JP4940156B2 - Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same - Google Patents

Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same Download PDF

Info

Publication number
JP4940156B2
JP4940156B2 JP2008004747A JP2008004747A JP4940156B2 JP 4940156 B2 JP4940156 B2 JP 4940156B2 JP 2008004747 A JP2008004747 A JP 2008004747A JP 2008004747 A JP2008004747 A JP 2008004747A JP 4940156 B2 JP4940156 B2 JP 4940156B2
Authority
JP
Japan
Prior art keywords
molding
shaft portion
conical
shaft
conical plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008004747A
Other languages
Japanese (ja)
Other versions
JP2009166058A (en
Inventor
敏明 村上
保治 外園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2008004747A priority Critical patent/JP4940156B2/en
Publication of JP2009166058A publication Critical patent/JP2009166058A/en
Application granted granted Critical
Publication of JP4940156B2 publication Critical patent/JP4940156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pulleys (AREA)
  • Forging (AREA)

Description

本発明はベルト式無段変速機に関し、特に、プーリを構成する軸部付き円錐板及びその製造方法に関する。   The present invention relates to a belt-type continuously variable transmission, and more particularly to a conical plate with a shaft portion constituting a pulley and a method for manufacturing the same.

ベルト式無段変速機は、一対のプーリの間にベルトを巻き掛けることで構成され、プーリの溝幅を変更することで変速機の変速比を無段階に変更する。プーリは、軸部と軸部から径方向外側に延出する円錐部からなる軸部付き円錐板(固定円錐板及び可動円錐板)を対向配置することで構成される。   The belt-type continuously variable transmission is configured by winding a belt between a pair of pulleys, and changes the gear ratio of the transmission steplessly by changing the groove width of the pulleys. The pulley is configured by opposingly arranging a conical plate with a shaft portion (a fixed conical plate and a movable conical plate) including a shaft portion and a conical portion extending radially outward from the shaft portion.

従来、これら軸部付き円錐板は丸棒状の素材から据込み成形によって製造しており、例えば、特許文献1では、押出し成形により丸棒状の素材の軸方向途中を予め拡径しておき、この拡径部を金型で軸方向両側から圧縮してさらに拡径することで円錐部を成形している。
特開2004−167532公報
Conventionally, these conical plates with shaft portions have been manufactured by upsetting from a round bar-shaped material. The conical portion is formed by further expanding the diameter by compressing the enlarged diameter portion from both axial sides with a mold.
JP 2004-167532 A

しかしながら、従来の据込み成形による方法では、ベルトに接触する円錐部のシーブ面、その反対側のシーブ背面ともメタルフローが略均等になるため加工硬化が少なく、成形後の表面硬度が低いという問題があった。このため、浸炭処理、窒化処理等の表面処理が必須であった。   However, in the conventional upsetting method, the metal flow is substantially uniform on the sheave surface of the conical portion that contacts the belt and the back surface of the sheave on the opposite side, so there is less work hardening and the surface hardness after molding is low. was there. For this reason, surface treatments such as carburizing and nitriding are essential.

さらに、成形時における金型と素材との接触面積が大きく、成形荷重が大きいという問題があった。このため、軸部付き円錐板の成形は一般には素材を加熱した状態で行う必要があった。   Furthermore, there is a problem that the contact area between the mold and the material during molding is large and the molding load is large. For this reason, it is generally necessary to form the conical plate with the shaft portion while the material is heated.

本発明は、このような従来技術の技術的課題を鑑みてなされたもので、成形後のシーブ面の表面硬度を向上させることを目的とする。また、本発明のさらなる目的は、軸部付き円錐板の成形荷重を低減することである。   The present invention has been made in view of such technical problems of the prior art, and an object thereof is to improve the surface hardness of the sheave surface after molding. Moreover, the further objective of this invention is to reduce the shaping | molding load of the cone plate with a shaft part.

発明では、軸部と前記軸部から径方向外側に延出する円錐部からなり、前記円錐部の傾斜面をベルトと接触するシーブ面とするベルト式無段変速機用の軸部付き円錐板の製造方法において、前記軸部付き円錐板に対応する形状のキャビティを有する金型に、前記軸部に対応する形状の素材をセットする工程と、前記素材を、前記シーブ面の側の端部を支持しつつ、前記シーブ面と反対の側のみから押圧し、前記素材の一部を前記キャビティの前記円錐部に対応する部分に充填する工程と、を含む。 In the present invention, a cone with a shaft portion for a belt-type continuously variable transmission comprising a shaft portion and a conical portion extending radially outward from the shaft portion, wherein the inclined surface of the cone portion is a sheave surface that contacts the belt. In the plate manufacturing method, a step of setting a material having a shape corresponding to the shaft portion in a mold having a cavity having a shape corresponding to the conical plate with the shaft portion, and the material at an end on the sheave surface side And pressing a portion only from the side opposite to the sheave surface while supporting the portion, and filling a portion of the material corresponding to the conical portion of the cavity.

発明によれば、円錐部のシーブ面のメタルフローが密になり、シーブ面の表面硬度が向上する。 According to the present invention, the metal flow on the sheave surface of the conical portion becomes dense, and the surface hardness of the sheave surface is improved.

また、発明によれば、素材を前記シーブ面と反対の側のみから押圧し、素材の一部をキャビティの円錐部に対応する部分に充填する、すなわち、側方押出し成形により円錐部を成形するようにしたことにより、据込み成形により円錐部を成形する従来の成形工程に比べ、成形荷重を大幅に減らすことができる。 Further, according to the present invention, the material is pressed only from the side opposite to the sheave surface, and a part of the material is filled into the portion corresponding to the cone of the cavity, that is, the cone is formed by side extrusion molding. By doing so, the molding load can be greatly reduced compared to the conventional molding process in which the conical part is molded by upsetting.

以下、添付図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明によるベルト式無段変速機用の軸部付き円錐板の成形工程を示している。成形工程は、軸押出し成形により丸棒状の素材1から段部2aを有する軸部2を成形する一次成形と、一次成形後の素材1’から側方押出し成形により軸部2から径方向外側に延出し傾斜面をベルトと接触するシーブ面3aとする円錐部3を成形する二次成形からなる。図1に示す軸部付き円錐板は固定円錐板であるが、固定円錐板の軸部に外嵌する中空の軸部を有する可動円錐板の成形工程も同様である。   FIG. 1 shows a process for forming a conical plate with a shaft portion for a belt type continuously variable transmission according to the present invention. The molding process includes primary molding for molding the shaft portion 2 having the stepped portion 2a from the round bar-shaped material 1 by shaft extrusion molding, and lateral extrusion from the shaft portion 2 by the lateral extrusion molding from the material 1 ′ after the primary molding. It consists of secondary molding which forms the conical part 3 with the extended inclined surface as a sheave surface 3a in contact with the belt. The conical plate with a shaft portion shown in FIG. 1 is a fixed conical plate, but the molding process of a movable conical plate having a hollow shaft portion that fits around the shaft portion of the fixed conical plate is the same.

図2は一次成形を行う装置の概略構成を示しており、中心線を挟んで右側が成形前の状態、左側が成形後の状態である。   FIG. 2 shows a schematic configuration of an apparatus for performing primary molding, with the right side of the center line before the molding and the left side after molding.

一次成形用の金型5は、軸部付き円錐板の軸部2の形状に対応するキャビティ6を有する。   The mold 5 for primary molding has a cavity 6 corresponding to the shape of the shaft portion 2 of the conical plate with the shaft portion.

これを参照しながら一次成形の工程について説明すると、まず、金型5に素材1をセットする。この状態では、金型5、素材1及びノックアウトピン7の間に軸部2の段部2aに対応する空隙6aが形成される。   The primary molding process will be described with reference to this. First, the material 1 is set in the mold 5. In this state, a gap 6 a corresponding to the step portion 2 a of the shaft portion 2 is formed between the mold 5, the material 1, and the knockout pin 7.

次に、図示しない駆動源によりパンチ8を下降させ、パンチ8により素材1を下方に押圧する。素材1の下部は塑性変形して空隙6a内へと押し込められ、軸部2に対応する形状に成形される(軸押出し成形)。   Next, the punch 8 is lowered by a drive source (not shown), and the material 1 is pressed downward by the punch 8. The lower part of the material 1 is plastically deformed and pushed into the gap 6a, and formed into a shape corresponding to the shaft portion 2 (shaft extrusion molding).

空隙6aが素材1で充填されるとパンチ8を上昇させる。そして、ノックアウトピン7を上昇させることにより、一次成形後の素材1’を金型5から取り出す。   When the gap 6a is filled with the material 1, the punch 8 is raised. Then, the material 1 ′ after the primary molding is taken out from the mold 5 by raising the knockout pin 7.

また、図3は二次成形を行う装置の概略構成を示しており、中心線を挟んで右側が成形前の状態、左側が成形後の状態である。   FIG. 3 shows a schematic configuration of an apparatus for performing secondary molding, with the right side of the center line before the molding and the left side after molding.

二次成形用の金型10は上金型10aと下金型10bとで構成され、上金型10aと下金型10bの間にはシーブ面3aを下にした軸部付き円錐板に対応する形状のキャビティ11が画成される。   The secondary molding die 10 is composed of an upper die 10a and a lower die 10b, and corresponds to a conical plate with a shaft portion with a sheave surface 3a between the upper die 10a and the lower die 10b. A cavity 11 having a shape to be formed is defined.

これを参照しながら二次成形の工程について説明すると、まず、上金型10aを下金型10bから離間させて一次成形後の素材1’を下金型10bにセットする。そして、上金型10aを下降させるとスプリング12により上金型10aが下金型10bと密着し、上金型10aと下金型10bの間に形成されるキャビティ11内に素材1’が収装される。この状態では、金型10と素材1’の間に円錐部3に対応する空隙14が画成される。なお、上金型10aは油圧によって下金型10bに密着させ、保持するようにしてもよい。   The secondary molding process will be described with reference to this. First, the upper mold 10a is separated from the lower mold 10b, and the material 1 'after the primary molding is set in the lower mold 10b. When the upper mold 10a is lowered, the upper mold 10a is brought into close contact with the lower mold 10b by the spring 12, and the material 1 'is stored in the cavity 11 formed between the upper mold 10a and the lower mold 10b. Be dressed. In this state, a gap 14 corresponding to the conical portion 3 is defined between the mold 10 and the material 1 '. The upper mold 10a may be held in close contact with the lower mold 10b by hydraulic pressure.

次に、図示しない駆動源によりパンチ15を下降させ、パンチ15により素材1’を下方に押圧する。すなわち、シーブ面3aと反対の側からのみ素材1’を押圧する。素材1’の下端がノックアウトピン16によって支持されているので、素材1’の軸方向途中が塑性変形し、素材1’の一部が円錐部3に対応する空隙14内へと流動する(側方押出し成形)。空隙14の下側がシーブ面3aに対応して傾斜しているので、素材1’の空隙14内への流動は滞りなく行われる。   Next, the punch 15 is lowered by a driving source (not shown), and the material 1 ′ is pressed downward by the punch 15. That is, the material 1 'is pressed only from the side opposite to the sheave surface 3a. Since the lower end of the material 1 ′ is supported by the knockout pin 16, the middle of the material 1 ′ in the axial direction is plastically deformed, and a part of the material 1 ′ flows into the gap 14 corresponding to the conical portion 3 (side). (Direct extrusion). Since the lower side of the gap 14 is inclined corresponding to the sheave surface 3a, the flow of the material 1 'into the gap 14 is performed without delay.

空隙14内が素材1’で充填されるとパンチ15を上昇させ、さらに、上金型10aを下金型10bから離間させる。そして、ノックアウトピン16を上昇させることにより、二次成形後の素材、すなわち軸部付き円錐板を金型10から取り出す。   When the gap 14 is filled with the material 1 ', the punch 15 is raised, and the upper mold 10a is separated from the lower mold 10b. Then, by raising the knockout pin 16, the material after the secondary molding, that is, the conical plate with the shaft portion is taken out from the mold 10.

次に、上記成形工程による利点について説明する。   Next, the advantage by the said formation process is demonstrated.

まず、上記成形工程では、側方押出し成形により円錐部3を成形するようにしたことにより、据込み成形により円錐部3を成形する従来の成形工程に比べ、成形荷重を大幅に減らすことができる。   First, in the molding step, the cone portion 3 is molded by side extrusion molding, so that the molding load can be greatly reduced compared to the conventional molding step of molding the cone portion 3 by upsetting. .

これは、据込み成形の場合は成形荷重が円錐部3となる部分全体に作用するのに対し、側方押出し成形によれば、成形荷重は軸部2の上端にのみ作用し、円錐部3に対応する空隙14内を流動する部分には作用しないからである。   In the case of upsetting, the molding load acts on the entire portion where the cone portion 3 is formed, whereas in the side extrusion molding, the molding load acts only on the upper end of the shaft portion 2 and the cone portion 3. This is because it does not act on the portion that flows in the gap 14 corresponding to.

したがって、上記成形工程によれば、成形荷重を大幅に減らすことができ、常温のままでも成形が可能となる。もちろん、成形時に軸部2の全体ないし一部を加熱し、成形荷重をさらに低減するようにしてもよい。   Therefore, according to the molding step, the molding load can be greatly reduced, and molding can be performed even at room temperature. Of course, the whole or a part of the shaft part 2 may be heated during molding to further reduce the molding load.

また、上記成形工程によれば、素材1’をシーブ面3aと反対の側のみから押圧し、素材1’の一部を円錐部3に対応する空隙14に充填することで円錐部3を成形するので、円錐部3のシーブ面3aのメタルフローが密になる。   Moreover, according to the said shaping | molding process, material 1 'is pressed only from the opposite side to the sheave surface 3a, and the cone part 3 is shape | molded by filling a space | gap 14 corresponding to the cone part 3 with a part of material 1'. Therefore, the metal flow of the sheave surface 3a of the conical portion 3 becomes dense.

図4の(a)、(b)は、それぞれ据込み成形、側方押出し成形により円錐部3を成形したときのメタルフローのシミュレーション結果である。据込み成形による場合はメタルフローがシーブ面3a、シーブ面3aと反対側のシーブ背面でほぼ均等になっているのに対し、側方押出し成形による場合はメタルフローがシーブ面3aに近いほど密になっていることがわかる。   4 (a) and 4 (b) are metal flow simulation results when the conical portion 3 is formed by upsetting and side extrusion, respectively. In the case of upset molding, the metal flow is almost uniform on the sheave surface 3a and the back of the sheave surface opposite to the sheave surface 3a, whereas in the case of side extrusion molding, the metal flow is closer to the sheave surface 3a. You can see that

また、図5の(a)、(b)は、それぞれ実際に据込み成形、側方押出し成形により円錐部3を成形したときのシーブ面3aの顕微鏡写真(倍率400倍)である。側方押出し成形によれば据込み成形による場合に比べ、金属の結晶粒が微細化していることがわかる。   5A and 5B are photomicrographs (magnification 400 times) of the sheave surface 3a when the conical portion 3 is actually formed by upsetting and side extrusion, respectively. According to the side extrusion molding, it can be seen that the metal crystal grains are finer than in the case of upsetting.

したがって、上記成形工程によれば、成形後のシーブ面3aの表面硬度が大幅に向上し、従来必須とされていた浸炭処理、窒化処理といった表面処理が必ずしも必要でなくなり、変速機の伝達トルクが小さくシーブ面3aに要求される表面硬度が低い場合は、表面処理を廃止することも可能となる。   Therefore, according to the molding step, the surface hardness of the sheave surface 3a after molding is greatly improved, and surface treatments such as carburizing treatment and nitriding treatment that have been conventionally required are not necessarily required, and the transmission torque of the transmission is reduced. When the surface hardness required for the sheave surface 3a is small, the surface treatment can be abolished.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例を示したものであり、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above, but the above embodiment shows an application example of the present invention, and is not intended to limit the technical scope of the present invention to the specific configuration of the above embodiment.

本発明によるベルト式無段変速機用の軸部付き円錐板の成形工程を示す。The formation process of the cone-plate with a shaft part for the belt type continuously variable transmission by this invention is shown. 一次成形を行う装置の概略構成を示している。The schematic structure of the apparatus which performs primary shaping | molding is shown. 二次成形を行う装置の概略構成を示している。The schematic structure of the apparatus which performs secondary shaping | molding is shown. メタルフローのシミュレーション結果を示す図である。It is a figure which shows the simulation result of a metal flow. シーブ面の顕微鏡写真である。It is a microscope picture of a sheave surface.

符号の説明Explanation of symbols

2 軸部
3 円錐部
3a シーブ面
11 キャビティ
2 Shaft portion 3 Conical portion 3a Sheave surface 11 Cavity

Claims (1)

軸部と前記軸部から径方向外側に延出する円錐部からなり、前記円錐部の傾斜面をベルトと接触するシーブ面とするベルト式無段変速機用軸部付き円錐板の製造方法において、
前記軸部付き円錐板に対応する形状のキャビティを有する金型に、前記軸部に対応する形状の素材をセットする工程と、
前記素材を、前記シーブ面の側の端部を支持しつつ、前記シーブ面と反対の側のみから押圧し、前記素材の一部を前記キャビティの前記円錐部に対応する部分に充填する工程と、
を含むことを特徴とするベルト式無段変速機用軸部付き円錐板の製造方法。
In a method of manufacturing a conical plate with a shaft portion for a belt-type continuously variable transmission, comprising a shaft portion and a conical portion extending radially outward from the shaft portion, wherein the inclined surface of the conical portion is a sheave surface contacting the belt. ,
Setting a material having a shape corresponding to the shaft portion in a mold having a cavity having a shape corresponding to the conical plate with the shaft portion;
Pressing the material only from the side opposite to the sheave surface while supporting the end of the sheave surface, and filling a portion of the material corresponding to the conical portion of the cavity; ,
A method for manufacturing a conical plate with a shaft portion for a belt-type continuously variable transmission.
JP2008004747A 2008-01-11 2008-01-11 Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same Expired - Fee Related JP4940156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004747A JP4940156B2 (en) 2008-01-11 2008-01-11 Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004747A JP4940156B2 (en) 2008-01-11 2008-01-11 Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009166058A JP2009166058A (en) 2009-07-30
JP4940156B2 true JP4940156B2 (en) 2012-05-30

Family

ID=40967859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004747A Expired - Fee Related JP4940156B2 (en) 2008-01-11 2008-01-11 Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4940156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101161181B1 (en) * 2010-04-15 2012-07-02 한국과학기술원 Loaded equal channel angular pressing mold and equal channel angular pressing apparatus having the same
CN105328098B (en) * 2015-11-18 2017-05-31 镇江市隆盛工具有限公司 A kind of efficient forging press of screw tap contracting handle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318445A (en) * 1990-02-09 1991-01-28 Maruyoshi Kogyo Kk Method for heating intermediate fitting for hose
JP2004167532A (en) * 2002-11-19 2004-06-17 Honda Motor Co Ltd Method for producing shaft pulley for belt type continuously variable transmission and die apparatus for forging the shaft pulley
JP4828989B2 (en) * 2006-04-03 2011-11-30 昭和電工株式会社 Upsetting method

Also Published As

Publication number Publication date
JP2009166058A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR101547741B1 (en) Method for producing tooth profile component, and device for producing tooth profile component
WO2011104916A1 (en) Method for producing hallow engine valve
WO2014073602A1 (en) Press molding method
JP2011177718A (en) Method of manufacturing hollow engine valve
JP4940156B2 (en) Conical plate with shaft for belt type continuously variable transmission and method for manufacturing the same
JP5915937B2 (en) Forging production method
JP2011000635A (en) Method for manufacturing torsion beam
CN109702137B (en) Method for manufacturing pulley shaft for belt type stepless transmission
KR20180066086A (en) METHOD AND APPARATUS FOR MANUFACTURING RING-SHAPED-molded parts
JPS60188657A (en) Poly-v pulley made of sheet metal and manufacturing method and apparatus for said pulley
JP2018075618A (en) Closed forging method
JP2010064100A (en) Gear production device and method for producing the same
JP2011240362A (en) Method for forming pulley
JP2009285688A (en) Method for manufacturing hollow toothed part
JP2015077621A (en) Press work method
JP2000218446A (en) Bushing machining method
JP2006297461A (en) Method and apparatus for manufacturing difference thickness plate
JP4319501B2 (en) Pulley manufacturing method
JP4655732B2 (en) Molded part manufacturing method, molded part manufacturing apparatus, and molded part
JP7162981B2 (en) Stress dispersion structure of hot forging die
JP2006035354A (en) Method of manufacturing member with tooth profile forming part
JP7448341B2 (en) Method for manufacturing a ring-shaped member and forging die used for manufacturing the ring-shaped member
JP2006122962A (en) Manufacturing method of spiral spring
JP7215200B2 (en) Forming method and forming apparatus for annular member
JP2004167532A (en) Method for producing shaft pulley for belt type continuously variable transmission and die apparatus for forging the shaft pulley

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4940156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees