JP2018011553A - Methods for making yeast with low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one productivity - Google Patents

Methods for making yeast with low 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one productivity Download PDF

Info

Publication number
JP2018011553A
JP2018011553A JP2016143331A JP2016143331A JP2018011553A JP 2018011553 A JP2018011553 A JP 2018011553A JP 2016143331 A JP2016143331 A JP 2016143331A JP 2016143331 A JP2016143331 A JP 2016143331A JP 2018011553 A JP2018011553 A JP 2018011553A
Authority
JP
Japan
Prior art keywords
yeast
strain
methionine
pentan
dihydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143331A
Other languages
Japanese (ja)
Other versions
JP7101362B2 (en
Inventor
敦子 磯谷
Atsuko Isotani
敦子 磯谷
涼子 神田
Ryoko Kanda
涼子 神田
優理子 池田
Yuriko Ikeda
優理子 池田
諒 宇原
Ryo Uhara
諒 宇原
力 藤井
Tsutomu Fujii
力 藤井
好裕 山脇
Yoshihiro Yamawaki
好裕 山脇
克己 松丸
Katsumi Matsumaru
克己 松丸
興 若林
Ko Wakabayashi
興 若林
豊久 井上
Toyohisa Inoue
豊久 井上
中江 貴司
Takashi Nakae
貴司 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHONSAKARI CO Ltd
National Research Institute of Brewing
Original Assignee
NIHONSAKARI CO Ltd
National Research Institute of Brewing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHONSAKARI CO Ltd, National Research Institute of Brewing filed Critical NIHONSAKARI CO Ltd
Priority to JP2016143331A priority Critical patent/JP7101362B2/en
Publication of JP2018011553A publication Critical patent/JP2018011553A/en
Application granted granted Critical
Publication of JP7101362B2 publication Critical patent/JP7101362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide novel means for obtaining yeast with low DMTS-P1 productivity, practically applicable for food production.SOLUTION: The invention provides a method for making a yeast strain with low productivity of 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one comprising the steps of: providing a methionine-requiring strain from a yeast parent strain; culturing the methionine-requiring strain in a methionine-containing medium and in a MTA-containing medium that contains 5'-methylthioadenosine (MTA) but not methionine; and selecting strains that have lower proliferation capability in the MTA-containing medium than in the methionine-containing medium.SELECTED DRAWING: Figure 1

Description

本発明は、ジメチルトリスルフィドの前駆物質である1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法に関する。   The present invention relates to a method for producing a yeast having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, which is a precursor of dimethyltrisulfide.

ジメチルトリスルフィド(DMTS)は清酒の貯蔵により生成する物質で、硫黄様、タマネギ様のにおいを呈する。清酒の劣化臭である老香の主要構成成分である(非特許文献1)。DMTSは、清酒以外の様々な飲料においても硫化物様のオフフレーバーの原因となりうる(非特許文献2、3)。近年清酒の人気は諸外国においても高まりを見せており、外国への輸出では輸送・貯蔵の期間が長期化することから、貯蔵中の清酒におけるDMTSの発生を抑制することはますます重要な課題となっている。   Dimethyl trisulfide (DMTS) is a substance produced by the storage of sake and has a sulfur-like and onion-like odor. It is a main component of scent, which is a deteriorated odor of sake (Non-Patent Document 1). DMTS can cause sulfide-like off-flavors in various beverages other than sake (Non-Patent Documents 2 and 3). In recent years, the popularity of refined sake has been increasing in other countries, and exports to foreign countries have a longer transportation and storage period, so it is increasingly important to control the occurrence of DMTS in sake during storage. It has become.

これまでの研究により、DMTSの前駆物質の一つである1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン(DMTS-P1)の生成に酵母のMDE1遺伝子及びMRI1遺伝子が関与すること、これらの遺伝子を破壊することで清酒の貯蔵中に生成するDMTSを著しく抑制できることが明らかにされている(非特許文献4)。しかし、遺伝子組換え体を用いて清酒を製造するためには難しい課題が多く、実用化は難しいのが現状である。   Based on previous studies, yeast MDE1 and MRI1 genes are involved in the production of 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one (DMTS-P1), one of the DMTS precursors In addition, it has been clarified that DMTS generated during storage of sake can be remarkably suppressed by disrupting these genes (Non-patent Document 4). However, there are many difficult issues for producing sake using genetically modified organisms, and it is difficult to put it to practical use.

日本醸造協会誌, 101, 125-131, 2006Journal of Japan Brewing Association, 101, 125-131, 2006 J. Agric. Food Chem. 48, 6196-6199, 2000J. Agric. Food Chem. 48, 6196-6199, 2000 J. Am. Soc. Brew. Chem. 56, 99-103, 1998J. Am. Soc. Brew. Chem. 56, 99-103, 1998 J. Biosci. Bioeng. 116, 475-479 (2013)J. Biosci. Bioeng. 116, 475-479 (2013)

従って、本発明の目的は、食品生産にも実用化可能なDMTS-P1低生産性酵母を取得するための新規な手段を提供することにある。   Accordingly, an object of the present invention is to provide a novel means for obtaining a DMTS-P1 low-productivity yeast that can be put to practical use in food production.

MDE1遺伝子およびMRI1遺伝子に関係する表現型としては、MDE1破壊株がcaspofungin(Lesage, G. et al : Genetics, 167, 35-49 (2004))やselenomethionine(Brockhorn, J. et al : PNAS, 105, 17682-17687 (2008))に耐性を示すことなどの報告がある。しかしながら、本願発明者らが清酒酵母において検討したところ、これらの表現型は清酒酵母において再現されなかった。   Phenotypes related to MDE1 gene and MRI1 gene include MDE1 disruption strains such as caspofungin (Lesage, G. et al: Genetics, 167, 35-49 (2004)) and selenomethionine (Brockhorn, J. et al: PNAS, 105 , 17682-17687 (2008)). However, when the present inventors examined in sake yeast, these phenotypes were not reproduced in sake yeast.

一方、メチオニン再生経路で働く酵素に関する研究で、メチオニン要求性を示す酵母においてMEU1、MRI1、MDE1、UTR4等の遺伝子を破壊すると、メチオニン添加培地では増殖できるが5'-メチルチオアデノシン(MTA)添加培地では増殖能が低下することが報告されている(Pirkov, I. et al., FEBS Journal, 275, 4111-4120 (2008))。本願発明者らは、この報告に着目して鋭意研究した結果、清酒酵母にメチオニン要求性を付与した上で変異誘発し、メチオニン添加培地よりもMTA添加培地での増殖が劣る株を選択することにより、MRI1遺伝子又はMDE1遺伝子に生じた変異によりDMTS-P1の生産能が大きく低下した株を選択した株の中から極めて高い確率で取得できること、取得されたDMTS-P1低生産性酵母株のメチオニン要求性を失わせることで醸造特性が回復し、DMTS生成ポテンシャル(強制劣化によるDMTS生成量)が低く清酒等のアルコール飲料の醸造に適した酵母株を得ることができること、また、上記の方法で取得されたDMTS-P1低生産性酵母の変異を利用し、セルフクローニング法により非組み換え体酵母に当該変異を導入することで、もとの非組み換え体酵母の醸造特性を維持した当該変異を有するセルフクローニング酵母株を作出できることを見出し、本願発明を完成した。   On the other hand, in studies on enzymes that work in the methionine regeneration pathway, disrupting genes such as MEU1, MRI1, MDE1, and UTR4 in yeast that show methionine auxotrophy can grow in methionine supplemented media, but 5'-methylthioadenosine (MTA) supplemented media Has been reported to reduce the proliferation ability (Pirkov, I. et al., FEBS Journal, 275, 4111-4120 (2008)). As a result of earnest research focusing on this report, the inventors of the present invention have selected mution induced after giving methionine requirement to sake yeast and inferior growth in MTA-added medium than methionine-added medium. The methionine of the DMTS-P1 low-producing yeast strain that can be obtained with extremely high probability from among the strains selected for strains that have greatly reduced DMTS-P1 productivity due to mutations in the MRI1 gene or MDE1 gene. The brewing characteristics are restored by losing the requirement, and the yeast strain suitable for brewing alcoholic beverages such as sake can be obtained with a low DMTS generation potential (the amount of DMTS generated by forced deterioration). By using the obtained mutation of DMTS-P1 low-producing yeast and introducing the mutation into non-recombinant yeast by the self-cloning method, the brewing characteristics of the original non-recombinant yeast can be maintained. The present invention was completed by finding that a self-cloning yeast strain having the mutation can be produced.

すなわち、本発明は、
酵母親株より、メチオニン要求性を示す株を取得する工程、並びに
メチオニン要求性を示す株を、メチオニン含有培地及びメチオニンを含まず5’-メチルチオアデノシン(MTA)を含むMTA含有培地の両者で培養し、MTA含有培地においてメチオニン含有培地よりも増殖能が低い株を選択する工程、
を含む、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法を提供する。
また、本発明は、
上記本発明の方法により作出された、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母のゲノムより、MDE1遺伝子又はMRI1遺伝子上に生じた変異を含む領域を増幅する工程、
変異を含む領域を挿入したセルフクローニング用プラスミドベクターを用いて、当該変異を非組み換え体酵母に導入する工程
を含む、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法を提供する。
さらに、本発明は、MDE1遺伝子がコードするタンパク質の第54番プロリンがロイシンになる変異、又はMRI1遺伝子がコードするタンパク質の第192番グリシンがアスパラギン酸になる変異を有する、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母を提供する。該酵母は醸造酵母、例えば清酒酵母であり得る。
さらに、本発明は、上記本発明の方法により作出された醸造酵母、又は上記本発明の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性醸造酵母を用いてアルコール発酵を行なうことを含む、硫化物様のオフフレーバーが低減されたアルコール飲料の製造方法を提供する。さらに、本発明は、上記本発明の方法により作出された清酒酵母、又は上記本発明の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性清酒酵母を用いてアルコール発酵を行なうことを含む、老香の発生が抑制された清酒の製造方法を提供する。
That is, the present invention
Obtaining a methionine-requiring strain from the yeast parent strain, and culturing the methionine-requiring strain in both a methionine-containing medium and a MTA-containing medium that does not contain methionine and contains 5'-methylthioadenosine (MTA) A step of selecting a strain having a lower growth ability than the methionine-containing medium in the MTA-containing medium,
And a method for producing a yeast having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one.
The present invention also provides:
A region containing a mutation produced on the MDE1 gene or MRI1 gene from the yeast genome having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one produced by the method of the present invention. Amplifying the process,
Ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, including the step of introducing the mutation into non-recombinant yeast using a plasmid vector for self-cloning into which the mutation-containing region has been inserted Provides a low yeast production method.
Furthermore, the present invention relates to a 1,2-dihydroxy- having a mutation in which the 54th proline of the protein encoded by the MDE1 gene becomes leucine or a mutation in which the 192nd glycine of the protein encoded by the MRI1 gene becomes aspartic acid. A 5- (methylsulfinyl) pentan-3-one low productivity yeast is provided. The yeast can be a brewing yeast, such as sake yeast.
Furthermore, the present invention provides an alcoholic fermentation using a brewing yeast produced by the method of the present invention or the 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one low-producing brewing yeast of the present invention. A method for producing an alcoholic beverage with reduced sulfide-like off-flavor is provided. Furthermore, the present invention provides alcohol fermentation using the sake yeast produced by the method of the present invention or the 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one low-productivity sake yeast of the present invention. And a method for producing sake with suppressed generation of scent.

本発明によれば、異種生物由来の配列をゲノム上に含まないDMTS-P1低生産性酵母を取得するための方法が提供される。MTA含有培地での増殖能の低下を指標として選択された酵母株は、極めて高い確率でMDE1遺伝子又はMRI1遺伝子の変異によるDMTS-P1低生産性を示す。醸造酵母を用いてDMTS-P1低生産性酵母を作出し、該酵母を用いてアルコール発酵を行なえば、清酒等アルコール飲料の貯蔵中のDMTS発生が抑制されるので、硫化物様のオフフレーバーの発生が抑制されたアルコール飲料を、清酒においては老香の発生が抑制された清酒を製造することができる。異種生物由来の配列をゲノム上に含まないため、食品産業で用いられる醸造酵母の育成に大いに貢献できる。   According to the present invention, a method for obtaining a DMTS-P1 low-producing yeast that does not contain a sequence derived from a heterologous organism on the genome is provided. Yeast strains selected with the decrease in growth ability in an MTA-containing medium as an index exhibit low productivity of DMTS-P1 due to mutations in the MDE1 gene or MRI1 gene with a very high probability. If brewer's yeast is used to produce DMTS-P1 low-productivity yeast and alcohol fermentation is performed using the yeast, DMTS generation during the storage of alcoholic beverages such as sake is suppressed. Alcohol beverages with suppressed generation can be made into sake with reduced generation of scent in sake. Since sequences derived from different organisms are not included in the genome, it can greatly contribute to the growth of brewing yeast used in the food industry.

実施例1において取得したメチオニン要求性変異株MR-01、及びMR-01株よりMTA培地での増殖能の低下を指標として選択した変異株9株を液体培養し、培養上清中のDMTS-P1の生成量を調べた結果である。The methionine auxotrophic strain MR-01 obtained in Example 1 and nine mutant strains selected from the MR-01 strain as an indicator of the decrease in growth ability in MTA medium were subjected to liquid culture, and DMTS- It is the result of examining the production amount of P1. 実施例1においてK701株の1倍体から取得したMRI1遺伝子変異株LMU-H9株(1倍体)、実施例2においてセルフクローニングにより作出したLMU-H9株のMRI1変異をホモに持つ30-5株(2倍体)、及びセルフクローニングの親株K901株(2倍体)を用いた小仕込み試験において、炭酸ガス減量を調べた結果である。The MRI1 gene mutant LMU-H9 strain (haploid) obtained from the haploid of the K701 strain in Example 1 and the MRI1 mutation of the LMU-H9 strain produced by self-cloning in Example 2 are homologous 30-5 It is the result of investigating the carbon dioxide loss in the small preparation test using the strain (diploid) and the self-cloning parent strain K901 (diploid). 実施例3においてMTA培地での増殖能の低下を指標として選択した変異株を液体培養し、培養上清中のDMTS-P1の生成量を調べた結果である(n=2)。FIG. 3 shows the results of liquid culture of a mutant strain selected as an indicator of a decrease in growth ability in an MTA medium in Example 3, and examining the amount of DMTS-P1 produced in the culture supernatant (n = 2).

本発明によるDMTS-P1低生産酵母の作出方法に供する酵母株は、好ましくは醸造酵母である。醸造酵母の具体例としては、清酒酵母、ビール酵母、ワイン酵母、焼酎酵母などが挙げられる。中でも本発明においては、親株として清酒酵母を特に好ましく用いることができる。   The yeast strain used in the method for producing a DMTS-P1 low-producing yeast according to the present invention is preferably a brewing yeast. Specific examples of the brewing yeast include sake yeast, beer yeast, wine yeast, shochu yeast, and the like. Among them, sake yeast can be particularly preferably used as a parent strain in the present invention.

まず、酵母親株より、メチオニン要求性を示す株を取得する。メチオニン要求性を示す酵母株は鉛イオンPb2+の存在下で暗褐色〜黒色に発色することが知られており(Gregory, J. Cost et al : YEAST, 12, 939-941 (1996))、鉛添加培地上でのコロニー色を指標としてメチオニン要求性を示す株を選択することができる。培地の鉛(Pb2+)濃度は0.3〜3 mM程度で良い。変異処理した酵母親株又は変異処理しない酵母親株を鉛添加培地に播き、暗褐色〜黒色に発色したコロニーを回収すればよい。変異処理の具体例としては、紫外線照射、放射線照射等の物理的変異処理、及びエチルメタンスルフォン酸(EMS)等の変異剤で処理する化学的変異処理等が挙げられるが、これらに限定されない。親株の変異処理は行っても行わなくても良い。 First, a strain showing methionine requirement is obtained from the yeast parent strain. Yeast strains that require methionine are known to develop dark brown to black color in the presence of lead ion Pb 2+ (Gregory, J. Cost et al: YEAST, 12, 939-941 (1996)) A strain exhibiting methionine requirement can be selected using the colony color on the lead-added medium as an index. The concentration of lead (Pb 2+ ) in the medium may be about 0.3 to 3 mM. A yeast parent strain that has been subjected to mutation treatment or a yeast parent strain that has not been subjected to mutation treatment is seeded in a lead-added medium, and colonies that have developed dark brown to black color may be recovered. Specific examples of the mutation treatment include, but are not limited to, physical mutation treatment such as ultraviolet irradiation and radiation irradiation, and chemical mutation treatment using a mutation agent such as ethylmethanesulfonic acid (EMS). The parent strain may or may not be mutated.

次いで、得られたメチオニン要求性酵母株を、メチオニン含有培地と、メチオニンを含まず5’-メチルチオアデノシン(MTA)を含むMTA含有培地の両者で培養し、MTA含有培地においてメチオニン含有培地よりも増殖能が低い株を選択する。当該工程においても、メチオニン要求性株の変異処理は行っても行わなくてもよい。得られたメチオニン要求性酵母株を変異処理して、又は変異処理せずに、YPDプレート等の通常の酵母用寒天培地に播種して培養後、各コロニーをメチオニン含有培地及びMTA含有培地の両方に播種して培養し、メチオニン含有培地に比べてMTA含有培地での増殖が劣るものを選択すればよい。また、MTA含有培地を用いてメチオニン要求性酵母株をナイスタチン処理し、増殖の劣るものを濃縮してからメチオニン含有培地及びMTA含有培地に播種することも可能である。ナイスタチンはポリエンマクロライド系の抗生物質であり、増殖する酵母に取り込まれて酵母を死滅させる。増殖能が低いものは死滅率が低くなるため、結果として増殖の悪い酵母細胞が濃縮される。   Next, the obtained methionine-requiring yeast strain is cultured in both a methionine-containing medium and an MTA-containing medium that does not contain methionine and contains 5′-methylthioadenosine (MTA), and grows more than the methionine-containing medium in the MTA-containing medium. Select strains with low performance. Also in this step, the mutation treatment of the methionine-requiring strain may or may not be performed. The obtained methionine-requiring yeast strain is mutated or not mutated and seeded on a normal yeast agar medium such as a YPD plate. After culturing, each colony is both a methionine-containing medium and an MTA-containing medium. It is sufficient to select one that is inoculated and cultured and inferior in growth on an MTA-containing medium as compared to a methionine-containing medium. It is also possible to treat a methionine-requiring yeast strain with nystatin using an MTA-containing medium, concentrate the inferior growth, and then inoculate the methionine-containing medium and MTA-containing medium. Nystatin is a polyene macrolide antibiotic and is taken up by the growing yeast to kill the yeast. Those with low growth ability have a low kill rate, and as a result, yeast cells with poor growth are concentrated.

メチオニン含有培地及びMTA含有培地は、酵母用の最少培地にメチオニン及びMTAを添加してそれぞれ調製することができる。メチオニン及びMTAの濃度は0.1mM〜10mM程度でよい。最少培地は、硫黄源が制限されたものを好ましく用いることができる。すなわち、メチオニン含有培地及びMTA含有培地は、メチオニン及びMTA以外の硫黄源が制限された培地であることが好ましい。ここでいう「硫黄源が制限された」とは、メチオニン及びMTA以外の硫黄分濃度が5 mM未満、例えば0.005 mM未満であることをいう。メチオニン及びMTA以外の硫黄源が制限された培地をこの工程で用いることで、メチオニン含有培地及びMTA含有培地での増殖の差がより明瞭になるので、増殖能の差を判別しやすくなる。   A methionine-containing medium and an MTA-containing medium can be prepared by adding methionine and MTA to a minimal medium for yeast, respectively. The concentration of methionine and MTA may be about 0.1 mM to 10 mM. As the minimal medium, a medium having a limited sulfur source can be preferably used. That is, the methionine-containing medium and the MTA-containing medium are preferably media in which a sulfur source other than methionine and MTA is limited. Here, “the sulfur source is limited” means that the concentration of sulfur other than methionine and MTA is less than 5 mM, for example, less than 0.005 mM. By using a medium in which a sulfur source other than methionine and MTA is limited in this step, the difference in growth between the methionine-containing medium and the MTA-containing medium becomes clearer, so that the difference in proliferation ability can be easily discriminated.

メチオニン含有培地及びMTA含有培地での増殖能の評価は、反復して行っても良い。すなわち、MTA含有培地での増殖能が低い株を候補株として選択した後、メチオニン含有培地及びMTA含有培地で候補株を培養し、増殖能に差があることが再度確認された株をMTA含有培地での増殖能が低い株として選択してもよい。   The evaluation of the growth ability in the methionine-containing medium and the MTA-containing medium may be repeated. That is, after selecting a strain having a low growth ability in an MTA-containing medium as a candidate strain, the candidate strain is cultured in a methionine-containing medium and an MTA-containing medium, and a strain that has been confirmed again to have a difference in growth ability is MTA-containing. You may select as a strain | stump | stock with low growth ability in a culture medium.

上記の工程で取得された、MTA含有培地での増殖能が低い株は、極めて高い確率でMDE1遺伝子又はMRI1遺伝子の機能欠損変異を有し、DMTS-P1低生産性を示す。実際にDMTS-P1低生産性であることを確認するためには、例えば、該酵母株及び親株を液体培地中で一定期間(例えば数日間、ないしは1週間程度)培養し、培養上清中のDMTS-P1濃度を測定し、親株とDMTS-P1濃度を比較すればよい。MDE1遺伝子又はMRI1遺伝子に変異が生じているか否かは、各遺伝子の配列をシークエンシングにより決定し、親株の各遺伝子の配列と比較すればよい。野生型の醸造酵母のMDE1遺伝子及びMRI1遺伝子の一例として、清酒酵母きょうかい701号のMDE1遺伝子の配列を配列番号1(コード領域の塩基配列)、配列番号2(アミノ酸配列)、配列番号3(コード領域+前後各300bp程度のゲノム領域)に、MRI1遺伝子の配列を配列番号4(コード領域の塩基配列)、配列番号5(アミノ酸配列)、配列番号6(コード領域+前後各300bp程度のゲノム領域)にそれぞれ示す。また、配列番号5にはMDE1遺伝子の隣接する各300bp程度を含むゲノム領域を、配列番号6にはMRI1遺伝子の隣接する各300bp程度を含むゲノム領域をそれぞれ示す。   The strain obtained in the above step and having a low growth ability in an MTA-containing medium has a MDE1 gene or MRI1 gene function-deficient mutation with a very high probability and exhibits low productivity of DMTS-P1. In order to confirm the low productivity of DMTS-P1 in practice, for example, the yeast strain and the parent strain are cultured in a liquid medium for a certain period of time (for example, about several days or about one week), The DMTS-P1 concentration is measured, and the parent strain and the DMTS-P1 concentration may be compared. Whether a mutation has occurred in the MDE1 gene or the MRI1 gene may be determined by sequencing the sequence of each gene and compared with the sequence of each gene in the parent strain. As an example of the MDE1 gene and MRI1 gene of wild-type brewing yeast, the sequence of MDE1 gene of sake yeast No. 701 is SEQ ID NO: 1 (base sequence of coding region), SEQ ID NO: 2 (amino acid sequence), SEQ ID NO: 3 ( In the coding region + genomic region of about 300 bp before and after each), the sequence of the MRI1 gene is SEQ ID NO: 4 (base sequence of the coding region), SEQ ID NO: 5 (amino acid sequence), SEQ ID NO: 6 (coding region + genome of about 300 bp each before and after Area). SEQ ID NO: 5 shows a genomic region containing about 300 bp each adjacent to the MDE1 gene, and SEQ ID NO: 6 shows a genomic region containing about 300 bp each adjacent to the MRI1 gene.

下記実施例では、MDE1遺伝子においては、第161位のシトシンがチミンになり(161C→T)、タンパク質の第54番プロリンがロイシンになる(54Pro→Leu)置換変異が同定され、MRI1遺伝子においては、第575位のグアニンがアデニンになり(575G→A)、タンパク質の第192番グリシンがアスパラギン酸になる(192Gly→Asp)置換変異が同定されている。このような一塩基置換の他にも、異なる部位での少数の塩基の置換や欠失等が生じる可能性があるが、配列を決定すれば容易に変異を特定できる。変異の特定は、MTA含有培地での増殖能が低い株を選択する工程の後、又は選択された株を液体培養してDMTS-P1の生産能を確認した後に任意で行われ得る。   In the following example, in the MDE1 gene, a substitution mutation is identified in which the cytosine at position 161 becomes thymine (161C → T), and the 54th proline of the protein becomes leucine (54Pro → Leu). A substitution mutation has been identified in which the guanine at position 575 becomes adenine (575G → A) and the 192nd glycine of the protein becomes aspartic acid (192Gly → Asp). In addition to such single base substitution, substitution or deletion of a small number of bases at different sites may occur, but mutation can be easily identified by determining the sequence. The identification of the mutation can be optionally performed after the step of selecting a strain having a low growth ability in an MTA-containing medium or after confirming the production ability of DMTS-P1 by liquid culture of the selected strain.

清酒酵母等の醸造酵母では、メチオニン要求株は、大吟醸仕込みなどもろみの栄養分が少ない条件では増殖や発酵の遅れが生じる可能性がある。そのため、醸造酵母、特に清酒酵母で上記の通りにDMTS-P1低生産変異株を取得した場合には、メチオニン要求性を喪失させることが望ましい。   In brewer's yeasts such as sake yeast, methionine-requiring strains may be delayed in growth and fermentation under conditions of low moromi content such as Daiginjo. Therefore, when a DMTS-P1 low production mutant strain is obtained as described above with brewing yeast, particularly sake yeast, it is desirable to lose methionine requirement.

親株として1倍体の酵母を用いた場合には、2倍体化を行なう。まず、DMTS-P1低生産変異株を性の異なるメチオニン要求性をもたない1倍体酵母と掛けあわせ、得られた2倍体から1倍体を取得する。得られた1倍体の中には、DMTS-P1低生産変異株と性は異なるが、MDE1遺伝子又はMRI1遺伝子に同じ変異が入った株が得られる。この株をDMTS-P1低生産変異株と掛け合わせることで、ホモに変異が入った2倍体が得られる。この時、メチオニン要求性や変異により生じる可能性がある発酵能の低下等も原因遺伝子が相補され、高い確率で欠点が減少する。従って、2倍体化した株の中から、メチオニン要求性が失われた株を効率よく取得することができる。メチオニン非含有培地で2倍体化した株を培養し、増殖可能となった株を選択すればよい。   When haploid yeast is used as the parent strain, diploidization is performed. First, a DMTS-P1 low-producing mutant is crossed with a haploid yeast having different methionine requirement, and a haploid is obtained from the obtained diploid. Among the obtained haploids, a strain having the same mutation in the MDE1 gene or the MRI1 gene is obtained, although the gender is different from that of the DMTS-P1 low production mutant. By multiplying this strain with a DMTS-P1 low-producing mutant strain, a diploid having a mutation in the homozygote can be obtained. At this time, the causative gene is complemented by methionine requirement or a decrease in fermentability that may be caused by mutation, and defects are reduced with high probability. Therefore, a strain in which methionine requirement is lost can be efficiently obtained from the diploid strain. What is necessary is just to culture | cultivate the strain | stump | stock which doubled with the methionine-free culture medium, and should just select the strain | stump | stock which became proliferative.

親株として2倍体の酵母を用いた場合には、メチオニン非含有培地で増殖できるリバータントを取得すればよい。例えば、徐々にメチオニン濃度を低下させてDMTS-P1低生産変異株を継代培養し、最終的にメチオニン非添加の培地でも増殖可能となった株を選択すればよい。   When diploid yeast is used as the parent strain, a revertant that can grow in a methionine-free medium may be obtained. For example, the DMTS-P1 low-producing mutant strain is subcultured by gradually reducing the methionine concentration, and finally a strain that can grow on a medium without methionine addition may be selected.

上記の通りに作出した酵母DMTS-P1低生産変異株の変異を、セルフクローニング法により所望の酵母に導入することにより、DMTS-P1低生産性酵母株を作出することも可能である。この場合、変異を導入する酵母としてメチオニン要求性を示す酵母株を使用する必要がないため、醸造特性が損なわれるリスクがない。   It is also possible to produce a DMTS-P1 low-producing yeast strain by introducing a mutation of the yeast DMTS-P1 low-producing mutant produced as described above into a desired yeast by a self-cloning method. In this case, since it is not necessary to use a yeast strain exhibiting methionine requirement as a yeast for introducing a mutation, there is no risk that the brewing characteristics are impaired.

本発明において、セルフクローニング法とは、同一種由来の核酸が移植され、異種由来の核酸がゲノム上に残らない組換えDNA技術をいう。異種由来の核酸には、形質転換体の選抜のための薬剤耐性等のマーカー遺伝子、及び遺伝子組換え用プラスミドベクターに由来する核酸が包含される。食品産業で用いられる実用酵母の育成においては、そのような遺伝子導入のためだけに必要な外来DNA配列がゲノム上に残らない手法が望ましい。
酵母のセルフクローニング技術はこの分野で良く知られており、例えばAritomi et al., Biosci. Biotechnol. Biochem., 68(1), 206-214, 2004や特開2003-144164等に記載されている。これらの方法では、形質転換体の選抜のための薬剤耐性マーカーと、マーカー除去株の選抜のための生育抑制マーカーとを含むプラスミドベクターを利用して、ゲノム中の正常遺伝子を変異遺伝子に置き換える。以下、当該技術を用いたセルフクローニング法によるDMTS-P1低生産性酵母株の作出方法について説明する。
In the present invention, the self-cloning method refers to a recombinant DNA technique in which nucleic acids derived from the same species are transplanted and no heterologous nucleic acids remain on the genome. The heterologous nucleic acid includes marker genes such as drug resistance for selection of transformants, and nucleic acids derived from gene recombination plasmid vectors. In the cultivation of practical yeasts used in the food industry, a technique that does not leave a foreign DNA sequence necessary only for such gene transfer on the genome is desirable.
Yeast self-cloning techniques are well known in the art, and are described, for example, in Aritomi et al., Biosci. Biotechnol. Biochem., 68 (1), 206-214, 2004, JP 2003-144164, etc. . In these methods, a normal gene in the genome is replaced with a mutated gene using a plasmid vector containing a drug resistance marker for selecting a transformant and a growth suppression marker for selecting a marker-removed strain. Hereinafter, a method for producing a DMTS-P1 low productivity yeast strain by the self-cloning method using this technique will be described.

まず、上記のようにMTA含有培地での増殖能低下を指標として取得した酵母DMTS-P1低生産変異株より、MDE1遺伝子又はMRI1遺伝子上に生じた変異を含む領域(変異型領域)を増幅し、形質転換体選抜用の薬剤耐性マーカー及びマーカー除去株選抜用の生育抑制マーカーを含むセルフクローニング用のプラスミドベクターに組み込む。増幅させる変異型領域は、変異部位を含んでいればサイズは問わず、変異を有するMDE1遺伝子又はMRI1遺伝子の一部領域でも全長でもよいが、酵母ゲノムへの導入及び異種由来配列の除去の過程では相同組換え機構を利用することから、相同組換えの効率を考慮し、500bp程度以上の領域を増幅して用いることが好ましい。また、形質転換用プラスミドベクターは、酵母に導入したい変異型領域内で1か所を切断しリニア化して酵母細胞に導入するため、ベクターを切断せず、変異部位に影響しない部位において変異型領域内を1か所だけで切断する制限酵素サイトを有するように増幅領域を選択する。   First, from the yeast DMTS-P1 low-producing mutant strain obtained as described above with a decrease in growth ability in an MTA-containing medium as described above, a region (mutant region) containing a mutation generated on the MDE1 gene or MRI1 gene was amplified. Incorporated into a plasmid vector for self-cloning containing a drug resistance marker for selection of transformants and a growth suppression marker for selection of marker-removed strains. The mutant region to be amplified may be of any size as long as it contains the mutation site, and may be a partial region or full length of the MDE1 gene or MRI1 gene having the mutation. Then, since a homologous recombination mechanism is used, it is preferable to amplify and use a region of about 500 bp or more in consideration of the efficiency of homologous recombination. In addition, the plasmid vector for transformation is cut at one place in the mutant region to be introduced into yeast, linearized and introduced into yeast cells, so the mutant region is not cut at the site that does not cut the vector and does not affect the mutation site. The amplification region is selected so that it has a restriction enzyme site that cuts at only one site.

薬剤耐性マーカーとしてはYAP1(セルレニン、シクロヘキシミド耐性)、AUR1-C(オーレオバシジン耐性)など、生育抑制マーカーとしてはGIN11等の公知のマーカーを用いることができる。そのようなマーカー遺伝子を用いた酵母のセルフクローニング用プラスミドは、上掲のAritomi et al., Biosci. Biotechnol. Biochem., 68(1), 206-214, 2004や特開2003-144164等に記載され公知であり、またpAUR135等の市販品も存在する。いずれのものを用いても良い。   As a drug resistance marker, YAP1 (cellurenin, cycloheximide resistance), AUR1-C (aureobasidin resistance) and the like, and as a growth suppression marker, known markers such as GIN11 can be used. Yeast self-cloning plasmids using such marker genes are described in Aritomi et al., Biosci. Biotechnol. Biochem., 68 (1), 206-214, 2004, JP 2003-144164, etc. There are also commercially available products such as pAUR135. Any one may be used.

変異型領域を組み込んだセルフクローニング用プラスミドベクターは、変異型領域内の1か所だけで切断する制限酵素により切断してリニア化し、酵母細胞内に導入する。ここで用いる酵母としては、メチオニン要求性を示さない通常の2倍体の非組み換え体酵母、例えば清酒酵母等の醸造酵母を好ましく用いることができる。ここでいう「非組み換え体」とは、典型的には、野生型ないしは天然の若しくは人為的に誘発された変異を有する酵母であるが、異種由来の配列を含まない酵母も包含され、例えば何らかの特性が付与されたセルフクローニング株も包含される。   A plasmid vector for self-cloning incorporating a mutated region is linearized by cutting with a restriction enzyme that cuts at only one site in the mutated region, and then introduced into yeast cells. As the yeast used here, a normal diploid non-recombinant yeast that does not exhibit methionine requirement, for example, a brewing yeast such as sake yeast can be preferably used. As used herein, “non-recombinant” is typically yeast having wild-type or natural or artificially induced mutations, but also includes yeasts that do not contain heterologous sequences. Self-cloning strains that are imparted with characteristics are also included.

プラスミドをリニア化したDNAコンストラクトは、2つに分断された変異型領域(そのうちの一方に変異部位が含まれる)が両末端に配置され、その間に薬剤耐性マーカー、生育抑制マーカー、及びプラスミド由来配列が含まれた構造をとる。このDNAコンストラクトは、両末端に分断して配置された変異型領域と、酵母ゲノム上の変異を有しないもとの遺伝子領域との間での相同組換えにより、その遺伝子領域の内部に組み込まれる。これにより、酵母細胞のゲノム中では、マーカー遺伝子及びプラスミド由来配列を介して正常型遺伝子配列と変異型遺伝子配列が縦列して存在する状態になる。まず、薬剤耐性により、DNAコンストラクトがゲノム中に組み込まれた酵母を選択する。   In a DNA construct that linearizes a plasmid, a mutant region divided into two (one of which contains a mutation site) is arranged at both ends, and a drug resistance marker, a growth suppression marker, and a plasmid-derived sequence between them. It has a structure that includes This DNA construct is incorporated into the gene region by homologous recombination between the mutant region divided at both ends and the original gene region having no mutation on the yeast genome. . As a result, in the genome of the yeast cell, the normal gene sequence and the mutant gene sequence exist in tandem through the marker gene and the plasmid-derived sequence. First, a yeast in which a DNA construct is integrated into the genome is selected by drug resistance.

次いで、ゲノム中で縦列して存在する正常型遺伝子配列と変異型遺伝子配列との間で相同組換えが生じると、薬剤耐性マーカー及び生育抑制マーカーを含むプラスミド配列が脱落し、正常型遺伝子及び変異型遺伝子のいずれかがゲノム上に残される。そのため、DNAコンストラクトがゲノム中に組み込まれた酵母細胞について、生育抑制マーカーを発現させる条件下で(例えば、生育抑制マーカーがガラクトース誘導性過剰発現プロモーターの制御下にある場合には、ガラクトース培地上で)さらに選択をかけると、プラスミド配列が残存する酵母細胞は生育抑制マーカーの作用により生育することができず、一方、相同組換えが生じてプラスミド配列が脱落した酵母細胞は生育できるので、プラスミド配列が脱落し正常型遺伝子又は変異型遺伝子のみがゲノム中に残存する酵母株を得ることができる。ゲノム中に残存した遺伝子が変異型配列の遺伝子であるかどうかは、変異部位近傍のシークエンシングを行なって確認すればよい。   Next, when homologous recombination occurs between the normal gene sequence and the mutant gene sequence that exist in tandem in the genome, the plasmid sequence containing the drug resistance marker and the growth suppression marker is dropped, and the normal gene and mutation Either type gene is left on the genome. Therefore, for yeast cells in which the DNA construct is integrated into the genome, under conditions for expressing a growth suppression marker (for example, when the growth suppression marker is under the control of a galactose-inducible overexpression promoter, When further selection is made, yeast cells in which the plasmid sequence remains cannot grow due to the action of the growth inhibitory marker, whereas yeast cells in which the plasmid sequence has dropped due to homologous recombination can grow. Can be obtained, and yeast strains in which only normal genes or mutant genes remain in the genome can be obtained. Whether the gene remaining in the genome is a mutant sequence gene may be confirmed by sequencing in the vicinity of the mutation site.

2倍体の酵母を親株としてセルフクローニングを行なった場合、1回のセルフクローニング操作によって得られる形質転換体は、通常は一方のアリルのみ変異型配列で置き換えられたヘテロ変異株である。このヘテロ変異株に対して上記のDNAコンストラクトを導入し、薬剤耐性マーカーと生育抑制マーカーを利用したスクリーニングを行なうことで、両アリルが変異型配列で置き換えられたホモ変異株を得ることができる。   When self-cloning is performed using a diploid yeast as a parent strain, a transformant obtained by one self-cloning operation is usually a hetero mutant strain in which only one allele is replaced with a mutant sequence. By introducing the DNA construct described above into this heterozygous mutant and screening using a drug resistance marker and a growth suppression marker, a homomutant in which both alleles are replaced with a mutant sequence can be obtained.

MTA含有培地での増殖能低下を指標として取得した酵母DMTS-P1低生産変異株、及び該変異株の変異部位を利用したセルフクローニング株は、DMTS-P1の生産性が低く、DMTS生成ポテンシャルも低い。そのため、醸造酵母を用いてこれらの株を作出し、該株を用いてアルコール発酵を行なえば、アルコール飲料貯蔵中のDMTSの発生が抑制されるので、硫化物様のオフフレーバーの発生が抑制されたアルコール飲料を、清酒酵母の場合は老香の発生が抑制された清酒を生産することができる。   Yeast DMTS-P1 low-producing mutant strains obtained by using a decrease in growth ability in an MTA-containing medium as an index, and self-cloning strains using the mutant site of the mutant strain have low DMTS-P1 productivity and DMTS production potential. Low. Therefore, if these strains are produced using brewing yeast and alcohol fermentation is performed using these strains, the generation of DMTS during storage of alcoholic beverages is suppressed, so the generation of sulfide-like off-flavors is suppressed. In the case of sake yeast, it is possible to produce sake with suppressed generation of scent.

下記実施例では、MTA含有培地での増殖能の低下を指標とした方法により取得される変異の一例として、MDE1遺伝子においては、第161位のシトシンがチミンになり(161C→T)、タンパク質の第54番プロリンがロイシンになる(54Pro→Leu)置換変異が同定され、MRI1遺伝子においては、第575位のグアニンがアデニンになり(575G→A)、タンパク質の第192番グリシンがアスパラギン酸になる(192Gly→Asp)置換変異が同定されている。これらの変異を有する酵母株は、上記した本発明の方法によるほか、野生型の酵母株のゲノムから該当領域を増幅し、遺伝子工学分野の常法により増幅断片に一塩基置換を導入し、これをセルフクローニング法により酵母に導入することによって作出することも可能である。良好な醸造特性を有する酵母を用いてこれらの変異を導入した酵母株も、硫化物様のオフフレーバーの発生が抑制されたアルコール飲料、老香の発生が抑制された清酒の生産に好ましく用いることができる。   In the following examples, as an example of a mutation obtained by a method using a decrease in growth ability in an MTA-containing medium as an index, in the MDE1 gene, cytosine at position 161 becomes thymine (161C → T), The 54th proline becomes leucine (54Pro → Leu), and the substitution mutation has been identified. In the MRI1 gene, the 575th guanine becomes adenine (575G → A), and the 192nd glycine of the protein becomes aspartic acid. (192Gly → Asp) substitution mutations have been identified. In addition to the method of the present invention described above, the yeast strain having these mutations amplifies the corresponding region from the genome of the wild-type yeast strain, and introduces a single base substitution into the amplified fragment by a conventional method in the field of genetic engineering. Can also be produced by introducing the yeast into yeast by the self-cloning method. Yeast strains introduced with these mutations using yeast having good brewing characteristics should also be preferably used for the production of alcoholic beverages with reduced sulfide-like off-flavor generation and sake with reduced generation of scent. Can do.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。DMTS-P1及びDMTSの分析は以下の通りに行った。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples. Analysis of DMTS-P1 and DMTS was performed as follows.

<DMTS-P1の分析(LC/MS)>
試料(培養上清又は清酒)1 mLに、内部標準として20 mg/Lの1,2-dihydroxy-5-(methyl(d3)sulfinyl)pentan-3-one (methyl(d3)DMTS-P1)を25μL添加し、蒸留水で2mLにメスアップした。これを約1mLの陽イオン交換樹脂(Dowex50WX4)に通液し、蒸留水6 mLで洗浄した。通過液を合併し、凍結乾燥後蒸留水1 mLに溶解し、もしくは合併した通過液をそのままフィルターろ過してLC/MS試料とした。LC/MSの条件は以下のとおり。
装置:島津製作所社製高速液体クロマトグラフ質量分析計LCMS-8040
カラム:BDS Hypersil C18 (3.0×150mm)
移動相:超純水、0.3mL/min
インジェクション:5μL
イオン化モード:ESI (+)
インターフェイス電圧:4.5 kV
ネブライザーガス流量:1.5 L/min
ドライイングガス流量:10.0 L/min
ブロックヒーター温度:500℃
試料導入部温度:300℃
MRM条件
DMTS-P1:プレカーサーイオン;m/z 181, モニターイオン;m/z 117
Methyl(d3)DMTS-P1:プレカーサーイオン;m/z 184, モニターイオン;m/z 117
<Analysis of DMTS-P1 (LC / MS)>
To 1 mL of sample (culture supernatant or sake), 20 mg / L 1,2-dihydroxy-5- (methyl (d3) sulfinyl) pentan-3-one (methyl (d3) DMTS-P1) as an internal standard 25 μL was added and made up to 2 mL with distilled water. This was passed through about 1 mL of cation exchange resin (Dowex50WX4) and washed with 6 mL of distilled water. The passing solutions were combined, dissolved in 1 mL of distilled water after lyophilization, or the combined passing solutions were filtered as they were to obtain LC / MS samples. LC / MS conditions are as follows.
Apparatus: Shimadzu Corporation high performance liquid chromatograph mass spectrometer LCMS-8040
Column: BDS Hypersil C18 (3.0 × 150mm)
Mobile phase: Ultrapure water, 0.3 mL / min
Injection: 5μL
Ionization mode: ESI (+)
Interface voltage: 4.5 kV
Nebulizer gas flow rate: 1.5 L / min
Drying gas flow rate: 10.0 L / min
Block heater temperature: 500 ℃
Sample introduction part temperature: 300 ℃
MRM conditions
DMTS-P1: Precursor ion; m / z 181, Monitor ion; m / z 117
Methyl (d3) DMTS-P1: Precursor ion; m / z 184, Monitor ion; m / z 117

<DMTSの分析(GC/MS)>
stir bar sorptive extraction (SBSE)により行った。エタノール濃度10%となるように加水した清酒試料10mlに、塩化ナトリウム2g、および内部標準としてdimethyl(d6)trisulfide (DMTS-d6) を1 μg/Lとなるように添加し、攪拌子(Twister、Gerstel社製)を入れて700 rpm、30分間攪拌し、香気成分の抽出を行った。香気成分を吸着したTwisterをGerstel社製の加熱脱着装置(TDSA)に装着した。
加熱脱着条件
TDSA:20℃(1min)→60℃/min→230℃(4min)
CIS4:-150℃(0.7min)→12℃/sec→250℃(10min)
GC/MS条件
装置:Agilent社製 GC6890およびMSD5973
カラム:HP-INNOWax(30 m×0.25 mm×0.25 μm)
オーブン温度:40℃(5min)→5℃/min→120℃→15℃/min→240℃(10min)
キャリアガス:He, 1.0 mL/min
インジェクション:スプリットレス
SIMモード
モニターイオン:DMTS; m/z 126, DMTS-d6; m/z 132
<DMTS analysis (GC / MS)>
Stir bar sorptive extraction (SBSE) was used. Add 2 g of sodium chloride and dimethyl (d6) trisulfide (DMTS-d6) as an internal standard to a concentration of 1 μg / L to 10 ml of sake sample watered to an ethanol concentration of 10%. Gerstel) was added and stirred at 700 rpm for 30 minutes to extract aroma components. The Twister that adsorbed the aroma component was attached to a heat desorption device (TDSA) manufactured by Gerstel.
Thermal desorption conditions
TDSA: 20 ℃ (1min) → 60 ℃ / min → 230 ℃ (4min)
CIS4: -150 ℃ (0.7min) → 12 ℃ / sec → 250 ℃ (10min)
GC / MS condition equipment: Agilent GC6890 and MSD5973
Column: HP-INNOWax (30 m × 0.25 mm × 0.25 μm)
Oven temperature: 40 ℃ (5min) → 5 ℃ / min → 120 ℃ → 15 ℃ / min → 240 ℃ (10min)
Carrier gas: He, 1.0 mL / min
Injection: Splitless
SIM mode monitor ion: DMTS; m / z 126, DMTS-d6; m / z 132

実施例1:MTA培地での増殖能低下を指標としたDMTS-P1低生産変異酵母株のスクリーニング(その1)
(1) メチオニン要求性変異株のスクリーニング
清酒酵母はMet要求性を持たないため、まず清酒きょうかい701号(K701)の1倍体株であるK701-α9株より、Pb添加培地上でのコロニー色を指標として(Gregory, J. Cost et al., YEAST, 12, 939-941 (1996))Met要求性変異株のスクリーニングを行なった。
Example 1: Screening of a DMTS-P1 low-producing mutant yeast strain using a decrease in growth ability in MTA medium as an index (part 1)
(1) Screening for methionine-requiring mutant strains Sake yeast does not have Met requirement, so first from K701-α9 strain, a haploid strain of Sake Sake Kyokai 701 (K701), colonies on Pb-added medium. Met-requiring mutants were screened using color as an index (Gregory, J. Cost et al., YEAST, 12, 939-941 (1996)).

K701-α9株をEMS処理し、Pb添加培地(硝酸鉛添加、培地の鉛(Pb2+)濃度は3mM)上に播種し、30℃で4〜5日間培養後、暗褐色〜黒色に発色したコロニーを回収した。約14,000コロニーからのスクリーニングの結果、7株のメチオニン要求性変異株を取得した。この7株より、増殖試験で増殖が良好であり、かつ、リバータント率(先祖返りしてメチオニン要求を失う率)が低い株を4株取得した。この4株のうち、MTA資化能が最も良いMR-01株をその後のスクリーニング工程に付した。 K701-α9 strain is treated with EMS, seeded on Pb-supplemented medium (lead nitrate added, medium lead (Pb 2+ ) concentration is 3mM), cultured at 30 ° C for 4-5 days, then colored dark brown to black Colonies were collected. As a result of screening from about 14,000 colonies, seven methionine-requiring mutant strains were obtained. From these seven strains, four strains were obtained which had good growth in the growth test and had a low revertant rate (rate of returning to lose methionine requirement). Among these 4 strains, the MR-01 strain with the best MTA utilization ability was subjected to the subsequent screening process.

(2) MTA培地及びMet培地での増殖差を指標としたDMTS-P1低生産変異株のスクリーニング
目的とするmde1もしくはmri1変異株のスクリーニングは、MTAもしくはMetを添加し、それ以外の硫黄源を制限した最少培地(MTA培地、Met培地)での増殖差を指標として行った。
(2) Screening for DMTS-P1 low-producing mutants using growth difference in MTA medium and Met medium as an indicator Screening for target mde1 or mri1 mutants involves adding MTA or Met, and using other sulfur sources. A growth difference in a restricted minimal medium (MTA medium, Met medium) was used as an index.

上記で得られたMet要求性変異株MR-01株を培養して増殖させた後、EMS処理して変異を誘発させた。変異処理後の酵母細胞をYPDプレートに播種して培養後、出てきたコロニーをMTA培地およびMet培地にレプリカし、Met培地に比べてMTA培地での増殖が劣る株を候補株とした。MTA培地及びMet培地の組成は表1に示す通りであり、MTA及びMet以外の硫黄源を制限した組成とした(MTA及びMet以外の硫黄分濃度は約1.2μM未満)。   The Met-requiring mutant strain MR-01 obtained above was cultured and expanded, and then treated with EMS to induce mutation. After the yeast cells after the mutation treatment were seeded on a YPD plate and cultured, the colonies that emerged were replicated in MTA medium and Met medium, and a strain that was inferior in growth in MTA medium as compared to Met medium was used as a candidate strain. The compositions of the MTA medium and the Met medium are as shown in Table 1, and the composition is such that sulfur sources other than MTA and Met are limited (the concentration of sulfur content other than MTA and Met is less than about 1.2 μM).

候補株について、スポット法(初期菌体数が同じになるよう調整した菌体懸濁液を寒天培地上に滴下し、一定期間後、菌体増殖の違いを観察する方法)により増殖差を確認し、差がみられた株を選択した。これらをYPD培地で一晩前培養後、菌体数が1×106cells/mLとなるようにYPD培地に植菌し、30℃で1週間静置培養して、培養液の上清のDMTS-P1濃度をLC-MSにより測定した。 For candidate strains, confirm growth differences by spot method (a method of observing differences in cell growth after a certain period of time by dropping a cell suspension adjusted to the same initial cell count on an agar medium) Then, strains showing differences were selected. After pre-cultured overnight in YPD medium, these were inoculated into YPD medium so that the number of cells was 1 × 10 6 cells / mL, and allowed to stand at 30 ° C for 1 week. DMTS-P1 concentration was measured by LC-MS.

MR-01株由来の約24,000コロニーからのスクリーニングの結果、MTA培地での増殖能が低い株が19株得られた。そのうちの9株で親株よりも有意にDMTS-P1の生成量が低下しており、9株中の3株ではDMTS-P1の生成がほとんど見られなかった(図1)。DNAシーケンスの結果、3株のうちの2株(LMU-H1株、LMU-H9株)については、それぞれMDE1およびMRI1のORF内にアミノ酸置換を伴う変異が確認された(MDE1, 161C→T, 54Pro→Leu; MRI1, 575G→A, 192Gly→Asp)。   As a result of screening from about 24,000 colonies derived from the MR-01 strain, 19 strains having low growth ability in the MTA medium were obtained. Among them, nine strains produced significantly less DMTS-P1 than the parent strain, and three of the nine strains produced almost no DMTS-P1 (FIG. 1). As a result of DNA sequencing, mutations with amino acid substitutions were confirmed in the ORFs of MDE1 and MRI1 in 2 of 3 strains (LMU-H1 strain and LMU-H9 strain), respectively (MDE1, 161C → T, 54Pro → Leu; MRI1, 575G → A, 192Gly → Asp).

得られた3株の小仕込試験の結果、LMU-H9株は発酵が大きく遅れたが、LMU-H1株は良好な発酵経過を示し、実用株として有望と考えられた。   As a result of the small preparation test of the 3 strains obtained, the fermentation of LMU-H9 strain was greatly delayed, but LMU-H1 strain showed a good fermentation process and was considered promising as a practical strain.

(3) LMU-H1株の2倍体化
LMU-H1株(MATα)は1倍体であるので、2倍体化を行った。LMU-H1株とK701の野生型1倍体であるK701-a4(MATa)とを交雑し、得られた交雑株を胞子形成させた。胞子形成させたプレートから、ランダムスポア法により約400のコロニーを得た。これらのうち8株においてMTA資化能の低下がみられ、MDE1遺伝子のシークエンスの結果、MATaの1倍体で1株、MATαの1倍体で2株、MATa/αの2倍体で2株が、mde1変異株であることが確認された。上記MATa/αの2株はランダムスポア法の過程で2倍体のmde1変異株が偶発的に得られたものである(mde-D1、D2)。また、LMU-H1を含め接合型の異なる1倍体のmde1変異株どうしを交雑させ、2倍体のmde1変異株を3株得た(mde-D3〜D5)。
(3) Doubled LMU-H1 strain
Since LMU-H1 strain (MATα) is haploid, diploidization was performed. The LMU-H1 strain was crossed with K701-a4 (MATa), which is a wild type haploid of K701, and the resulting hybrid strain was sporulated. About 400 colonies were obtained from the sporulated plate by the random spore method. MTA assimilation ability decreased in 8 of these strains. As a result of sequencing of the MDE1 gene, 1 strain of MATa haploid, 2 strains of MATα haploid, 2 of MATa / α diploid The strain was confirmed to be an mde1 mutant. The above two strains of MATa / α were obtained by accidental diploid mde1 mutants in the process of random spores (mde-D1, D2). Also, haploid mde1 mutants with different mating types including LMU-H1 were crossed to obtain three diploid mde1 mutants (mde-D3 to D5).

(4) 2倍体mde1変異株を用いた清酒小仕込試験
mde-D1〜D5の5株を用いてα化米による清酒小仕込試験を行った。精米歩合77%のα化米と精米歩合75%の麹を用い、表2の仕込配合に従い三段仕込みとし、発酵温度は13℃一定とした。mde-D2は仕込20日目に上槽し、それ以外は15日目に上槽した。生成酒は国税庁所定分析法に従い、アルコール度数、日本酒度、総酸度及びアミノ酸度を分析した。DMTS-P1はLC-MSで測定した。DMTS生成ポテンシャル(DMTS-pp、強制劣化によるDMTS生成量)は、生成酒を70℃で1週間貯蔵後、GC-MSにより測定した。
(4) Small sake preparation test using diploid mde1 mutant
Using 5 strains of mde-D1 to D5, a small-scale sake preparation test using pregelatinized rice was conducted. Using rice starch with a rice milling rate of 77% and rice bran with a rice polishing rate of 75%, a three-stage charge was made according to the charge composition shown in Table 2, and the fermentation temperature was kept constant at 13 ° C. mde-D2 was placed on the tank on the 20th day of charging, and the tank was placed on the 15th day. The produced sake was analyzed for alcohol content, sake content, total acidity and amino acid content according to the analysis method prescribed by the National Tax Agency. DMTS-P1 was measured by LC-MS. DMTS production potential (DMTS-pp, DMTS production due to forced deterioration) was measured by GC-MS after the produced liquor was stored at 70 ° C. for 1 week.

その結果、いずれの株もDMTS-P1濃度は対照株に比べて大きく減少した(表3)。DMTS生成ポテンシャル(DMTS-pp)は5株中4株で1/9〜1/3に低下した。mde-D2株ではDMTS-ppの低下がみられなかったが、アミノ酸度が高いことなどが原因と考えられる。また、5株のうちmde-D2株以外はメチオニン要求性が消失していた。   As a result, the DMTS-P1 concentration in all strains was greatly reduced compared to the control strain (Table 3). DMTS production potential (DMTS-pp) decreased to 1/9 to 1/3 in 4 out of 5 strains. The mde-D2 strain did not show a decrease in DMTS-pp, but this is probably due to its high amino acid content. In addition, methionine requirement disappeared except for the mde-D2 strain among the five strains.

さらに、mde-D1株、mde-D5株を用いて、総米1kgの清酒小仕込試験を行った。精米歩合75%の蒸米と麹を用い、表4の仕込配合に従い三段仕込みとし、発酵温度は13℃一定とした。K701とmde-D5は仕込14日目に上槽し、mde-D1は15日目に上槽した。生成酒をアルコール15%に調整後(表5)、40℃で貯蔵し官能評価を行った。官能評価は11名のパネルにより行った。   Furthermore, using the mde-D1 and mde-D5 strains, a 1 kg total sake sake preparation test was conducted. Using steamed rice and rice bran with a rice polishing ratio of 75%, a three-stage charge was made according to the charge composition shown in Table 4, and the fermentation temperature was kept constant at 13 ° C. K701 and mde-D5 were placed in the upper tank on the 14th day, and mde-D1 was placed on the 15th day. The produced liquor was adjusted to 15% alcohol (Table 5) and stored at 40 ° C. for sensory evaluation. Sensory evaluation was conducted by a panel of 11 people.

その結果、mde-D1株、mde-D5株による小仕込酒は対照株に比べて長期保存後の老香が少なく、総合評価において評価がよい傾向がみられた(表6)。以上の結果から、上記方法によりDMTS-P1低生産酵母を育種することができ、また、得られた株で仕込んだ清酒は貯蔵によるDMTSの生成が抑制されることが明らかとなった。   As a result, the small brewed sake from the mde-D1 and mde-D5 strains showed less tenderness after long-term storage than the control strain, and the overall evaluation showed a good evaluation (Table 6). From the above results, it was clarified that DMTS-P1 low-producing yeast can be bred by the above-mentioned method, and that the sake prepared with the obtained strain can suppress the production of DMTS by storage.

実施例2:セルフクローニング法による変異導入株の作出
(1) LMU-H9株の変異MRI1配列を導入したセルフクローニング株の作出
親株を清酒きょうかい901号(K901株)とし、LMU-H9株の変異MRI1配列を用いて変異導入株を作成した。LMU-H9株の点変異575 G→Aを含む領域を、LMU-H9株のゲノムからPCRで増幅後、組込み型の配列除去型プラスミドpAUR135 (Takara)にクローニングした。本プラスミドは、形質転換体選択マーカーとしてオーレオバシジン耐性を付与するAUR1-C遺伝子に加え、ガラクトース誘導の自殺遺伝子を持つため、配列が除去された株だけがガラクトース培地で生き残れることを利用して、プラスミド除去を行う(Aritomi K, et al. Biosci Biotechnol Biochem. 68, 206-214 (2004); 特開2003-144164など)。具体的な工程を以下に記載する。
Example 2: Creation of a mutant strain by self-cloning method
(1) Creation of a self-cloning strain into which the mutant MRI1 sequence of LMU-H9 strain was introduced The parent strain was designated as Sake Kyokai No. 901 (K901 strain), and a mutant-introduced strain was prepared using the mutant MRI1 sequence of LMU-H9 strain. The region containing the point mutation 575 G → A of the LMU-H9 strain was amplified from the genome of the LMU-H9 strain by PCR, and then cloned into the integrative sequence-removed plasmid pAUR135 (Takara). Since this plasmid has a galactose-induced suicide gene in addition to the AUR1-C gene conferring aureobasidin resistance as a transformant selection marker, only the strain from which the sequence has been removed can survive in the galactose medium. Plasmid removal is performed (Aritomi K, et al. Biosci Biotechnol Biochem. 68, 206-214 (2004); JP 2003-144164, etc.). Specific steps are described below.

LMU-H9株のゲノムを鋳型とし、プライマーMRI1-SF(CTTTGATAGATCGGAGCCAGA、配列番号7)及びMRI1-SR(TTGAATTCCTCAGGGTTACGTT、配列番号8)を用いたPCRにより、点変異を含む993bpの領域(配列番号9)を増幅した。pAUR135への挿入のため、増幅断片をEcoRIで処理し、986bpのインサート断片を回収した。pAUR135をSmaI及びEcoRIで切断し、インサート断片をライゲーションして形質転換用プラスミド(配列番号10、741〜1726位がインサートの変異型MRI1部分配列)を得た。   A 993 bp region containing a point mutation (SEQ ID NO: 9) by PCR using the genome of LMU-H9 strain as a template and primers MRI1-SF (CTTTGATAGATCGGAGCCAGA, SEQ ID NO: 7) and MRI1-SR (TTGAATTCCTCAGGGTTACGTT, SEQ ID NO: 8) Was amplified. The amplified fragment was treated with EcoRI for insertion into pAUR135, and an 986 bp insert fragment was recovered. pAUR135 was cleaved with SmaI and EcoRI, and the insert fragment was ligated to obtain a plasmid for transformation (SEQ ID NO: 10, 741-1726 positions of mutant MRI1 partial sequence of insert).

形質転換用プラスミドをSpe Iで切断してリニア化し、K901株に導入した後、ゲノム中にプラスミドが組み込まれた株をプラスミドの薬剤耐性(オーレオバシジン耐性)で選抜した。選抜した株をガラクトース培地で培養することにより、プラスミド配列が除かれた株を得た。プラスミドの除去は、プラスミド配列部分に設定したプライマー(pAUR135-checkF3: GCCTGATGCGGTATTTTCTC(配列番号11)及びpAUR135-checkR3: TCGTCGTTTGGTATGGCTTC(配列番号12))を用いたPCRにより確認した。また、プラスミド配列が除かれる際、正常なMRI1配列に戻る場合と変異型MRI1配列になる場合があるため、MRI1遺伝子の塩基配列をシークエンスすることで変異型配列の組み込みを確認した。   The transformation plasmid was linearized by cutting with Spe I, and introduced into the K901 strain, and then a strain in which the plasmid was integrated into the genome was selected based on the drug resistance (aureobasidin resistance) of the plasmid. The selected strain was cultured in a galactose medium to obtain a strain from which the plasmid sequence was removed. Removal of the plasmid was confirmed by PCR using primers (pAUR135-checkF3: GCCTGATGCGGTATTTTCTC (SEQ ID NO: 11) and pAUR135-checkR3: TCGTCGTTTGGTATGGCTTC (SEQ ID NO: 12)) set in the plasmid sequence portion. In addition, when the plasmid sequence is removed, there are cases where it returns to the normal MRI1 sequence and sometimes it is a mutant MRI1 sequence. Therefore, the incorporation of the mutant sequence was confirmed by sequencing the base sequence of the MRI1 gene.

K901株は2倍体であるため、プラスミド配列が除かれ変異型配列の組み込みが確認された株に対して、形質転換用プラスミドの導入作業を再度行い、両アリルのMRI1遺伝子が変異型に置換された株30-5株を得た。   Since the K901 strain is diploid, reintroduction of the plasmid for transformation into the strain in which the plasmid sequence was removed and the mutant sequence was confirmed to be incorporated, and the MRI1 gene of both alleles was replaced with the mutant type. 30-30 strains were obtained.

(2) セルフクローニング株を用いた発酵試験
K901株(親株、2倍体)、LMU-H9株(1倍体)、及びLMU-H9株のMRI1変異をホモに持つセルフクローニング株30-5株(2倍体)を用いた総米300gの小仕込み試験(表7)を3連で行い、製成酒のDMTS-P1濃度、DMTS-pp測定及び一般分析を行った。なお、アルコール度数は簡易分析法(アルコメイト)、日本酒度は振動密度計、酸度・アミノ酸度はpHによる滴定法を用いて測定した。また、DMTS-P1はLC-MSで、DMTS-ppはGC-MSにより測定した。
(2) Fermentation test using self-cloning strain
300 g total rice using K901 strain (parent strain, diploid), LMU-H9 strain (monoploid), and self-cloning strain 30-5 strain (diploid) having MRI1 mutation of LMU-H9 strain A small preparation test (Table 7) was conducted in triplicate, and DMTS-P1 concentration, DMTS-pp measurement and general analysis of the sake were conducted. The alcohol content was measured using a simple analysis method (alcomate), the sake content was measured using a vibration densitometer, and the acidity and amino acid content were measured using a pH titration method. DMTS-P1 was measured by LC-MS, and DMTS-pp was measured by GC-MS.

結果を図2及び表8、9に示す。1倍体のLMU-H9株の炭酸ガス減量は低く、30-5株の炭酸ガス減量は親株のK901株とほぼ同じであった(図2、表8)。親株のK901株に比べ、LMU-H9株・30-5株ではDMTS-P1生成能が大幅に低減した(表8)。一般成分分析の結果によると、1倍体のLMU-H9株はアルコールが低い等の特徴があったが、30-5株はK901株とほぼ同程度であった(表9)。なお、セルフクローニング株の作出過程で得られた、変異をヘテロで持つ2倍体株についてもDMTS-P1生成能を調べたところ、DMTS-P1生成能の低下は認められなかった。   The results are shown in FIG. 2 and Tables 8 and 9. Carbon dioxide reduction of haploid LMU-H9 was low, and carbon dioxide reduction of 30-5 was almost the same as that of parent K901 (Figure 2, Table 8). Compared to the parent strain K901, DMTS-P1 production was significantly reduced in LMU-H9 and 30-5 strains (Table 8). According to the results of general component analysis, haploid LMU-H9 strain was characterized by low alcohol, but 30-5 strain was almost the same as K901 strain (Table 9). In addition, when DMTS-P1 production ability was also examined in the diploid strain having a heterozygous mutation obtained in the process of creating a self-cloning strain, no decrease in DMTS-P1 production ability was observed.

実施例3:MTA培地での増殖能低下を指標としたDMTS-P1低生産変異酵母株のスクリーニング(その2)
(1) メチオニン要求性変異株のスクリーニング
清酒酵母きょうかい7号(K7、2倍体)より、Pb添加培地上でのコロニー色を指標としてMet要求性変異株のスクリーニングを行なった。
Example 3: Screening of a mutant yeast strain with low production of DMTS-P1 using a decrease in growth ability in MTA medium as an index (part 2)
(1) Screening for methionine-requiring mutants Met-requiring mutants were screened from sake yeast No. 7 (K7, diploid) using colony color on Pb-added medium as an index.

K7株をUV照射(10分間、生存率80%)したもの、およびUV照射しないものをPb添加培地(Pb2+濃度3mM)上に播種し、30℃で4〜5日間培養後、暗褐色〜黒色に発色したコロニーを回収した。合計約30万コロニーからのスクリーニングの結果、UV照射ありで2株、UV照射なしで1株のMet要求性変異株を取得した。UV処理ありで取得した変異株をU5およびU6株、UV処理なしで取得した自然突然変異株をS1-2株と命名した。 The K7 strain was UV-irradiated (10 minutes, 80% survival rate) and non-UV-irradiated on Pb-added medium (Pb 2+ concentration 3 mM), cultured at 30 ° C. for 4-5 days, and then dark brown -Collected colonies colored black. As a result of screening from a total of about 300,000 colonies, two Met-requiring mutants were obtained with UV irradiation and one without UV irradiation. Mutant strains obtained with UV treatment were named U5 and U6 strains, and natural mutant strains obtained without UV treatment were named S1-2 strains.

(2) MTA培地及びMet培地での増殖差を指標としたDMTS-P1低生産変異株のスクリーニング
得られたMet要求性変異株S1-2株を培養して増殖させた後、UV照射(30分間、生存率10〜20%)して変異を誘発させた。変異処理後の酵母細胞をYPDプレートに播種して培養後、出てきたコロニーをMTA培地およびMet培地にレプリカし、Met培地に比べてMTA培地での増殖が劣る株を候補株とした。MTA培地及びMet培地の組成は、Sodium glutamate 7.1g/LをUrea 2.3g/Lに変更し、Biotin及びThiamineを除いたほかは表1と同じ組成とした(MTA及びMet以外の硫黄分は含有しない)。
(2) Screening of DMTS-P1 low production mutants using growth difference in MTA medium and Met medium as an index After the obtained Met-requiring mutant S1-2 is cultured and grown, UV irradiation (30 Mutation was induced with 10-20% survival for 10 minutes. After the yeast cells after the mutation treatment were seeded on a YPD plate and cultured, the colonies that emerged were replicated in MTA medium and Met medium, and a strain that was inferior in growth in MTA medium as compared to Met medium was used as a candidate strain. The composition of MTA medium and Met medium was the same as Table 1 except that Sodium glutamate 7.1g / L was changed to Urea 2.3g / L and Biotin and Thiamine were excluded (Sulfur content other than MTA and Met included) do not do).

候補株について、上記1.(2)と同様にスポット法により増殖差を確認し、差がみられた株を選択した。これらをYPD培地で一晩前培養後、菌体数が1×106cells/mLとなるようにYPD培地に植菌し、30℃で1週間静置培養して、培養液の上清のDMTS-P1濃度をLC-MSにより測定した。 Regarding candidate strains, 1. The growth difference was confirmed by the spot method in the same manner as in (2), and the strain in which the difference was observed was selected. After pre-cultured overnight in YPD medium, these were inoculated into YPD medium so that the number of cells was 1 × 10 6 cells / mL, and allowed to stand at 30 ° C for 1 week. DMTS-P1 concentration was measured by LC-MS.

S1-2株由来の約60,000コロニーからのスクリーニングの結果、MTA培地での増殖能が低い株が51株得られた。そのうちの5株で親株と比較して顕著なDMTS-P1濃度の減少が認められた。図3にはDMTS-P1測定結果を示す。   As a result of screening from about 60,000 colonies derived from the S1-2 strain, 51 strains having low growth ability in the MTA medium were obtained. Five of them showed a significant decrease in DMTS-P1 concentration compared to the parent strain. FIG. 3 shows DMTS-P1 measurement results.

Claims (15)

酵母親株より、メチオニン要求性を示す株を取得する工程、並びに
メチオニン要求性を示す株を、メチオニン含有培地及びメチオニンを含まず5’-メチルチオアデノシン(MTA)を含むMTA含有培地の両者で培養し、MTA含有培地においてメチオニン含有培地よりも増殖能が低い株を選択する工程、
を含む、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法。
Obtaining a methionine-requiring strain from the yeast parent strain, and culturing the methionine-requiring strain in both a methionine-containing medium and a MTA-containing medium that does not contain methionine and contains 5'-methylthioadenosine (MTA) A step of selecting a strain having a lower growth ability than the methionine-containing medium in the MTA-containing medium,
A method for producing a yeast having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one.
メチオニン含有培地及びMTA含有培地は、メチオニン及びMTA以外の硫黄源が制限された培地である、請求項1記載の方法。   The method according to claim 1, wherein the methionine-containing medium and the MTA-containing medium are media in which a sulfur source other than methionine and MTA is limited. MTA含有培地での増殖能が低い株として選択された株及び親株を液体培養し、培養上清中の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの濃度を測定し、親株と比べて1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生産量が低い株を選択する工程をさらに含む、請求項1〜2のいずれか1項に記載の方法。   Strain selected as a strain having a low growth ability in a medium containing MTA and the parent strain are subjected to liquid culture, and the concentration of 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one in the culture supernatant is measured, The method according to any one of claims 1 to 2, further comprising a step of selecting a strain having a lower production amount of 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one than the parent strain. 取得された1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生産性が低い酵母株より、メチオニン要求性が失われた株を取得することをさらに含む、請求項3記載の方法。   The method according to claim 3, further comprising obtaining a strain having lost methionine requirement from a yeast strain having low productivity of the obtained 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one. Method. 酵母親株として1倍体の酵母を使用し、取得された1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生産性が低い酵母株を2倍体化する工程をさらに含む、請求項3記載の方法。   Using a haploid yeast as a yeast parent strain, and further doubling the obtained yeast strain with low productivity of 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, The method of claim 3. 2倍体化した株より、メチオニン要求性が失われた株を選択する工程をさらに含む、請求項5記載の方法。   6. The method according to claim 5, further comprising the step of selecting a strain having lost methionine requirement from a diploid strain. MTA含有培地においてメチオニン含有培地よりも増殖能が低い株を選択する前記工程、又は親株と比べて1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生産量が低い株を選択する前記工程の後に、選択された株のMDE1遺伝子及びMRI1遺伝子の配列を決定し、変異部位を特定する工程を含む、請求項1〜6のいずれか1項に記載の方法。   Select the strain in which MTA-containing medium has a lower growth ability than methionine-containing medium, or select a strain that produces 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one lower than the parent strain The method according to any one of claims 1 to 6, further comprising the step of determining the sequence of the MDE1 gene and MRI1 gene of the selected strain and identifying the mutation site after the step of performing the step. 請求項7記載の方法により作出された、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母のゲノムより、MDE1遺伝子又はMRI1遺伝子上に生じた変異を含む領域を増幅する工程、
変異を含む領域を挿入したセルフクローニング用プラスミドベクターを用いて、当該変異を非組み換え体酵母に導入する工程
を含む、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い酵母の作出方法。
A mutation produced in the MDE1 gene or MRI1 gene from the genome of yeast having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one produced by the method according to claim 7 Amplifying the region,
Ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, including the step of introducing the mutation into non-recombinant yeast using a plasmid vector for self-cloning into which the mutation-containing region has been inserted Method of producing yeast with low level.
酵母が醸造酵母である、請求項1〜8のいずれか1項に記載の方法。   The method according to any one of claims 1 to 8, wherein the yeast is a brewing yeast. 酵母が清酒酵母である、請求項9記載の方法。   The method according to claim 9, wherein the yeast is sake yeast. MDE1遺伝子がコードするタンパク質の第54番プロリンがロイシンになる変異、又はMRI1遺伝子がコードするタンパク質の第192番グリシンがアスパラギン酸になる変異を有する、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母。   1,2-dihydroxy-5- (methylsulfinyl) having a mutation in which the 54th proline of the protein encoded by the MDE1 gene becomes leucine or a mutation in which the 192nd glycine of the protein encoded by the MRI1 gene becomes aspartic acid Pentan-3-one low productivity yeast. 醸造酵母である、請求項11記載の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母。   The 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one low-producing yeast according to claim 11, which is a brewing yeast. 清酒酵母である、請求項12記載の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母。   The 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one low-producing yeast according to claim 12, which is a sake yeast. 請求項9記載の方法により作出された、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い醸造酵母、又は請求項12記載の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母を用いてアルコール発酵を行なうことを含む、硫化物様のオフフレーバーが低減されたアルコール飲料の製造方法。   A brewing yeast produced by the method according to claim 9 and having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, or 1,2-dihydroxy-5- (Methylsulfinyl) pentan-3-one A method for producing an alcoholic beverage with reduced sulfide-like off-flavor, comprising performing alcohol fermentation using a low-productivity yeast. 請求項10記載の方法により作出された、1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オンの生成能が低い清酒酵母、又は請求項13記載の1,2-ジヒドロキシ-5-(メチルスルフィニル)ペンタン-3-オン低生産性酵母を用いてアルコール発酵を行なうことを含む、老香の発生が抑制された清酒の製造方法。   A sake yeast produced by the method according to claim 10 and having a low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentan-3-one, or 1,2-dihydroxy-5- (Methylsulfinyl) pentan-3-one A method for producing sake with suppressed generation of perfume, comprising performing alcohol fermentation using a low-producing yeast.
JP2016143331A 2016-07-21 2016-07-21 Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one Active JP7101362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143331A JP7101362B2 (en) 2016-07-21 2016-07-21 Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143331A JP7101362B2 (en) 2016-07-21 2016-07-21 Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one

Publications (2)

Publication Number Publication Date
JP2018011553A true JP2018011553A (en) 2018-01-25
JP7101362B2 JP7101362B2 (en) 2022-07-15

Family

ID=61018864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143331A Active JP7101362B2 (en) 2016-07-21 2016-07-21 Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one

Country Status (1)

Country Link
JP (1) JP7101362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239871A1 (en) * 2021-05-14 2022-11-17 国立大学法人 東京大学 Genome-modified microbial strain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144164A (en) * 2001-11-09 2003-05-20 Yamaguchi Technology Licensing Organization Ltd Self-cloning type gene recombinant practical yeast prepared by using removal selection type plasmid and method for preparing the same
JP2013169191A (en) * 2012-02-22 2013-09-02 National Research Inst Of Brewing Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144164A (en) * 2001-11-09 2003-05-20 Yamaguchi Technology Licensing Organization Ltd Self-cloning type gene recombinant practical yeast prepared by using removal selection type plasmid and method for preparing the same
JP2013169191A (en) * 2012-02-22 2013-09-02 National Research Inst Of Brewing Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOSCI. BIOTECHNOL. BIOCHEM. (2004) VOL.68, NO.1, PP.206-214, JPN6020018046, ISSN: 0004629155 *
FEBS JOURNAL (2008) VOL.275, PP.4111-4120, JPN6020018045, ISSN: 0004629154 *
JOURNAL OF BIOSCIENCE AND BIOENGINEERING (2013) VOL.116, NO.4, PP475-479, JPN6020018044, ISSN: 0004629153 *
生物工学会誌 (2015) VOL.93, NO.3, PP.116-121, JPN7020001404, ISSN: 0004629152 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239871A1 (en) * 2021-05-14 2022-11-17 国立大学法人 東京大学 Genome-modified microbial strain

Also Published As

Publication number Publication date
JP7101362B2 (en) 2022-07-15

Similar Documents

Publication Publication Date Title
Steensels et al. Improving industrial yeast strains: exploiting natural and artificial diversity
van Wyk et al. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies
JP7181542B2 (en) A novel strain of Pseudozyma antactica
JP2013169191A (en) Method for preparing yeast having reduced 1,2-dihydroxy-5-(methylsulfinyl)pentan-3-one formation ability
JP7101362B2 (en) Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one
CA2356594C (en) Method of breeding yeast
Ikeda et al. Construction of sake yeast with low production of dimethyl trisulfide precursor by a self-cloning method
JP6864308B2 (en) Isoamyl Acetate High Productivity, Acetic Acid Productivity Low Productivity and Isoamyl Alcohol High Productivity Method for Producing Brewed Yeast
WO2010106813A1 (en) Method for imparting mating ability to yeast
JP6110610B2 (en) Breeding yeast breeding method, and alcoholic beverage and sake production method using the brewing yeast
KR101264294B1 (en) Yeast Variants Having Resistance to Low Temperatures
KR101249778B1 (en) Yeast Variants Having Resistance to Low Temperatures
Varela et al. Molecular approaches improving our understanding of Brettanomyces physiology
JP2016032436A (en) Yeast zygosaccharomyces not producing unpleasant order
Vilela An Overview of CRISPR-Based Technologies in Wine Yeasts to Improve Wine Flavor and Safety. Fermentation 2021, 7, 5
US5545556A (en) Microorganisms and methods for their use
DE10333144B4 (en) Process for the biotechnological production of citric acid with a genetically modified yeast Yarrowia lipolytica
JP5201622B2 (en) Method for improving malic acid productivity of yeast
JP7352929B2 (en) Method for creating Aspergillus strains with high glycolytic enzyme production ability during solid culture
Blasco et al. Genetic stabilization of Saccharomyces cerevisiae oenological strains by using benomyl
JP4778740B2 (en) Phytase enzyme low activity natto and long-term stable natto
JP6620373B2 (en) Transformant, method for producing the same, and method for producing dicarboxylic acid having 4 carbon atoms
JPH1156361A (en) Variant yeast, its breeding and production of fermented food using the same
JP2002253212A (en) Auxotrophic mutant of useful yeast and method for breeding the variant
Dey Genetic Engineering of Microorganisms in Winemaking

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210607

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210716

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20210728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210908

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210909

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211105

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211109

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220224

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220325

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20220518

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220526

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220621

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220624

R150 Certificate of patent or registration of utility model

Ref document number: 7101362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150