JP4935969B2 - Yeast caproic acid high production strain - Google Patents

Yeast caproic acid high production strain Download PDF

Info

Publication number
JP4935969B2
JP4935969B2 JP2005255738A JP2005255738A JP4935969B2 JP 4935969 B2 JP4935969 B2 JP 4935969B2 JP 2005255738 A JP2005255738 A JP 2005255738A JP 2005255738 A JP2005255738 A JP 2005255738A JP 4935969 B2 JP4935969 B2 JP 4935969B2
Authority
JP
Japan
Prior art keywords
yeast
strain
fas1
acid
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005255738A
Other languages
Japanese (ja)
Other versions
JP2007068411A (en
Inventor
政宏 浪瀬
正典 永吉
洋二 秦
章嗣 川戸
康久 安部
仁 下飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gekkeikan Sake Co Ltd
National Research Institute of Brewing
Original Assignee
Gekkeikan Sake Co Ltd
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gekkeikan Sake Co Ltd, National Research Institute of Brewing filed Critical Gekkeikan Sake Co Ltd
Priority to JP2005255738A priority Critical patent/JP4935969B2/en
Publication of JP2007068411A publication Critical patent/JP2007068411A/en
Application granted granted Critical
Publication of JP4935969B2 publication Critical patent/JP4935969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カプロン酸を高生産する酵母変異株、このような変異株の製造方法、及び酵母のカプロン酸の生産量の調節方法に関する。 The present invention relates to a yeast mutant strain that produces caproic acid at a high level, a method for producing such a mutant strain, and a method for regulating the production of caproic acid in yeast.

カプロン酸エチルは吟醸香の代表的な香気成分であり、吟醸酒の品質において重要な成分の一つである。カプロン酸エチルは前駆体であるカプロン酸がエステル化されて生じ、その生成量はカプロン酸の供給量に左右される。さらに、清酒中のカプロン酸は酵母の脂肪酸合成酵素(FAS)により生合成されるが、カプロン酸として蓄積されずに代謝されてしまう。従って、カプロン酸からのカプロン酸エチルの生産量は一般にごく僅かである。   Ethyl caproate is a typical aroma component of Ginjo aroma and is one of the important components in the quality of Ginjo sake. Ethyl caproate is produced by esterification of the precursor caproic acid, and the amount produced depends on the amount of caproic acid supplied. Furthermore, caproic acid in sake is biosynthesized by yeast fatty acid synthase (FAS), but is not accumulated as caproic acid but is metabolized. Therefore, the production of ethyl caproate from caproic acid is generally negligible.

従って、カプロン酸生産性をより高め、あるいは逆に抑えることは、清酒のような嗜好品の品質の追及において重要な課題である。また、清酒に限らず酵母によって製造される食品の全てにおいても商品の差別化に活用しうる。   Therefore, further increasing caproic acid productivity or conversely suppressing it is an important issue in pursuing the quality of luxury products such as sake. Moreover, it can utilize for the differentiation of goods not only in sake but also in all the foods manufactured with yeast.

ここで、特許文献1は、カプロン酸を高生産する変異酵母の育種法としてセルレニン耐性変異法を教えている。同文献には、各種酵母を変異処理し、セルレニン含有培地で生育する菌株を選択すれば、カプロン酸及び/又はカプロン酸エチルを多く生成するようになった変異株が得られることが記載されている。実施例では、清酒酵母からカプロン酸生産能が向上した株を得ている。   Here, Patent Document 1 teaches a cerulenin-resistant mutation method as a breeding method for mutant yeast that produces caproic acid at a high yield. This document describes that mutant strains that produce a large amount of caproic acid and / or ethyl caproate can be obtained by mutation treatment of various yeasts and selection of a strain that grows on a cerulenin-containing medium. Yes. In the Examples, strains with improved caproic acid production ability are obtained from sake yeast.

また、非特許文献1によれば、酵母のセルレニン耐性株では、脂肪酸合成酵素のαサブユニットをコードするFAS2遺伝子の一塩基置換により、FAS2に含まれる配列番号2に示される部分アミノ酸配列において、アミノ酸番号4のグリシンがセリンに置換されている。   In addition, according to Non-Patent Document 1, in the yeast cerulenin-resistant strain, in the partial amino acid sequence shown in SEQ ID NO: 2 contained in FAS2 by single base substitution of the FAS2 gene encoding the α subunit of fatty acid synthase, The glycine of amino acid number 4 is substituted with serine.

また非特許文献2によれば、試験管内変異導入(in vitro mutagenesis)で、上記グリシンをシステインに人為的に置換したセルレニン耐性酵母では、このグリシンがセリンに置換されたセルレニン耐性変異株よりカプロン酸生産量が高いことを教えている。
特公平7−46982号 Inokoshi et al, Mol. Gen Genet., 244,90-96 (1994) Aritomi et al, Biosci. Biotechnol. Biochem., 68, 206-214 (2004)
Further, according to Non-Patent Document 2, in the cerulenin-resistant yeast in which the glycine is artificially substituted with cysteine by in vitro mutagenesis, the caproic acid is more effective than the cerulenin-resistant mutant strain in which the glycine is substituted with serine. Teaching that production is high.
Japanese Patent Publication No.7-46982 Inokoshi et al, Mol. Gen Genet., 244,90-96 (1994) Aritomi et al, Biosci. Biotechnol. Biochem., 68, 206-214 (2004)

本発明は、カプロン酸生産量が向上した酵母変異株、このような変異株の製造方法、及び酵母のカプロン酸生産量の調節方法を提供することを課題とする。   It is an object of the present invention to provide a yeast mutant with improved caproic acid production, a method for producing such a mutant, and a method for regulating the caproic acid production of yeast.

上記課題を解決するために本発明者は研究を重ね、以下の知見を得た。
(i) 酵母の脂肪酸合成酵素のFAS1の配列番号1に示す部分アミノ酸配列においてアミノ酸番号7のXaaがグルタミン酸である場合は、アスパラギン酸である場合より、その酵母のカプロン酸生産量が高い。
(ii) FAS1遺伝子の配列番号3に示す部分塩基配列において塩基番号21のnがA又はであることにより、FAS1タンパク質が配列番号1に示す部分アミノ酸配列においてアミノ酸番号7のXaaがグルタミン酸であるものとなる。
(iii) 清酒酵母、及び焼酎酵母のFAS1は配列番号1に示す部分アミノ酸配列においてアミノ酸番号7のXaaがアスパラギン酸であるが、実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母、蒸留酒酵母、及び酵母基準株は、Xaaがグルタミン酸になった対応する部分アミノ酸配列を有する。
In order to solve the above-mentioned problems, the present inventor repeated research and obtained the following knowledge.
(i) In the partial amino acid sequence shown in SEQ ID NO: 1 of FAS1 of the fatty acid synthase of yeast, when Xaa of amino acid number 7 is glutamic acid, the amount of caproic acid produced by the yeast is higher than that of aspartic acid.
(ii) In the partial base sequence shown in SEQ ID NO: 3 of the FAS1 gene, when n of base number 21 is A or G , the FAS1 protein has Xaa of amino acid number 7 in the partial amino acid sequence shown in SEQ ID NO: 1 is glutamic acid It will be a thing.
(iii) FAS1 of sake yeast and shochu yeast is aspartic acid in the partial amino acid sequence shown in SEQ ID NO: 1, but laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top beer yeast, Lager brewer's yeast, distilled liquor yeast, and yeast reference strains have corresponding partial amino acid sequences where Xaa is glutamic acid.

本発明は、上記知見に基づき完成されたものであり、以下の酵母カプロン酸高生産株などを提供する。
項1. 配列番号1に示すアミノ酸配列のアミノ酸番号7のXaaがグルタミン酸である部分アミノ酸配列を有するFAS1を備える脂肪酸合成酵素を生産する酵母を変異処理し、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択することにより得られる酵母カプロン酸高生産株。
The present invention has been completed based on the above findings, and provides the following yeast caproic acid high-producing strains and the like.
Item 1. A strain producing a fatty acid synthase comprising FAS1 having a partial amino acid sequence in which Xaa of amino acid number 7 of the amino acid sequence shown in SEQ ID NO: 1 is glutamic acid is mutated, and a strain that has acquired cerulenin resistance from the mutated yeast is obtained. Yeast caproic acid high-producing strain obtained by selection.

項2. 実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母、蒸留酒酵母、及び酵母基準株からなる群より選ばれる酵母を変異処理し、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択することにより得られる酵母カプロン酸高生産株。   Item 2. Mutation treatment of yeast selected from the group consisting of laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top brewer's yeast, lager brewer's yeast, distilled liquor yeast, and yeast reference strain, and cerrenin resistance from the mutated yeast A yeast caproic acid high-producing strain obtained by selecting the acquired strain.

項3. 実験室酵母itr001株(FERM P−20638)。   Item 3. Laboratory yeast itr001 strain (FERM P-20638).

項4. 実験室酵母S288CR株(FERM P−20639)。   Item 4. Laboratory yeast strain S288CR (FERM P-20639).

項5. 配列番号1に示すアミノ酸配列においてアミノ酸番号7のXaaがグルタミン酸である部分アミノ酸配列を有するFAS1と、配列番号2に示すアミノ酸配列においてアミノ酸番号4のXaaがセリン、又はシステインである部分アミノ酸配列を有するFAS2とを備える脂肪酸合成酵素を生産する酵母カプロン酸高生産株。   Item 5. FAS1 having a partial amino acid sequence in which Xaa at amino acid number 7 is glutamic acid in the amino acid sequence shown in SEQ ID NO: 1 and a partial amino acid sequence in which Xaa at amino acid number 4 in the amino acid sequence shown in SEQ ID NO: 2 is serine or cysteine A yeast caproic acid high-producing strain that produces a fatty acid synthase comprising FAS2.

項6. 配列番号1に示すアミノ酸配列においてアミノ酸番号7のXaaがグルタミン酸である部分アミノ酸配列を有するFAS1を備える脂肪酸合成酵素を生産する酵母を変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む酵母カプロン酸高生産株の製造方法。   Item 6. Mutating a yeast producing a fatty acid synthase having FAS1 having a partial amino acid sequence in which Xaa of amino acid number 7 is glutamic acid in the amino acid sequence shown in SEQ ID NO: 1, and acquired cerulenin resistance from the mutated yeast A method for producing a yeast caproic acid high-producing strain comprising a step of selecting a strain.

項7. 実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母、蒸留酒酵母、及び酵母基準株からなる群より選ばれる酵母を変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む酵母カプロン酸高生産株の製造方法。   Item 7. Mutating yeast selected from the group consisting of laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top brewer's yeast, lager brewer's yeast, distilled liquor yeast, and yeast reference strain, and cerulenin from the mutated yeast A method for producing a yeast caproic acid high-producing strain comprising a step of selecting a strain that has acquired resistance.

項8. 清酒酵母、又は焼酎酵母の脂肪酸合成酵素FAS1中に含まれる配列番号1に示す部分アミノ酸配列のアミノ酸番号7のXaaをアスパラギン酸からグルタミン酸に置換する工程と、変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む酵母カプロン酸高生産株の製造方法。   Item 8. A step of substituting Xaa of amino acid number 7 of the partial amino acid sequence shown in SEQ ID NO: 1 contained in fatty acid synthase FAS1 of sake yeast or shochu yeast from aspartic acid to glutamic acid, a step of mutagenesis, A method for producing a yeast caproic acid high-producing strain comprising a step of selecting a strain that has acquired cerulenin resistance from the inside.

項9. 酵母の脂肪酸合成酵素FAS1遺伝子中に含まれる配列番号3に示す部分塩基配列の塩基番号21のnを置換する工程を含む、酵母のカプロン酸生産量を調節する方法。   Item 9. A method for regulating the amount of caproic acid produced by yeast, comprising the step of substituting n of base number 21 of the partial base sequence shown in SEQ ID NO: 3 contained in the fatty acid synthase FAS1 gene of yeast.

項10. 酵母を用いて酒類、又はパンを製造する方法であって、酵母として、項1、2、若しくは5に記載の酵母カプロン酸高生産株、又は項3、若しくは4の株を使用する方法。   Item 10. A method for producing alcoholic beverages or bread using yeast, wherein the yeast is a yeast caproic acid high-producing strain according to item 1, 2, or 5, or a strain according to item 3 or 4.

項11. 酵母として、項1、2、若しくは5に記載の酵母カプロン酸高生産株、又は項3、若しくは4の株を使用して製造された酒類、又はパン。   Item 11. Item 6. A liquor produced by using a yeast caproic acid high-producing strain according to Item 1, 2, or 5, or a strain according to Item 3 or 4, as bread.

従来、酵母の脂肪酸合成酵素のFAS2の変異により、カプロン酸の生産量が増大すると考えられてきたが、本発明により、FAS1の変異によっても、カプロン酸生産量が増大することが見出された。   Conventionally, it has been thought that the production amount of caproic acid is increased by the mutation of FAS2 of the fatty acid synthase of yeast. However, it was found that the production amount of caproic acid is also increased by the mutation of FAS1 according to the present invention. .

即ち、殆どの酵母において、FAS1は、配列番号1に示す部分アミノ酸配列においてアミノ酸番号7がアスパラギン酸又はグルタミン酸であるが、カプロン酸の生産量は、このアミノ酸がグルタミン酸である酵母菌株ではアスパラギン酸である酵母菌株の約1.4倍である。また、実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母、蒸留酒酵母、及び酵母基準株は、上記のアミノ酸(Xaa)がグルタミン酸である。   That is, in most yeasts, FAS1 is aspartic acid or glutamic acid in the partial amino acid sequence shown in SEQ ID NO: 1, but the amount of caproic acid produced is aspartic acid in yeast strains in which this amino acid is glutamic acid. It is about 1.4 times that of a certain yeast strain. Moreover, in the laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top brewer's yeast, lager brewer's yeast, distilled liquor yeast, and yeast reference strain, the amino acid (Xaa) is glutamic acid.

従って、実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母、蒸留酒酵母、及び酵母基準株のような上記アミノ酸がグルタミン酸であるような酵母菌株を変異させてセルレニン耐性を獲得したFAS2変異株を選択すれば、FAS1及びFAS2の双方の構造に起因してカプロン酸生産量が非常に高い酵母変異株が得られる。   Therefore, cultivated yeast strains such as laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top brewer's yeast, lager brewer's yeast, distilled liquor yeast, and yeast reference strains such that the amino acid is glutamic acid are cerulenin resistant. If a FAS2 mutant strain that has acquired the above is selected, a yeast mutant strain with a very high caproic acid production amount can be obtained due to the structures of both FAS1 and FAS2.

以下、本発明を詳細に説明する。
(I)酵母カプロン酸高生産株、及びその製造方法
本発明の酵母カプロン酸高生産株は、アミノ酸配列(Asn Thr Asp Asp Tyr Phe Xaa Glu Leu Arg;配列番号1)においてアミノ酸番号7のXaaがグルタミン酸である部分アミノ酸配列を有するFAS1を備える脂肪酸合成酵素を生産する酵母を変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む方法により得られる。
Hereinafter, the present invention will be described in detail.
(I) Yeast caproic acid high production strain and production method thereof The yeast caproic acid high production strain of the present invention has an amino acid number in the amino acid sequence (Asn Thr Asp Asp Tyr Phe Xaa Glu Leu Arg; SEQ ID NO: 1). A method comprising a step of mutating a yeast producing a fatty acid synthase comprising FAS1 having a partial amino acid sequence wherein Xaa of 7 is glutamic acid, and a step of selecting a strain having acquired cerulenin resistance from the mutated yeast can get.

配列番号1のアミノ酸番号7のアミノ酸(以下、「目的アミノ酸」という)は、酵母標準菌株である実験室酵母S288C株のFAS1では第171番目に位置するアミノ酸である。実験室酵母S288C株のFAS1のアミノ酸配列を配列番号10に示す。FAS1の対応する部分アミノ酸配列中のこのアミノ酸がグルタミン酸である酵母としては、例えば、実験室酵母、ワイン酵母、ウィスキー酵母、パン酵母、上面ビール酵母、ラガービール酵母(Saccharomyses carlsbergensis)、蒸留酒酵母、及び酵母基準株などが挙げられる。   The amino acid of amino acid number 7 of SEQ ID NO: 1 (hereinafter referred to as “target amino acid”) is the amino acid located at position 171 in FAS1 of laboratory yeast S288C strain which is a yeast standard strain. The amino acid sequence of FAS1 of laboratory yeast strain S288C is shown in SEQ ID NO: 10. Examples of the yeast in which this amino acid in the corresponding partial amino acid sequence of FAS1 is glutamic acid include laboratory yeast, wine yeast, whiskey yeast, baker's yeast, top beer yeast, lager beer yeast (Saccharomyses carlsbergensis), distilled liquor yeast, And yeast reference strains.

清酒酵母、焼酎酵母などでは、本来上記の目的アミノ酸がアスパラギン酸であるが、清酒酵母、焼酎酵母においてこの目的アミノ酸がグルタミン酸に置換された変異株を用いることもできる。FAS1遺伝子において、上記目的アミノ酸をコードするのは、その部分塩基配列であるAAC ACC GAC GAC TAC TTT GAn GAA TTG CGT(配列番号3)において塩基番号19〜21のGAnからなるコドンである。配列番号3の塩基配列において塩基番号21のn(以下、「目的塩基」という)は、実験室酵母S288C株のFAS1遺伝子配列では513番目に位置する。実験室酵母S288C株のFAS1遺伝子の塩基配列を配列番号11に示す。清酒酵母や焼酎酵母では、上記の目的塩基がCであるが、この塩基がA又はGである場合に、上記の目的アミノ酸がグルタミン酸になる。従って、例えば、清酒酵母や焼酎酵母のFAS1遺伝子の目的塩基をCからA又はGに置換する部位特異的変異により、目的アミノ酸がグルタミン酸であるFAS1を生産する変異株が得られる。   In sake yeast, shochu yeast, etc., the above-mentioned target amino acid is originally aspartic acid, but mutant strains in which this target amino acid is substituted with glutamic acid in sake yeast or shochu yeast can also be used. In the FAS1 gene, the target amino acid is encoded by a codon consisting of GAn of base numbers 19 to 21 in the partial base sequence AAC ACC GAC GAC TAC TTT GAn GAA TTG CGT (SEQ ID NO: 3). In the base sequence of SEQ ID NO: 3, n of base number 21 (hereinafter referred to as “target base”) is located at position 513 in the FAS1 gene sequence of laboratory yeast strain S288C. The nucleotide sequence of the FAS1 gene of laboratory yeast strain S288C is shown in SEQ ID NO: 11. In sake yeast and shochu yeast, the target base is C. When the base is A or G, the target amino acid is glutamic acid. Therefore, for example, a mutant strain that produces FAS1 in which the target amino acid is glutamic acid is obtained by site-specific mutation in which the target base of the FAS1 gene of sake yeast or shochu yeast is substituted from C to A or G.

変異処理方法は、特に限定されず、公知の方法を使用できる。例えば、エチルメタンスルホン酸、N−メチル−N−ニトロ−N−ニトロソグアニジン、亜硝酸、アクリジン系色素などでの化学処理;紫外線照射;放射線照射などの方法が挙げられる。   The mutation treatment method is not particularly limited, and a known method can be used. For example, methods such as chemical treatment with ethyl methanesulfonic acid, N-methyl-N-nitro-N-nitrosoguanidine, nitrous acid, acridine dyes, ultraviolet irradiation, radiation irradiation and the like can be mentioned.

次いで、変異処理した酵母の中から、セルレニンに対する耐性を獲得した株を選択する。セルレニンは脂肪酸合成酵素を阻害する物質であり、また特許文献1によれば、セルレニン耐性株にはカプロン酸を含む中級脂肪酸の生産量が親株に比べて向上した株が多く存在する。従って、FAS1の171番目のアミノ酸がグルタミン酸であることに起因してカプロン酸生産量が多い菌株の変異処理菌株の中から、FAS2に変異を有してセルレニンに対する耐性を獲得した株を選択すれば、カプロン酸生産量が非常に高い酵母変異株が得られる。   Next, a strain that has acquired resistance to cerulenin is selected from the mutated yeast. Cerrenin is a substance that inhibits fatty acid synthase, and according to Patent Document 1, there are many strains in which the production amount of intermediate fatty acids including caproic acid is improved compared to the parent strain. Therefore, if a strain that has a mutation in FAS2 and has acquired resistance to cerulenin is selected from among the mutation-treated strains of the strain that has a large amount of caproic acid production due to the fact that the 171st amino acid of FAS1 is glutamic acid. Yeast mutants with very high caproic acid production are obtained.

また、FAS1の変異とFAS2の変異との順序を入れ替えてもよい。即ち、清酒酵母、又は焼酎酵母を変異処理して得られるセルレニン耐性株の中から、カプロン酸生産量が高くなった株を選択し、次いで、FAS1遺伝子の513番目の塩基の部位特異的変異などによりFAS1の171番目のアミノ酸をグルタミン酸に置換することもできる。これによっても、カプロン酸生産量が非常に高い菌株が得られる。   Further, the order of the mutation of FAS1 and the mutation of FAS2 may be switched. That is, a strain with high caproic acid production is selected from cerulenin-resistant strains obtained by mutating sake yeast or shochu yeast, and then site-specific mutation of the 513th base of FAS1 gene, etc. The amino acid at position 171 of FAS1 can be substituted with glutamic acid. This also provides a strain with very high caproic acid production.

セルレニン耐性株は、10〜50μM程度のセルレニンを添加した、例えばYPD寒天培地(YPD培地に寒天2%を加えたもの)に、変異処理した株を塗布して、15〜37℃程度で、2〜10日間程度培養することにより選抜できる。この中から、カプロン酸の生産量が高い菌株を選択すればよい。   The cerulenin-resistant strain is prepared by applying the mutation-treated strain to, for example, YPD agar medium (YPD medium added with 2% agar) to which about 10 to 50 μM cerulenin is added. Selection is possible by culturing for about 10 days. From these, a strain having a high production amount of caproic acid may be selected.

また、目的アミノ酸がグルタミン酸であるFAS1と、配列番号2のアミノ酸配列においてアミノ酸番号4のXaaがセリン又はシステインである部分アミノ酸配列を有する変異したFAS2とを備える脂肪酸合成酵素を生産する酵母も、カプロン酸生産量が非常に多い。このようなFAS2変異は、変異処理及びセルレニン耐性株の選抜による他、FAS2遺伝子の部位特異的変異によっても引き起こすことができる。
(II)カプロン酸生産量の調節方法
本発明の酵母のカプロン酸生産量を調節する方法は、酵母の脂肪酸合成酵素遺伝子FAS1の目的塩基を置換する工程を含む方法である。前述したように、目的塩基とは、FAS1遺伝子の部分塩基配列であって、配列番号3に示す塩基配列において塩基番号21の塩基nをいう。酵母の脂肪酸合成酵素FAS1遺伝子の513番目の塩基が、C又はTである場合にこれをA又はGに置換すれば、カプロン酸生産量を増大させることができる。一方、FAS1遺伝子の目的塩基がA又はTである場合にこれをCに置換すれば、カプロン酸生産量を低減させることができる。
Further, a yeast that produces a fatty acid synthase comprising FAS1 whose target amino acid is glutamic acid and mutated FAS2 having a partial amino acid sequence in which Xaa of amino acid number 4 is serine or cysteine in the amino acid sequence of SEQ ID NO: 2 Acid production is very high. Such FAS2 mutation can be caused not only by mutation treatment and selection of cerulenin-resistant strains but also by site-specific mutation of the FAS2 gene.
(II) Method for regulating caproic acid production The method for regulating the caproic acid production of the yeast of the present invention is a method comprising the step of substituting the target base of the fatty acid synthase gene FAS1 of yeast. As described above, the target base is a partial base sequence of the FAS1 gene and refers to base n of base number 21 in the base sequence shown in SEQ ID NO: 3. When the 513th base of the fatty acid synthase FAS1 gene in yeast is C or T, it can be replaced with A or G to increase caproic acid production. On the other hand, when the target base of the FAS1 gene is A or T, if this is substituted with C, caproic acid production can be reduced.

酵母のカプロン酸生産量は、カプロン酸エチルの生産量を左右することから、清酒製造などに使用する酵母のカプロン酸生産量を調節することにより、吟醸香などの香りを制御することができる。
(III)酒類又はパン、及びその製造方法
本発明の酒類、又はパンの製造方法は、酵母として、上記説明した本発明のカプロン酸高生産株を用いる方法である。本発明の酵母株は、カプロン酸の生産量が高いことから、カプロン酸エチルの生産量が高い。この方法により得られる酒類やパンはカプロン酸エチルによる香気が非常に高いものとなる。酒類は特に限定されず、清酒、焼酎、ビール、ウィスキー、ワインなどが挙げられる。
実施例
以下、本発明を実施例を挙げてより詳細に説明するが、本発明はこれらに限定されない。
Since the caproic acid production amount of yeast influences the production amount of ethyl caproate, the aroma such as ginjo aroma can be controlled by adjusting the caproic acid production amount of yeast used for sake production.
(III) Alcohol or bread and method for producing the same The method for producing liquor or bread of the present invention is a method using the above-described caproic acid high-producing strain of the present invention as yeast. Since the yeast strain of the present invention has a high production amount of caproic acid, the production amount of ethyl caproate is high. Alcohol and bread obtained by this method have a very high aroma due to ethyl caproate. Liquors are not particularly limited, and examples include sake, shochu, beer, whiskey, and wine.
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

FAS1遺伝子の置換によるセルレニン耐性変異酵母のカプロン酸生産性の改変
<セルレニン耐性株のFAS1遺伝子の破壊>
清酒酵母の日本醸造協会7号の変異処理及びセルレニン耐性選択により得たカプロン酸高生産変異株7−C−8(FERM−P−8452;特公平7−46982)のFAS1を、kanMXマーカーの両端にFAS1相同配列を有する遺伝子破壊用カセットで形質転換して、FAS1破壊株を得た。
Modification of caproic acid productivity of cerulenin-resistant mutant yeast by replacement of FAS1 gene
<Disruption of FAS1 gene of cerulenin resistant strain>
FAS1 of caproic acid high production mutant strain 7-C-8 (FERM-P-8252; JP 7-46982) obtained by mutation treatment and selection of cerulenin resistance by the sake brewer's association of sake brewing No.7, both ends of the kanMX marker Were transformed with a gene disruption cassette having a FAS1 homologous sequence to obtain a FAS1 disruption strain.

具体的には、7−C−8株から調整したゲノムDNAを鋳型に、下記のフォワードプライマーFAS1F(ACTATGCGGTCTCGTCCTCTACGAATAT ;配列番号4)、及びリバースプライマー(ACACTTACGCATTTTTATTTCTCTTC ;配列番号5)を用いてPCRを行った。得られたPCR産物をTaKaRa BKLキットで平滑化し5’末端をリン酸化した後、制限酵素PvuIIで切断しCIP処理したpAG25ベクターにライゲーションした。作製したプラスミドはC−8FAS1−pAG25と名づけた。   Specifically, PCR was performed using the following forward primer FAS1F (ACTATGCGGTCTCGTCCTCTACGAATAT; SEQ ID NO: 4) and reverse primer (ACACTTACGCATTTTTATTTCTCTTC; SEQ ID NO: 5) using genomic DNA prepared from the 7-C-8 strain as a template. . The obtained PCR product was blunted with the TaKaRa BKL kit, phosphorylated at the 5 'end, and then ligated to the pAG25 vector cut with the restriction enzyme PvuII and treated with CIP. The prepared plasmid was named C-8FAS1-pAG25.

プラスミドC−8FAS1−pAG25を制限酵素PvuIIで切断してFAS1のコーディングリージョンの大部分を切り出し、選択マーカーkanMXと置き換えた。選択マーカーkanMXは、プラスミドpFA6a-kanMX4(Wach A et.al.,Yeast 10,1793−1808(1994))を鋳型に、フォワードプライマーkanF(ATCGATGAATTCGAGCTCG;配列番号6)、リバースプライマーkanR(ACGTACGCTGCAGGTCGAC;配列番号7)をプライマーとしてPCRを行い調整した。この選択マーカーkanMXをTaKaRa BKLキットで平滑化し5'末端をリン酸化した後、C−8FAS1−pAG25を制限酵素PvuIIで切断しゲル電気泳動で精製した約6.7kbpの断片とライゲーションした。得られたプラスミドを鋳型に、FAS1F、FAS1RをプライマーとしてPCRを行って得られるPCR増幅断片を遺伝子破壊カセットとして酵母FAS1遺伝子の破壊に用いた。
<変異FAS1の導入>
FAS1を破壊した7−C−8株に、(i)部位特異的変異によってFAS1の171番目のアミノ酸をグルタミン酸に置換したFAS1クローン;(ii)本来的にFAS1のアミノ酸がグルタミン酸である実験室酵母S288C株及びD458−5A株の各FAS1アレル;及び(iii)FAS1(コントロール)を、それぞれ導入した。
Plasmid C-8FAS1-pAG25 was cut with the restriction enzyme PvuII to excise most of the FAS1 coding region and replaced with the selectable marker kanMX. The selection marker kanMX is a plasmid pFA6a-kanMX4 (Wach A et.al., Yeast 10, 1793-1808 (1994)) as a template, forward primer kanF (ATCGATGAATTCGAGCTCG; SEQ ID NO: 6), reverse primer kanR (ACGTACGCTGCAGGTCGAC; SEQ ID NO: PCR was carried out using 7) as a primer. This selectable marker kanMX was blunted with the TaKaRa BKL kit and phosphorylated at the 5 ′ end, and then C-8FAS1-pAG25 was cleaved with the restriction enzyme PvuII and ligated with an about 6.7 kbp fragment purified by gel electrophoresis. Using the obtained plasmid as a template, PCR amplified fragments obtained by PCR using FAS1F and FAS1R as primers were used as a gene disruption cassette for the disruption of the yeast FAS1 gene.
<Introduction of mutant FAS1>
7-C-8 strain in which FAS1 was disrupted, (i) a FAS1 clone in which the amino acid at position 171 of FAS1 was replaced with glutamic acid by site-directed mutation; (ii) a laboratory yeast in which the amino acid of FAS1 was originally glutamic acid Each FAS1 allele of S288C strain and D458-5A strain; and (iii) FAS1 (control) were introduced.

具体的には、(i)STRATAGENE社のQuikChange II Site−Directed Mutagenesis Kitを用いてプラスミドC−8FAS1−pAG25のFAS1の513番目の塩基をCからAに変換した。方法はキットのプロトコルに準じた。変異導入のために、フォワードプライマーD171E−1F(ACACCGACGACTACTTTGAAGAATTGCGTGATCTATATC;配列番号8)、及びリバースプライマーD171E−1R(GATATAGATCACGCAATTCTTCAAAGTAGTCGTCGGTGT;配列番号9)を用いた。   Specifically, (i) the 513th base of FAS1 of the plasmid C-8FAS1-pAG25 was converted from C to A by using QuikChange II Site-Directed Mutagenesis Kit of STRATAGENE. The method followed the kit protocol. For mutagenesis, forward primer D171E-1F (ACACCGACGACTACTTTGAAGAATTGCGTGATCTATATC; SEQ ID NO: 8) and reverse primer D171E-1R (GATATAGATCACGCAATTCTTCAAAGTAGTCGTCGGTGT; SEQ ID NO: 9) were used.

また、(ii)実験室酵母S288C株、及びD458−5A株の各FAS1は、以下のようにして得た。S288C株、及びD458−5A株からそれぞれ調整したゲノムDNAを鋳型に、上記フォワードプライマーFAS1F、及びリバースプライマーFAS1Rを用いてPCRを行った。得られたPCR産物をTaKaRa BKLキットで平滑化し5’末端をリン酸化した後、制限酵素PvuIIで切断しCIP処理したpAG25ベクターにライゲーションした。作製したプラスミドはS288CFAS1−pAG25、及びD458FAS1−pAG25と名づけた。   Moreover, (ii) FAS1 of laboratory yeast S288C strain and D458-5A strain was obtained as follows. PCR was performed using the above-described forward primer FAS1F and reverse primer FAS1R using the genomic DNA prepared from each of the S288C strain and the D458-5A strain as a template. The obtained PCR product was blunted with the TaKaRa BKL kit, phosphorylated at the 5 'end, and then ligated to the pAG25 vector cut with the restriction enzyme PvuII and treated with CIP. The prepared plasmids were named S288CFAS1-pAG25 and D458FAS1-pAG25.

(iii)については、プラスミドC−8FAS1−pAG25をそのまま用いた。
<形質転換方法>
上記の(i)、(ii)、及び(iii)のプラスミドを用いて、7−C−8株のFAS1破壊株の形質転換を行った。形質転換は、Gietz et.al.Yeast 11,355−360(1995)らの酢酸リチウム法に準じた。すなわち、YPD培地(2%グルコース、2%ポリペプトン、1%酵母エキス)で一晩振盪培養した酵母を、新鮮なYPD培地2〜5×10cell/mlになるように接種し、2〜3時間30℃で振盪培養し集菌した。この酵母菌体を10mlの滅菌水で2回、10mlのTE/LiAc溶液(100mM−酢酸リチウムpH7.5、10mM トリス塩酸緩衝液、1mM EDTA pH7.5)で1回洗浄し2×10cell/mlになるようTE/LiAc溶液に懸濁し30℃で15分間インキュベーションした。懸濁液50μlを滅菌したエッペンドルフチューブにとり、一本鎖キャリアDNA5μl(50μg)、DNA5μl(10μg)、PEG/TE/LiAc溶液(40%(w/v)PEG3350、100mM-酢酸リチウムpH7.5、10mMトリス塩酸緩衝液、1mM EDTA pH7.5)300μlを加えボルテックスでよく攪拌後、30℃で30分間インキュベーション、さらに42℃で20分間のヒートショック処理後、15秒間遠心し集菌した酵母菌体をYPD培地に懸濁して2時間30℃で振盪培養、培養液を遠心し集菌した酵母菌体を選択培地に塗布した。FAS1遺伝子破壊株の選択培地はYPD+FA+G418寒天培地(2%グルコース、2%ポリペプトン、1%酵母エキス、2mMミリスチン酸ナトリウム、0.5%Tween40、1000ppmG418 (ジェネティシン)、2%寒天)、FAS1形質転換体の選択培地としてはYPD+NAT寒天培地(2%グルコース、2%ポリペプトン、1%酵母エキス、200ppm clonNAT(nourseothricin)、2%寒天)を使用した。
For (iii), the plasmid C-8FAS1-pAG25 was used as it was.
<Transformation method>
Using the plasmids (i), (ii), and (iii) above, the FAS1-disrupted strain of the 7-C-8 strain was transformed. Transformation was performed according to Gietz et. al. Yeast 11, 355-360 (1995) et al. Specifically, yeast cultured overnight in YPD medium (2% glucose, 2% polypeptone, 1% yeast extract) was inoculated to a fresh YPD medium of 2 to 5 × 10 6 cells / ml, and 2 to 3 The cells were cultured by shaking at 30 ° C. for a period of time. The yeast cells were washed twice with 10 ml of sterilized water and once with 10 ml of TE / LiAc solution (100 mM lithium acetate pH 7.5, 10 mM Tris-HCl buffer, 1 mM EDTA pH 7.5), and 2 × 10 9 cells. / Ml in TE / LiAc solution and incubated at 30 ° C. for 15 minutes. 50 μl of the suspension is put into a sterilized Eppendorf tube, 5 μl (50 μg) of single-stranded carrier DNA, 5 μl (10 μg) of DNA, PEG / TE / LiAc solution (40% (w / v) PEG 3350, 100 mM-lithium acetate pH 7.5, 10 mM Add 300 μl of Tris-HCl buffer, 1 mM EDTA pH 7.5), mix well by vortexing, incubate for 30 minutes at 30 ° C., heat shock for 20 minutes at 42 ° C., and centrifuge for 15 seconds to collect the collected yeast cells. The suspension was suspended in a YPD medium and cultured for 2 hours at 30 ° C. with shaking. The selection medium for the FAS1 gene disruption strain is YPD + FA + G418 agar (2% glucose, 2% polypeptone, 1% yeast extract, 2 mM sodium myristate, 0.5% Tween 40, 1000 ppm G418 (geneticin), 2% agar), FAS1 trait YPD + NAT agar medium (2% glucose, 2% polypeptone, 1% yeast extract, 200 ppm clonNAT (norsethotricin), 2% agar) was used as a selective medium for the transformant.

以上説明した7−C−8株のFAS1の置換の様子を図1に示す。
<カプロン酸生産量の測定方法>
5mlのYPD培地で、30℃、2日間振盪培養した各形質転換酵母菌体を集菌し、α米7.8g、乾燥麹1.9g、水23.2ml、50%醸造乳酸15μlと混合し15℃一定で20日間醗酵した。得られた発酵もろみの遠心上清0.8mlをバイアルにとり、100ppmの4−メチル−2−ペンタノール(内部標準液)を10μl加え密栓し、バイアルのヘッドスペースにSPME(固相マイクロ抽出)ファイバーを挿入し、30℃で20分間ファイバーを振盪させながら抽出処理を行った後、SPMEファイバーをガスクロマトグラフィーに注入し分析した。
The state of replacement of FAS1 in the 7-C-8 strain described above is shown in FIG.
<Method for measuring caproic acid production>
Each transformed yeast cell cultured at 30 ° C. for 2 days in 5 ml of YPD medium is collected and mixed with 7.8 g of α rice, 1.9 g of dried koji, 23.2 ml of water, and 15 μl of 50% brewed lactic acid. Fermentation was carried out at a constant 15 ° C. for 20 days. Take 0.8 ml of the resulting supernatant of the fermented moromi in a vial, add 10 μl of 100 ppm 4-methyl-2-pentanol (internal standard solution), seal tightly, and SPME (solid phase microextraction) fiber in the head space of the vial. Was inserted and extracted at 30 ° C. for 20 minutes while shaking the fiber, and then SPME fiber was injected into the gas chromatography and analyzed.

結果を図2に示す。図2のC−8FAS1は(iii)C−8株のFAS1を有するコントロールを示し、D171Eは(i)7−C−8株のFAS1の171番目のアミノ酸をグルタミン酸に置換したFAS1変異体を示し、S288CFAS1及びD458FAS1は、それぞれ(ii)FAS1の171番目が本来的にグルタミン酸である実験室酵母のFAS1を有する変異体を示す。図2から、FAS1の171番目のアミノ酸がグルタミン酸である場合のカプロン酸生産量は、アスパラギン酸である場合のカプロン酸生産量の1.3〜1.4倍であることが分かる。   The results are shown in FIG. C-8FAS1 in FIG. 2 shows (iii) a control having FAS1 of C-8 strain, and D171E shows a FAS1 mutant in which (i) the 171st amino acid of FAS1 of 7-C-8 strain is substituted with glutamic acid. , S288CFAS1 and D458FAS1 represent mutants having (ii) laboratory yeast FAS1 in which 171st of FAS1 is originally glutamic acid, respectively. FIG. 2 shows that the caproic acid production amount when the 171st amino acid of FAS1 is glutamic acid is 1.3 to 1.4 times the caproic acid production amount when it is aspartic acid.

酵母のFAS1の多型
清酒酵母、焼酎酵母、ワイン酵母、上面ビール酵母(エール酵母)、蒸留酒酵母、ウィスキー酵母、パン酵母、実験室酵母、ラガービール酵母(Saccharomyces carlsbergensis)、及び酵母基準株について、FAS1のアミノ酸配列、及びFAS1遺伝子の塩基配列を解析した。
About yeast FAS1 polymorphic sake yeast, shochu yeast, wine yeast, top beer yeast ( Yell yeast), distilled liquor yeast, whiskey yeast, baker's yeast, laboratory yeast, lager beer yeast (Saccharomyces carlsbergensis), and yeast reference strain The amino acid sequence of FAS1 and the base sequence of FAS1 gene were analyzed.

結果を以下の表1に示す。   The results are shown in Table 1 below.

Figure 0004935969
Figure 0004935969

清酒酵母及び焼酎酵母は、分離年代も分離場所も異なるにもかかわらず、FAS1遺伝子の513番目の塩基が1株の例外を除きCであり、FAS1の171番目のアミノ酸が1株の例外を除き、アスパラギン酸であった。清酒酵母と焼酎酵母の共通の祖先に生じた変異が多型として定着したものと推測される。なお、清酒酵母協会2号だけは例外であったが、協会2号は、現在主に使用されている清酒酵母のグループとは異なることがゲノム多型解析から示されている(Azumi et.al.Yeast 18,1145−1154(2001))。一方、その他の酵母では、FAS1遺伝子の513番目の塩基がAであり、FAS1の171番目のアミノ酸がグルタミン酸であった。   In sake yeast and shochu yeast, the 513th base of the FAS1 gene is C except for one exception, and the 171st amino acid of FAS1 is one exception except for one strain, regardless of the separation age and location. Aspartic acid. It is speculated that the mutation that occurred in the common ancestors of sake yeast and shochu yeast was established as a polymorphism. Only the sake yeast association No. 2 was an exception, but it was shown by genome polymorphism analysis that the association No. 2 is different from the group of sake yeast currently mainly used (Azumi et.al. Yeast 18, 1145-1154 (2001)). On the other hand, in other yeasts, the 513th base of FAS1 gene was A, and the 171st amino acid of FAS1 was glutamic acid.

カプロン酸高生産株の単離
実験室酵母D458−5A株、及びS288C株の変異処理によりカプロン酸高生産株を得た。具体的には、0.2Mリン酸緩衝液(pH8.0)9.2ml、40%グルコース溶液0.5ml、EMS(エチルメタンスルホネート)0.3mlに約1×10cell/mlとなるように酵母を加え30℃で60分間ゆっくり振盪させた。処理後の酵母菌体を集菌し、水で数回洗浄後、25μMセルレニンを含むYPD寒天培地に酵母懸濁液をまいた。プレートを30℃で3日〜7日間インキュベーションし、生育してきたコロニーをセルレニン耐性変異株とした。
Isolation of Caproic Acid High-Producing Strain A high caproic acid-producing strain was obtained by mutation treatment of the laboratory yeast strain D458-5A and S288C. Specifically, 9.2 ml of 0.2 M phosphate buffer (pH 8.0), 0.5 ml of 40% glucose solution and 0.3 ml of EMS (ethyl methanesulfonate) are adjusted to about 1 × 10 6 cells / ml. The yeast was added to the mixture and gently shaken at 30 ° C. for 60 minutes. The treated yeast cells were collected and washed several times with water, and then the yeast suspension was spread on a YPD agar medium containing 25 μM cerulenin. The plate was incubated at 30 ° C. for 3 to 7 days, and the grown colony was used as a cerulenin resistant mutant.

各株のカプロン酸生産量を実施例1と同様にして測定し、カプロン酸生産量が最も多い菌株を選択し、D458−5Aの変異株をitr001株と命名し、S288C株の変異株をS288CR株と命名した。itr001株は産業技術総合研究所特許生物寄託センターにFERM P−20638として寄託済みであり、S288CR株も同センターにFERM P−20639として寄託済みである。   The caproic acid production amount of each strain was measured in the same manner as in Example 1, the strain having the largest caproic acid production amount was selected, the D458-5A mutant strain was named itr001 strain, and the S288C strain mutant strain was designated as S288CR. The strain was named. The itr001 strain has been deposited as FERM P-20638 at the National Institute of Advanced Industrial Science and Technology, and the S288CR strain has also been deposited as FERM P-20639 at the same center.

清酒製造
7−C−8株、itr001株、及びS288CR株及びそれぞれの親株(G1103株、D458−5A株、S288C株)を用いて清酒を製造した。7−C−8株は、特許文献1に記載されているように、清酒酵母協会701号から分離した一倍体酵母G1103株のEMS変異処理により分離したセルレニン耐性株である。清酒醸造は次のようにして行った。5mlのYPD培地で、30℃、2日間振盪培養した酵母菌体を集菌し、α米7.8g、乾燥麹1.9g、水23.2ml、50%醸造乳酸15μlと混合し15℃一定で20日間醗酵した。
Sake was produced using Sake Sake 7-C-8, itr001, and S288CR and their parent strains (G1103, D458-5A, S288C). The 7-C-8 strain is a cerulenin resistant strain isolated by EMS mutation treatment of the haploid yeast strain G1103 isolated from the Sake Yeast Association No. 701 as described in Patent Document 1. Sake brewing was performed as follows. Yeast cells which were cultured with shaking in 5 ml of YPD medium at 30 ° C. for 2 days were collected and mixed with 7.8 g of α-rice, 1.9 g of dried koji, 23.2 ml of water, and 15 μl of 50% brewed lactic acid, and kept at 15 ° C. And fermented for 20 days.

得られた醗酵もろみの遠心上清0.8mlをバイアルにとり、100ppmの4−メチル−2−ペンタノール(内部標準液)を10μl加え密栓し、バイアルのヘッドスペースにSPME(固相マイクロ抽出)ファイバーを挿入し、30℃で20分間ファイバーを振盪させながら抽出処理を行った後、SPMEファイバーをガスクロマトグラフィーに注入し分析した。   Take 0.8 ml of the centrifuged supernatant of the resulting fermentation mash in a vial, add 10 μl of 100 ppm 4-methyl-2-pentanol (internal standard solution), seal tightly, and SPME (solid phase microextraction) fiber in the head space of the vial. Was inserted and extracted at 30 ° C. for 20 minutes while shaking the fiber, and then SPME fiber was injected into the gas chromatography and analyzed.

結果を図3に示す。セルレニン耐性が付与された7−C−8株、itr001株、及びS288CR株ではそれぞれの親株の2.5倍から3倍以上のカプロン酸生産量となっていた。また、セルレニン耐性株の中でも、FAS1の171番目のアミノ酸がグルタミン酸である実験室酵母のFAS2変異で得られたitr001株、及びS288CR株では、FAS1の171番目のアミノ酸がアスパラギン酸である清酒酵母のFAS2変異で得られた7−C−8株に比べて、カプロン酸生産量が約1.4倍であった。   The results are shown in FIG. The 7-C-8 strain, itr001 strain, and S288CR strain to which cerulenin resistance was imparted had caproic acid production of 2.5 to 3 times the parent strain. Among the cerulenin-resistant strains, in the itr001 strain obtained by FAS2 mutation of laboratory yeast in which the 171st amino acid of FAS1 is glutamic acid and the S288CR strain, the 171st amino acid of FAS1 is aspartic acid. Compared with the 7-C-8 strain obtained by FAS2 mutation, caproic acid production was about 1.4 times.

実施例1で行った7−C−8株のFAS1の置換を説明する図である。It is a figure explaining substitution of FAS1 of 7-C-8 stock | strain performed in Example 1. FIG. 実施例1で行った7−C−8株のFAS1の置換によるカプロン酸生産量の変化を示すグラフである。It is a graph which shows the change of the caproic acid production amount by substitution of FAS1 of 7-C-8 stock | strain performed in Example 1. FIG. 変異処理に供する酵母のFAS1の171番目のアミノ酸がグルタミン酸であることにより、変異処理で得られたセルレニン耐性株のカプロン酸生産量が多くなることを示すグラフである。It is a graph which shows that the caproic acid production amount of the cerulenin resistant strain obtained by the mutation treatment increases when the 171st amino acid of FAS1 of the yeast to be subjected to the mutation treatment is glutamic acid.

Claims (5)

実験室酵母itr001株(FERM P−20638)。 Laboratory yeast itr001 strain (FERM P-20638). 実験室酵母S288CR株(FERM P−20639)。 Laboratory yeast strain S288CR (FERM P-20639). 清酒酵母、又は焼酎酵母の脂肪酸合成酵素FAS1中に含まれる配列番号1に示す部分アミノ酸配列のアミノ酸番号7のXaaをアスパラギン酸からグルタミン酸に置換する工程と、変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む酵母カプロン酸高生産株の製造方法。 A step of substituting Xaa of amino acid number 7 of the partial amino acid sequence shown in SEQ ID NO: 1 contained in fatty acid synthase FAS1 of sake yeast or shochu yeast from aspartic acid to glutamic acid, a step of mutagenesis, A method for producing a yeast caproic acid high-producing strain comprising a step of selecting a strain that has acquired cerulenin resistance from the inside. 酵母の脂肪酸合成酵素FAS1遺伝子中に含まれる配列番号3に示す部分塩基配列の塩基番号21のnをA又はGに置換する工程、変異処理する工程と、変異処理酵母の中からセルレニン耐性を獲得した菌株を選択する工程とを含む、酵母のカプロン酸生産量を調節する方法。 Acquiring cerulenin resistance from the process of substituting n of base number 21 of the partial base sequence shown in SEQ ID NO: 3 contained in the fatty acid synthase FAS1 gene of yeast with A or G, the process of mutation treatment, and the mutation-treated yeast And a method for regulating the amount of caproic acid produced by the yeast. 酵母を用いて酒類、又はパンを製造する方法であって、酵母として、請求項1又は2の株を使用する方法。 A method of producing alcoholic beverages, or bread using the yeast, a method of using a yeast, a strain of Motomeko 1 or 2.
JP2005255738A 2005-09-02 2005-09-02 Yeast caproic acid high production strain Expired - Fee Related JP4935969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255738A JP4935969B2 (en) 2005-09-02 2005-09-02 Yeast caproic acid high production strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255738A JP4935969B2 (en) 2005-09-02 2005-09-02 Yeast caproic acid high production strain

Publications (2)

Publication Number Publication Date
JP2007068411A JP2007068411A (en) 2007-03-22
JP4935969B2 true JP4935969B2 (en) 2012-05-23

Family

ID=37930434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255738A Expired - Fee Related JP4935969B2 (en) 2005-09-02 2005-09-02 Yeast caproic acid high production strain

Country Status (1)

Country Link
JP (1) JP4935969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867845B2 (en) * 2009-11-09 2016-02-24 公立大学法人福井県立大学 Method for producing moisturizing ethanol
JP5963123B2 (en) * 2011-05-02 2016-08-03 新潟県 Yeast acquisition method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746982B2 (en) * 1987-06-09 1995-05-24 月桂冠株式会社 Mutant yeast culture method
JP2632654B2 (en) * 1994-12-16 1997-07-23 月桂冠株式会社 Mutant yeast

Also Published As

Publication number Publication date
JP2007068411A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US8071357B2 (en) Yeast and method of producing L-lactic acid
KR20170138543A (en) Expression constructs and methods for genetically engineering methylnutritic yeast
WO1999014335A1 (en) Yeast strains for the production of lactic acid
Aritomi et al. Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake
JP5350806B2 (en) System for producing aromatic molecules by biotransformation
KR20190000970A (en) Saccharomyces cerevisiae strain with high productivity of flavor components and process for preparing beer using same
KR101577502B1 (en) Recombinant microorganism having enhanced d(-) 2,3-butanediol producing ability and method for producing d(-) 2,3-butanediol using the same
CN110760453B (en) Genetically engineered yeast strain for high-yield phenylethyl acetate, construction method thereof and method for producing phenylethyl acetate
US7569360B2 (en) γ-glutamylcysteine producing yeast
JPWO2009110624A1 (en) Method for producing γ-glutamylcysteine-producing yeast and yeast extract
JP4935969B2 (en) Yeast caproic acid high production strain
Kotaka et al. The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene
JP5710132B2 (en) Yeast strain for promoting production of ethyl caproate, method for producing the same, and method for producing a fermentation product using the same
JP6864308B2 (en) Isoamyl Acetate High Productivity, Acetic Acid Productivity Low Productivity and Isoamyl Alcohol High Productivity Method for Producing Brewed Yeast
JP6553963B2 (en) Modified Star Melella microorganism
CN115997004A (en) Low diacetyl yeast
JP6119881B1 (en) Yeast having high ability to produce ethyl caproate and method for producing fermented product using the yeast
JP6219064B2 (en) Serine palmitoyltransferase
JP2017121251A (en) Yeast with high production capacity of ethyl caproate, and method of producing fermentation product using that yeast
JP5506159B2 (en) A novel wine yeast obtained by crossing sake yeast and wine yeast and its production method
JP5430813B2 (en) Proline-accumulating yeast, method for producing the same, and method for producing sake using the yeast
JP2006230329A (en) Acetic acid bacterium having reinforced acetic acid fermentation ability, and method for producing vinegar using the acetic acid bacterium
JP3942718B2 (en) Liquor, food production method
JP5506160B2 (en) A novel wine yeast obtained by crossing shochu yeast and wine yeast and its production method
JP2018011553A (en) Methods for making yeast with low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one productivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees