信号(4k−1)および前側下面センサ(4k)からの前側下面検出信号(4k)を合算した信号を用いる。
Subsequently, detection of each surface will be described. Here, the scaffold plate has a plate lower surface as A surface, a beam outermost surface as B surface, a plate upper surface as C surface, a beam inner right surface as D surface, a beam inner left surface as E surface, and a beam upper surface as F surface.
Detection of the left side surface of the lower A surface of the scaffolding plate (k) is performed from the front lower surface detection signal (4k-3) from the front lower surface sensor (4k-3) and from the front lower surface sensor (4k-2). A signal obtained by adding the front lower surface detection signal (4k-2) is used.
The center surface of the lower A surface of the scaffold plate (k) is detected by detecting the rear lower surface detection signal (4k-2) from the rear lower surface sensor (4k-2) and the rear lower surface sensor (4k-1). ) From the rear side lower surface detection signal (4k-1).
The detection of the right side surface among the lower A surfaces of the scaffold plate (k) is performed by detecting the front lower surface detection signal (4k-1) from the front lower surface sensor (4k-1) and the front lower surface from the front lower surface sensor (4k). A signal obtained by adding the detection signals (4k) is used.
このように足場板の下面であるA面の検出時には、センサまで距離が短いため、上下合算および前後合算を行わず左右合算のみ行うようにして、検出能力の平坦化に寄与するようにしている。
また、幅広であるA面の左側、中央、右側で検出面を分けているため、検出箇所の判別も可能としている。
Thus, since the distance to the sensor is short when detecting surface A, which is the lower surface of the scaffold plate, only the left and right summation is performed without performing the top and bottom summation and the front and back summation, thereby contributing to the flattening of detection capability. .
Moreover, since the detection surface is divided into the left side, the center, and the right side of the wide A surface, it is possible to determine the detection location.
足場板(k)の第1の梁の最左側のB面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)、および、後側上面センサ(4k−3)からの後側上面検出信号(4k−3)を合算した信号を用いる。
足場板(k)の第3の梁の最右側のB面の検出は、前側上面センサ(4k)からの前側上面検出信号(4k)、および、後側上面センサ(4k)からの後側上面検出信号(4k)を合算した信号を用いる。
Detection of the leftmost B surface of the first beam of the scaffold plate (k) is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the rear upper surface sensor (4k-3). ) From the rear upper surface detection signal (4k-3).
The detection of the rightmost B surface of the third beam of the scaffold plate (k) is performed by detecting the front upper surface detection signal (4k) from the front upper surface sensor (4k) and the rear upper surface from the rear upper surface sensor (4k). A signal obtained by adding the detection signals (4k) is used.
このように足場板の梁の最外面であるB面の検出時には、センサまで距離が長いため、前後合算を行うようにして、検出能力を高めている。 As described above, when detecting the surface B, which is the outermost surface of the beam of the scaffolding plate, the distance to the sensor is long, so that the detection capability is enhanced by performing the summation before and after.
足場板(k)の第1の梁と第2の梁との間にある上側の略コ字状の面をなすC面,D面,E面の検出は、前側上面センサ(4k−2)からの前側上面検出信号(4k−2)および後側上面センサ(4k−2)からの後側上面検出信号(4k−2)を合算した信号を用いる。
足場板(k)の第2の梁と第3の梁との間にある上側の略コ字状の面をなすC面,D面,E面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用いる。
The upper surface sensor (4k-2) detects the C-plane, D-plane, and E-plane forming the upper substantially U-shaped surface between the first beam and the second beam of the scaffold plate (k). A signal obtained by adding the front upper surface detection signal (4k-2) from the rear upper surface detection signal (4k-2) from the rear upper surface sensor (4k-2) is used.
The upper surface sensor (4k-1) detects the C-plane, D-plane, and E-plane forming the upper substantially U-shaped surface between the second beam and the third beam of the scaffold plate (k). A signal obtained by adding the front upper surface detection signal (4k-1) from the rear upper surface detection signal (4k-1) from the rear upper surface sensor (4k-1) is used.
このように足場板の梁の内側であるC面,D面,E面の検出時には、センサまで距離が長いため、前後合算を行うようにして、検出能力を高めている。 Thus, when detecting the C-plane, D-plane, and E-plane, which are the inside of the beams of the scaffolding plate, the distance to the sensor is long, so that the detection capability is enhanced by performing front-to-back addition.
足場板(k)の第1の梁の上側のF面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)および前側上面センサ(4k−2)からの前側上面検出信号(4k−2)を合算した信号を用いる。
足場板(k)の第2の梁の上側のF面の検出は、後側上面センサ(4k−2)からの後側上面検出信号(4k−2)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用いる。
足場板(k)の第3の梁の上側のF面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および前側上面センサ(4k)からの前側上面検出信号(4k)を合算した信号を用いる。
The detection of the upper F surface of the first beam of the scaffold plate (k) is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the front side from the front upper surface sensor (4k-2). A signal obtained by adding the upper surface detection signals (4k-2) is used.
The detection of the upper F surface of the second beam of the scaffold plate (k) is performed by detecting the rear upper surface detection signal (4k-2) and the rear upper surface sensor (4k-1) from the rear upper surface sensor (4k-2). The signal obtained by adding the rear upper surface detection signal (4k-1) from the above is used.
The detection of the upper F surface of the third beam of the scaffold plate (k) is performed by detecting the front upper surface detection signal (4k-1) from the front upper surface sensor (4k-1) and the front upper surface detection from the front upper surface sensor (4k). A signal obtained by adding the signals (4k) is used.
このように足場板の梁であるF面の検出時には、センサまでの距離が短いため、上下合算および前後合算を行わず左右合算のみ行うようにして、検出能力を平坦化している。 As described above, since the distance to the sensor is short when detecting the F-plane which is the beam of the scaffold plate, the detection capability is flattened by performing only the left and right summation without performing the top and bottom summation and the front and rear summation.
例えば、図13で示すように、上記した足場板(1)の下側のA面の検出が行われる。このうち、足場板(1)の下側のA面のうち左側の面の検出は、図13(a)で点描を付したセンサを用い、前側下面センサ(1)からの前側下面検出信号(1)および前側下面センサ(2)からの前側下面検出信号(2)を合算した信号を用いる。
足場板(1)の下側のA面のうち中央の面の検出は、図13(a)で斜線を付したセンサを用い、後側下面センサ(2)からの後側下面検出信号(2)および後側下面センサ(3)からの後側下面検出信号(3)を合算した信号を用いる。
足場板(1)の下側のA面のうち右側の面の検出は、図13(a)で波線を付したセンサを用い、前側下面センサ(3)からの前側下面検出信号(3)および前側下面センサ(4)からの前側下面検出信号(4)を合算した信号を用いる。
For example, as shown in FIG. 13, the detection of the lower A surface of the scaffold plate (1) is performed. Among these, detection of the left side surface among the A surfaces on the lower side of the scaffolding plate (1) is performed by using the sensor indicated by the stippling in FIG. 13 (a), and the front lower surface detection signal (1) from the front lower surface sensor (1) ( 1) and a signal obtained by adding the front lower surface detection signal (2) from the front lower surface sensor (2) is used.
The center surface of the lower A surface of the scaffolding plate (1) is detected by using the hatched sensor in FIG. 13 (a), and the rear lower surface detection signal (2) from the rear lower surface sensor (2). ) And the rear lower surface detection signal (3) from the rear lower surface sensor (3) are used.
The detection of the right side surface among the A surfaces on the lower side of the scaffolding plate (1) uses the sensor indicated by the wavy line in FIG. 13 (a), and the front lower surface detection signal (3) from the front lower surface sensor (3) and A signal obtained by adding the front lower surface detection signal (4) from the front lower surface sensor (4) is used.
また、足場板(1)の第1の梁の最左側のB面の検出は、図13(b)で波線を付したセンサを用い、前側上面センサ(1)からの前側上面検出信号(1)、および、後側上面センサ(1)からの後側上面検出信号(1)を合算した信号を用いる。
足場板(1)の第3の梁の最右側のB面の検出は、図13(b)で点描を付したセンサを用い、前側上面センサ(4)からの前側上面検出信号(4)、および、後側上面センサ(4)からの後側上面検出信号(4)を合算した信号を用いる。
Further, the leftmost B surface of the first beam of the scaffolding plate (1) is detected using a sensor indicated by a wavy line in FIG. 13B, and a front upper surface detection signal (1) from the front upper surface sensor (1) is used. ) And a signal obtained by adding the rear upper surface detection signal (1) from the rear upper surface sensor (1).
The detection of the rightmost B surface of the third beam of the scaffold plate (1) uses the sensor indicated by the stippling in FIG. 13 (b), and the front upper surface detection signal (4) from the front upper surface sensor (4), A signal obtained by adding the rear upper surface detection signal (4) from the rear upper surface sensor (4) is used.
足場板(1)の第1の梁と第2の梁との間にあるC面,D面,E面の検出は、図13(b)で白地を付したセンサを用い、前側上面センサ(2)からの前側上面検出信号(2)、および、後側上面センサ(2)からの後側上面検出信号(2)を合算した信号を用いる。
足場板(1)の第2の梁と第3の梁との間にあるC面,D面,E面の検出は、図13(b)で網目を付したセンサを用い、前側上面センサ(3)からの前側上面検出信号(3)、および、後側上面センサ(3)からの後側上面検出信号(3)を合算した信号を用いる。
The detection of the C-plane, D-plane, and E-plane between the first beam and the second beam of the scaffold plate (1) is performed using a sensor with a white background in FIG. A signal obtained by adding the front upper surface detection signal (2) from 2) and the rear upper surface detection signal (2) from the rear upper surface sensor (2) is used.
The detection of the C-plane, D-plane, and E-plane between the second beam and the third beam of the scaffold plate (1) is performed using a sensor with a mesh in FIG. A signal obtained by adding the front upper surface detection signal (3) from 3) and the rear upper surface detection signal (3) from the rear upper surface sensor (3) is used.
足場板(1)の第1の梁の上側のF面の検出は、図13(c)で点描を付したセンサを用い、前側上面センサ(1)からの前側上面検出信号(1)および前側上面センサ(2)からの前側上面検出信号(2)を合算した信号を用いる。
足場板(1)の第2の梁の上側のF面の検出は、図13(c)で斜線を付したセンサを用い、後側上面センサ(2)からの後側上面検出信号(2)および後側上面センサ(3)からの後側上面検出信号(3)を合算した信号を用いる。
足場板(1)の第3の梁の上側のF面の検出は、図13(c)で波線を付したセンサを用い、前側上面センサ(3)からの前側上面検出信号(3)および前側上面センサ(4)からの前側上面検出信号(4)を合算した信号を用いる。
The detection of the upper F surface of the first beam of the scaffold plate (1) uses the sensor indicated by the stippling in FIG. 13 (c), and the front upper surface detection signal (1) from the front upper surface sensor (1) and the front side A signal obtained by adding the front upper surface detection signal (2) from the upper surface sensor (2) is used.
The detection of the upper F surface of the second beam of the scaffolding plate (1) uses a sensor with a hatched line in FIG. 13 (c), and the rear upper surface detection signal (2) from the rear upper surface sensor (2). A signal obtained by adding the rear upper surface detection signal (3) from the rear upper surface sensor (3) is used.
The detection of the upper F surface of the third beam of the scaffold plate (1) uses the sensor indicated by the wavy line in FIG. 13 (c), the front upper surface detection signal (3) from the front upper surface sensor (3) and the front side A signal obtained by adding the front upper surface detection signal (4) from the upper surface sensor (4) is used.
物品搬出モニタ1は、上記のように足場板のモニタリングを行うことで、センサまでの距離の長短による影響を少なくして、検出能力を平坦化している。
さらに、センサまでの距離が十分に近いA面,F面を除いては、前後合算を行うようにしているため、検出感度を低くしつつ搬送速度を速くすることができる。足場板に付着している天然核種が最も多く存在しているA面については、左右のセンサを合算し、BGを2倍とし、かつ左右センサのみ(前後合算はしない)で検出感度を算出することにより、検出感度の特出を防止し、搬送速度40mm/secにて、約0.72Bq/cm2とし、0.8Bqcm2に近づけている。
The article carry-out
Furthermore, since the front and rear summing is performed except for the A and F surfaces that are sufficiently close to the sensor, the conveyance speed can be increased while lowering the detection sensitivity. For side A, where the most natural nuclides are attached to the scaffold, the left and right sensors are added together, the BG is doubled, and the detection sensitivity is calculated using only the left and right sensors (not added together). by prevents Tokushutsu the detection sensitivity at the conveying speed of 40 mm / sec, and about 0.72Bq / cm 2, it is close to 0.8Bqcm 2.
また、A面及びF面の測定において、センサを左右合算することにより、効率の低下を防止している。
このように、本発明の物品搬出モニタで足場板を検出する場合、搬送速度40mm/secで足場板の各面において、60Coで0.8Bq/cm2を担保する。
以上、足場板用の物品搬出モニタについて説明した。なお、上記の4kー3,4kー2,4k−1,4kという一般化を行ったが、これ以外にも、例えば3k−2,3k−1,3k,3k+1という特定も可能である。k=1でそれぞれ1,2,3,4となる。
Further, in the measurement of the A plane and the F plane, the reduction in efficiency is prevented by adding the left and right sensors.
Thus, when detecting a scaffold board | plate with the goods carrying-out monitor of this invention, 0.8 Bq / cm < 2 > is ensured by 60 Co in each surface of a scaffold board | plate with the conveyance speed of 40 mm / sec.
In the above, the article carry-out monitor for scaffold boards was demonstrated. In addition, although the generalization of 4k-3, 4k-2, 4k-1, 4k is performed, other than this, for example, 3k-2, 3k-1, 3k, 3k + 1 can be specified. When k = 1, they are 1, 2, 3, and 4, respectively.
なお、足場板とセンサとの位置関係は、厳しく決定される必要がある。そこで、ローラ上で足場板の位置決めが行われる。この点について図を参照しつつ説明する。図14はローラにおける足場板載置部の説明図である。図14で示す搬入コンベア20のローラ21や、搬出コンベア30のローラ31は、色分け(例えば、白地部が白色で斜線部が黒など)がなされており、足場板を載置する箇所を色にて表示する足場板用載置部212,312を形成し、足場板用載置部212,312に載置された足場板をセンサの検出位置へ誘導するようにした。これら足場板用載置部212,312内に足場板が載置されると、足場板が上記したようなセンサの検出位置へ誘導されるように位置決めされる。このため、正確な検出が可能である。なお、図14からも明らかなように、パイプ用載置部211,311と足場板用載置部212,312との両者をローラ21,31に併設することができるため、パイプと足場板との両者のモニタリングを可能とするような物品搬出モニタ1とすることができる。
Note that the positional relationship between the scaffold plate and the sensor needs to be determined strictly. Therefore, the scaffold plate is positioned on the roller. This point will be described with reference to the drawings. FIG. 14 is an explanatory diagram of a scaffold plate mounting portion in the roller. The
続いてローラのより具体的な例について図を参照しつつ説明する。図15はローラの詳細説明図であり、図15(a)は、ローラの完成図、図15(b)はライニング前の管の説明図、図15(c)は焼き付け塗装前のライニング部の説明図である。
パイプと足場板との両者のモニタリングを可能とするような物品搬出モニタ1では、図15(a)で示すように、ローラ21(31)において、パイプをパイプ用載置部211(311)に載置でき、また、足場を足場用載置部212(312)に配置できるようにする必要がある。
なお、パイプの足場用載置部212(312)とそれ以外の箇所の色分けについて、具体的には、ペンキなどの塗料による着色も可能であるが、パイプや足場が接触するとこすれて色が剥げ落ちることもある。そこで、以下のような製造方法にてローラを製造することで、色を落ちにくくしている。
Next, a more specific example of the roller will be described with reference to the drawings. FIG. 15 is a detailed explanatory view of a roller, FIG. 15 (a) is a completed drawing of the roller, FIG. 15 (b) is an explanatory view of a tube before lining, and FIG. 15 (c) is a lining portion before baking coating. It is explanatory drawing.
In the article carry-out
In addition, about the coloring of the mounting part 212 (312) for the pipe scaffold and other parts, specifically, coloring with paint such as paint is possible, but the color is peeled off when the pipe or the scaffold comes into contact. Sometimes it falls. Therefore, the roller is manufactured by the following manufacturing method so that the color is not easily lost.
例えば、管213(313)は、図15(b)で示すような形状を有するものであり、鋼鉄またはステンレス、アルミ等の金属材料を筒状に加工したものである。管213(313)は、例えば、アルミ材を円筒形に引抜き加工した管材であるが、アルミ材に限らず、他の金属材料を円筒形に加工した管材でも使用可能である。このような管213(313)に対して、図15(b)で示すような、シート部214(314)を貼り合わせる。シート部214(314)は表面が粗面であり後述するが滑り止め用途で用いられる。 For example, the pipe 213 (313) has a shape as shown in FIG. 15B, and is formed by processing a metal material such as steel, stainless steel, or aluminum into a cylindrical shape. The pipe 213 (313) is, for example, a pipe material obtained by drawing an aluminum material into a cylindrical shape. However, the pipe 213 (313) is not limited to an aluminum material, and a pipe material obtained by processing another metal material into a cylindrical shape can also be used. A sheet portion 214 (314) as shown in FIG. 15B is bonded to the tube 213 (313). The sheet portion 214 (314) has a rough surface and is used for anti-slip purposes as will be described later.
続いてライニング部215(315)を形成する。形成に際し、まず、管213(313)の外周面にウレタンゴムを焼き付けて長尺円筒状のライニング管(図示せず)を形成する。ライニング管はシート部214(314)の存在により滑り等が生じることなく形成される。さらに、高熱状態のライニング管に対してパイプ用配置部211(311)を形成する箇所をローラ等で押圧して小径部217(317)を形成し、押圧されなかった箇所を大径部とする。小径部217(317)は、図9,図14で示すように湾曲した溝とすることもできるが、図15で示したように底面が直線状の溝部として、構造を簡略化しても良い。このような直線状および湾曲状のパイプ用配置部211(311)共に高精度な検出が可能であることが知見されている。このようにライニングにより構成するため、強度も強く耐久性が優れたライニング部となる。 Subsequently, a lining portion 215 (315) is formed. When forming, first, urethane rubber is baked on the outer peripheral surface of the pipe 213 (313) to form a long cylindrical lining pipe (not shown). The lining pipe is formed without slipping or the like due to the presence of the sheet portion 214 (314). Further, the portion where the pipe placement portion 211 (311) is formed is pressed with a roller or the like on the lining pipe in a high heat state to form the small diameter portion 217 (317), and the portion that is not pressed is the large diameter portion. . The small-diameter portion 217 (317) can be a curved groove as shown in FIGS. 9 and 14, but the structure may be simplified as a groove portion having a straight bottom as shown in FIG. It has been found that both the straight and curved pipe arrangement portions 211 (311) can be detected with high accuracy. Since the lining is formed as described above, the lining portion has high strength and excellent durability.
続いて、小径部217(317)・大径部216(316)が形成された直後のライニング部215(315)は高温であるため、通常のペンキなどの塗料を用いる着色では、流体の塗料が乾燥せずに流体のまま流れ落ちるおそれがある。そこで、ライニング部215(315)が高温でも良いように、焼き付け塗装により足場用載置部212(312)とそれ以外の箇所を着色する。焼き付け塗装では、加熱される事により塗膜に重合反応が起こり、緻密な塗膜が完成されるという塗料を用いるものであり、ライニング部215(315)が高温のまま塗装できるという利点がある。これにより、緻密な塗膜による足場用載置部213(313)とそれ以外の箇所が着色され、さらに冷却期間なども不要として塗装時間が長期化することがなくなる。
このようにして製造した図15で示す搬入コンベア20のローラ21や、搬出コンベア30のローラ31は、パイプを載置するパイプ用載置部211(311)や、足場を載置する足場用載置部212(312)が共に形成される。
Subsequently, since the lining 215 (315) immediately after the formation of the small-diameter portion 217 (317) and the large-diameter portion 216 (316) is at a high temperature, in the coloring using a paint such as normal paint, the fluid paint is used. There is a risk that the fluid will flow down without drying. Accordingly, the scaffold placement portion 212 (312) and other portions are colored by baking coating so that the lining portion 215 (315) may be at a high temperature. Baking coating uses a coating material that undergoes a polymerization reaction when heated to complete a dense coating film, and has the advantage that the lining portion 215 (315) can be coated at a high temperature. As a result, the scaffold placement portion 213 (313) and the other portions by the dense coating are colored, and further, the cooling period is unnecessary and the coating time is not prolonged.
The
以上、本発明について説明した。
本発明の物品搬出モニタは個々のセンサを小型化して適宜合算する方式を採用した。この合算は、
(a)上下検出器での合算処理(側面感度向上)
(b)上下検出器でアンチコインシデンス処理(γBGの影響低減)
(c)前後の検出器での合算処理(全体感度の向上)
(d)隣の検出器との合算処理(検出器つなぎ目の感度低下防止)
という各種合算方式を選択できるため、(1)BGを低く抑え、検出感度を良くする、(2)周囲のBG雰囲気の変化に対しても影響を受けにくくする、(3)足場板等に付着する天然核種の影響で発生する「汚染」を少なくする、という利点がある。
The present invention has been described above.
The article carry-out monitor of the present invention employs a method in which individual sensors are reduced in size and added up as appropriate. This sum is
(A) Summing up / down detection (improvement of side sensitivity)
(B) Anti-coincidence processing with the vertical detector (reduction of the effect of γBG)
(C) Summing up of the detectors before and after (improving overall sensitivity)
(D) Summation processing with adjacent detector (Prevents sensitivity drop at detector joint)
(1) Keep BG low and improve detection sensitivity, (2) Make it less susceptible to changes in the surrounding BG atmosphere, (3) Adhere to scaffolding plates, etc. This has the advantage of reducing “pollution” caused by the effects of natural nuclides.
また、足場板のモニタリングの場合、足場板を裏返しで流して上記のような処理を行う。これにより足場板の最も感度低下部分(左右側面:B面、および、裏面の凹字状面:C面,D面,E面)の感度を上げるだけでなく、感度が高い足場板(A面,F面)の感度を落として感度の平坦化を実現する。また、センサの検出面を最小に抑えてバックグランドノイズによる影響を少なくし、足場板等に付着する天然核種の影響で発生する「汚染」を少なくする。
また、パイプのモニタリングの場合、上下面では前後での合算処理、左右面では前後上下の合算処理で側面感度向上を図る。
Further, in the case of monitoring the scaffold board, the scaffold board is turned over and the above-described processing is performed. This not only increases the sensitivity of the most sensitive part of the scaffolding plate (left and right side surfaces: B surface, and the concave surface on the back surface: C surface, D surface, E surface), but also has a highly sensitive scaffolding plate (A surface) , F plane), and the sensitivity is flattened. In addition, the detection surface of the sensor is minimized to reduce the influence of background noise, and the “contamination” generated by the influence of natural nuclides adhering to the scaffolding plate and the like is reduced.
In the case of pipe monitoring, the lateral sensitivity is improved by the summing process before and after the upper and lower surfaces and the front and rear and summing processing on the left and right surfaces.
このような本発明の物品搬出モニタ1は、
(a)上下センサでの合算処理による側面感度向上、
(b)上下センサでのアンチコインシデンス処理によるγBGの影響低減、
(c)前後のセンサでの合算処理による全体感度の向上、
(d)全体感度の向上による搬送速度の高速化、
(e)検出するバックグラウンドノイズの低減、
(f)左右で隣接するセンサとの合算処理によりセンサつなぎ目の感度低下防止、
(g)検査対象物品2の幅に応じた最適な検出、
という効果を奏することができる。
Such an article carry-out
(A) Improvement of side sensitivity by the summation process by the upper and lower sensors,
(B) Reducing the influence of γBG by anti-coincidence processing by the vertical sensor,
(C) Improvement of the overall sensitivity by the summation process of the front and rear sensors,
(D) Increasing the conveyance speed by improving the overall sensitivity,
(E) Reduction of detected background noise,
(F) Prevention of sensitivity reduction at sensor joints by summing with adjacent sensors on the left and right,
(G) Optimal detection according to the width of the
The effect that can be produced.
1:物品搬出モニタ
10:モニタ本体
11:入出力部
12:モニタ部
121,122,123,124:β線検出器
13:モニタ本体入口
14:状態表示部
15:中間ローラ
20:搬入コンベア
21:ローラ
211:パイプ用載置部
212:足場板用載置部
213:管
214:シート部
215:ライニング部
216:小径部
217:大径部
22:脚
23:溝部
30:搬出コンベア
31:ローラ
311:パイプ用載置部
312:足場板用載置部
313:管
314:シート部
315:ライニング部
316:小径部
317:大径部
32:脚
33:溝部
40:移動台車
41:タイヤ
42:ドローバ
43:横方向走行車輪
44:ハンドル
2:検査対象物品
1: Article carry-out monitor 10: Monitor main body 11: Input / output unit 12: Monitor units 121, 122, 123, 124: β-ray detector 13: Monitor main body inlet 14: Status display unit 15: Intermediate roller 20: Carrying conveyor 21: Roller 211: Pipe placement part 212: Scaffold plate placement part 213: Pipe 214: Sheet part 215: Lining part 216: Small diameter part 217: Large diameter part 22: Leg 23: Groove part 30: Unloading conveyor 31: Roller 311 : Pipe mounting unit 312: Scaffolding plate mounting unit 313: Pipe 314: Sheet unit 315: Lining unit 316: Small diameter unit 317: Large diameter unit 32: Leg 33: Groove unit 40: Moving carriage 41: Tire 42: Drawbar 43: Lateral traveling wheel 44: Handle 2: Article to be inspected
Claims (7)
モニタ部の検出器は、
検査対象物品の搬送経路に対して前下側にあってn個(nは4以上の自然数)の前側下面センサ(n)が搬送経路の略垂直方向に並べられて配置された前側下面検出器と、
検査対象物品の搬送経路に対して前上側にあってn個の前側上面センサ(n)が搬送経路の略垂直方向に並べられて配置された前側上面検出器と、
検査対象物品の搬送経路に対して後下側にあってn個の後側下面センサ(n)が搬送経路の略垂直方向に並べられて配置された後側下面検出器と、
検査対象物品の搬送経路に対して後上側にあってn個の後側上面センサ(n)が搬送経路の略垂直方向に並べられて配置された後側上面検出器と、
を有し、モニタ部は、
n個の前側下面センサ(n)からのnの前側下面検出信号、n個の前側上面センサ(n)からのnの前側上面検出信号、n個の後側下面センサ(n)からのnの後側下面検出信号、および、n個の後側上面センサ(n)からのnの後側上面検出信号を入力し、検査対象物品の種類および搬送位置に応じてこれら信号を選択の上で合算した検出信号を用いてモニタリングすることを特徴とする物品搬出モニタ。 At least a monitor unit with a built-in radiation detector for inspecting the items carried out from the management area of the radioactive material handling facility for contamination by radioactive materials, and the items to be inspected to this monitor unit In an article carry-out monitor having a carry-in conveyor for carrying in and a carry-out conveyor for carrying out an inspection object from the monitor unit,
The monitor detector is
A front lower surface detector which is arranged on the front lower side with respect to the conveyance path of the inspection target article, and n (n is a natural number of 4 or more) front lower surface sensors (n) arranged in a substantially vertical direction of the conveyance path. When,
A front upper surface detector disposed on the front upper side with respect to the conveyance path of the article to be inspected and having n front upper surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
A rear lower surface detector arranged on the rear lower side with respect to the conveyance path of the article to be inspected and having n rear lower surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
A rear upper surface detector disposed on the rear upper side with respect to the conveyance path of the article to be inspected and having n rear upper surface sensors (n) arranged in a substantially vertical direction of the conveyance path;
The monitor unit has
n front lower surface detection signals from n front lower surface sensors (n), n front upper surface detection signals from n front upper surface sensors (n), n from n rear lower surface sensors (n) Input the rear lower surface detection signal and n rear upper surface detection signals from the n rear upper surface sensors (n), and select and add these signals according to the type of article to be inspected and the transport position. An article carry-out monitor characterized by monitoring using a detected signal.
前記検査対象物品がパイプである場合、jを自然数とすると、
パイプの中心軸が前側下面検出器の前側下面センサ(j)と前側下面センサ(j+1)との境界面、前側上面検出器の前側上面センサ(j)と前側上面センサ(j+1)との境界面、後側下面検出器の後側下面センサ(j)と後側下面センサ(j+1)との境界面、および、後側上面検出器の後側上面センサ(j)と後側上面センサ(j+1)との境界面、を通過するようにし、
パイプの左側の面の検出は、前側下面センサ(j)からの前側下面検出信号(j)、前側上面センサ(j)からの前側上面検出信号(j)、後側下面センサ(j)からの後側下面検出信号(j)、および、後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用い、
パイプの右側の面の検出は、前側下面センサ(j+1)からの前側下面検出信号(j+1)、前側上面センサ(j+1)からの前側上面検出信号(j+1)、後側下面センサ(j+1)からの後側下面検出信号(j+1)、および、後側上面センサ(j+1)からの後側上面検出信号(j+1)を合算した信号を用い、
パイプの上側の面の検出は、前側上面センサ(j)からの前側上面検出信号(j)および後側上面センサ(j)からの後側上面検出信号(j)を合算した信号を用い、
パイプの下側の面の検出は、前側下面センサ(j)からの前側下面検出信号(j)および後側下面センサ(j)からの後側下面検出信号(j)を合算した信号を用い、
モニタリングを行うことを特徴とする物品搬出モニタ。 The article carry-out monitor according to claim 1,
When the inspection object is a pipe and j is a natural number,
The central axis of the pipe is the boundary surface between the front lower surface sensor (j) and the front lower surface sensor (j + 1) of the front lower surface detector, and the boundary surface between the front upper surface sensor (j) and the front upper surface sensor (j + 1) of the front upper surface detector. The rear lower surface sensor (j) of the rear lower surface detector and the rear lower surface sensor (j + 1), and the rear upper surface sensor (j) and rear upper surface sensor (j + 1) of the rear upper surface detector. And pass through the boundary surface,
The left side surface of the pipe is detected from the front lower surface detection signal (j) from the front lower surface sensor (j), the front upper surface detection signal (j) from the front upper surface sensor (j), and the rear lower surface sensor (j). Using the signal obtained by adding the rear lower surface detection signal (j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j),
The right side surface of the pipe is detected from the front lower surface detection signal (j + 1) from the front lower surface sensor (j + 1), the front upper surface detection signal (j + 1) from the front upper surface sensor (j + 1), and the rear lower surface sensor (j + 1). Using the sum of the rear lower surface detection signal (j + 1) and the rear upper surface detection signal (j + 1) from the rear upper surface sensor (j + 1),
The upper surface of the pipe is detected using a signal obtained by adding the front upper surface detection signal (j) from the front upper surface sensor (j) and the rear upper surface detection signal (j) from the rear upper surface sensor (j).
The lower surface of the pipe is detected using a signal obtained by adding the front lower surface detection signal (j) from the front lower surface sensor (j) and the rear lower surface detection signal (j) from the rear lower surface sensor (j).
An article carry-out monitor characterized by monitoring.
パイプを搬送する搬入コンベアおよび搬出コンベアは、パイプが嵌め込まれる溝であるパイプ用載置部を備え、パイプ用載置部に載置されたパイプを検出部の検出位置へ誘導することを特徴とする物品搬出モニタ。 In the article carry-out monitor according to claim 2,
A carry-in conveyor and a carry-out conveyor that convey pipes include a pipe placement section that is a groove into which a pipe is fitted, and guide the pipe placed on the pipe placement section to a detection position of the detection section. The goods carry-out monitor.
パイプを搬送する搬入コンベアおよび搬出コンベアは、多数のローラを並べたものであり、このローラは半径が大きい大径部と半径が小さい小径部とが交互に形成され、前記溝部は小径部であることを特徴とする物品搬出モニタ。 In the article carry-out monitor according to claim 3,
A carry-in conveyor and a carry-out conveyor for conveying pipes are arranged with a large number of rollers. The rollers are alternately formed with a large-diameter portion having a large radius and a small-diameter portion having a small radius, and the groove portion is a small-diameter portion. An article carry-out monitor characterized by that.
前記検査対象物品が上面に三本の梁があるような足場板である場合、kを自然数とすると、
足場板の上面の左側の第1の梁が前側上面検出器の前側上面センサ(4k−3)と前側上面センサ(4k−2)との境界面、および、後側上面検出器の後側上面センサ(4k−3)と後側上面センサ(4k−2)との境界面を通過し、
足場板の上面の中央の第2の梁が前側上面検出器の前側上面センサ(4k−2)と前側上面センサ(4k−1)との境界面、および、後側上面検出器の後側上面センサ(4k−2)と後側上面センサ(4k−1)との境界面を通過し、
足場板の上面の右側の第3の梁が前側上面検出器の前側上面センサ(4k−1)と前側上面センサ(4k)との境界面、および、後側上面検出器の後側上面センサ(4k−1)と後側上面センサ(4k)との境界面を通過し、
足場板の下面が前側下面検出器の前側下面センサ(4k−2)および前側下面センサ(4k−1)の検出面の上、ならびに、後側下面検出器の後側下面センサ(4k−2)および後側下面センサ(4k−1)の検出面の上を通過し、
足場板の下側の左側の面の検出は、前側下面センサ(4k−3)からの前側下面検出信号(4k−3)および前側下面センサ(4k−2)からの前側下面検出信号(4k−2)を合算した信号を用い、
足場板の下側の中央の面の検出は、後側下面センサ(4k−2)からの後側下面検出信号(4k−2)および後側下面センサ(4k−1)からの後側下面検出信号(4k−1)を合算した信号を用い、
足場板の下側の右側の面の検出は、前側下面センサ(4k−1)からの前側下面検出信号(4k−1)および前側下面センサ(4k)からの前側下面検出信号(4k)を合算した信号を用い、
足場板の第1の梁の最左側の面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)、および、後側上面センサ(4k−3)からの後側上面検出信号(4k−3)を合算した信号を用い、
足場板の第3の梁の最右側の面の検出は、前側上面センサ(4k)からの前側上面検出信号(4k)、および、後側上面センサ(4k)からの後側上面検出信号(4k)を合算した信号を用い、
足場板の第1の梁と第2の梁との間にある上側の略コ字状の面の検出は、前側上面センサ(4k−2)からの前側上面検出信号(4k−2)および後側上面センサ(4k−2)からの後側上面検出信号(4k−2)を合算した信号を用い、
足場板の第2の梁と第3の梁との間にある上側の略コ字状の面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用い、
足場板の第1の梁の上側の面の検出は、前側上面センサ(4k−3)からの前側上面検出信号(4k−3)および前側上面センサ(4k−2)からの前側上面検出信号(4k−2)を合算した信号を用い、
足場板の第2の梁の上側の面の検出は、後側上面センサ(4k−2)からの後側上面検出信号(4k−2)および後側上面センサ(4k−1)からの後側上面検出信号(4k−1)を合算した信号を用い、
足場板の第3の梁の上側の面の検出は、前側上面センサ(4k−1)からの前側上面検出信号(4k−1)および前側上面センサ(4k)からの前側上面検出信号(4k)を合算した信号を用い、
モニタリングを行うことを特徴とする物品搬出モニタ。 In the article carry-out monitor according to any one of claims 1 to 4,
When the inspection object is a scaffolding plate having three beams on the upper surface, when k is a natural number,
The first beam on the left side of the upper surface of the scaffold plate is a boundary surface between the front upper surface sensor (4k-3) and the front upper surface sensor (4k-2) of the front upper surface detector, and the rear upper surface of the rear upper surface detector. Passing through the boundary surface between the sensor (4k-3) and the rear upper surface sensor (4k-2),
The second beam in the center of the upper surface of the scaffold plate is a boundary surface between the front upper surface sensor (4k-2) and the front upper surface sensor (4k-1) of the front upper surface detector, and the rear upper surface of the rear upper surface detector. Passing through the boundary surface between the sensor (4k-2) and the rear upper surface sensor (4k-1),
The third beam on the right side of the upper surface of the scaffolding plate is a boundary surface between the front upper surface sensor (4k-1) and the front upper surface sensor (4k) of the front upper surface detector, and the rear upper surface sensor of the rear upper surface detector ( 4k-1) and the rear upper surface sensor (4k),
The lower surface of the scaffold plate is above the detection surface of the front lower surface sensor (4k-2) and the front lower surface sensor (4k-1) of the front lower surface detector, and the rear lower surface sensor (4k-2) of the rear lower surface detector. And passes over the detection surface of the rear lower surface sensor (4k-1),
Detection of the lower left surface of the scaffold plate is performed by detecting the front lower surface detection signal (4k-3) from the front lower surface sensor (4k-3) and the front lower surface detection signal (4k−) from the front lower surface sensor (4k-2). Using the signal summed up 2),
The lower center surface of the scaffolding plate is detected by detecting the rear lower surface detection signal (4k-2) from the rear lower surface sensor (4k-2) and the rear lower surface detection from the rear lower surface sensor (4k-1). Using the sum of the signals (4k-1),
To detect the lower right surface of the scaffolding plate, the front lower surface detection signal (4k-1) from the front lower surface sensor (4k-1) and the front lower surface detection signal (4k) from the front lower surface sensor (4k) are added together. Signal
The detection of the leftmost surface of the first beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the rear surface sensor (4k-3). Using the sum of the side upper surface detection signals (4k-3),
The detection of the rightmost surface of the third beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k) from the front upper surface sensor (4k) and the rear upper surface detection signal (4k) from the rear upper surface sensor (4k). )
The upper substantially U-shaped surface between the first beam and the second beam of the scaffolding plate is detected by detecting the front upper surface detection signal (4k-2) and the rear surface from the front upper surface sensor (4k-2). Using the sum of the rear upper surface detection signals (4k-2) from the side upper surface sensors (4k-2),
The upper substantially U-shaped surface between the second beam and the third beam of the scaffold plate is detected by detecting the front upper surface detection signal (4k-1) from the front upper surface sensor (4k-1) and the rear surface. Using the sum of the rear upper surface detection signals (4k-1) from the side upper surface sensors (4k-1),
The detection of the upper surface of the first beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-3) from the front upper surface sensor (4k-3) and the front upper surface detection signal (4k-2) ( 4k-2) is used as the total signal
The detection of the upper surface of the second beam of the scaffold plate is performed by detecting the rear upper surface detection signal (4k-2) from the rear upper surface sensor (4k-2) and the rear side from the rear upper surface sensor (4k-1). Using the sum of the upper surface detection signals (4k-1),
Detection of the upper surface of the third beam of the scaffold plate is performed by detecting the front upper surface detection signal (4k-1) from the front upper surface sensor (4k-1) and the front upper surface detection signal (4k) from the front upper surface sensor (4k). Using the signal summed together,
An article carry-out monitor characterized by monitoring.
前記足場板を搬送する搬入コンベアおよび搬出コンベアにおいて、足場板を載置する箇所を表示する足場板用載置部を形成し、足場板用載置部に載置された足場板を検出部の検出位置へ誘導することを特徴とする物品搬出モニタ。 The article carry-out monitor according to claim 5,
In the carry-in conveyor and the carry-out conveyor for conveying the scaffold board, a scaffold board placement part for displaying a place on which the scaffold board is placed is formed, and the scaffold board placed on the scaffold board placement part is An article carry-out monitor characterized by being guided to a detection position.
前記足場板を搬送する搬送する搬入コンベアおよび搬出コンベアは、多数のローラを並べたものであり、このローラは足場板を載置する足場板用載置部を表示する第1の色彩で表示され、また、他の箇所は足場板を設置しない箇所を表す第2の色彩で表示され、色分けすることを特徴とする物品搬出モニタ。 The article carry-out monitor according to claim 6,
The carry-in conveyor and the carry-out conveyor for carrying the scaffold board are arranged with a large number of rollers, and these rollers are displayed in a first color that displays a scaffold board placement part on which the scaffold board is placed. In addition, the article carry-out monitor is characterized in that the other parts are displayed in a second color representing a part where the scaffolding board is not installed and are color-coded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008037368A JP4941348B2 (en) | 2007-03-08 | 2008-02-19 | Article removal monitor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007058645 | 2007-03-08 | ||
JP2007058645 | 2007-03-08 | ||
JP2008037368A JP4941348B2 (en) | 2007-03-08 | 2008-02-19 | Article removal monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008249692A JP2008249692A (en) | 2008-10-16 |
JP4941348B2 true JP4941348B2 (en) | 2012-05-30 |
Family
ID=39974785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008037368A Active JP4941348B2 (en) | 2007-03-08 | 2008-02-19 | Article removal monitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4941348B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4697353B2 (en) * | 2009-04-28 | 2011-06-08 | 富士電機システムズ株式会社 | Article removal monitor |
WO2013031897A1 (en) * | 2011-08-31 | 2013-03-07 | 富士電機株式会社 | Food product inspection system |
JP2014020900A (en) * | 2012-07-18 | 2014-02-03 | Ihi Construction Machinery Ltd | Self-propelled dosimetry device |
JP6519070B1 (en) * | 2018-03-09 | 2019-05-29 | 株式会社スリー・アール | Inspection apparatus for radioactive contamination and inspection method |
GB201810247D0 (en) | 2018-06-22 | 2018-08-08 | Soletanche Freyssinet Sas | Device for detecting a contaminant on a scaffolding pole |
JP6512650B1 (en) * | 2018-09-20 | 2019-05-15 | 株式会社スリー・アール | beta ray measurement device |
JP2021196255A (en) * | 2020-06-12 | 2021-12-27 | 株式会社アトックス | Radiation measuring method and radiation measuring device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139090A (en) * | 1982-02-15 | 1983-08-18 | Toshiba Corp | Selector for radioactive polluted matter |
JPS6093980A (en) * | 1983-10-28 | 1985-05-25 | Mitsubishi Heavy Ind Ltd | Measuring instrument for surface contamination |
JPH02114192A (en) * | 1988-10-24 | 1990-04-26 | Hitachi Plant Eng & Constr Co Ltd | Radiation dose detector for long material |
JPH04301785A (en) * | 1991-03-29 | 1992-10-26 | Toshiba Corp | Radioactive ray measuring device |
JP4469669B2 (en) * | 2004-07-07 | 2010-05-26 | 株式会社東芝 | Method and apparatus for inspecting radioactive contamination |
-
2008
- 2008-02-19 JP JP2008037368A patent/JP4941348B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008249692A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4941348B2 (en) | Article removal monitor | |
CN203529355U (en) | Continuity and non-damage monitoring device of joint of conveyer belt | |
JP6047849B2 (en) | Vehicle surface contamination monitor | |
TWI505389B (en) | Inspection device, inspection method and storage medium for inspecting deformation of substrate holding member, and substrate processing system including the inspection device | |
JP4853725B2 (en) | Article removal monitor | |
JP5950015B2 (en) | Radiation monitor | |
JP5912427B2 (en) | Non-destructive inspection apparatus and misalignment detection method using the apparatus | |
JP4813781B2 (en) | Crane with inspection device | |
JP2006349546A (en) | X-ray inspection facility | |
JP2005195459A (en) | Monitor for product conveyance | |
JP2008309714A (en) | Visual inspection method of long article, and its device | |
JP7576045B2 (en) | AUTOMATED STORAGE SYSTEM WITH FIRE DETECTION DEVICE AND METHOD FOR LOCATING AND/OR VERIFYING FIRE OR SMOKE WITHIN THE AUTOMATED STORAGE SYSTEM - Patent application | |
JP4469669B2 (en) | Method and apparatus for inspecting radioactive contamination | |
Koji | Underwater inspection robot—AIRIS 21® | |
JP2008032508A (en) | Piping inspection device and piping inspection method | |
JP2018155561A (en) | X-ray inspection device | |
JP4697353B2 (en) | Article removal monitor | |
JP4455312B2 (en) | Surface contamination inspection device and inspection method thereof | |
JP3804619B2 (en) | Radiation inspection equipment | |
JP2020046327A (en) | β RAY MEASUREMENT APPARATUS | |
JP4985126B2 (en) | Article removal monitor | |
JPH1090416A (en) | Article carrying-out monitor | |
JP2000056025A (en) | Radiation measuring device for radioactive waste | |
JP2000292142A (en) | Tank bottom plate diagnosing equipment | |
JPH041507A (en) | Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20101015 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4941348 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |