JP4940933B2 - PWM inverter output voltage control device - Google Patents

PWM inverter output voltage control device Download PDF

Info

Publication number
JP4940933B2
JP4940933B2 JP2006342040A JP2006342040A JP4940933B2 JP 4940933 B2 JP4940933 B2 JP 4940933B2 JP 2006342040 A JP2006342040 A JP 2006342040A JP 2006342040 A JP2006342040 A JP 2006342040A JP 4940933 B2 JP4940933 B2 JP 4940933B2
Authority
JP
Japan
Prior art keywords
voltage
instantaneous value
pwm inverter
output voltage
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006342040A
Other languages
Japanese (ja)
Other versions
JP2008154408A (en
Inventor
寛 材津
正和 宗島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006342040A priority Critical patent/JP4940933B2/en
Publication of JP2008154408A publication Critical patent/JP2008154408A/en
Application granted granted Critical
Publication of JP4940933B2 publication Critical patent/JP4940933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、UPS(無停電電源装置)や並列型瞬低補償装置に用いられて負荷に交流電力を供給するPWMインバータに係り、特にPWMインバータの出力段ACフィルタと負荷電流による出力電圧歪みを補償する制御装置に関する。   The present invention relates to a PWM inverter that is used in a UPS (uninterruptible power supply) or a parallel type sag compensator and supplies alternating current power to a load. The present invention relates to a controller for compensation.

UPSの回路構成例を図6に示す。平常時は、交流入力を順変換器1で直流に変換し、蓄電池2を充電するとともに、PWMインバータ3へ電力を供給する。インバータ3はこの直流電力を交流電力に変換し負荷4に供給する。この構成になるUPSは、交流を直流に変換した後に交流に再変換して負荷に供給するため、交流入力電源の電圧変動・周波数変動・波形歪みの影響を受けない安定した品質の電力を負荷へ供給できる。また、交流入力停電時は、蓄電池2より直流電力を供給し、インバータ3は無停電で負荷へ安定した交流電力を供給し続けることができる。   A circuit configuration example of the UPS is shown in FIG. In normal times, the AC input is converted to DC by the forward converter 1 to charge the storage battery 2 and supply power to the PWM inverter 3. The inverter 3 converts this DC power into AC power and supplies it to the load 4. The UPS with this configuration converts AC to DC, then converts it back to AC and supplies it to the load. Therefore, it loads stable quality power that is not affected by voltage fluctuations, frequency fluctuations, and waveform distortion of the AC input power supply. Can supply. Moreover, at the time of an AC input power failure, DC power is supplied from the storage battery 2, and the inverter 3 can continue to supply stable AC power to the load without a power failure.

ACフィルタ5は交流入力電流から高調波成分を除去し、ACフィルタ6はインバータ3のPWM出力に含まれる高調波成分(キャリア成分)を除去する。   The AC filter 5 removes harmonic components from the AC input current, and the AC filter 6 removes harmonic components (carrier components) included in the PWM output of the inverter 3.

UPSのインバータ電圧制御ブロックを図7に示す。電圧実効値を指令値に保つAVR制御(自動電圧制御)部11と、インバータ出力電圧瞬時値と正常電圧瞬時値との偏差に基づく歪み補正制御部12と、ACフィルタ6のL分(インダクタンス)による電圧降下分を補償する電圧補償制御部13により構成される。   The inverter voltage control block of UPS is shown in FIG. An AVR control (automatic voltage control) unit 11 that keeps the effective voltage value at the command value, a distortion correction control unit 12 based on the deviation between the inverter output voltage instantaneous value and the normal voltage instantaneous value, and an L portion (inductance) of the AC filter 6 The voltage compensation control unit 13 compensates for the voltage drop due to.

並列型瞬低補償装置の回路構成例を図8に示す(例えば、特許文献1参照)。平常時は、高速スイッチ7を介して負荷4に電力を供給する。双方向電力変換機能をもつ交直変換装置8は、平常時には停止または直流電源としての電気二重層キャパシタ9を浮動充電する。系統の停電時は高速スイッチ7を切り離し、電気二重層キャパシタ9に蓄積された直流電力を交直変換装置8により交流電力に変換し、ACフィルタ6を通して負荷4へ無瞬断で電力を供給する。制御装置は、瞬低補償動作中では、UPSの場合と同様の検出および制御になる。   FIG. 8 shows an example of the circuit configuration of the parallel type voltage sag compensator (see, for example, Patent Document 1). In normal times, power is supplied to the load 4 via the high-speed switch 7. The AC / DC converter 8 having a bidirectional power conversion function stops or normally charges the electric double layer capacitor 9 as a DC power source. At the time of a power failure in the system, the high speed switch 7 is disconnected, the DC power stored in the electric double layer capacitor 9 is converted into AC power by the AC / DC converter 8, and the power is supplied to the load 4 through the AC filter 6 without interruption. The control device performs the same detection and control as in the case of UPS during the sag compensation operation.

ここで、負荷4に整流器負荷などが存在する場合、インバータ3や交直変換装置8の出力電圧が負荷電流の影響を受けて、歪んでしまう。この電圧波形の歪みを正常電圧波形に整形するために、歪み補正制御を行っている。   Here, when the load 4 includes a rectifier load or the like, the output voltage of the inverter 3 or the AC / DC converter 8 is affected by the load current and is distorted. In order to shape this voltage waveform distortion into a normal voltage waveform, distortion correction control is performed.

同様に、交流系統電源から見て、UPSの順変換器1や並列型瞬低補償装置の交直変換装置が整流器負荷になり、それに流れる高調波電流が系統電圧を歪ませてしまう。この高調波電流の抑制には、一般的にはLCフィルタで行われ、さらには交流系統にアクティブフィルタを設ける場合もある。
特開2005−73410号公報
Similarly, when viewed from the AC system power source, the UPS forward converter 1 and the AC / DC converter of the parallel type voltage sag compensator become a rectifier load, and the harmonic current flowing therethrough distorts the system voltage. The suppression of the harmonic current is generally performed by an LC filter, and an active filter may be provided in the AC system.
JP 2005-73410 A

前記のように、PWMインバータと負荷の間には、PWMキャリアを除去するためのACフィルタ6を設けている。このACフィルタの介在とこれに流れる負荷電流の影響で、インバータ出力電圧(ACフィルタを通した負荷端電圧)はインバータ電圧指令値通りにならないという問題がある。   As described above, the AC filter 6 for removing the PWM carrier is provided between the PWM inverter and the load. Due to the influence of the AC filter and the load current flowing therethrough, there is a problem that the inverter output voltage (load end voltage through the AC filter) does not follow the inverter voltage command value.

すなわち、インバータ出力電圧瞬時値と正常電圧瞬時値との偏差に基づく歪み補正制御部12は、正常電圧との差を電圧指令値に加算する。一方、ACフィルタのL分による電圧降下分を補償する電圧補正制御部13では、L分電流の微分(sLI)を電圧指令値に加算する。これらの歪み補正と電圧補正制御の指令値を電圧指令値にそのまま加算しても、ACフィルタの介在とこれに流れる負荷電流の影響で高精度な制御ができない。   That is, the distortion correction control unit 12 based on the deviation between the inverter output voltage instantaneous value and the normal voltage instantaneous value adds the difference from the normal voltage to the voltage command value. On the other hand, the voltage correction controller 13 that compensates for the voltage drop due to the AC filter L adds the differential (sLI) of the L current to the voltage command value. Even if these distortion correction and voltage correction control command values are added to the voltage command values as they are, high-accuracy control cannot be performed due to the influence of the AC filter and the load current flowing therethrough.

本発明の目的は、PWMインバータの出力段ACフィルタと負荷電流によるインバータの出力電圧歪みを高い精度で補償できるPWMインバータの出力電圧制御装置を提供することにある。   An object of the present invention is to provide an output voltage control device for a PWM inverter that can compensate for the output voltage distortion of the inverter due to the output stage AC filter and load current of the PWM inverter with high accuracy.

本発明は、前記の課題を解決するため、ACフィルタと負荷を考慮した電圧指令値をPWMインバータの電圧制御部で作成するようにしたもので、以下の構成を特徴とする。   In order to solve the above-described problems, the present invention creates a voltage command value in consideration of an AC filter and a load by a voltage control unit of a PWM inverter, and has the following configuration.

)PWMインバータと負荷との間に、リアクトルL1とL2の直列接続点に、コンデンサCfと抵抗Rfの直列接続回路を設けたLCLフィルタ構成のPWMキャリア除去用ACフィルタを介挿し、制御装置は出力電圧指令に従ってPWMインバータの出力電圧を制御する装置であって、
負荷の電流瞬時値Iloadを入力とし、以下の伝達関数G(s)をもつ第1の演算要素と、
( 1 ) A PWM carrier removing AC filter having an LCL filter configuration in which a series connection circuit of a capacitor Cf and a resistor Rf is provided at a series connection point of the reactors L1 and L2 between the PWM inverter and the load, and the control device Is a device for controlling the output voltage of the PWM inverter according to the output voltage command,
A first calculation element having a load current instantaneous value Iload as an input and having a transfer function G (s) below;

Figure 0004940933
Figure 0004940933

PWMインバータの正常電圧瞬時値VrefとPWMインバータの出力電圧瞬時値Voutとの偏差を該正常電圧瞬時値Vrefに加算し、これに正常電圧実効値VrefrmsとPWMインバータの出力電圧実効値Voutrmsの偏差に応じた自動電圧制御(AVR)出力を加算した入力とし、以下の伝達関数H(s)をもつ第2の演算要素と、   The deviation between the normal voltage instantaneous value Vref of the PWM inverter and the output voltage instantaneous value Vout of the PWM inverter is added to the normal voltage instantaneous value Vref. A second arithmetic element having the following transfer function H (s) as an input obtained by adding the corresponding automatic voltage control (AVR) output;

Figure 0004940933
Figure 0004940933

前記第1及び第2の演算要素の演算出力を加算して前記PWMインバータの電圧指令値とする電圧制御部を備えたことを特徴とする。   A voltage control unit is provided which adds the calculation outputs of the first and second calculation elements to obtain a voltage command value of the PWM inverter.

)PWMインバータと負荷との間に、リアクトルL1を介在させ、このリアクトルL1と負荷との接続点にコンデンサCfと抵抗Rfの直列接続回路を設けたLCフィルタ構成のPWMキャリア除去用ACフィルタを介挿し、制御装置は出力電圧指令に従ってPWMインバータの出力電圧を制御する装置であって、
負荷の電流瞬時値Iloadを入力とし、以下の伝達関数G(s)をもつ第1の演算要素と、
( 2 ) AC filter for PWM carrier removal having an LC filter configuration in which a reactor L1 is interposed between the PWM inverter and the load, and a series connection circuit of a capacitor Cf and a resistor Rf is provided at a connection point between the reactor L1 and the load. The control device is a device that controls the output voltage of the PWM inverter according to the output voltage command,
A first calculation element having a load current instantaneous value Iload as an input and having a transfer function G (s) below;

Figure 0004940933
Figure 0004940933

PWMインバータの正常電圧瞬時値VrefとPWMインバータの出力電圧瞬時値Voutとの偏差を該正常電圧瞬時値Vrefに加算し、これに正常電圧実効値VrefrmsとPWMインバータの出力電圧実効値Voutrmsの偏差に応じた自動電圧制御(AVR)出力を加算した入力とし、以下の伝達関数H(s)をもつ第2の演算要素と、   The deviation between the normal voltage instantaneous value Vref of the PWM inverter and the output voltage instantaneous value Vout of the PWM inverter is added to the normal voltage instantaneous value Vref, and this is added to the deviation of the normal voltage effective value Vrefrms and the output voltage effective value Voutrms of the PWM inverter. A second arithmetic element having the following transfer function H (s) as an input obtained by adding the corresponding automatic voltage control (AVR) output;

Figure 0004940933
Figure 0004940933

前記第1及び第2の演算要素の演算出力を加算して前記PWMインバータの電圧指令値とする電圧制御部を備えたことを特徴とする。   A voltage control unit is provided which adds the calculation outputs of the first and second calculation elements to obtain a voltage command value of the PWM inverter.

)前記電圧制御部は、
前記正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutの偏差に対して比例微分(PD)制御して該正常電圧瞬時値Vrefの加算入力とする制御手段と、
負荷の前記電流瞬時値Iloadに対して比例微分(PD)制御して前記伝達関数G(s)の入力とする制御手段と、
を備えたことを特徴とする。
( 3 ) The voltage control unit
Control means for performing proportional differentiation (PD) control on the deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout and adding the normal voltage instantaneous value Vref as an input;
Control means for performing proportional differentiation (PD) control on the instantaneous current value Iload of the load and inputting the transfer function G (s);
It is provided with.

以上のとおり、本発明によれば、PWMインバータの出力段ACフィルタと負荷電流によるインバータの出力電圧歪みを高い精度で補償できる。   As described above, according to the present invention, the output voltage distortion of the inverter due to the output stage AC filter of the PWM inverter and the load current can be compensated with high accuracy.

(実施形態1)
図1は、本実施形態を示す制御装置のブロック構成図であり、図7に示す電圧制御ブロック図と異なる部分はAVR制御部11と歪み補正部12および電圧補正制御部13に代えて、電圧制御部14を設けた点にある。
(Embodiment 1)
FIG. 1 is a block configuration diagram of a control device according to the present embodiment. A portion different from the voltage control block diagram shown in FIG. 7 is replaced with an AVR control unit 11, a distortion correction unit 12, and a voltage correction control unit 13. The control unit 14 is provided.

電圧制御部14は、負荷電流瞬時値Iloadの入力を伝達関数G(s)を通した電圧制御信号を得る演算要素14Aと、正常電圧瞬時値Vrefの入力を伝達関数H(s)を通した電圧制御信号を得る演算要素14Bと、両演算要素14Aと14Bの演算結果を加算したものをインバータ3の電圧指令値とする演算要素14Cを備える。以下、電圧制御部14における伝達関数G(s)とH(s)による電圧指令値演算を原理的に説明する。   The voltage control unit 14 obtains a voltage control signal through which the load current instantaneous value Iload is input through the transfer function G (s), and the normal voltage instantaneous value Vref is input through the transfer function H (s). A calculation element 14B that obtains a voltage control signal and a calculation element 14C that uses a result obtained by adding the calculation results of both calculation elements 14A and 14B as a voltage command value of the inverter 3 are provided. Hereinafter, the voltage command value calculation by the transfer functions G (s) and H (s) in the voltage control unit 14 will be described in principle.

図1において、UPSのPWMインバータ3と負荷4との間に介挿されるACフィルタ6の回路構成は、リアクトルL1とL2の直列接続点に、コンデンサCfと抵抗Rfの直列接続回路を設けたLCLフィルタ構成とする。   In FIG. 1, the circuit configuration of the AC filter 6 inserted between the PWM inverter 3 of the UPS and the load 4 is an LCL in which a series connection circuit of a capacitor Cf and a resistor Rf is provided at the series connection point of the reactors L1 and L2. Filter configuration.

このフィルタ構成において、リアクトルL1の電流Iinv0、リアクトルL2の電流Iinv1、コンデンサCfと抵抗Rfの電流(Iinv1−Iinv0)として回路方程式を立てると、インバータ3の出力電圧Vinvと負荷4の電圧Vloadは以下の(1)式、(2)式で表せる。sはラプラス演算子である。   In this filter configuration, when the circuit equation is established as the current Iinv0 of the reactor L1, the current Iinv1 of the reactor L2, the current of the capacitor Cf and the resistor Rf (Iinv1-Iinv0), the output voltage Vinv of the inverter 3 and the voltage Vload of the load 4 are as follows: (1) and (2). s is a Laplace operator.

Figure 0004940933
Figure 0004940933

上記の(1)、(2)式を以下の(3)式のようにまとめる。   The above formulas (1) and (2) are summarized as the following formula (3).

Figure 0004940933
Figure 0004940933

上記の(3)式は以下の(4)式で表せる。   The above equation (3) can be expressed by the following equation (4).

Figure 0004940933
Figure 0004940933

上記の(4)式および(5)〜(8)式より、負荷電圧Vloadについて解くと、以下の(9)式になる。   When the load voltage Vload is solved from the above equations (4) and (5) to (8), the following equation (9) is obtained.

Figure 0004940933
Figure 0004940933

この(9)式より、VinvとVloadには誤差が生じることが分かる。(9)式において、Vloadをインバータの正常電圧瞬時値Vrefに一致させるためには、Vinvを以下の(10)式の値にすればよい。   From this equation (9), it can be seen that there is an error in Vinv and Vload. In equation (9), in order to make Vload coincide with the normal voltage instantaneous value Vref of the inverter, Vinv may be set to the value of the following equation (10).

Figure 0004940933
Figure 0004940933

上記の(10)式において、伝達関数H(s)、G(s)を、   In the above equation (10), transfer functions H (s) and G (s) are

Figure 0004940933
Figure 0004940933

とおくと、以下の(13)式に従った演算でインバータ出力電圧Vinvを制御すればよい。 In other words, the inverter output voltage Vinv may be controlled by calculation according to the following equation (13).

Figure 0004940933
Figure 0004940933

以上のことから、本実施形態における電圧制御部14は、上記の(13)式に基づいた演算によって電圧指令値を得る。このうち、伝達関数H(s)は正常電圧瞬時値Vrefを入力とし、(11)式に従った演算を行う。伝達関数G(s)は負荷電流瞬時値Iloadを入力とし、(12)式に従った演算を行う。これら演算結果の和をインバータの電圧指令値とする。   From the above, the voltage control unit 14 in the present embodiment obtains the voltage command value by the calculation based on the above equation (13). Among these, the transfer function H (s) receives the normal voltage instantaneous value Vref as an input, and performs calculation according to the equation (11). The transfer function G (s) receives the load current instantaneous value Iload as input, and performs calculation according to the equation (12). The sum of these calculation results is used as the voltage command value for the inverter.

本実施形態によれば、ACフィルタと負荷電流を考慮した出力電圧制御になるため、従来の制御装置に比べて出力電圧歪みを補償した高精度制御ができる。また、インバータ電圧指令値をフィードフォワード演算のみで求めることができるため、応答性を高めることができる。また、以下に説明する実施形態2,3と比較して演算量を少なくできる。   According to the present embodiment, the output voltage control is performed in consideration of the AC filter and the load current. Therefore, the high-accuracy control that compensates for the output voltage distortion can be performed as compared with the conventional control device. Moreover, since an inverter voltage command value can be calculated | required only by feedforward calculation, responsiveness can be improved. Further, the amount of calculation can be reduced as compared with the second and third embodiments described below.

(実施形態2)
本実施形態では、図1の電圧制御部14に代えて、図2に示す演算ブロック構成の電圧制御部15とする。
(Embodiment 2)
In the present embodiment, instead of the voltage control unit 14 of FIG. 1, the voltage control unit 15 having the arithmetic block configuration shown in FIG. 2 is used.

電圧制御部15の伝達関数H(s)は、正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutとの偏差を該正常電圧検出値Vrefに加算したものを入力とし、(11)式に従った演算を行う。伝達関数G(s)は負荷電流瞬時値Iloadを入力とし、(12)式に従った演算を行う。   The transfer function H (s) of the voltage control unit 15 has an input obtained by adding a deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout to the normal voltage detection value Vref, and follows the equation (11). Perform the operation. The transfer function G (s) receives the load current instantaneous value Iload as input, and performs calculation according to the equation (12).

本実施形態によれば、実施形態1と比較して、インバータ出力電圧のフィードバックがかかるため、より高精度な制御を行うことができる。   According to the present embodiment, the feedback of the inverter output voltage is applied as compared with the first embodiment, so that more accurate control can be performed.

(実施形態3)
本実施形態では、図2の電圧制御部15に代えて、図3に示す演算ブロック構成の電圧制御部16とする。
(Embodiment 3)
In the present embodiment, the voltage control unit 16 shown in FIG. 3 is used instead of the voltage control unit 15 shown in FIG.

図3の制御ブロックでは、図2の電圧制御部15がもつ演算ブロックに加えて、AVR部11で求めるAVR指令値を伝達関数H(s)への加算入力とする。伝達関数H(s)は、正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutとの偏差を該正常電圧検出値Vrefに加算したものと、AVR指令値との和を入力とし、(11)式に従った演算を行う。   In the control block of FIG. 3, in addition to the calculation block of the voltage control unit 15 of FIG. 2, the AVR command value obtained by the AVR unit 11 is added to the transfer function H (s). The transfer function H (s) is obtained by inputting the sum of the deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout to the normal voltage detection value Vref and the AVR command value. Perform operations according to

本実施形態によれば、AVR制御により、インバータ出力電圧の基本波成分は正常電圧と一致する。よって、実施形態2と比較してインバータ出力電圧瞬時値と正常電圧瞬時値との偏差に基づく制御の負担が軽減される。   According to this embodiment, the fundamental wave component of the inverter output voltage matches the normal voltage by AVR control. Therefore, compared to the second embodiment, the control burden based on the deviation between the inverter output voltage instantaneous value and the normal voltage instantaneous value is reduced.

(実施形態4)
本実施形態は、ACフィルタ6をLCフィルタ構成(図1のリアクトルL2を省いた構成)とする場合の電圧制御装置とするものである。
(Embodiment 4)
The present embodiment is a voltage control device in the case where the AC filter 6 has an LC filter configuration (a configuration in which the reactor L2 in FIG. 1 is omitted).

前記の(4)式および(5)〜(8)式より、負荷電圧Vloadについて解くと、以下の(14)式で表せる。   When the load voltage Vload is solved from the above equations (4) and (5) to (8), it can be expressed by the following equation (14).

Figure 0004940933
Figure 0004940933

この(14)式より、VinvとVloadには負荷電流Iinv1によって誤差が生じることが分かる。(14)式において、Vloadをインバータの正常電圧瞬時値Vrefに一致させるためには、Vinvを以下の(15)式の値にすればよい。   From this equation (14), it can be seen that an error occurs in Vinv and Vload due to the load current Iinv1. In equation (14), in order to make Vload coincide with the normal voltage instantaneous value Vref of the inverter, Vinv may be set to the value of the following equation (15).

Figure 0004940933
Figure 0004940933

上記の(14)式と(15)式について、以下の(16)式を代入すると、インバータの電圧制御系が理想的な場合、インバータ電圧指令値Vrefに負荷電圧Vloadを一致させることができる。   By substituting the following equation (16) for the above equations (14) and (15), the load voltage Vload can be matched with the inverter voltage command value Vref when the inverter voltage control system is ideal.

Figure 0004940933
Figure 0004940933

この(16)式において、伝達関数H(s)、G(s)を以下の(17)式、(18)式とおき、   In this equation (16), transfer functions H (s) and G (s) are set as the following equations (17) and (18),

Figure 0004940933
Figure 0004940933

上記の(15)式を以下の(19)式のように表すとする。   The above equation (15) is expressed as the following equation (19).

Figure 0004940933
Figure 0004940933

ここで、ACフィルタが図1のLCL構成に代えてLC構成の場合、上記の(17)式、(18)式において、図1のリアクトルL2の値が「0」であるため、伝達関数H(s)、G(s)はそれぞれ以下の(20)式、(21)式となり、簡単な式で表せる。   Here, when the AC filter is an LC configuration instead of the LCL configuration of FIG. 1, in the above formulas (17) and (18), the value of the reactor L2 of FIG. (S) and G (s) are the following expressions (20) and (21), respectively, and can be expressed by simple expressions.

Figure 0004940933
Figure 0004940933

以上のことから、本実施形態は図4に示す演算ブロック構成の電圧制御装置とするものである。同図における電圧制御部17は、上記の(19)〜(21)式に基づいた演算によって電圧指令値を得る。このうち、17Bで示す伝達関数H(s)は、正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutとの偏差を該正常電圧検出値Vrefに加算したものを入力とし、(20)式に従った演算を行う。17Aで示す伝達関数G(s)は負荷電流瞬時値Iinv1(=load)を入力とし、(21)式に従った演算を行う。これら演算結果の和をインバータの電圧指令値とする。   From the above, this embodiment is a voltage control device having a calculation block configuration shown in FIG. The voltage control unit 17 in the figure obtains a voltage command value by calculation based on the above equations (19) to (21). Among these, the transfer function H (s) indicated by 17B has an input obtained by adding a deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout to the normal voltage detected value Vref, and follows the equation (20). Perform the operation. The transfer function G (s) indicated by 17A takes the load current instantaneous value Iinv1 (= load) as an input and performs a calculation according to the equation (21). The sum of these calculation results is used as the voltage command value for the inverter.

ここで、(19)式において、伝達関数G(s)、H(s)に入力する項について説明する。伝達関数H(s)に入力する正常電圧瞬時値Vrefとインパータ出力電圧Voutには偏差があるため,この偏差に対してアンプ17Dによる比例(P)動作による利得と、微分項演算部17Eとアンプ17Fによる微分(D)動作によって制御特性の改善を図る、すなわちPD制御を施す。そして、この値に正常電圧瞬時値Vrefを加算し、H(s)に入力する。同様に、伝達関数G(s)に入力する項は、負荷電流瞬時値Iinv1に対して、アンプ17Gと微分項演算部17Hおよびアンプ17IによってPD制御を施した値とする。   Here, the terms input to the transfer functions G (s) and H (s) in the equation (19) will be described. Since there is a deviation between the normal voltage instantaneous value Vref and the inverter output voltage Vout that are input to the transfer function H (s), the gain by the proportional (P) operation by the amplifier 17D, the differential term calculation unit 17E and the amplifier The control characteristic is improved by the differential (D) operation by 17F, that is, PD control is performed. Then, the normal voltage instantaneous value Vref is added to this value and input to H (s). Similarly, the term input to the transfer function G (s) is a value obtained by subjecting the load current instantaneous value Iinv1 to PD control by the amplifier 17G, the differential term calculation unit 17H, and the amplifier 17I.

本実施形態によれば、インバータ出力電圧瞬時値と正常電圧瞬時値との偏差に基づくPD制御を行い、かつACフィルタと負荷を考慮した電圧指令値を作成できる。そのため、PD制御による利得及び制御特性の改善とACフィルタの影響を取り除くことが可能となり、従来の方法よりも高精度な電圧制御ができる。   According to the present embodiment, PD control based on the deviation between the inverter output voltage instantaneous value and the normal voltage instantaneous value can be performed, and a voltage command value can be created in consideration of the AC filter and the load. Therefore, it becomes possible to improve the gain and control characteristics by PD control and remove the influence of the AC filter, and to perform voltage control with higher accuracy than the conventional method.

(実施形態5)
本実施形態は、実施形態4に示す演算ブロック構成に、AVR指令値を追加した電圧制御装置とするものである。
(Embodiment 5)
The present embodiment is a voltage control device in which an AVR command value is added to the arithmetic block configuration shown in the fourth embodiment.

図5は、図4の電圧制御部17がもつ演算ブロックに加えて、AVR部11で求めるAVR指令値を伝達関数H(s)への加算入力とする電圧制御部18とする。伝達関数H(s)は、正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutとの偏差をPD制御して該正常電圧検出値Vrefに加算したものと、AVR指令値との和を入力とし、(20)式に従った演算を行う。   FIG. 5 shows a voltage control unit 18 that uses the AVR command value obtained by the AVR unit 11 as an addition input to the transfer function H (s) in addition to the calculation block of the voltage control unit 17 of FIG. The transfer function H (s) is obtained by inputting the sum of the deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout and adding it to the normal voltage detected value Vref and the AVR command value, The calculation according to the equation (20) is performed.

本実施形態によれば、AVR制御により、インバータ出カ電圧の基本波成分は正常電圧と一致する。よって、実施形態4と比較して、インバータ出力電圧瞬時値と正常電圧との偏差に基づく制御の負担が軽減される。   According to the present embodiment, the fundamental component of the inverter output voltage matches the normal voltage by AVR control. Therefore, as compared with the fourth embodiment, the control burden based on the deviation between the inverter output voltage instantaneous value and the normal voltage is reduced.

なお、実施形態4、5におけるPD制御は、実施形態1〜3に適用して利得及び制御特性の改善を図ることができる。   The PD control in the fourth and fifth embodiments can be applied to the first to third embodiments to improve the gain and control characteristics.

本発明の実施形態1を示す制御装置のブロック構成図。The block block diagram of the control apparatus which shows Embodiment 1 of this invention. 本発明の実施形態2を示す制御装置のブロック構成図。The block block diagram of the control apparatus which shows Embodiment 2 of this invention. 本発明の実施形態3を示す制御装置のブロック構成図。The block block diagram of the control apparatus which shows Embodiment 3 of this invention. 本発明の実施形態4を示す制御装置のブロック構成図。The block block diagram of the control apparatus which shows Embodiment 4 of this invention. 本発明の実施形態5を示す制御装置のブロック構成図。The block block diagram of the control apparatus which shows Embodiment 5 of this invention. UPS(無停電電源装置)の回路図。The circuit diagram of UPS (uninterruptible power supply). 従来のUPSの電圧制御ブロック構成図。The conventional UPS voltage control block block diagram. 並列型瞬低補償装置の回路図。The circuit diagram of a parallel type voltage sag compensator.

符号の説明Explanation of symbols

3 PWMインバータ
4 負荷
6 ACフィルタ
11 AVR制御部
12 歪み補正部
14〜18 電圧制御部
3 PWM inverter 4 Load 6 AC filter 11 AVR control unit 12 Distortion correction unit 14-18 Voltage control unit

Claims (3)

PWMインバータと負荷との間に、リアクトルL1とL2の直列接続点に、コンデンサCfと抵抗Rfの直列接続回路を設けたLCLフィルタ構成のPWMキャリア除去用ACフィルタを介挿し、制御装置は出力電圧指令に従ってPWMインバータの出力電圧を制御する装置であって、
負荷の電流瞬時値Iloadを入力とし、以下の伝達関数G(s)をもつ第1の演算要素と、
Figure 0004940933
PWMインバータの正常電圧瞬時値VrefとPWMインバータの出力電圧瞬時値Voutとの偏差を該正常電圧瞬時値Vrefに加算し、これに正常電圧実効値VrefrmsとPWMインバータの出力電圧実効値Voutrmsの偏差に応じた自動電圧制御(AVR)出力を加算した入力とし、以下の伝達関数H(s)をもつ第2の演算要素と、
Figure 0004940933
前記第1及び第2の演算要素の演算出力を加算して前記PWMインバータの電圧指令値とする電圧制御部を備えたことを特徴とするPWMインバータの出力電圧制御装置。
A PWM carrier removing AC filter having an LCL filter configuration in which a series connection circuit of a capacitor Cf and a resistor Rf is provided at the series connection point of the reactors L1 and L2 is interposed between the PWM inverter and the load. A device for controlling the output voltage of the PWM inverter according to a command,
A first calculation element having a load current instantaneous value Iload as an input and having a transfer function G (s) below;
Figure 0004940933
The deviation between the normal voltage instantaneous value Vref of the PWM inverter and the output voltage instantaneous value Vout of the PWM inverter is added to the normal voltage instantaneous value Vref. A second arithmetic element having the following transfer function H (s) as an input obtained by adding the corresponding automatic voltage control (AVR) output;
Figure 0004940933
An output voltage control device for a PWM inverter, comprising: a voltage control unit that adds the calculation outputs of the first and second calculation elements to obtain a voltage command value of the PWM inverter.
PWMインバータと負荷との間に、リアクトルL1を介在させ、このリアクトルL1と負荷との接続点にコンデンサCfと抵抗Rfの直列接続回路を設けたLCフィルタ構成のPWMキャリア除去用ACフィルタを介挿し、制御装置は出力電圧指令に従ってPWMインバータの出力電圧を制御する装置であって、
負荷の電流瞬時値Iloadを入力とし、以下の伝達関数G(s)をもつ第1の演算要素と、
Figure 0004940933
PWMインバータの正常電圧瞬時値VrefとPWMインバータの出力電圧瞬時値Voutとの偏差を該正常電圧瞬時値Vrefに加算し、これに正常電圧実効値VrefrmsとPWMインバータの出力電圧実効値Voutrmsの偏差に応じた自動電圧制御(AVR)出力を加算した入力とし、以下の伝達関数H(s)をもつ第2の演算要素と、
Figure 0004940933
前記第1及び第2の演算要素の演算出力を加算して前記PWMインバータの電圧指令値とする電圧制御部を備えたことを特徴とするPWMインバータの出力電圧制御装置。
A reactor L1 is interposed between the PWM inverter and the load, and an AC filter for PWM carrier removal having an LC filter configuration in which a series connection circuit of a capacitor Cf and a resistor Rf is provided at a connection point between the reactor L1 and the load is inserted. The control device is a device for controlling the output voltage of the PWM inverter according to the output voltage command,
A first calculation element having a load current instantaneous value Iload as an input and having a transfer function G (s) below;
Figure 0004940933
The deviation between the normal voltage instantaneous value Vref of the PWM inverter and the output voltage instantaneous value Vout of the PWM inverter is added to the normal voltage instantaneous value Vref. A second arithmetic element having the following transfer function H (s) as an input obtained by adding the corresponding automatic voltage control (AVR) output;
Figure 0004940933
An output voltage control device for a PWM inverter, comprising: a voltage control unit that adds the calculation outputs of the first and second calculation elements to obtain a voltage command value of the PWM inverter.
前記電圧制御部は、
前記正常電圧瞬時値Vrefとインバータ出力電圧瞬時値Voutの偏差に対して比例微分(PD)制御して該正常電圧瞬時値Vrefの加算入力とする制御手段と、
負荷の前記電流瞬時値Iloadに対して比例微分(PD)制御して前記伝達関数G(s)の入力とする制御手段と、
を備えたことを特徴とする請求項1または2に記載のPWMインバータの出力電圧制御装置。
The voltage controller is
Control means for performing proportional differentiation (PD) control on the deviation between the normal voltage instantaneous value Vref and the inverter output voltage instantaneous value Vout and adding the normal voltage instantaneous value Vref as an input;
Control means for performing proportional differentiation (PD) control on the instantaneous current value Iload of the load and inputting the transfer function G (s);
The output voltage control apparatus of the PWM inverter according to claim 1 or 2 , further comprising:
JP2006342040A 2006-11-21 2006-12-20 PWM inverter output voltage control device Expired - Fee Related JP4940933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342040A JP4940933B2 (en) 2006-11-21 2006-12-20 PWM inverter output voltage control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006313732 2006-11-21
JP2006313732 2006-11-21
JP2006342040A JP4940933B2 (en) 2006-11-21 2006-12-20 PWM inverter output voltage control device

Publications (2)

Publication Number Publication Date
JP2008154408A JP2008154408A (en) 2008-07-03
JP4940933B2 true JP4940933B2 (en) 2012-05-30

Family

ID=39656012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342040A Expired - Fee Related JP4940933B2 (en) 2006-11-21 2006-12-20 PWM inverter output voltage control device

Country Status (1)

Country Link
JP (1) JP4940933B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4377439B1 (en) 2008-06-12 2009-12-02 本田技研工業株式会社 Vehicle periphery monitoring device
JP5338353B2 (en) * 2009-02-12 2013-11-13 株式会社明電舎 Voltage control method for parallel sag compensator and parallel sag compensator
FR2982680B1 (en) * 2011-11-15 2013-11-22 Schneider Toshiba Inverter METHOD AND CONTROL SYSTEM FOR CORRECTING THE VOLTAGES TO BE APPLIED TO AN ELECTRICAL CHARGE
JP5944670B2 (en) * 2012-01-19 2016-07-05 株式会社ダイヘン Control circuit for power conversion circuit, grid-connected inverter system using this control circuit, and single-phase PWM converter system
KR101598452B1 (en) * 2014-09-01 2016-02-29 주식회사 맥스컴 Uninterruptible power supply with energy storage system - power conditioning system
KR101562848B1 (en) 2015-05-21 2015-10-27 주식회사 이온 Method for uninterruptible power supply system control by using active damping control scheme and repeat control techniques
KR102513991B1 (en) 2016-04-15 2023-03-23 엘에스일렉트릭(주) Apparatus for controlling solar light voltage
KR102485699B1 (en) * 2016-04-28 2023-01-05 엘에스일렉트릭(주) Apparatus and method for damping of converter system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205774A (en) * 1995-11-21 1997-08-05 Hitachi Ltd Controller of power converter
JPH09224332A (en) * 1996-02-15 1997-08-26 Shinko Electric Co Ltd Power converter
JPH1023756A (en) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Voltage inverter device and method for controlling it
JP2004120820A (en) * 2002-09-24 2004-04-15 Meidensha Corp Power converter
JP2006146525A (en) * 2004-11-19 2006-06-08 Meidensha Corp Power supply and method for compensating load voltage of power supply

Also Published As

Publication number Publication date
JP2008154408A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4940933B2 (en) PWM inverter output voltage control device
US8179114B2 (en) Voltage converting device and voltage converting method
EP3078096B1 (en) Repetitive servomechanism controller for uninterruptible power supply system
US10707748B2 (en) Control device for DC converter, DC converter, and method for controlling a DC converter
KR101562848B1 (en) Method for uninterruptible power supply system control by using active damping control scheme and repeat control techniques
JP2019146369A (en) Electric power conversion device
JP2009141997A (en) Parallel operation control system for power conversion device
JP4868585B2 (en) AC excitation generator motor controller
JP5443753B2 (en) Power converter
JP6219099B2 (en) Power converter
JP6057876B2 (en) Power converter
JP4946642B2 (en) Harmonic current compensator
JP5115730B2 (en) PWM converter device
JP4931129B2 (en) Power converter
JP2018137840A (en) Power factor improvement circuit
JP2017005926A (en) Input pre-circuit in control ic for switching power supply, and switching power supply control device with the input pre-circuit
TW201424229A (en) Voltage regulator, and control circuit and control method thereof
JP2006146525A (en) Power supply and method for compensating load voltage of power supply
JP4569552B2 (en) Instantaneous voltage drop compensation device
JP6783181B2 (en) Power converter
JP2015061474A (en) Power control device and electronic apparatus
JPH0923585A (en) Control of reactive power compensation
WO2021161945A1 (en) Power source stabilization device
JP7014567B2 (en) Active filters, control methods and programs
JP2007288836A (en) Control system of field current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees