JP4938357B2 - Cleaning method and cleaning equipment - Google Patents

Cleaning method and cleaning equipment

Info

Publication number
JP4938357B2
JP4938357B2 JP2006152595A JP2006152595A JP4938357B2 JP 4938357 B2 JP4938357 B2 JP 4938357B2 JP 2006152595 A JP2006152595 A JP 2006152595A JP 2006152595 A JP2006152595 A JP 2006152595A JP 4938357 B2 JP4938357 B2 JP 4938357B2
Authority
JP
Japan
Prior art keywords
mist
ultrasonic
cleaning liquid
cleaning
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006152595A
Other languages
Japanese (ja)
Other versions
JP2007324359A (en
Inventor
一雄 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NanoMistTechnologies Co., Ltd.
Original Assignee
NanoMistTechnologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NanoMistTechnologies Co., Ltd. filed Critical NanoMistTechnologies Co., Ltd.
Priority to JP2006152595A priority Critical patent/JP4938357B2/en
Publication of JP2007324359A publication Critical patent/JP2007324359A/en
Application granted granted Critical
Publication of JP4938357B2 publication Critical patent/JP4938357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Special Spraying Apparatus (AREA)

Description

本発明は、物の洗浄方法と洗浄装置に関し、とくに半導体の洗浄に適している洗浄方法と装置に関する。   The present invention relates to a method and apparatus for cleaning an object, and more particularly to a cleaning method and apparatus suitable for cleaning semiconductors.

半導体は洗浄液に浸漬され、あるいは洗浄液を噴射して洗浄される。洗浄液は、汚れを溶解して除去する溶媒が使用される。洗浄液の溶媒は気化しやすく、気化した洗浄液が作業環境を悪くする原因となる。したがって、洗浄液の使用量を少なくして作業環境を向上できる。少量の洗浄液で洗浄する方法として、洗浄液をノズルから霧状に噴射して、これを被洗浄物の表面に噴射する方法が開発されている。(特許文献1ないし3参照)
特開2006−41065号公報 特開2005−349301号公報 特開2004−335838号公報
The semiconductor is immersed in the cleaning liquid or cleaned by spraying the cleaning liquid. As the cleaning liquid, a solvent that dissolves and removes dirt is used. The solvent of the cleaning liquid is easily vaporized, and the vaporized cleaning liquid causes the working environment to deteriorate. Accordingly, the working environment can be improved by reducing the amount of the cleaning liquid used. As a method of cleaning with a small amount of cleaning liquid, a method has been developed in which the cleaning liquid is sprayed in a mist form from a nozzle and sprayed onto the surface of the object to be cleaned. (See Patent Documents 1 to 3)
JP 2006-41065 A JP-A-2005-349301 JP 2004-335838 A

これらの公報に記載される洗浄方法は、洗浄液の使用量を少なくできる特徴はあるが、被洗浄物の表面全体を綺麗に洗浄できないという欠点がある。とくに、半導体集積回路等の微細な隙間や空隙を綺麗に洗浄できない欠点がある。霧状の洗浄液を被洗浄物表面の狭い隙間や窪みに効果的に進入させることができないからである。   The cleaning methods described in these publications have the feature that the amount of cleaning liquid used can be reduced, but have the disadvantage that the entire surface of the object to be cleaned cannot be cleaned cleanly. In particular, there is a drawback that fine gaps and voids in semiconductor integrated circuits and the like cannot be cleaned cleanly. This is because the mist-like cleaning liquid cannot effectively enter narrow gaps or depressions on the surface of the object to be cleaned.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、洗浄液の使用量を少なくしながら、被洗浄物の微細な隙間から窪みまで綺麗に洗浄できる洗浄方法と洗浄装置を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a cleaning method and a cleaning apparatus that can cleanly clean the object to be cleaned from a minute gap while reducing the amount of the cleaning liquid used.

本発明の洗浄方法は、前述の目的を達成するために以下の構成を備える。
洗浄方法は、洗浄液Wを超音波振動させてミストMとし、このミストMを被洗浄物Hの表面に供給して被洗浄物Hを洗浄する。
さらに、本発明の洗浄方法は、ミストMを含む搬送気体の通路に設けてなる、大粒のミストを分離する機構でもって、洗浄液WのミストMに含まれる大粒のミストを除去して、ミストの平均粒径を小さくして、被洗浄物Hの表面に供給する。
The cleaning method of the present invention has the following configuration in order to achieve the above-described object.
In the cleaning method, the cleaning liquid W is ultrasonically vibrated to form the mist M, and the mist M is supplied to the surface of the target object H to clean the target object H.
Furthermore, the cleaning method of the present invention removes the large mist contained in the mist M of the cleaning liquid W by a mechanism for separating the large mist provided in the passage of the carrier gas containing the mist M, and removes the mist. The average particle size is reduced and supplied to the surface of the object H to be cleaned.

本発明の洗浄方法は、洗浄液Wを超音波振動させてミストMとし、このミストMに搬送気体を供給し、この搬送気体を介してミストMを被洗浄物Hの表面に吹き付けて被洗浄物Hを洗浄することができる。さらに、本発明の洗浄方法は、搬送気体の風量を、洗浄液Wを超音波振動させる超音波振動子2の入力電力1Wに対して1リットル/分以上とすることができる。   In the cleaning method of the present invention, the cleaning liquid W is ultrasonically vibrated to form a mist M, a carrier gas is supplied to the mist M, and the mist M is sprayed onto the surface of the object H to be cleaned through the carrier gas. H can be washed. Further, in the cleaning method of the present invention, the flow rate of the carrier gas can be set to 1 liter / min or more with respect to 1 W of input power of the ultrasonic vibrator 2 that ultrasonically vibrates the cleaning liquid W.

本発明の洗浄方法は、洗浄液Wを超音波振動させてミストMとし、このミストMに含まれる大粒のミストをデミスタ38で除去して被洗浄物Hの表面に供給する。さらに、本発明の洗浄方法は、洗浄液Wを揮発性の液体とする。 The method of cleaning the invention, the cleaning liquid W by ultrasonic vibration and the mist M, supplied to the surface of the object to be cleaned H to remove mist of large included in the mist M in the demister 38. Further, the cleaning method of the present invention, washing liquid W and volatile liquid.

本発明の洗浄装置は、前述の目的を達成するために以下の構成を備える。
洗浄装置は、洗浄液Wを超音波振動させてミストMに霧化する超音波霧化機1と、この超音波霧化機1で霧化されたミストMを被洗浄物Hの表面に供給する供給部5とを備える。超音波霧化機1は、洗浄液Wを入れる超音波霧化室4と、この超音波霧化室4の洗浄液Wを超音波振動させてミストMに霧化する超音波振動子2と、超音波振動子2に高周波電力を供給する超音波電源3と、ミストMを含む搬送気体の通路に設けてなる、大粒のミストを分離する機構を備える。洗浄装置は、超音波霧化機1で霧化されたミストMから大粒のミストを分離する機構で大粒のミストの除去されたミストMを供給部5から被洗浄物Hの表面に供給して、被洗浄物Hを洗浄する。
The cleaning apparatus of the present invention has the following configuration in order to achieve the above-described object.
The cleaning device ultrasonically atomizes the cleaning liquid W to atomize the mist M, and supplies the mist M atomized by the ultrasonic atomizer 1 to the surface of the object H to be cleaned. And a supply unit 5. The ultrasonic atomizer 1 includes an ultrasonic atomizing chamber 4 into which the cleaning liquid W is put, an ultrasonic vibrator 2 that ultrasonically vibrates the cleaning liquid W in the ultrasonic atomizing chamber 4 and atomizes the mist M, An ultrasonic power source 3 for supplying high-frequency power to the sonic transducer 2 and a mechanism for separating large mist, which is provided in a path of a carrier gas containing mist M, are provided. The cleaning apparatus supplies the mist M from which the large mist is removed from the mist M atomized by the ultrasonic atomizer 1 from the supply unit 5 to the surface of the object H to be cleaned. Then, the object H to be cleaned is cleaned.

本発明の洗浄装置は、超音波霧化室4に搬送気体を強制送風する気体供給源8を備える。本発明の洗浄装置は、気体供給源8が、超音波振動子2の入力電力1Wに対して、1リットル/分以上の風量で超音波霧化室4に搬送気体を強制送風することができる。また、本発明の洗浄装置は、気体供給源8が、超音波霧化室4に送風する搬送気体の風量を変化させる風量変化機構37を有する。さらに、本発明の洗浄装置は、搬送気体を空気とする。さらにまた、本発明の洗浄装置は、ミストMを含む搬送気体の通路に、大粒のミストを除去するデミスタ38を設ける。 Cleaning apparatus of the present invention, Ru provided with a gas supply source 8 for forced air carrier gas to the ultrasonic atomizing chamber 4. In the cleaning apparatus of the present invention, the gas supply source 8 can forcibly blow the carrier gas into the ultrasonic atomization chamber 4 with an air flow of 1 liter / min or more with respect to the input power 1 W of the ultrasonic vibrator 2. . The cleaning device of the present invention, the gas supply source 8, that have a air volume variation mechanism 37 for changing the air volume of the carrier gas for blowing air to the ultrasonic atomizing chamber 4. Further, the cleaning apparatus of the present invention, you the carrier gas and air. Furthermore, the cleaning apparatus of the present invention, the passage of the carrier gas containing the mist M, Ru provided demister 38 for removing mist large.

本発明の洗浄方法と洗浄装置は、被洗浄物を洗浄液に浸漬し、あるいは洗浄液を直接に被洗浄物の表面にかける従来の方法に比較して、洗浄液の使用量を少なくして洗浄環境を改善しながら、被洗浄物の微細な隙間や窪みも綺麗に洗浄できる特徴がある。それは、本発明が、洗浄液を超音波振動してミストとすることで、ナノサイズの極微細な粒子として被洗浄物の表面に供給するからである。ナノサイズの極微細な粒子となった洗浄液は、被洗浄物の表面にある微細な隙間や窪みにもスムーズに進入して、汚れを綺麗に洗浄する。さらに、洗浄液をナノサイズの極微細な粒子とすることによって、少量の洗浄液で膨大な数の洗浄液粒子が得られ、これらが被洗浄物の表面に供給され、微細な隙間や窪みにも進入して、くまなく綺麗に洗浄する。このため、使用する洗浄液量を少なく制限しながら、被洗浄物を綺麗に洗浄できるという、極めて優れた特徴を実現する。   The cleaning method and cleaning apparatus of the present invention reduce the amount of cleaning liquid used and reduce the cleaning environment compared to conventional methods in which the object to be cleaned is immersed in the cleaning liquid or the cleaning liquid is directly applied to the surface of the object to be cleaned. While improving, there is a feature that fine gaps and dents in the object to be cleaned can be cleaned cleanly. This is because the present invention supplies the cleaning liquid to the surface of the object to be cleaned as ultrafine particles of nano size by ultrasonically vibrating the cleaning liquid. The cleaning liquid that has become nano-sized ultra-fine particles smoothly enters fine gaps and depressions on the surface of the object to be cleaned, and cleans the dirt cleanly. Furthermore, by using nano-sized ultrafine particles for the cleaning liquid, a large number of cleaning liquid particles can be obtained with a small amount of cleaning liquid, and these particles are supplied to the surface of the object to be cleaned and enter fine gaps and depressions. And clean all over. For this reason, an extremely excellent feature is realized that the object to be cleaned can be cleaned cleanly while limiting the amount of the cleaning liquid to be used to be small.

また、本発明は、洗浄液を超音波振動させてミストとし、このミストを搬送気体で被洗浄物の表面に吹き付けて洗浄することで、洗浄液の微細粒子を被洗浄物の表面に勢いよく衝突させて、汚れを綺麗に除去できる。また、洗浄液の微細粒子に溶解された汚れを、搬送気体で吹き飛ばして綺麗にできる特徴もある。   The present invention also vibrates the fine particles of the cleaning liquid against the surface of the object to be cleaned by oscillating the cleaning liquid ultrasonically to form a mist and spraying the mist onto the surface of the object to be cleaned with a carrier gas. Dirt can be removed neatly. In addition, there is a feature that the dirt dissolved in the fine particles of the cleaning liquid can be cleaned by blowing off with a carrier gas.

また、本発明は、多量の搬送気体でもって、洗浄液を効率よく極微細な粒子とすることで、被洗浄物を綺麗に洗浄できる。それは、洗浄液がミストに霧化される効率を、搬送気体の供給量を多くして向上でき、また、搬送気体を多くして、洗浄液をより微細なミストにできるからである。   In addition, according to the present invention, an object to be cleaned can be cleaned cleanly by using a large amount of carrier gas to efficiently make the cleaning liquid into very fine particles. This is because the efficiency with which the cleaning liquid is atomized into mist can be improved by increasing the supply amount of the carrier gas, and the cleaning liquid can be made finer mist by increasing the carrier gas.

さらに、本発明は、超音波振動して得られるミストから、大粒のものをデミスタで除去して被洗浄物の表面に供給して、微細なミストの洗浄液でもって被洗浄物の微細な隙間等を効果的に洗浄できる特徴がある。   Furthermore, the present invention removes large particles from a mist obtained by ultrasonic vibration with a demister and supplies the mist to the surface of the object to be cleaned. It can be effectively cleaned.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための洗浄方法と洗浄装置を例示するものであって、本発明は洗浄方法と洗浄装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a cleaning method and a cleaning apparatus for embodying the technical idea of the present invention, and the present invention does not specify the cleaning method and the cleaning apparatus as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

本発明の洗浄方法と洗浄装置は、洗浄液を超音波振動させてミストに霧化する。霧化された洗浄液を被洗浄物の表面に供給し、ミストの洗浄液で被洗浄物の表面を洗浄する。本発明は、洗浄液を微細なミストの状態で被洗浄物の表面に供給して、被洗浄物表面の微細な隙間から窪みまで綺麗に洗浄する。洗浄液のミストは、粒径を小さくして狭い隙間や窪みに進入できる。洗浄液を噴霧して洗浄される半導体集積回路等は、高密度化するために、ミクロンサイズよりもさらに小さい寸法で加工されている。高密度な集積回路は、ミクロンサイズよりもさらに狭い隙間や窪みがあり、ここを綺麗に洗浄することが要求される。本発明の洗浄方法と装置は、このような微細な隙間や窪みも綺麗に洗浄するために、洗浄液を超音波振動で霧化してナノサイズの微細な粒子とする。   The cleaning method and the cleaning apparatus of the present invention atomize the cleaning liquid into mist by ultrasonic vibration. The atomized cleaning liquid is supplied to the surface of the object to be cleaned, and the surface of the object to be cleaned is cleaned with the cleaning liquid of mist. In the present invention, the cleaning liquid is supplied to the surface of the object to be cleaned in a fine mist state, and the surface is cleaned cleanly from the minute gaps on the surface of the object to be cleaned. The cleaning liquid mist can enter a narrow gap or depression by reducing the particle size. A semiconductor integrated circuit or the like that is cleaned by spraying a cleaning liquid is processed with a size smaller than a micron size in order to increase the density. High-density integrated circuits have gaps and depressions that are even narrower than the micron size, and it is required to clean them cleanly. In the cleaning method and apparatus of the present invention, in order to cleanly clean such fine gaps and depressions, the cleaning liquid is atomized by ultrasonic vibration to form nano-sized fine particles.

超音波振動で霧化される洗浄液ミストは、洗浄液の種類、ミストに供給する風量、洗浄液の温度、超音波振動子の振動周波数で粒径をコントロールできる。洗浄液は、種類によりミストの粒径が変化する。たとえば、30℃のエチルアルコールを超音波振動させて得られるミストの粒径は1nmとなり、30℃の水を超音波振動して得られるミストの粒径は100nmとなる。また、洗浄液をエチルアルコール水溶液とすると、洗浄液の温度と供給する風量によって、ミストの粒径は、100nmと1nmに変化する。たとえば、20モル%のエチルアルコール水溶液の温度を20℃とすると、ミストの粒径は1nmとなり、温度を20℃から50℃にすると、ミストは粒径が1nmのものと100nmのものが混在した状態となる。従って、エチルアルコール水溶液は、温度を高くして、粒径を大きくできる。さらにこのエチルアルコール水溶液の温度を30℃とし、風量を15リットル/分とすると、ミストは粒径が1nmのものと100nmのものが混在する状態となる。この状態から風量を50リットル/分まで増加すると、ミストの粒径は1nmとなり、100nmのものはなくなる。したがって、風量を多くしてミストの粒径を小さくできる。だたし、以上の試験において、超音波振動子の入力電力は10W、振動周波数は2.4MHzである。超音波振動子の振動周波数を変更してミストの粒径をコントロールすることもできる。この場合、振動周波数を高くして、ミストを粒径を小さくできる。   The particle size of the cleaning liquid mist atomized by ultrasonic vibration can be controlled by the type of cleaning liquid, the amount of air supplied to the mist, the temperature of the cleaning liquid, and the vibration frequency of the ultrasonic vibrator. The particle size of the mist varies depending on the type of cleaning liquid. For example, the particle size of mist obtained by ultrasonically vibrating 30 ° C. ethyl alcohol is 1 nm, and the particle size of mist obtained by ultrasonically vibrating 30 ° C. water is 100 nm. When the cleaning liquid is an ethyl alcohol aqueous solution, the particle diameter of the mist changes between 100 nm and 1 nm depending on the temperature of the cleaning liquid and the amount of air supplied. For example, when the temperature of a 20 mol% aqueous ethyl alcohol solution is 20 ° C., the mist particle size is 1 nm, and when the temperature is 20 ° C. to 50 ° C., the mist particle size is 1 nm and 100 nm. It becomes a state. Accordingly, the aqueous ethyl alcohol solution can be increased in temperature to increase the particle size. Further, when the temperature of the ethyl alcohol aqueous solution is 30 ° C. and the air volume is 15 liters / minute, the mist has a particle size of 1 nm and 100 nm. When the air volume is increased from this state to 50 liters / minute, the particle size of the mist becomes 1 nm, and the one with 100 nm disappears. Therefore, the air volume can be increased to reduce the mist particle size. However, in the above test, the input power of the ultrasonic transducer is 10 W and the vibration frequency is 2.4 MHz. It is also possible to control the mist particle size by changing the vibration frequency of the ultrasonic vibrator. In this case, it is possible to increase the vibration frequency and reduce the particle size of the mist.

以上の方法で洗浄液をミストに霧化する洗浄装置を図1に示す。この図の洗浄装置は、洗浄液Wを超音波振動させてミストMに霧化する超音波霧化機1と、この超音波霧化機1で霧化されたミストMを被洗浄物Hに供給する供給部5とを備える。   A cleaning apparatus for atomizing the cleaning liquid into mist by the above method is shown in FIG. The cleaning apparatus in this figure supplies ultrasonic mist M 1 that is atomized into mist M by ultrasonically oscillating cleaning liquid W, and supplies mist M atomized by this ultrasonic atomizer 1 to the object H to be cleaned. And supply unit 5.

超音波霧化機1は、洗浄液Wを供給している閉鎖構造の超音波霧化室4と、この超音波霧化室4の洗浄液Wを超音波振動させてミストMに霧化する複数の超音波振動子2と、各々の超音波振動子2の上方に配設している筒体6と、超音波振動子2に接続している超音波電源3を備える。   The ultrasonic atomizer 1 includes an ultrasonic atomizing chamber 4 having a closed structure that supplies a cleaning liquid W, and a plurality of atomizing the mist M by ultrasonically vibrating the cleaning liquid W in the ultrasonic atomizing chamber 4. An ultrasonic transducer 2, a cylindrical body 6 disposed above each ultrasonic transducer 2, and an ultrasonic power source 3 connected to the ultrasonic transducer 2 are provided.

図1の洗浄装置は、超音波霧化室4と供給部5を別々に離して、連結ダクト7で連結している。この洗浄装置は、超音波霧化室4で霧化された洗浄液WのミストMを、供給部5から被洗浄物Hに供給する。   In the cleaning device of FIG. 1, the ultrasonic atomization chamber 4 and the supply unit 5 are separated separately and connected by a connection duct 7. This cleaning device supplies the mist M of the cleaning liquid W atomized in the ultrasonic atomization chamber 4 from the supply unit 5 to the object to be cleaned H.

超音波霧化室4は、所定のレベルに洗浄液Wを蓄えている。洗浄液Wを一定の液面レベルで保持するように、洗浄液Wを供給している。図の装置は、超音波霧化室4に、ポンプ10を介して洗浄液Wを蓄えている原液槽11を連結し、原液槽11から洗浄液Wを供給して液面レベルを一定に保持している。   The ultrasonic atomizing chamber 4 stores the cleaning liquid W at a predetermined level. The cleaning liquid W is supplied so as to keep the cleaning liquid W at a constant liquid level. The apparatus shown in the figure is connected to an ultrasonic atomization chamber 4 via a pump 10 and a stock solution tank 11 storing a wash solution W, and the cleaning solution W is supplied from the stock solution tank 11 to keep the liquid level constant. Yes.

図の装置は、超音波霧化室4に筒体6を配設している。筒体6は、各々の超音波振動子2の上方に配設されて、超音波振動子2で超音波振動される洗浄液Wを効率よくミストMに霧化させる。筒体6は、上端に噴霧口12を開口している筒状としている。筒体6は、内部に洗浄液Wを充填し、筒体6内の洗浄液Wに、噴霧口12に向かって超音波振動を与えて、噴霧口12からミストMに霧化して飛散する。図の超音波振動子2は、上方に超音波を放射する。したがって、筒体6は、超音波振動子2の上方に、垂直な姿勢で配設している。図の筒体6は、上端に向かって次第に細くなる円錐ホーンである。ただし、筒体は、内面の形状をエクスポーネンシャルカーブとするエクスポーネンシャルホーンとすることもできる。円錐ホーンやエクスポーネンシャルホーンの筒体6は、内部に効率よく超音波振動を伝達させて、洗浄液Wを能率よくミストMに霧化できる特徴がある。ただ、本発明は、筒体を、円筒形状、楕円筒状、多角筒状とするとすることもできる。   In the illustrated apparatus, a cylindrical body 6 is disposed in an ultrasonic atomizing chamber 4. The cylindrical body 6 is disposed above each ultrasonic transducer 2 and efficiently atomizes the cleaning liquid W ultrasonically vibrated by the ultrasonic transducer 2 into the mist M. The cylindrical body 6 has a cylindrical shape with an opening 12 at the upper end. The cylindrical body 6 is filled with the cleaning liquid W, and ultrasonic vibration is applied to the cleaning liquid W in the cylindrical body 6 toward the spray port 12 so that the spray liquid is atomized and scattered from the spray port 12 to the mist M. The ultrasonic transducer 2 shown in the figure emits ultrasonic waves upward. Accordingly, the cylindrical body 6 is disposed in a vertical posture above the ultrasonic transducer 2. The cylindrical body 6 shown in the figure is a conical horn that becomes gradually thinner toward the upper end. However, the cylindrical body can also be an exponential horn whose inner surface has an exponential curve. The cylinder 6 of the conical horn or the exponential horn has a feature that the ultrasonic vibration can be efficiently transmitted to the inside and the cleaning liquid W can be efficiently atomized into the mist M. However, in the present invention, the cylindrical body may be a cylindrical shape, an elliptical cylindrical shape, or a polygonal cylindrical shape.

筒体6の下端開口部の内形は、超音波振動を効率よく内部に伝達できるように、超音波振動子2の外形より小さく、あるいは大きくして、超音波振動される液柱Pが内面に沿って上昇するようにする。たとえば、筒体6の下端の開口部の内径は、超音波振動子2の外径の50〜150%、好ましくは60〜100%とする。   The inner shape of the lower end opening of the cylindrical body 6 is smaller or larger than the outer shape of the ultrasonic vibrator 2 so that the ultrasonic vibration can be efficiently transmitted to the inside, and the liquid column P that is ultrasonically vibrated is the inner surface. To ascend along. For example, the inner diameter of the opening at the lower end of the cylindrical body 6 is 50 to 150%, preferably 60 to 100% of the outer diameter of the ultrasonic transducer 2.

さらに、筒体6の高さと噴霧口12の大きさは、筒体6の内部に沿って、いいかえると筒体6の内面と液柱Pとの間に気層ができないように、超音波振動による液柱Pが筒体6の内部に沿って上昇し、噴霧口12の近傍でミストMとなって飛散するように設計される。ただ、液柱Pが噴霧口12から突出するように、いいかえると筒体6を液柱Pよりも低くすることもできる。したがって、筒体6の高さと噴霧口12の大きさは、超音波振動子2の大きさ、出力、周波数等によって最適値に設計される。   Further, the height of the cylindrical body 6 and the size of the spray port 12 are ultrasonic vibrations so that an air layer is not formed between the inner surface of the cylindrical body 6 and the liquid column P along the inside of the cylindrical body 6. It is designed that the liquid column P due to rises along the inside of the cylindrical body 6 and scatters as mist M in the vicinity of the spray port 12. However, in other words, the cylindrical body 6 can be made lower than the liquid column P so that the liquid column P protrudes from the spray port 12. Therefore, the height of the cylindrical body 6 and the size of the spray port 12 are designed to optimum values depending on the size, output, frequency, etc. of the ultrasonic transducer 2.

図1の筒体6は、下端を洗浄液Wの液面よりも下方に、噴霧口12を液面よりも上方に配設する。この筒体6は、液面よりも下方の超音波振動を内部に案内し、液面から上方にある噴霧口12から洗浄液WをミストMとして飛散させる。図の筒体6は、超音波振動子2から上方に離して配設している。ただ、筒体は、図示しないが、底部に超音波振動子を配設して、超音波振動子で筒体の下端の開口部を閉塞することもできる。下端を超音波振動子で閉塞する筒体は、内部に洗浄液を供給する流入口を開口して、この流入口から筒体の内部に洗浄液を供給する。   1 has a lower end disposed below the liquid surface of the cleaning liquid W and a spray port 12 disposed above the liquid surface. The cylindrical body 6 guides ultrasonic vibration below the liquid level to the inside, and scatters the cleaning liquid W as mist M from the spray port 12 located above the liquid level. The cylindrical body 6 shown in the figure is arranged away from the ultrasonic transducer 2 upward. However, although the cylindrical body is not shown, an ultrasonic vibrator can be disposed at the bottom, and the opening at the lower end of the cylindrical body can be closed with the ultrasonic vibrator. The cylindrical body whose lower end is closed by an ultrasonic vibrator opens an inlet for supplying the cleaning liquid to the inside, and supplies the cleaning liquid from the inlet to the inside of the cylinder.

さらに、筒体6は、図2に示すように、噴霧口12から霧化されるミストMに搬送気体を供給する噴気口14を開口して、この噴気口14を気体供給源8に連結している。気体供給源8から供給される搬送気体は噴気口14からミストMに供給され、噴霧口12から噴霧されるミストMは搬送気体中に霧化される。この状態で霧化されたミストMを含む搬送気体は被洗浄物Hの表面に噴霧されて、被洗浄物Hを洗浄する。搬送気体は空気である。ただし、搬送気体は空気に特定せず、洗浄液を霧化できる全ての気体、たとえば窒素や炭酸ガス等の全ての気体とすることもできる。図の装置は、気体供給源8を送風機8Aとして、搬送気体を空気としている。気体供給源8の送風機8Aは、空気を吸入して、ミストMに搬送気体の空気を供給する。閉鎖構造の超音波霧化室4は、送風機8Aから供給される空気を連結ダクト7に排気して、連結ダクト7で供給部5に送風する。したがって、閉鎖構造の超音波霧化室4に送風機8Aで搬送気体を強制送風する装置は、連結ダクト7に搬送気体を強制送風する送風機などを設けることなく、超音波霧化室4から供給部5に搬送気体を送風できる。ただ、連結ダクトに送風機(図示せず)を連結し、この送風機で超音波霧化室から供給部に搬送気体を強制送風することもできる。   Furthermore, as shown in FIG. 2, the cylindrical body 6 opens an injection port 14 for supplying a carrier gas to the mist M atomized from the spray port 12, and connects the injection port 14 to the gas supply source 8. ing. The carrier gas supplied from the gas supply source 8 is supplied to the mist M from the jet port 14, and the mist M sprayed from the spray port 12 is atomized into the carrier gas. The carrier gas containing the mist M atomized in this state is sprayed on the surface of the cleaning object H to clean the cleaning object H. The carrier gas is air. However, the carrier gas is not limited to air, and may be any gas capable of atomizing the cleaning liquid, for example, any gas such as nitrogen or carbon dioxide. In the illustrated apparatus, the gas supply source 8 is a blower 8A, and the carrier gas is air. The blower 8A of the gas supply source 8 sucks air and supplies the carrier gas air to the mist M. The ultrasonic atomizing chamber 4 having a closed structure exhausts air supplied from the blower 8 </ b> A to the connection duct 7 and blows it to the supply unit 5 through the connection duct 7. Therefore, the device for forcibly blowing the carrier gas with the blower 8A into the ultrasonic atomizing chamber 4 having the closed structure does not provide a blower for forcibly blowing the carrier gas in the connecting duct 7, and the supply unit from the ultrasonic atomizing chamber 4 is provided. The carrier gas can be blown to 5. However, it is also possible to connect a blower (not shown) to the connection duct and forcibly blow the carrier gas from the ultrasonic atomization chamber to the supply unit with this blower.

気体供給源8が超音波霧化室4に供給する搬送気体の風量は、霧化されるミストMの粒径に影響を与える。搬送気体の風量を多くすると、ミストMの粒径は小さくなる。搬送気体は、ミストMの霧化量が多くなると多くする必要がある。ミストMの霧化量は、超音波振動子2の入力電力を大きくして増加する。したがって、搬送気体の風量は、超音波振動子2の入力電力に比例して大きくする必要がある。このことから、気体供給源8がミストMに供給する搬送気体の風量は、超音波振動子2の入力電力1Wに対して、1リットル/分以上、好ましくは、1.5W以上、さらに好ましくは3W以上とする。   The air volume of the carrier gas supplied from the gas supply source 8 to the ultrasonic atomization chamber 4 affects the particle size of the mist M to be atomized. When the air volume of the carrier gas is increased, the particle size of the mist M becomes smaller. The carrier gas needs to be increased as the amount of atomization of the mist M increases. The amount of atomization of the mist M increases by increasing the input power of the ultrasonic transducer 2. Therefore, the air volume of the carrier gas needs to be increased in proportion to the input power of the ultrasonic transducer 2. From this, the air volume of the carrier gas supplied from the gas supply source 8 to the mist M is 1 liter / minute or more, preferably 1.5 W or more, more preferably, with respect to the input power 1 W of the ultrasonic transducer 2. 3W or more.

図の気体供給源8は、超音波霧化室4に送風する搬送気体の風量を変化させる風量変化機構37を備えている。図に示す風量変化機構37は、送風機8Aの運転を制御するインバータ37Aである。この風量変化機構37は、インバータ37Aで送風機8Aのファンの回転数を制御して、超音波霧化室4に供給する搬送気体の風量を調整する。ただ、風量変化機構は、図の鎖線で示すように、ダンパー37Bとして、送風機8Aの排出側に配設することもできる。このダンパー37Bは、搬送気体を通過させる開口面積を調整して、超音波霧化室4に供給する搬送気体の風量を調整する。   The gas supply source 8 shown in the figure includes an air volume changing mechanism 37 that changes the air volume of the carrier gas blown into the ultrasonic atomizing chamber 4. The air volume changing mechanism 37 shown in the figure is an inverter 37A that controls the operation of the blower 8A. This air volume changing mechanism 37 controls the air speed of the carrier gas supplied to the ultrasonic atomizing chamber 4 by controlling the rotational speed of the fan of the blower 8A by the inverter 37A. However, the air volume changing mechanism can also be disposed as a damper 37B on the discharge side of the blower 8A, as indicated by a chain line in the figure. The damper 37 </ b> B adjusts the opening area through which the carrier gas passes and adjusts the air volume of the carrier gas supplied to the ultrasonic atomization chamber 4.

図2の筒体6は、壁面を二重構造として平面の内部にダクト15を設けている。ダクト15は、筒体6の上端に開口している噴気口14に連結している。ダクト15に供給される搬送気体は、噴気口14から排出される。噴気口14は、筒体6上端の周囲に、スリット状に開口されている。スリット状の噴気口14は、搬送気体をリング状に排気する。リング状に排気される搬送気体の内側にミストMが放出される。この構造の筒体6は、ミストMを新鮮な搬送気体の内側に噴霧する。このため、洗浄液Wを効率よくミストMに霧化できる。ミストMが洗浄液濃度の低い搬送気体中に霧化されるからである。   The cylindrical body 6 in FIG. 2 is provided with a duct 15 inside the plane with a double wall surface. The duct 15 is connected to an air outlet 14 opened at the upper end of the cylindrical body 6. The carrier gas supplied to the duct 15 is exhausted from the jet port 14. The fumarole 14 is opened in a slit shape around the upper end of the cylindrical body 6. The slit-shaped air outlet 14 exhausts the carrier gas in a ring shape. Mist M is discharged inside the carrier gas exhausted in a ring shape. The cylinder 6 having this structure sprays the mist M inside the fresh carrier gas. For this reason, the cleaning liquid W can be efficiently atomized into the mist M. This is because the mist M is atomized in the carrier gas having a low cleaning liquid concentration.

図2の筒体6は、連結ダクト16に脱着できるように連結している。連結ダクト16には、図示しないが、複数の筒体を連結している。図2の筒体6は、下端の外周に雄ネジ17を設け、連結ダクト16には筒体6の雄ネジ17をねじ込む雌ネジ穴18を設けている。筒体6は、雄ネジ17を雌ネジ穴18の雌ネジにねじ込んで、連結ダクト16に連結される。連結ダクト16は、内部に搬送気体の供給ダクト19を設けている。筒体6は、連結ダクト16に連結される状態で、ダクト15の入口を連結ダクト16の供給ダクト19に連結して、連結ダクト16の供給ダクト19から筒体6のダクト15に搬送気体が供給される。図2の筒体6は、雄ネジ17の上方と底面とに、リング溝を設けて、ここにOリング20、21を入れている。Oリング20、21は、筒体6を連結ダクト16に連結する状態で、雌ネジ穴18の内面に密着して、連結ダクト16と筒体6との連結部の気体漏れを阻止する。すなわち、筒体6を気密な状態で連結ダクト16に連結する。   The cylinder 6 in FIG. 2 is connected to the connection duct 16 so as to be detachable. Although not shown, a plurality of cylinders are connected to the connection duct 16. The cylinder 6 of FIG. 2 is provided with a male screw 17 on the outer periphery of the lower end, and the connecting duct 16 is provided with a female screw hole 18 into which the male screw 17 of the cylinder 6 is screwed. The cylinder 6 is connected to the connecting duct 16 by screwing the male screw 17 into the female screw of the female screw hole 18. The connecting duct 16 is provided with a carrier gas supply duct 19 therein. The cylinder 6 is connected to the connection duct 16, the inlet of the duct 15 is connected to the supply duct 19 of the connection duct 16, and the carrier gas is transferred from the supply duct 19 of the connection duct 16 to the duct 15 of the cylinder 6. Supplied. The cylindrical body 6 in FIG. 2 is provided with ring grooves in the upper and bottom surfaces of the male screw 17 and O-rings 20 and 21 are inserted therein. The O-rings 20 and 21 are in close contact with the inner surface of the female screw hole 18 in a state where the cylinder 6 is connected to the connection duct 16, and prevent gas leakage at the connection portion between the connection duct 16 and the cylinder 6. That is, the cylinder 6 is connected to the connection duct 16 in an airtight state.

以上の超音波霧化機1は、超音波振動子2を超音波振動させて、洗浄液WをミストMとして筒体6の噴霧口12から飛散させる。洗浄液Wは、筒体6の内部で超音波振動され、噴霧口12からミストMとして飛散される。図の超音波霧化機1は、超音波振動子2を上向きに配設している。超音波振動子2は、底から筒体6の内部に向かって上向きに超音波を放射して、洗浄液Wを超音波振動させ、洗浄液Wを筒体6の内部で押し上げて、噴霧口12からミストMとして飛散させる。超音波振動子2は、垂直方向に超音波を放射する。   In the ultrasonic atomizer 1 described above, the ultrasonic vibrator 2 is ultrasonically vibrated to scatter the cleaning liquid W as the mist M from the spray port 12 of the cylindrical body 6. The cleaning liquid W is ultrasonically vibrated inside the cylindrical body 6 and scattered as mist M from the spray port 12. The ultrasonic atomizer 1 shown in the figure has an ultrasonic transducer 2 disposed upward. The ultrasonic vibrator 2 radiates ultrasonic waves upward from the bottom toward the inside of the cylindrical body 6 to ultrasonically vibrate the cleaning liquid W, and pushes up the cleaning liquid W inside the cylindrical body 6, Spatter as mist M. The ultrasonic transducer 2 emits ultrasonic waves in the vertical direction.

以上のように、筒体6を備える分離装置は、超音波霧化室4の洗浄液Wを効率よくミストMに霧化できる特長がある。ただ、本発明の分離装置は、必ずしも筒体を設ける必要はない。筒体のない分離装置は、超音波霧化室において、超音波振動子で洗浄液を超音波振動させて、液面に発生する液柱の表面からミストに霧化することができる。   As described above, the separation device including the cylindrical body 6 has an advantage that the cleaning liquid W in the ultrasonic atomizing chamber 4 can be efficiently atomized into the mist M. However, the separation device of the present invention does not necessarily need to be provided with a cylinder. A separation apparatus without a cylinder can be atomized into mist from the surface of the liquid column generated on the liquid surface by ultrasonically vibrating the cleaning liquid with an ultrasonic vibrator in the ultrasonic atomization chamber.

図1の超音波霧化機1は、複数の超音波振動子2と、これ等の超音波振動子2を超音波振動させる超音波電源3とを備える。超音波振動子2は、筒体6の下方に固定される。図に示す超音波霧化機1は、複数の超音波振動子2を備える。このように複数の超音波振動子2を備える超音波霧化機1は、多量の洗浄液Wを効率よくミストMに霧化できる特長がある。ただ、超音波霧化機は、ひとつの超音波振動子を備えて、単一の超音波振動子で洗浄液をミストに霧化することもできる。超音波霧化室に設ける超音波振動子の数は、求められる霧化量に応じて種々に変更される。   The ultrasonic atomizer 1 in FIG. 1 includes a plurality of ultrasonic transducers 2 and an ultrasonic power source 3 that ultrasonically vibrates these ultrasonic transducers 2. The ultrasonic transducer 2 is fixed below the cylindrical body 6. An ultrasonic atomizer 1 shown in the figure includes a plurality of ultrasonic transducers 2. As described above, the ultrasonic atomizer 1 including the plurality of ultrasonic vibrators 2 has an advantage that a large amount of the cleaning liquid W can be efficiently atomized into the mist M. However, the ultrasonic atomizer includes one ultrasonic vibrator and can atomize the cleaning liquid into mist with a single ultrasonic vibrator. The number of ultrasonic vibrators provided in the ultrasonic atomization chamber is variously changed according to the required amount of atomization.

超音波霧化室4で霧化された洗浄液WのミストMは、供給部5に供給される。ミストMを供給部5に移送するために、図の装置は、供給部5を連結ダクト7で超音波霧化室4に連結している。   The mist M of the cleaning liquid W atomized in the ultrasonic atomizing chamber 4 is supplied to the supply unit 5. In order to transfer the mist M to the supply unit 5, the illustrated apparatus connects the supply unit 5 to the ultrasonic atomization chamber 4 by a connection duct 7.

さらに、図1の装置は、筒体6の噴霧口12から飛散するミストMを効率よく回収して連結ダクト7に供給させるために、筒体6の噴霧口12の上方に、ミストMの吸入部9を設けている。図に示す吸入部9は、円筒状のパイプで、筒体6の上方に垂直の姿勢で配置している。筒状のパイプである吸入部9は、下端を筒体6の上部に配置して、上端を超音波霧化室4の上方に延長している。図に示す吸入部9は、筒体6の上端縁に位置して、円筒状パイプの下端縁を配置している。ただ、吸入部は、下端部を筒体の上部にラップする状態で配置することも、あるいは、下端縁を筒体の上端縁から離して配置することもできる。さらに、吸入部9の下端の開口部は、筒体6の噴霧口12よりも広い開口面積としており、筒体6の上端から飛散されるミストMを漏れなく回収できるようにしている。吸入部9は上端を、超音波霧化室4の上部に連結しており、この連結部を連結ダクト7に連結して、吸入部9で回収されたミストMを連結ダクト7に移送するようにしている。ただ、吸入部は、必ずしも設ける必要はない。   Further, the apparatus of FIG. 1 sucks the mist M above the spray port 12 of the cylindrical body 6 in order to efficiently collect the mist M scattered from the spray port 12 of the cylindrical body 6 and supply it to the connecting duct 7. Part 9 is provided. The suction portion 9 shown in the figure is a cylindrical pipe and is arranged in a vertical posture above the cylindrical body 6. The suction portion 9, which is a cylindrical pipe, has a lower end disposed above the cylindrical body 6 and an upper end extending above the ultrasonic atomization chamber 4. The suction part 9 shown in the figure is located at the upper end edge of the cylindrical body 6 and arranges the lower end edge of the cylindrical pipe. However, the suction part can be arranged in a state where the lower end part is wrapped on the upper part of the cylinder, or the lower end edge can be arranged away from the upper end edge of the cylinder. Further, the opening at the lower end of the suction portion 9 has a larger opening area than the spray port 12 of the cylinder 6 so that the mist M scattered from the upper end of the cylinder 6 can be collected without leakage. The suction part 9 has an upper end connected to the upper part of the ultrasonic atomizing chamber 4, and this connection part is connected to the connection duct 7 so that the mist M collected by the suction part 9 is transferred to the connection duct 7. I have to. However, the inhalation part is not necessarily provided.

さらに、図1の装置は、超音波霧化室4の上面に、排出口1Aを開口して、ここに連結ダクト7を連結している。さらに、図の超音波霧化室4は、排出口1Aに、霧化された大粒の水粒子を除去するデミスタ38を設けている。この装置は、超音波霧化室4から排出される大粒のミストをデミスタ38で除去して供給部5に供給するので、供給部5に供給されるミストの平均粒径を小さくできる。このため、供給部5には、微細なミストのみを供給して、微細なミストの洗浄液で被洗浄物Hを効果的に洗浄できる。 Further, in the apparatus of FIG. 1, a discharge port 1 </ b> A is opened on the upper surface of the ultrasonic atomizing chamber 4, and a connecting duct 7 is connected thereto. Further, the ultrasonic atomizing chamber 4 shown in the figure is provided with a demister 38 for removing the atomized large water particles at the outlet 1A. Since this apparatus removes the large mist discharged from the ultrasonic atomization chamber 4 by the demister 38 and supplies it to the supply unit 5, the average particle diameter of the mist supplied to the supply unit 5 can be reduced. Therefore, the supply unit 5 supplies only fine mist, Ru can be effectively cleaned cleaning object H with a washing liquid of a fine mist.

供給部55は、霧化されたミストMを被洗浄物Hに吹き付けて、被洗浄物Hの表面を洗浄する。図1の供給部5は被洗浄物HにミストMを噴射するノズル5Aである。ノズル5Aは、ミストMを含む搬送気体を被洗浄物Hの表面に噴射して、被洗浄物Hを洗浄する。   The supply unit 55 sprays the atomized mist M onto the cleaning object H to clean the surface of the cleaning object H. The supply unit 5 in FIG. 1 is a nozzle 5 </ b> A that injects mist M onto an object H to be cleaned. Nozzle 5A injects carrier gas containing mist M on the surface of cleaning object H, and cleans cleaning object H.

図に示す装置を使用して、以下のようにして洗浄液Wのエチルアルコールを霧化できる。洗浄液Wであるエチルアルコールを超音波霧化室に供給する。超音波振動子の入力電力を10W、振動周波数を2.4MHzの超音波振動子で超音波振動して、洗浄液WをミストMに霧化する。洗浄液Wの温度を30℃、超音波霧化室に供給する搬送気体を空気として、その風量を10リットル/分とする。洗浄液WミストMの平均粒径は、1nmとなる。   Using the apparatus shown in the figure, the ethyl alcohol of the cleaning liquid W can be atomized as follows. Ethyl alcohol which is the cleaning liquid W is supplied to the ultrasonic atomization chamber. The cleaning liquid W is atomized into mist M by ultrasonic vibration with an ultrasonic vibrator having an input power of the ultrasonic vibrator of 10 W and a vibration frequency of 2.4 MHz. The temperature of the cleaning liquid W is 30 ° C., the carrier gas supplied to the ultrasonic atomization chamber is air, and the air volume is 10 liters / minute. The average particle diameter of the cleaning liquid W mist M is 1 nm.

本発明の一実施例にかかる洗浄装置の概略構成図である。It is a schematic block diagram of the washing | cleaning apparatus concerning one Example of this invention. 図1に示す洗浄装置の筒体を示す断面正面図である。It is a cross-sectional front view which shows the cylinder of the washing | cleaning apparatus shown in FIG.

1…超音波霧化機 1A…排出口
2…超音波振動子
3…超音波電源
4…超音波霧化室
5…供給部 5A…ノズル
6…筒体
7…連結ダクト
8…気体供給源 8A…送風機
9…吸入部
10…ポンプ
11…原液槽
12…噴霧口
14…噴気口
15…ダクト
16…連結ダクト
17…雄ネジ
18…雌ネジ穴
19…供給ダクト
20…Oリング
21…Oリング
37…風量変化機構 37A…インバータ
37B…ダンパー
38…デミスタ
H…被洗浄物
P…液柱
M…ミスト
W…洗浄液
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic atomizer 1A ... Discharge port 2 ... Ultrasonic vibrator 3 ... Ultrasonic power supply 4 ... Ultrasonic atomization chamber 5 ... Supply part 5A ... Nozzle 6 ... Cylindrical body 7 ... Connection duct 8 ... Gas supply source 8A DESCRIPTION OF SYMBOLS ... Air blower 9 ... Inhalation part 10 ... Pump 11 ... Concentration tank 12 ... Spraying port 14 ... Foaming port 15 ... Duct 16 ... Connection duct 17 ... Male screw 18 ... Female screw hole 19 ... Supply duct 20 ... O-ring 21 ... O-ring 37 ... Air volume change mechanism 37A ... Inverter
37B ... Damper 38 ... Demister H ... Object to be cleaned P ... Liquid column M ... Mist W ... Cleaning liquid

Claims (3)

揮発性の液体である洗浄液(W)を超音波振動させてミスト(M)とし、このミスト(M)を被洗浄物(H)の表面に供給して被洗浄物(H)を洗浄する洗浄方法であって、
ミスト(M)を含む搬送気体の通路に設けてなる、大粒のミストを分離するデミスタ(38)でもって、前記洗浄液(W)のミスト(M)に含まれる大粒のミストを除去して、ミストの平均粒径を小さくして、被洗浄物(H)の表面に搬送気体の空気を介して供給することを特徴とする洗浄方法。
A cleaning liquid (W) that is a volatile liquid is ultrasonically vibrated into a mist (M), and this mist (M) is supplied to the surface of the object to be cleaned (H) to clean the object to be cleaned (H). A method,
A demister (38) for separating large mist, which is provided in the passage of the carrier gas containing mist (M), removes the large mist contained in the mist (M) of the cleaning liquid (W), and A cleaning method, characterized in that the average particle size is reduced and supplied to the surface of the object to be cleaned (H) via air as carrier gas .
揮発性の液体である洗浄液(W)を超音波振動させてミスト(M)に霧化する超音波霧化機(1)と、この超音波霧化機(1)で霧化されたミスト(M)を被洗浄物(H)の表面に供給する供給部(5)とを備え、超音波霧化機(1)は、洗浄液(W)を入れる超音波霧化室(4)と、この超音波霧化室(4)の洗浄液(W)を超音波振動させてミスト(M)に霧化する超音波振動子(2)と、超音波振動子(2)に高周波電力を供給する超音波電源(3)と、ミスト(M)を含む搬送気体の通路に設けてなる、大粒のミストを分離する機構のデミスタ(38)を備え、
さらに、前記超音波霧化室(4)に搬送気体の空気を強制送風する気体供給源(8)を備え、この気体供給源(8)は、前記超音波霧化室(4)に送風する搬送気体の風量を変化させる風量変化機構(37)を有し、
超音波霧化機(1)で霧化されたミスト(M)から大粒のミストを分離する機構のデミスタ(38)で大粒のミストが除去されたミスト(M)を供給部(5)が被洗浄物(H)の表面に供給して、被洗浄物(H)を洗浄する洗浄装置。
Ultrasonic atomizer (1) that ultrasonically vibrates cleaning liquid (W), which is a volatile liquid, into mist (M), and mist atomized by this ultrasonic atomizer (1) ( M) and a supply unit (5) for supplying the surface of the object (H) to be cleaned.The ultrasonic atomizer (1) includes an ultrasonic atomization chamber (4) for storing the cleaning liquid (W), The ultrasonic vibrator (2) that ultrasonically vibrates the cleaning liquid (W) in the ultrasonic atomization chamber (4) into the mist (M), and the ultrasonic vibrator that supplies high-frequency power to the ultrasonic vibrator (2) A sonic power source (3) and a demister (38) of a mechanism for separating a large mist, which is provided in a passage for a carrier gas containing mist (M),
Further, the ultrasonic atomization chamber (4) is provided with a gas supply source (8) for forcibly blowing the air of the carrier gas, and the gas supply source (8) blows air to the ultrasonic atomization chamber (4). It has an air volume change mechanism (37) that changes the air volume of the carrier gas,
The supply unit (5) covers the mist (M) from which the large mist has been removed by the demister (38) of the mechanism that separates the large mist from the mist (M) atomized by the ultrasonic atomizer (1). A cleaning device that supplies the surface of the object to be cleaned (H) to clean the object to be cleaned (H).
気体供給源(8)が、超音波振動子(2)の入力電力1Wに対して、1リットル/分以上の風量で超音波霧化室(4)に搬送気体を強制送風する請求項2に記載される洗浄装置。 Gas supply source (8), for the input power 1W ultrasonic transducer (2), 1 liter / min or more in air volume in claim 2 for forced air carrier gas to the ultrasonic atomizing chamber (4) The cleaning device described.
JP2006152595A 2006-05-31 2006-05-31 Cleaning method and cleaning equipment Expired - Fee Related JP4938357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152595A JP4938357B2 (en) 2006-05-31 2006-05-31 Cleaning method and cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152595A JP4938357B2 (en) 2006-05-31 2006-05-31 Cleaning method and cleaning equipment

Publications (2)

Publication Number Publication Date
JP2007324359A JP2007324359A (en) 2007-12-13
JP4938357B2 true JP4938357B2 (en) 2012-05-23

Family

ID=38856885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152595A Expired - Fee Related JP4938357B2 (en) 2006-05-31 2006-05-31 Cleaning method and cleaning equipment

Country Status (1)

Country Link
JP (1) JP4938357B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261077B2 (en) 2008-08-29 2013-08-14 大日本スクリーン製造株式会社 Substrate cleaning method and substrate cleaning apparatus
WO2012117943A1 (en) * 2011-02-28 2012-09-07 東京エレクトロン株式会社 Halogen elimination device for processing substrate to be processed, device for processing substrate to be processed, and method for processing substrate to be processed.
JP5680699B2 (en) * 2013-04-25 2015-03-04 株式会社Screenホールディングス Substrate cleaning method and substrate cleaning apparatus
JP6087801B2 (en) * 2013-12-18 2017-03-01 三菱日立パワーシステムズ株式会社 Method and apparatus for desalting metal members
KR102151325B1 (en) * 2015-12-11 2020-09-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Mist coating film forming apparatus and mist coating film forming method
CN105835261A (en) * 2016-03-22 2016-08-10 安徽华铂再生资源科技有限公司 Pollution-free cleaning method for storage battery shell crushed material
WO2023112707A1 (en) * 2021-12-17 2023-06-22 ナノミストテクノロジーズ株式会社 Ultrasonic atomization device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144790A (en) * 1991-03-18 1993-06-11 Taiyo Sanso Co Ltd Manufacturing device for superfine frozen particle
JP3139153B2 (en) * 1992-07-23 2001-02-26 株式会社デンソー Cleaning equipment
JP3335705B2 (en) * 1993-04-15 2002-10-21 富士フイルムマイクロデバイス株式会社 Gas phase decomposition method and decomposition apparatus
JP2000065302A (en) * 1998-08-24 2000-03-03 Shinei Kk Clean steam generating device
JP2002011420A (en) * 2000-06-28 2002-01-15 Sumitomo Precision Prod Co Ltd Device for treating substrate
JP2002110624A (en) * 2000-09-27 2002-04-12 Kaijo Corp Method and device for treating surface of semiconductor substrate
JP2004223378A (en) * 2003-01-22 2004-08-12 Shimada Phys & Chem Ind Co Ltd Liquid drop jet device
JP2005349301A (en) * 2004-06-10 2005-12-22 Seiko Epson Corp Washing device and washing method
JP4400523B2 (en) * 2004-07-22 2010-01-20 パナソニック株式会社 refrigerator
JP4938227B2 (en) * 2004-08-11 2012-05-23 ナノミストテクノロジーズ株式会社 Liquid separation method and separation apparatus
JP2006114738A (en) * 2004-10-15 2006-04-27 Realize Advanced Technology Ltd Method and apparatus for peeling resist

Also Published As

Publication number Publication date
JP2007324359A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4938357B2 (en) Cleaning method and cleaning equipment
JP5084007B2 (en) Particle separation method and separation apparatus
US6883724B2 (en) Method and device for production, extraction and delivery of mist with ultrafine droplets
US9044794B2 (en) Ultrasonic cleaning fluid, method and apparatus
JP2007311756A (en) Ultrasonic cleaner and ultrasonic cleaning method
JP6718566B1 (en) Exhaust gas abatement unit
JPWO2006129807A1 (en) Solution reactor and reaction method
JP4759760B2 (en) Fine atomization particle cleaning equipment
JP6539468B2 (en) Ultrasonic atomizer
JPH09253011A (en) Cyclone type wet electric cleaner
JP2006346611A (en) Washing liquid spraying apparatus
JP5392753B2 (en) Atomization device and atomization method using the same
JPH08309248A (en) Liquid atomizer
JP2015103608A5 (en)
JPH0964000A (en) Dry cleaning device
JP2012035166A (en) Fluid ejecting nozzle and washing device using the same
JP2007059416A (en) Substrate treatment device
JP4255818B2 (en) Ultrasonic cleaning nozzle and ultrasonic cleaning device
JP2006272210A (en) Atomization washing device
JPH06262149A (en) Cleaning method by focused ultrasonic wave
JP2012000580A (en) Bubble-containing liquid generating device and treatment device
JP2006125648A (en) Ultrasonic humidifier
JP2006272209A (en) Atomization washing device
JP2008264705A (en) Ultrasonic atomizing apparatus
KR101865348B1 (en) Apparatus of megasonic cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees