JP4938603B2 - Pulley for continuously variable transmission and continuously variable transmission - Google Patents

Pulley for continuously variable transmission and continuously variable transmission Download PDF

Info

Publication number
JP4938603B2
JP4938603B2 JP2007238088A JP2007238088A JP4938603B2 JP 4938603 B2 JP4938603 B2 JP 4938603B2 JP 2007238088 A JP2007238088 A JP 2007238088A JP 2007238088 A JP2007238088 A JP 2007238088A JP 4938603 B2 JP4938603 B2 JP 4938603B2
Authority
JP
Japan
Prior art keywords
pulley
continuously variable
variable transmission
sliding surface
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007238088A
Other languages
Japanese (ja)
Other versions
JP2009068609A (en
Inventor
和浩 棚橋
元秀 森
康弘 福田
裕司 安達
達朗 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007238088A priority Critical patent/JP4938603B2/en
Publication of JP2009068609A publication Critical patent/JP2009068609A/en
Application granted granted Critical
Publication of JP4938603B2 publication Critical patent/JP4938603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、無段変速機用プーリー及び無段変速機に係り、特に耐摩耗性に優れた無段変速機用プーリー及び無段変速機に関する。   The present invention relates to a continuously variable transmission pulley and a continuously variable transmission, and more particularly to a continuously variable transmission pulley and a continuously variable transmission having excellent wear resistance.

従来の車両のベルト式無段変速機は、図6(a)に示すように、入力プーリー1と、出力プーリー2と、無端状に形成され入力プーリー1及び出力プーリー2に巻き掛けられた金属製のベルト3と、を備えたものが一般的である。この入力プーリー1または出力プーリー2は、ベルト3の巻き付け径を制御して変速比を変化させながら、入力プーリー1の回転トルクをベルト3を介して出力プーリー2に伝達するようになっている。   As shown in FIG. 6 (a), a conventional vehicle belt type continuously variable transmission has an input pulley 1, an output pulley 2, and endlessly formed metal wound around the input pulley 1 and the output pulley 2. A belt provided with a belt 3 made of metal is generally used. The input pulley 1 or the output pulley 2 transmits the rotational torque of the input pulley 1 to the output pulley 2 via the belt 3 while controlling the winding diameter of the belt 3 to change the gear ratio.

具体的には、図6(b)(図6(a)のA部拡大図)に示すように、ベルト3は、2つの無端状のスチールバンド3a,3aを並置し、この2つのバンド3a,3aの対向する周縁に、エの字状のブロック(金属エレメント)3bをバンド周方向に沿って複数枚嵌め込んだ構造である。また、ベルト3に巻き付けられた入力プーリー1及び出力プーリー2は、図6(c)に示すように(図は出力プーリー2の断面図)、2つの入れ子式の円錐状のシーブ2A,2Bを備えている。そして、先に示したベルト3の巻き付け径の制御は、プーリーの回転軸に沿って2つの円錐状のシーブを移動させることにより行われる。この際、ベルト3のエッジと摩擦接触するシーブ2A,2Bの円錐周面(シーブ面)は、ベルト3の回転及びベルト3の巻付け径の制御に伴い、ベルト3のエッジに摺動する摺動面2aとなる。そして、プーリー1,2に巻付けられるベルト3の張力は高く、さらにベルト3そのものはスチールからなるので、プーリー1,2の摺動面は摩耗し易い。   Specifically, as shown in FIG. 6 (b) (enlarged view of portion A in FIG. 6 (a)), the belt 3 includes two endless steel bands 3a and 3a juxtaposed, and the two bands 3a. , 3a, a plurality of square-shaped blocks (metal elements) 3b are fitted along the circumferential direction of the band. Further, the input pulley 1 and the output pulley 2 wound around the belt 3 include two nested conical sheaves 2A and 2B as shown in FIG. 6C (the figure is a sectional view of the output pulley 2). I have. The above-described control of the winding diameter of the belt 3 is performed by moving two conical sheaves along the rotation axis of the pulley. At this time, the conical circumferential surfaces (sheave surfaces) of the sheaves 2A and 2B that are in frictional contact with the edge of the belt 3 slide along the edge of the belt 3 as the belt 3 rotates and the winding diameter of the belt 3 is controlled. It becomes the moving surface 2a. The tension of the belt 3 wound around the pulleys 1 and 2 is high, and the belt 3 itself is made of steel, so that the sliding surfaces of the pulleys 1 and 2 are easily worn.

よって、無段変速機用プーリー及び無段変速機の耐久性を持続させるためには、プーリーの摺動面の摩耗を抑制することが望ましい。このような課題を鑑みて、例えば、浸炭処理、又は浸炭窒化処理(浸炭浸窒処理)により、摺動面も含む母材の表面硬さをHv750以上としたべルト式無段変速機用プーリーが提案されている(特許文献1参照)。   Therefore, in order to maintain the durability of the continuously variable transmission pulley and the continuously variable transmission, it is desirable to suppress wear of the sliding surface of the pulley. In view of such a problem, for example, a pulley for a belt type continuously variable transmission in which the surface hardness of a base material including a sliding surface is Hv750 or more by carburizing or carbonitriding (carburizing and nitriding). Has been proposed (see Patent Document 1).

特開2000−8121号公報JP 2000-8121 A

しかし、特許文献1に記載のプーリーは、浸炭処理又は浸炭窒化処理により表面硬さを所定の硬さとなるようにし、耐摩耗性を向上させることができるが、前述したように、無段変速機用プーリーの摺動面には、高面圧が繰り返し作用するため、単なるアブレッシブ摩耗だけでなく、表面の疲労による亀裂を起因とした摩耗が発生するおそれがある。さらに、無段変速機用のプーリーの摺動面は、摺動発熱により表面の硬さが低下し、前記疲労亀裂による摩耗が助長されるおそれがある。この結果、プーリーの表面硬さを単に硬質にしたプーリーでは、充分に摺動面の摩耗を低減することができない場合がある。   However, the pulley described in Patent Document 1 can improve the wear resistance by making the surface hardness a predetermined hardness by carburizing or carbonitriding, but as described above, the continuously variable transmission Since a high surface pressure repeatedly acts on the sliding surface of the pulley for use, there is a risk that not only mere abrasive wear but also wear due to cracks due to surface fatigue may occur. Furthermore, the sliding surface of the pulley for the continuously variable transmission has a risk that the surface hardness decreases due to sliding heat generation, and wear due to the fatigue cracks may be promoted. As a result, there is a case where the wear of the sliding surface cannot be sufficiently reduced with a pulley in which the surface hardness of the pulley is simply made hard.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、ベルトからの繰返し負荷及びベルトとの摺動発熱による、プーリーの摺動面の疲労亀裂を抑制することにより、摺動面の耐摩耗性を向上させることができる無段変速機用プーリー及び無段変速機を提供することにある。   The present invention has been made in view of the above-described problems, and its object is to suppress fatigue cracks on the sliding surface of the pulley due to repeated load from the belt and sliding heat generation with the belt. Another object of the present invention is to provide a continuously variable transmission pulley and a continuously variable transmission that can improve the wear resistance of a sliding surface.

前記課題を解決すべく、発明者らは鋭意検討を重ねた結果、プーリーの摺動面の摩耗を抑制するためには、疲労による亀裂の発生を抑制し、亀裂が発生した場合であっても、前記亀裂の進展を抑制することが重要であると考えた。そこで、発明者らは、摺動面の表面の表面硬さを所定の表面硬さにすることにより亀裂の発生を抑制し、仮に亀裂が発生した場合であっても、表面の近傍の組織を残留オーステナイトとし、所定の箇所に残留圧縮応力を付与することにより、亀裂の進展を抑制することができるとの新たな知見を得た。   In order to solve the above problems, the inventors have intensively studied. As a result, in order to suppress wear on the sliding surface of the pulley, the occurrence of cracks due to fatigue is suppressed, and even when cracks occur. Therefore, it was considered important to suppress the progress of the cracks. Therefore, the inventors suppress the occurrence of cracks by setting the surface hardness of the sliding surface to a predetermined surface hardness, and even if cracks occur, the structure in the vicinity of the surface The inventors obtained new knowledge that the development of cracks can be suppressed by using residual austenite and applying residual compressive stress to predetermined locations.

本発明は、前記新たな知見に基づくものであり、本発明に係る無段変速機用プーリーは、金属ベルトに少なくとも一部が巻きつけられ、該金属ベルトに摺動する摺動面を少なくとも有し、素材の鋼としてJIS G 4053に規定されているクロム鋼又はクロムモリブデン鋼から選択した材料を用いた無段変速機用プーリーであって、前記無段変速機用プーリーは、前記摺動面の表面硬さがHv800以上であり、少なくとも1200MPa以上の残留圧縮応力が付与された、前記摺動面を含む表層と、前記摺動面から深さ方向の20μm以上の部分に残留オーステナイトを15〜40体積%有する残留オーステナイト層と、前記摺動面から深さ方向の少なくとも30μm以上の部分に300MPa以下の残留圧縮応力が付与された内部残留圧縮応力部と、を少なくとも備えることを特徴としている。   The present invention is based on the above-described new knowledge, and the pulley for continuously variable transmission according to the present invention has at least a sliding surface wound around a metal belt and sliding on the metal belt. A continuously variable transmission pulley using a material selected from chrome steel or chrome molybdenum steel defined in JIS G 4053 as a material steel, wherein the continuously variable transmission pulley includes the sliding surface. Surface hardness of Hv800 or more, at least a residual compressive stress of 1200 MPa or more is applied to the surface layer including the sliding surface, and the remaining austenite is 15 to 20 μm or more in the depth direction from the sliding surface. Residual austenite layer having 40% by volume, and internal residual in which a residual compressive stress of 300 MPa or less is applied to at least 30 μm or more in the depth direction from the sliding surface It is characterized by comprising a reduced stress portion, at least.

本発明によれば、摺動面の表面硬さをビッカース硬さHv800以上にすることにより、アブレッシブ摩耗を抑制するばかりでなく、摺動面の表面の初期亀裂の発生を抑制することができる。また、摺動面の表面硬さは、より高いほうが望ましいが、極端な硬さの向上はコスト増に繋がるため、コスト面を考慮した表面処理が必要である。   According to the present invention, by setting the surface hardness of the sliding surface to Vickers hardness Hv800 or higher, not only the abrasive wear can be suppressed, but also the occurrence of initial cracks on the surface of the sliding surface can be suppressed. In addition, the surface hardness of the sliding surface is preferably higher, but since an extreme improvement in hardness leads to an increase in cost, surface treatment in consideration of the cost is required.

また、本発明の無段変速機用プーリーは、摺動面を含む表層に、少なくとも1200MPa以上の残留圧縮応力が付与されているので、残留圧縮応力により、亀裂の発生及び進展を抑制することができる。すなわち、残留圧縮応力が前記範囲よりも小さい場合には、前記亀裂進展を抑制する効果を充分に発揮することができない。また、前記残留圧縮応力は、高ければ高いほど好ましいが、製造コスト等の生産性を考慮すると、例えば、残留圧縮応力の上限値は、1800MPa以下であることがより好ましい。   Further, since the pulley for continuously variable transmission of the present invention is provided with a residual compressive stress of at least 1200 MPa on the surface layer including the sliding surface, the residual compressive stress can suppress the occurrence and progress of cracks. it can. That is, when the residual compressive stress is smaller than the above range, the effect of suppressing the crack growth cannot be sufficiently exhibited. The higher the residual compressive stress, the better. However, in consideration of productivity such as manufacturing cost, for example, the upper limit value of the residual compressive stress is more preferably 1800 MPa or less.

なお、1200MPa以上の残留圧縮応力が付与された表層は、前記内部残留圧縮応力部が確保できるのであれば、その層厚さは特に限定されるものではないが、摺動面から深さ方向の20μm以上の部分に残留オーステナイトを15〜40体積%含有した残留オーステナイト層を得るためには、その表層の厚さは、少なくとも20μm未満であることが好ましい。   The surface layer to which the residual compressive stress of 1200 MPa or more is applied is not particularly limited as long as the internal residual compressive stress portion can be secured, but the depth from the sliding surface is not limited. In order to obtain a retained austenite layer containing 15 to 40% by volume of retained austenite in a portion of 20 μm or more, the thickness of the surface layer is preferably at least less than 20 μm.

さらに、無段変速機用プーリーは、前記摺動面から深さ方向に20μm以上の部分に、残留オーステナイトを15〜40体積%有する残留オーステナイト層を備えているので、ベルトからの繰返し応力により、残留オーステナイトの加工誘起変態が起こり、新たなマルテンサイト(フレッシュマルテンサイト)が生成され、加工硬化を助長させる。また、残留オーステナイトからマルテンサイトが継続的に発生するので、ベルトとの摺動発熱を起因とした焼き戻しによる軟化を抑制することができる。なお、製造上の観点から、前記残留オーステナイト層は、摺動面から深さ方向に100μm以下であることがより好ましい。   Further, the continuously variable transmission pulley includes a retained austenite layer having a residual austenite of 15 to 40% by volume in a depth direction of 20 μm or more from the sliding surface. Processing-induced transformation of retained austenite occurs, and new martensite (fresh martensite) is generated, which promotes work hardening. Further, since martensite is continuously generated from the retained austenite, softening due to tempering due to sliding heat generation with the belt can be suppressed. From the viewpoint of manufacturing, the retained austenite layer is more preferably 100 μm or less in the depth direction from the sliding surface.

このように、摺動面の初期亀裂の発生及び進展に対しては、前記範囲の残留応力により抑制し、ベルトとの接触により、摺動面が摺動発熱し、前記残留圧縮応力が開放された場合であっても、亀裂が進展する位置(摺動面から少なくとも深さ方向20μm以上の位置)に、残留オーステナイトを設けることにより、残留オーステナイトの加工誘起変態を期待することができ、亀裂の進展を抑制することができる。すなわち、前記位置から外れた場合には、より効果的に亀裂の進展を抑制することができない。また、残留オーステナイトが、15体積%未満である場合には、加工誘起変態による亀裂進展抑制の効果を充分に期待することができない。さらに、残留オーステナイトが、40体積%よりも多い割合の組織を造り込むのは難しく、そのような割合の鋼組織を得るには製造コストが増加すると共に、残留オーステナイトは軟質の組織であるため、硬さの低下が避けられなくなる。   As described above, the occurrence and progress of the initial crack on the sliding surface is suppressed by the residual stress in the above range, and the sliding surface generates sliding heat by contact with the belt, and the residual compressive stress is released. Even if it is a case, by providing the retained austenite at the position where the crack propagates (at least 20 μm or more in the depth direction from the sliding surface), it is possible to expect the processing-induced transformation of the retained austenite. Progress can be suppressed. That is, when it deviates from the said position, the progress of a crack cannot be suppressed more effectively. In addition, when the retained austenite is less than 15% by volume, it is not possible to sufficiently expect the effect of suppressing crack propagation due to the processing-induced transformation. Furthermore, it is difficult to build a structure with a proportion of retained austenite higher than 40% by volume, and the production cost increases to obtain such a steel structure, and the retained austenite is a soft structure. Decrease in hardness is inevitable.

なお、上述した「加工誘起変態」とは、残留オーステナイトの結晶格子が伸縮することによりマルテンサイトに変わることをいい、該加工誘起変態により、組織の応力が作用した時に、オーステナイトの特性によりその組織を有した部分は一瞬変形するが、すぐに安定した(オーステナイトよりも)硬質のマルテンサイトに変わり、変形部分の強度を高めることができる。   Note that the above-mentioned “working-induced transformation” means that the crystal lattice of retained austenite is expanded and contracted to martensite, and when the stress of the structure acts by the working-induced transformation, the structure of the austenite depends on the characteristics of the austenite. Although the portion having す る deforms for a moment, it immediately changes to hard martensite (rather than austenite), and the strength of the deformed portion can be increased.

さらに、摺動面から少なくとも30μm以上の部分に300MPa以下の残留圧縮応力が付与された内部残留圧縮応力部を備えることにより、プーリー全体の耐衝撃特性を確保することができる。すなわち、前記残留圧縮応力より大きい場合には、プーリー全体の耐衝撃性が低下する場合がある。   Further, by providing an internal residual compressive stress portion to which a residual compressive stress of 300 MPa or less is applied at least 30 μm or more from the sliding surface, it is possible to ensure the impact resistance characteristics of the entire pulley. That is, when it is larger than the residual compressive stress, the impact resistance of the entire pulley may be lowered.

なお、前記無段変速機用プーリーは、鋼系材料をプーリーの形状に加工後、高濃度浸炭処理、浸炭浸窒処理(浸炭窒化処理)、ショットブラスト、ラッピング、及びキャビテーションショット等から選択される2以上の処理を組み合わせて、該処理を摺動面に施すことにより、得ることができる。   The pulley for the continuously variable transmission is selected from a high-concentration carburizing process, a carburizing / nitrogenizing process (carbonitriding process), shot blasting, lapping, cavitation shot, etc. after processing the steel material into a pulley shape. It can be obtained by combining two or more treatments and applying the treatment to the sliding surface.

本発明に係る無段変速機用プーリーで用いる素材としては、浸炭により硬度を高めることができる鋼材を選択する必要があり、従来から広く用いられているJIS G 4053で規定されているクロム鋼、又はクロムモリブデン鋼を用いるのがよい。なお、クロム鋼、クロムモリブデン鋼とは、規格にSCr,SCMという記号で記載された鋼のことを意味する。このような材料は、浸炭性に優れ、前記処理により容易に表面硬度を高めたプーリーを製造することができる。   As a material used in the pulley for continuously variable transmission according to the present invention, it is necessary to select a steel material whose hardness can be increased by carburizing, and chromium steel defined in JIS G 4053, which has been widely used conventionally, Alternatively, chromium molybdenum steel should be used. In addition, chrome steel and chrome molybdenum steel mean steel described by the symbols SCr and SCM in the standard. Such a material is excellent in carburizing properties, and a pulley having a surface hardness increased easily by the above-described treatment can be produced.

また、本発明に係る無段変速機用プーリーで用いる素材としては、前記したJIS G 4053で規定されているクロム鋼又はクロムモリブデン鋼の含有するSi,Mn,Moのうち少なくとも一種についてさらに増量し、以下の(a)〜(c)のうち少なくとも一種の条件を満足する範囲の成分を含有する鋼を用いることもできる。(a)Si:0.35質量%を超え、かつ、1.0質量%以下、(b)Mn:前記選択した材料において前記JIS規格で規定されているMnの含有量の上限値を超え、かつ、1.5質量%以下、(c)Mo:前記選択した材料において前記JIS規格で規定されているMoの含有量の上限値を超え、かつ、0.8質量%以下である。本発明によれば、前記(a)〜(c)のうち少なくとも一種の元素を、JIS G 4053で規定の鋼に比べて増量することにより、摺動面の耐摩耗性をさらに向上させることができる。   Further, as a material used in the pulley for continuously variable transmission according to the present invention, at least one of Si, Mn, and Mo contained in chromium steel or chromium molybdenum steel defined in JIS G 4053 is further increased. Steels containing components in a range that satisfies at least one of the following conditions (a) to (c) can also be used. (A) Si: exceeding 0.35% by mass and 1.0% by mass or less, (b) Mn: exceeding the upper limit of the content of Mn defined in the JIS standard in the selected material, And 1.5 mass% or less, (c) Mo: It exceeds the upper limit of content of Mo prescribed | regulated by the said JIS specification in the selected material, and is 0.8 mass% or less. According to the present invention, the wear resistance of the sliding surface can be further improved by increasing the amount of at least one of the elements (a) to (c) as compared with the steel specified in JIS G 4053. it can.

すなわち、Siは、焼戻し軟化抵抗性を向上させるために有用であり、前記選択した材料において前記JIS規格(JIS G 4053)で規定されているSiの含有量の上限値0.35質量%を超えて含有させることにより、更に焼き戻し軟化抵抗性を向上させることができる。しかしながら、1.0質量%よりも多い場合には、材料の靭性が低下するおそれがある。   That is, Si is useful for improving the temper softening resistance, and exceeds the upper limit of 0.35 mass% of the Si content defined in the JIS standard (JIS G 4053) in the selected material. Tempering softening resistance can be further improved. However, if it is more than 1.0% by mass, the toughness of the material may be reduced.

Mnは、材料の焼入れ性を確保するために有用であり、前記選択した材料において前記JIS規格(JIS G 4053)で規定されているMnの含有量の上限値を超えて含有させることにより、更に焼入れ性を向上させることができる。しかしながら、1.5質量%よりも多い場合には、粒界酸化を招くおそれがある。   Mn is useful for ensuring the hardenability of the material, and by adding the Mn content exceeding the upper limit of the Mn content defined in the JIS standard (JIS G 4053) in the selected material, Hardenability can be improved. However, when it is more than 1.5% by mass, there is a risk of causing grain boundary oxidation.

Moは、Mnと同様に材料の焼入れ性を確保するために有用であり、前記選択した材料において前記JIS規格(JIS G 4053)で規定されているMoの含有量の上限値を超えて含有させることにより、更に焼入れ性を向上させることができる。しかしながら、0.8質量%よりも多い場合には、材料の加工性を低下させるおそれがある。   Mo is useful for securing the hardenability of the material in the same manner as Mn. The Mo is contained in the selected material in excess of the upper limit of the Mo content specified in the JIS standard (JIS G 4053). Thus, the hardenability can be further improved. However, when it is more than 0.8% by mass, the workability of the material may be reduced.

尚、Mn及びMoの下限値を、JIS規格(JIS G 4053)で規定されている含有元素(Mn,Mo)の含有量の上限値を超えるとしたのは、選択した材料によって前記JIS規格により規定される含有元素の含有量の上限値が異なっていることを考慮したものである。例えば、前記選択した材料がSCM420である場合には、JIS規格(JIS G 4053)で規定されているSCM420のMoの含有量の上限値は0.25質量%であることから、前記(c)に示す「前記選択した材料において前記JIS規格により規定されるMoの含有量の上限値を超え」とは、この場合「0.25質量%超え」を意味する。   Note that the lower limit of Mn and Mo exceeds the upper limit of the content of contained elements (Mn, Mo) defined in JIS standard (JIS G 4053), according to the JIS standard depending on the selected material. This is because the upper limit value of the content of the specified contained elements is different. For example, when the selected material is SCM420, the upper limit value of the Mo content in SCM420 defined in JIS standard (JIS G 4053) is 0.25% by mass. “Exceeding the upper limit of the Mo content defined by the JIS standard in the selected material” means “exceeding 0.25 mass%” in this case.

また、本発明に係る前記無段変速機用プーリーで用いる素材の鋼としては、さらに、以下の(d)〜(g)のうち少なくとも一種の条件を満足する範囲の元素を、追加添加することにより、摺動面の耐摩耗性をさらに向上させることができる。(d)Nb:0.005〜0.2質量%、(e)Ti:0.005〜0.2質量%、(f)Ni:0.05〜3.0質量%、(g)B:0.0005〜0.005質量%である。   Moreover, as steel of the material used in the pulley for continuously variable transmission according to the present invention, an element in a range satisfying at least one of the following conditions (d) to (g) is additionally added. As a result, the wear resistance of the sliding surface can be further improved. (D) Nb: 0.005-0.2 mass%, (e) Ti: 0.005-0.2 mass%, (f) Ni: 0.05-3.0 mass%, (g) B: It is 0.0005-0.005 mass%.

すなわち、Nbは、Nb(C,N)を形成し、材料の結晶粒粗大化防止に有用であり、0.005質量%よりも少ない場合には、この効果が期待できない。また、0.2質量%よりも多い場合であっても、その効果は飽和してしまい、それ以上の効果は期待できない。   That is, Nb forms Nb (C, N) and is useful for preventing crystal grain coarsening of the material. When the amount is less than 0.005% by mass, this effect cannot be expected. Moreover, even if it is more than 0.2 mass%, the effect will be saturated and the effect beyond it cannot be anticipated.

Tiは、Ti(C,N)を形成し、材料の結晶粒粗大化防止に有用であり、0.005質量%よりも少ない場合には、この効果を得ることが難しい。また、0.2質量%よりも多い場合であっても、その効果は飽和してしまい、それ以上の効果は期待できない。   Ti forms Ti (C, N) and is useful for preventing coarsening of crystal grains of the material. When the amount is less than 0.005% by mass, it is difficult to obtain this effect. Moreover, even if it is more than 0.2 mass%, the effect will be saturated and the effect beyond it cannot be anticipated.

Niは、材料の焼入れ性を確保するために有用であり、0.05質量%よりも少ない場合には、この効果が期待できない。また、3.0質量%よりも多い場合には、硬さの上昇を招き、材料の加工性を低下させることになる。   Ni is useful for ensuring the hardenability of the material, and when less than 0.05% by mass, this effect cannot be expected. Moreover, when more than 3.0 mass%, a raise of hardness will be caused and the workability of material will be reduced.

Bは、材料の焼入れ性を確保するために有用であると共に粒界強度を向上させるために有用であり、0.0005質量%よりも少ない場合には、この効果が期待できない。また、0.005質量%よりも多い場合であっても、前記効果は飽和してしまい、それ以上の効果は期待できない。   B is useful for ensuring the hardenability of the material and is useful for improving the grain boundary strength. When the content is less than 0.0005% by mass, this effect cannot be expected. Moreover, even if it is more than 0.005 mass%, the said effect will be saturated and the effect beyond it cannot be anticipated.

Nb、Ti、Ni、Bは、前述のとおり、材料に含有させることで、それぞれ有用な特性を得ることができるため、目的とする特性に合わせて、前述の含有範囲内で材料に含有させることができる。   As described above, Nb, Ti, Ni, and B can be obtained by including them in the material, so that useful properties can be obtained. Can do.

さらに、本発明に係る無段変速機は、上述したプーリーを入力プーリー及び出力プーリーのいずれか一方又は双方に備え、かつ、該入力プーリー及び出力プーリーに巻き掛けられた金属ベルトを少なくとも備えている。このようなプーリーを用いることにより、プーリーの耐摩耗性を向上させることができる。   Furthermore, the continuously variable transmission according to the present invention includes the pulley described above in one or both of the input pulley and the output pulley, and includes at least a metal belt wound around the input pulley and the output pulley. . By using such a pulley, the wear resistance of the pulley can be improved.

本発明に係る無段変速機用プーリーによれば、ベルトからの繰返し負荷及びベルトとの摺動発熱による、プーリーの摺動面の疲労亀裂を抑制することにより、摺動面の耐摩耗性を向上させることができる。   According to the pulley for continuously variable transmission according to the present invention, the wear resistance of the sliding surface is reduced by suppressing fatigue cracks on the sliding surface of the pulley due to repeated load from the belt and sliding heat generation with the belt. Can be improved.

以下に、本発明を実施例により説明する。
(実施例1)
<試験体>
図3に示すように、クロムモリブデン鋼(JIS規格:SCM420)を準備し、図6(c)に示す無段変速機用プーリーの形状に、機械加工を行った。次に、該プーリーを加熱炉内に投入し、900℃で7時間保持した後、850℃で1時間保持し、その後130℃で油焼入れした後、160℃で1時間焼き戻しを行い、浸炭処理を行った。そして、摺動面にショットピーニング処理を施し、表面に残留圧縮応力が付与され、内部の組織層に残留オーステナイトを有した試験体を製作した。
Hereinafter, the present invention will be described by way of examples.
Example 1
<Test body>
As shown in FIG. 3, chromium molybdenum steel (JIS standard: SCM420) was prepared and machined into the shape of the pulley for continuously variable transmission shown in FIG. 6 (c). Next, the pulley is put into a heating furnace, held at 900 ° C. for 7 hours, then held at 850 ° C. for 1 hour, then oil-quenched at 130 ° C., tempered at 160 ° C. for 1 hour, and carburized. Processed. Then, a shot peening treatment was performed on the sliding surface, a residual compressive stress was applied to the surface, and a test body having residual austenite in the internal tissue layer was manufactured.

具体的には、図1に示すように、摺動面2aの表面硬さがビッカース硬さHv992(Hv800以上)であり、摺動面に1390MPa(1200MPa以上)の残留応力が付与された摺動面2aを含む表層21と、摺動面2aから深さ方向の20μm〜30μmの部分に残留オーステナイトを22.6体積%(15〜40体積%)有する残留オーステナイト層22と、摺動面から深さ方向の30μm以上の部分に、239MPa(300MPa以下)の残留圧縮応力が付与された内部残留圧縮応力部23とを、少なくとも備えた試験体(無段変速機用プーリー)を製作した。ここで、試験体の残留圧縮応力は、X線残留応力測定装置によって測定し、残留オーステナイトの組織の割合は、別途サンプルを製作し、深さ方向に沿った断面を顕微鏡で観察し測定し、確認した。   Specifically, as shown in FIG. 1, the sliding surface 2a has a surface hardness of Vickers hardness Hv992 (Hv800 or higher) and a sliding surface having a residual stress of 1390 MPa (1200 MPa or higher). A surface layer 21 including the surface 2a, a retained austenite layer 22 having 22.6% by volume (15-40% by volume) of retained austenite at a depth of 20 to 30 μm from the sliding surface 2a, and a depth from the sliding surface. A test body (pulley for continuously variable transmission) including at least an internal residual compressive stress portion 23 to which a residual compressive stress of 239 MPa (300 MPa or lower) was applied to a portion of 30 μm or more in the vertical direction was manufactured. Here, the residual compressive stress of the specimen is measured by an X-ray residual stress measuring device, and the ratio of the structure of residual austenite is measured by observing a cross section along the depth direction with a microscope. confirmed.

なお、図2は、試験体の摺動面2aからの深さと該深さにおける内部残留応力分布を示しており、製作された試験体は、摺動面を含む表層(図2のAの領域)に、1200MPa以上の残留圧縮応力が付与されており、摺動面から深さ方向30μmの部分である内部残留圧縮応力部(図2のBの領域)に、300MPa以下の残留圧縮応力が付与されていることになる。   2 shows the depth from the sliding surface 2a of the test body and the internal residual stress distribution at the depth, and the manufactured test body has a surface layer including the sliding surface (region A in FIG. 2). ) Is applied with a residual compressive stress of 1200 MPa or more, and a residual compressive stress of 300 MPa or less is applied to the internal residual compressive stress portion (region B in FIG. 2), which is a portion 30 μm in the depth direction from the sliding surface. Will be.

<摩耗試験>
製作した試験体(無段変速機用プーリー)を搭載した無段変速機を、入力トルクを任意に変更できる装置に取付け、摩耗試験を行った。プーリーの使用環境条件として最も摩耗が厳しいとされる変速比が最大となるアンダードライブ側に、ベルトの巻き付け位置を固定した条件(γmax)において、プライマリプーリー(入力プーリー)に入力するトルク、シーブとベルト狭圧を過負荷のかかる状態にして、摩擦試験を実施した。
<Abrasion test>
The continuously variable transmission equipped with the manufactured specimen (pulley for continuously variable transmission) was attached to a device that can arbitrarily change the input torque, and a wear test was conducted. Torque and sheave input to the primary pulley (input pulley) under the condition (γmax) where the belt winding position is fixed on the underdrive side where the gear ratio, which is considered to be the most severe as the operating environment condition of the pulley, is maximum. The friction test was performed with the belt narrow pressure applied in an overloaded state.

具体的には、入力トルクTin=300Nm、プライマリプーリーへの入力回転数Nin=3400rpm、変速比γmax固定、油温150℃環境下において、17時間運転後のシーブ面(摺動面)の摩耗量(摩耗深さ)を測定した。これらの結果を図4に示す。   Specifically, the amount of wear on the sheave surface (sliding surface) after 17 hours of operation in an environment where the input torque Tin = 300 Nm, the input rotation speed Nin = 3400 rpm to the primary pulley, the gear ratio γmax is fixed, and the oil temperature is 150 ° C. (Abrasion depth) was measured. These results are shown in FIG.

尚、図4に示す「炭素濃度(%)」は、摺動面において含有する炭素濃度の値(質量%)を示しており、「表面硬さ(Hv)」は、摺動面のビッカース硬さの値を示しており、「残留σ(MPa)」は、残留圧縮応力の値であり、「表面」は摺動面の残留圧縮応力、「30μm」は摺動面から深さ方向の30μmの部分の残留圧縮応力の値を示している。さらに、「S.P.後残留γ(%)」は、摺動面から深さ方向の20μm〜30μmの部分の残留オーステナイト組織の割合(体積%)を示している。   The “carbon concentration (%)” shown in FIG. 4 indicates the value (mass%) of the carbon concentration contained in the sliding surface, and the “surface hardness (Hv)” indicates the Vickers hardness of the sliding surface. “Residual σ (MPa)” is the value of residual compressive stress, “surface” is the residual compressive stress on the sliding surface, and “30 μm” is 30 μm in the depth direction from the sliding surface. The value of the residual compressive stress of this part is shown. Furthermore, “post-SP residual γ (%)” indicates the ratio (volume%) of the retained austenite structure in the portion of 20 μm to 30 μm in the depth direction from the sliding surface.

(実施例2〜10)
実施例1と同じようにして、実施例2〜10の試験体を製作した。実施例2が、実施例1と相違する点は、ショットピーニングの処理条件であり、実施例3〜10が、実施例1と相違する点は、図3に示す鋼材を用いた点である。また、実施例2〜10が実施例1と共通する点は、いずれも、図4に示すように、摺動面の表面硬さがビッカース硬さHv800以上であり、摺動面に1200MPa以上の残留応力が付与された摺動面を含む表層と、摺動面から深さ方向の20μm〜30μmの部分に残留オーステナイトを15〜40体積%有する残留オーステナイト層と、摺動面から深さ方向の30μm以上の部分に、300MPa以下の残留圧縮応力が付与された内部残留圧縮応力部と、を備えるように、試験体(無段変速機用プーリー)を製作した点である。そして、これらの試験体に対して、実施例1と同じ条件で、摩耗試験を行った。これらの結果を図4に示す。
(Examples 2 to 10)
In the same manner as in Example 1, test bodies of Examples 2 to 10 were manufactured. Example 2 differs from Example 1 in the processing conditions of shot peening, and Examples 3 to 10 differ from Example 1 in that a steel material shown in FIG. 3 is used. In addition, Examples 2 to 10 are common to Example 1, as shown in FIG. 4, the surface hardness of the sliding surface is Vickers hardness Hv800 or more, and the sliding surface is 1200 MPa or more. A surface layer including a sliding surface to which residual stress is applied, a residual austenite layer having 15 to 40% by volume of residual austenite in a portion of 20 μm to 30 μm in the depth direction from the sliding surface, and a depth direction from the sliding surface. The test piece (pulley for continuously variable transmission) was manufactured so as to include an internal residual compressive stress portion provided with a residual compressive stress of 300 MPa or less in a portion of 30 μm or more. And the abrasion test was done on these test bodies on the same conditions as Example 1. These results are shown in FIG.

(比較例1〜4)
実施例1と同じようにして、試験体を製作した。比較例1〜3が、実施例1と相違する点は、浸炭処理の処理条件及びショットピーニングの処理条件を変えた点である。具体的には、比較例1〜3は、摺動面を含む表層の残留圧縮応力が1200MPa未満であり、30μm以上の部分の内部残留圧縮応力300MPaを超えており、20μm以上の部分の残留オーステナイトを15体積%未満とした点が実施例1と相違する。また、比較例4が、実施例1と相違する点は、ショットピーニングをしなかった点である。具体的には、比較例4は、摺動面の表面硬さがHv800未満であり、表層の残留圧縮応力が1200MPa未満である点が、実施例1と相違する。そして、比較例1〜4の試験体に対して、実施例1と同じ条件で、摩耗試験を行った。これらの結果を図4に示す。
(Comparative Examples 1-4)
A test body was manufactured in the same manner as in Example 1. The comparative examples 1 to 3 differ from the first embodiment in that the carburizing process conditions and the shot peening process conditions are changed. Specifically, in Comparative Examples 1 to 3, the residual compressive stress of the surface layer including the sliding surface is less than 1200 MPa, the internal residual compressive stress of the part of 30 μm or more exceeds 300 MPa, and the residual austenite of the part of 20 μm or more. This is different from Example 1 in that the amount is less than 15 volume%. Further, the comparative example 4 is different from the example 1 in that shot peening was not performed. Specifically, Comparative Example 4 is different from Example 1 in that the surface hardness of the sliding surface is less than Hv800 and the residual compressive stress of the surface layer is less than 1200 MPa. And the abrasion test was done with respect to the test body of Comparative Examples 1-4 on the same conditions as Example 1. FIG. These results are shown in FIG.

(結果1及び考察1)
実施例1〜10の摩耗量は、いずれも10μm以下であったが、比較例1〜4の摩耗量は、いずれも10μmを超えていた。
比較例1〜3は、摺動面の表面硬さがHv800以上であっても、ベルトからの繰返し荷重及びベルトとの摺動発熱により、摺動面に亀裂が発生した場合には、実施例1〜10に比べて表層の残留圧縮応力の値が低いため、亀裂が進展し易いと考えられる。また、摺動面から深さ方向にさらに亀裂が進展した場合には、比較例1〜3は、実施例1〜10に比べて、残留オーステナイト層における残留オーステナイトの組織の割合が少ないことから、加工誘起変態よる効果が発揮され難いと考えられる。この結果、比較例1〜3は、実施例1〜10よりも、疲労亀裂起因の摩耗が発生し易く、摩耗量の値が大きくなったと考えられる。
(Result 1 and Discussion 1)
The wear amounts of Examples 1 to 10 were all 10 μm or less, but the wear amounts of Comparative Examples 1 to 4 were all over 10 μm.
In Comparative Examples 1 to 3, even when the surface hardness of the sliding surface is Hv 800 or more, when cracks occurred on the sliding surface due to repeated load from the belt and sliding heat generation with the belt, Since the value of the residual compressive stress of the surface layer is lower than those of 1 to 10, it is considered that cracks are likely to progress. Further, when cracks further progress in the depth direction from the sliding surface, Comparative Examples 1 to 3 have a smaller proportion of the structure of retained austenite in the retained austenite layer than Examples 1 to 10, It is considered that the effect due to the processing-induced transformation is hardly exhibited. As a result, in Comparative Examples 1 to 3, it is considered that wear due to fatigue cracks occurs more easily than in Examples 1 to 10, and the value of the wear amount is increased.

また、比較例4は、ショットピーニングを実施していないため、実施例1〜10に比べて、表面硬さ及び表面の残留応力が低いので、アブレッシブ摩耗がし易く、さらには摺動面における亀裂の発生及び亀裂の進展もし易いと考えられる。この結果、比較例4は、実施例1〜10よりも、摩耗量の値が大きくなったと考えられる。   In addition, since Comparative Example 4 does not perform shot peening, the surface hardness and the residual stress on the surface are lower than those in Examples 1 to 10, so that it is easy to wear abrasively and further cracks on the sliding surface. It is thought that the occurrence of cracks and the development of cracks are easy. As a result, it is considered that the value of the wear amount in Comparative Example 4 was larger than that in Examples 1-10.

なお、図3,4に示すように、実施例6及び9の試験体は、0.05〜3.0質量%の範囲を満たすニッケルを含有しており、実施例7の試験体は、0.005〜0.2質量%の範囲を満たすニオブを含有しており、実施例8の試験体は、0.005〜0.2質量%の範囲を満たすチタンを含有しており、実施例10の試験体は、0.0005〜0.005質量%の範囲を満たすホウ素を含有している。前記範囲内で、さらに元素が添加された場合であっても、図4に示すように、摺動面の耐摩耗性は確保されると考えられる。   As shown in FIGS. 3 and 4, the specimens of Examples 6 and 9 contain nickel that satisfies the range of 0.05 to 3.0% by mass, and the specimen of Example 7 is 0. The specimen of Example 8 contains niobium that satisfies the range of 0.005 to 0.2% by mass, and the specimen of Example 8 contains titanium that satisfies the range of 0.005 to 0.2% by mass. The test body contains boron that satisfies the range of 0.0005 to 0.005 mass%. Even when an element is further added within the above range, it is considered that the wear resistance of the sliding surface is ensured as shown in FIG.

(実施例11〜13)
実施例1と同じようにして、試験体を製作した。実施例1と相違する点は、浸炭処理に変更して浸炭浸窒処理(浸炭窒化処理)を行った点である。具体的には、該プーリーを加熱炉内に投入し950℃で6時間保持した後、850℃で4時間保持し、その後60℃で油焼入れした後、160℃で1時間焼き戻しを行い、浸炭浸窒処理を行った。そして、実施例1と同じ条件で、摺動面にショットピーニング処理を施し、表面に残留圧縮応力と、残留オーステナイトを有した試験体を製作し、摩耗試験を行った。この結果を図5に示す。尚、浸炭浸窒処理を評価するために、炭素濃度に加えて、摺動面の含有窒素濃度も同時に示した。
(Examples 11 to 13)
A test body was manufactured in the same manner as in Example 1. The difference from Example 1 is that carburizing and nitriding treatment (carbonitriding treatment) is performed instead of carburizing treatment. Specifically, the pulley was put into a heating furnace and held at 950 ° C. for 6 hours, then held at 850 ° C. for 4 hours, and then oil-quenched at 60 ° C., followed by tempering at 160 ° C. for 1 hour, Carburizing and nitriding treatment was performed. Then, under the same conditions as in Example 1, the sliding surface was subjected to shot peening treatment, a test body having residual compressive stress and residual austenite on the surface was manufactured, and an abrasion test was performed. The result is shown in FIG. In addition, in order to evaluate the carburizing and nitriding treatment, in addition to the carbon concentration, the nitrogen concentration in the sliding surface is also shown.

(比較例5〜7)
実施例1と同じようにして、試験体を製作した。実施例1と相違する点は、浸炭処理に変更して浸炭浸窒処理を行った点と、ショットピーニングの処理の条件を変えた点であり、比較例5〜7は、摺動面を含む表層の残留圧縮応力が1200MPa以下であり、30μm以上の部分に内部残留圧縮応力が300MPaよりも大きく付与されており、20μm以上の部分の残留オーステナイトを15体積%未満とした点である。そして、比較例5〜7の試験体に対して、実施例1と同じ条件で、摩耗試験を行った。この結果を図5に示す。
(Comparative Examples 5-7)
A test body was manufactured in the same manner as in Example 1. The difference from Example 1 is that the carburizing and nitriding treatment was performed by changing to the carburizing treatment, and the shot peening treatment conditions were changed. Comparative Examples 5 to 7 include sliding surfaces. The residual compressive stress of the surface layer is 1200 MPa or less, the internal residual compressive stress is applied to a portion of 30 μm or more greater than 300 MPa, and the residual austenite of the portion of 20 μm or more is less than 15% by volume. And the abrasion test was done with the same conditions as Example 1 with respect to the test body of Comparative Examples 5-7. The result is shown in FIG.

(結果2及び考察2)
実施例11〜13の摩耗量は、いずれも10μm以下であったが、比較例5〜7の摩耗量は、いずれも10μmを超えていた。上述したと同様に、比較例5〜7は、実施例11〜13に比べて表層の残留圧縮応力が低く、残留オーステナイト層における残留オーステナイトの割合が少ないことから、加工誘起変態よる効果が発揮されなかったと考えられる。この結果、比較例5〜7は、実施例11〜13よりも、疲労亀裂が起因とした摩耗が発生し易く、摩耗量の値が大きくなったと考えられる。
(Result 2 and discussion 2)
The wear amounts of Examples 11 to 13 were all 10 μm or less, but the wear amounts of Comparative Examples 5 to 7 were all over 10 μm. In the same manner as described above, Comparative Examples 5 to 7 have a lower residual compressive stress in the surface layer than Examples 11 to 13 and a small proportion of retained austenite in the retained austenite layer, so that the effect of processing-induced transformation is exhibited. Probably not. As a result, in Comparative Examples 5 to 7, wear due to fatigue cracks was more likely to occur than in Examples 11 to 13, and the value of the amount of wear was considered to have increased.

以上、本発明の実施例を詳述してきたが、具体的な構成はこの実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although the embodiment of the present invention has been described in detail, the specific configuration is not limited to this embodiment, and even if there is a design change within a scope not departing from the gist of the present invention, they are not limited to the present invention. Is included.

実施例1に係る無段変速機用プーリー(試験体)の摺動面を含む断面を示した模式図。The schematic diagram which showed the cross section containing the sliding surface of the pulley (test body) for continuously variable transmission which concerns on Example 1. FIG. 実施例1に係る無段変速機用プーリーの摺動面からの深さと該深さにおける内部残留応力分布を示した模式図。The schematic diagram which showed the depth from the sliding surface of the pulley for continuously variable transmissions which concerns on Example 1, and the internal residual stress distribution in this depth. 実施例1〜10及び比較例1〜4の無段変速機用プーリーの組成を示した表図。The table | surface which showed the composition of the pulley for continuously variable transmissions of Examples 1-10 and Comparative Examples 1-4. 実施例1〜10及び比較例1〜4の特性と摩耗試験の結果を示した図。The figure which showed the result of the characteristic and abrasion test of Examples 1-10 and Comparative Examples 1-4. 実施例11〜13及び比較例5〜7の特性と摩耗試験の結果を示した図。The figure which showed the characteristic of Examples 11-13 and Comparative Examples 5-7, and the result of the abrasion test. 従来の無段変速機の要部模式図であり、(a)は、無段変速機の要部斜視図、(b)は、(a)のA部の部分拡大図、(c)は、出力プーリーの模式断面図。It is a principal part schematic diagram of the conventional continuously variable transmission, (a) is a principal part perspective view of a continuously variable transmission, (b) is the elements on larger scale of the A section of (a), (c) is The schematic cross section of an output pulley.

符号の説明Explanation of symbols

1:入力プーリー、2:出力プーリー、2A,2B:シーブ、2a:摺動面、3:ベルト、21:表層、22:残留オーステナイト層、23:内部残留圧縮応力部   1: input pulley, 2: output pulley, 2A, 2B: sheave, 2a: sliding surface, 3: belt, 21: surface layer, 22: residual austenite layer, 23: internal residual compressive stress part

Claims (4)

金属ベルトに少なくとも一部が巻きつけられ、該金属ベルトに摺動する摺動面を少なくとも有し、素材の鋼としてJIS G 4053に規定されているクロム鋼又はクロムモリブデン鋼から選択した材料を用いた無段変速機用プーリーであって、
前記無段変速機用プーリーは、
前記摺動面の表面硬さがHv800以上であり、少なくとも1200MPa以上の残留圧縮応力が付与された、前記摺動面を含む表層と、
該表層よりもさらに深さ方向に深い部分であり、かつ、前記摺動面から深さ方向の20〜30μm部分に残留オーステナイトを15〜40体積%有する残留オーステナイト層と、
前記摺動面から深さ方向の少なくとも30μm以上の部分に300MPa以下の残留圧縮応力が付与された内部残留圧縮応力部と、を少なくとも備えることを特徴とする無段変速機用プーリー。
A material selected from chrome steel or chrome molybdenum steel defined in JIS G 4053 is used as a material steel, at least part of which is wound around a metal belt and having at least a sliding surface that slides on the metal belt. A pulley for a continuously variable transmission,
The continuously variable transmission pulley is:
A surface layer including the sliding surface, the surface hardness of the sliding surface is Hv800 or more, and a residual compressive stress of at least 1200 MPa is applied;
A retained austenite layer having a depth of 15 to 40% by volume of retained austenite in a portion deeper in the depth direction than the surface layer and in a portion of 20 to 30 μm in the depth direction from the sliding surface;
A pulley for continuously variable transmission, comprising at least an internal residual compressive stress portion to which a residual compressive stress of 300 MPa or less is applied to a portion of at least 30 μm or more in the depth direction from the sliding surface.
請求項1に記載の無段変速機用プーリーについて、前記素材の鋼に含有するSi,Mn,Moについてさらに増量し、以下の(a)〜(c)の少なくとも一種の条件を満足する範囲の成分を含有する鋼を用いたことを特徴とする無段変速機用プーリー。
(a)Si:0.35質量%を超え、かつ、1.0質量%以下
(b)Mn:前記選択した材料において前記JIS規格で規定されているMnの含有量の上限値を超え、かつ、1.5質量%以下
(c)Mo:前記選択した材料において前記JIS規格で規定されているMoの含有量の上限値を超え、かつ、0.8質量%以下
In the pulley for continuously variable transmission according to claim 1, the amount of Si, Mn, and Mo contained in the steel of the material is further increased, and at least one of the following conditions (a) to (c) is satisfied. A pulley for a continuously variable transmission, characterized by using steel containing components.
(A) Si: more than 0.35% by mass and 1.0% by mass or less (b) Mn: exceeding the upper limit of the Mn content defined in the JIS standard in the selected material, and 1.5% by mass or less (c) Mo: exceeding the upper limit of the Mo content specified by the JIS standard in the selected material and 0.8% by mass or less
請求項1又は2に記載の無段変速機用プーリーについて、素材として用いる鋼にさらに、Nb,Ti,Ni,Bを追加添加し、以下の(d)〜(g)の少なくとも一種の条件を満足する範囲の元素が添加された鋼を素材として用いたことを特徴とする無段変速機用プーリー。
(d)Nb:0.005〜0.2質量%
(e)Ti:0.005〜0.2質量%
(f)Ni:0.05〜3.0質量%
(g)B:0.0005〜0.005質量%
In the pulley for continuously variable transmission according to claim 1 or 2, Nb, Ti, Ni, B is further added to the steel used as a material, and at least one of the following conditions (d) to (g) is satisfied: A pulley for a continuously variable transmission, characterized by using steel to which elements in a satisfactory range are added as a material.
(D) Nb: 0.005 to 0.2% by mass
(E) Ti: 0.005 to 0.2% by mass
(F) Ni: 0.05-3.0 mass%
(G) B: 0.0005 to 0.005 mass%
前記請求項1〜3のいずれかに記載の無段変速機用プーリーを備えた無段変速機。   A continuously variable transmission comprising the continuously variable transmission pulley according to any one of claims 1 to 3.
JP2007238088A 2007-09-13 2007-09-13 Pulley for continuously variable transmission and continuously variable transmission Expired - Fee Related JP4938603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238088A JP4938603B2 (en) 2007-09-13 2007-09-13 Pulley for continuously variable transmission and continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238088A JP4938603B2 (en) 2007-09-13 2007-09-13 Pulley for continuously variable transmission and continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2009068609A JP2009068609A (en) 2009-04-02
JP4938603B2 true JP4938603B2 (en) 2012-05-23

Family

ID=40605088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238088A Expired - Fee Related JP4938603B2 (en) 2007-09-13 2007-09-13 Pulley for continuously variable transmission and continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4938603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1037185C2 (en) * 2009-08-10 2011-02-14 Bosch Gmbh Robert Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element.
JP5897975B2 (en) * 2012-04-25 2016-04-06 本田技研工業株式会社 Steel for belt type CVT pulley and belt type CVT pulley
JP6753714B2 (en) 2016-07-15 2020-09-09 アイシン・エィ・ダブリュ株式会社 Manufacturing method of steel materials for CVT sheaves, CVT sheaves and CVT sheaves

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241794A (en) * 1996-03-08 1997-09-16 Daido Steel Co Ltd High strength steel for induction hardening
JP2000130527A (en) * 1998-10-30 2000-05-12 Nissan Motor Co Ltd Pulley for v-belt type continuously variable transmission and continuously variable transmission
JP2002213580A (en) * 2001-01-18 2002-07-31 Toyota Central Res & Dev Lab Inc Pulley member for belt type continuously variable transmission(cvt)
JP2004011712A (en) * 2002-06-05 2004-01-15 Nsk Ltd Rolling bearing, and belt type continuously variable transmission using it
JP2006226452A (en) * 2005-02-18 2006-08-31 Jtekt Corp Power transmission chain and power transmission device having the same

Also Published As

Publication number Publication date
JP2009068609A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
TWI399441B (en) Induction hardening steel component or parts with pre-carbonitriding treatment
US5595613A (en) Steel for gear, gear superior in strength of tooth surface and method for producing same
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
WO2011114775A1 (en) Steel for nitrocarburization, nitrocarburized components, and production method for same
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP3410947B2 (en) Rolling element of continuously variable transmission and method of manufacturing the same
JP4964001B2 (en) Gears with excellent low cycle fatigue strength
JP4938603B2 (en) Pulley for continuously variable transmission and continuously variable transmission
JP5214265B2 (en) Pulley for belt type CVT
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP2001200348A (en) Gear couple excellent in surface fatigue strength
JP4860583B2 (en) Pulley for continuously variable transmission and continuously variable transmission
JP4000616B2 (en) Gear having excellent pitting resistance and method for producing the same
JPH0432537A (en) Member for high strength machine structural use excellent in bearing strength
JP4798963B2 (en) High strength gear and manufacturing method thereof
JP5430194B2 (en) Sliding member, continuously variable transmission pulley, and continuously variable transmission
JP5068065B2 (en) Gear parts with excellent compatibility
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
EP3394475B1 (en) Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element
JP6160054B2 (en) High surface pressure resistant parts
JPH09296250A (en) Steel for gear excellent in face fatigue strength
US11326244B2 (en) Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
JP2009074110A (en) Gear part excellent in fitness
JP4515329B2 (en) Steel gear with excellent case crushing resistance and low heat distortion and its manufacturing method
JP3607583B2 (en) Steel for power transmission parts and power transmission parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4938603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees