JP4933277B2 - Lens fixing method and lens unit - Google Patents

Lens fixing method and lens unit Download PDF

Info

Publication number
JP4933277B2
JP4933277B2 JP2007006410A JP2007006410A JP4933277B2 JP 4933277 B2 JP4933277 B2 JP 4933277B2 JP 2007006410 A JP2007006410 A JP 2007006410A JP 2007006410 A JP2007006410 A JP 2007006410A JP 4933277 B2 JP4933277 B2 JP 4933277B2
Authority
JP
Japan
Prior art keywords
lens
holder
fixing
resin
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006410A
Other languages
Japanese (ja)
Other versions
JP2008170905A (en
Inventor
高橋  彰
貴幸 石亀
博之 佐藤
克彦 藤原
信一 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2007006410A priority Critical patent/JP4933277B2/en
Publication of JP2008170905A publication Critical patent/JP2008170905A/en
Application granted granted Critical
Publication of JP4933277B2 publication Critical patent/JP4933277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • B29C65/169Laser beams making use of light guides being a part of the joined article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • B29C65/167Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding using laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lens Barrels (AREA)

Description

この発明は、レンズ固定方法およびレンズユニットに関する。   The present invention relates to a lens fixing method and a lens unit.

光学装置に用いられるレンズは一般に、レンズセルあるいは鏡筒と呼ばれる「筒状のホルダ」に固定的に保持される。レンズをホルダに固定する方法の1つとして「レーザ光による溶着を利用するもの」が知られている(特許文献1、2等)。   A lens used in an optical device is generally fixedly held in a “cylindrical holder” called a lens cell or a lens barrel. As one of the methods for fixing the lens to the holder, there is known “a method using laser beam welding” (Patent Documents 1, 2, etc.).

レーザ光による溶着を利用してホルダにレンズを固定する方法は、接着による固定方法の問題点である「作業効率の低さ」や、「熱かしめ」による固定方法の問題点である「必要部分以外の広い範囲にも熱が伝わり、レンズ枠の必要部分以外を変形させる恐れ」がなく、固定方法として優れている。   The method of fixing the lens to the holder using laser beam welding is the problem of the fixing method by adhesion, which is a problem of the fixing method by adhesion, and the problem of the fixing method by the heat caulking Heat is transmitted to a wide range other than the above, and there is no fear of deforming other than the necessary portion of the lens frame, which is an excellent fixing method.

特許文献1は、ホルダに形成された「フランジ状の固定部」に、レンズの有効レンズ面外に形成された外周部を接触させ、レーザ光によりホルダの固定部を融解させ、融解した樹脂をレンズ外周部に形成された微少凹凸部に入り込ませて両者の固定を行う。
この固定方法の場合、レンズ外周部の微小凹凸の深さ方向が、レンズ光軸方向に向いているため、ホルダに固定されたレンズに「レンズ光軸方向の力」が作用した場合、レンズとホルダの固定が外れやすく「レンズ光軸方向の力」によりレンズがホルダから抜けやすい。即ち、レンズとホルダとの固定状態は「レンズ光軸方向の力」に対する「抜けの抵抗力」が小さい。
In Patent Document 1, an outer peripheral portion formed outside the effective lens surface of a lens is brought into contact with a “flange-shaped fixing portion” formed on a holder, and the fixing portion of the holder is melted by laser light, and a molten resin is obtained. The fine irregularities formed on the outer periphery of the lens are inserted into the lens to fix them.
In the case of this fixing method, since the depth direction of the minute irregularities on the outer periphery of the lens is directed to the lens optical axis direction, when the “force in the lens optical axis direction” acts on the lens fixed to the holder, The lens is easily detached from the holder due to “force in the direction of the optical axis of the lens”. That is, in the fixed state of the lens and the holder, the “resistance to pull out” with respect to the “force in the lens optical axis direction” is small.

特許文献2には、同じ材質の樹脂によるホルダとレンズとをレーザ光により相溶させて、両者を溶着させる固定方法が開示されているが、この固定方法は、相溶性のないホルダとレンズとの間を固定するのには使えない。   Patent Document 2 discloses a fixing method in which a holder and a lens made of the same material are made to be compatible with each other by laser light, and the two are welded together. Cannot be used to fix the gap between.

特開2005−316044JP-A-2005-316044 特開2006− 11234JP 2006-11234 A

この発明は上述した事情に鑑みてなされたものであって、例えば、樹脂による筒状のホルダ内にガラスレンズを固定する場合のように、レンズとホルダが互いに相溶性でない場合に両者を固定でき、しかも「レンズ光軸方向の力」に対して強い「抜けの抵抗力」を持つ固定を実現できるレンズ固定方法の提供、およびこの固定方法で製造されるレンズユニットの提供を課題とする。   The present invention has been made in view of the above-described circumstances. For example, when a glass lens is fixed in a cylindrical holder made of resin, both can be fixed when the lens and the holder are not compatible with each other. In addition, it is an object of the present invention to provide a lens fixing method capable of realizing fixing having a strong “resistance to pull out” against “force in the lens optical axis direction” and to provide a lens unit manufactured by this fixing method.

この発明のレンズ固定方法は「樹脂製のレンズを、このレンズに対して相溶性のない樹脂で形成された筒状のホルダ内に固定する方法」であって、以下の特徴を有する(請求項1)。
即ち、樹脂製のホルダの「(レンズを保持した状態における)レンズ光軸に平行な内周面部を固定部とし、ホルダ内に樹脂製のレンズを保持させて、レンズの最外周コバ面を固定部に近接もしくは当接させる。
The lens fixing method of the present invention is a “method of fixing a resin lens in a cylindrical holder formed of a resin that is not compatible with the lens” and has the following features (claims) 1).
That is, the inner peripheral surface portion parallel to the lens optical axis (in the state where the lens is held) of the resin holder is used as the fixing portion, and the resin lens is held in the holder to fix the outermost edge surface of the lens. Proximity or contact with the part.

この状態で、レンズ内を通して固定部に「固定用のレーザ光」を集光させて照射して、固定部におけるホルダ内周面を融解し、融解したホルダ固定部の熱によりレンズの最外周コバ面を融解させる。
そして、上記ホルダの融解した樹脂を、上記レンズの融解した最外周コバ面内側に侵入させ、融解した樹脂同士の凹凸構造を形成して固化させる。
これにより「レンズの光軸方向へ作用する力」に対する、レンズのホルダからの「抜け
の抵抗力」を高める。即ち、固定されたレンズがホルダから容易に抜けないように固定す
る。
In this state, the “fixing laser beam” is condensed and irradiated on the fixing part through the lens, and the inner peripheral surface of the holder in the fixing part is melted, and the outermost peripheral cover of the lens is melted by the heat of the melted holder fixing part. Melt the surface.
Then, the melted resin of the holder is caused to enter the melted outermost peripheral edge surface of the lens to form a concavo-convex structure between the melted resins and solidify.
This increases the “resistance to pulling out” from the lens holder against the “force acting in the optical axis direction of the lens”. That is, it fixes so that the fixed lens may not be easily removed from the holder.

「レンズの最外周コバ面」は、レンズ両面の最外周部をつなぎ、レンズ最外周の厚みをなす部分であり、光軸に平行な周面あるいは、光軸に対して傾いた錐面状の周面である。   The “outermost edge surface of the lens” is a portion that connects the outermost periphery of both surfaces of the lens and forms the thickness of the outermost periphery of the lens, and has a circumferential surface parallel to the optical axis or a conical surface inclined with respect to the optical axis. It is a circumferential surface.

ホルダの固定部をなす内周面は、固定されたレンズの光軸に平行であるが、レンズ光軸に直交する断面の形状は、固定されるレンズの最外周コバ面の形状(レンズ光軸方向から見た形状)と対応する。これらの形状は円形であることも、多角形であることもできるし、楕円形状や長方形形状等、レンズの最外周コバ面の形状に応じた種々の形状であることができる。また、筒状のホルダは、上記固定部がレンズ光軸に平行であればよく、固定部以外の他の部分は「レンズを固定部に挿入できる限り」適宜の形状をしていてよい。   The inner peripheral surface forming the fixing part of the holder is parallel to the optical axis of the fixed lens, but the cross-sectional shape orthogonal to the lens optical axis is the shape of the outermost peripheral edge surface of the lens to be fixed (the lens optical axis Corresponding to the shape seen from the direction). These shapes may be circular or polygonal, and may be various shapes according to the shape of the outermost peripheral edge surface of the lens, such as an elliptical shape and a rectangular shape. Further, the cylindrical holder only needs to have the fixing portion parallel to the optical axis of the lens, and other portions other than the fixing portion may have an appropriate shape "as long as the lens can be inserted into the fixing portion".

ホルダは樹脂製であり、ホルダを構成する樹脂を以下「ホルダ樹脂」という。
請求項1記載のレンズ固定方法において、ホルダ内に固定されるレンズの最外周コバ面を予め粗面化しておくことができる(請求項2)。この場合、固定用のレーザ光の照射により融解したホルダ樹脂は熱によりレンズの最外周コバ面に向かって膨らむように変形して、レンズ最外周コバ面の粗面の微小な凹凸に入り込み、レンズをホルダに固定する。
請求項1記載のレンズ固定方法において、ホルダ内に固定されるレンズの最外周コバ面に予め「凹構造」を形成しておき、融解したホルダ樹脂を、熱による変形により凹構造の凹部に入り込ませてレンズを固定することができる(請求項3)。
The holder is made of resin, and the resin constituting the holder is hereinafter referred to as “holder resin”.
In the lens fixing method according to claim 1, the outermost peripheral edge surface of the lens fixed in the holder can be roughened in advance (claim 2). In this case, the holder resin melted by the irradiation of the fixing laser light is deformed so as to swell toward the outermost peripheral edge surface of the lens by heat, and enters into the minute irregularities on the rough surface of the lens outermost peripheral edge surface. Is fixed to the holder.
2. The lens fixing method according to claim 1, wherein a "concave structure" is formed in advance on the outermost peripheral edge surface of the lens fixed in the holder, and the melted holder resin enters the concave portion of the concave structure by deformation due to heat. Thus, the lens can be fixed (claim 3).

レンズの最外周コバ面を「凹構造もしくは凹凸構造」とし、に緩く係合しあう「凸構造もしくは凸凹構造」を、予め「ホルダの固定部に形成」しておき、両者を係合させた状態で固定部へのレーザ光照射を行うことができる(請求項2)。The outermost edge surface of the lens is a “concave structure or uneven structure”, and a “convex structure or uneven structure” that is loosely engaged with each other is previously “formed on the fixed part of the holder”, and both are engaged. In this state, the fixing portion can be irradiated with laser light.

即ち、レンズの最外周コバ面の「凹構造もしくは凹凸構造」とホルダの固定部に形成された「凸構造もしくは凸凹構造」を係合させた状態で、固定部のホルダ樹脂を融解させ、熱によるホルダ樹脂とレンズ樹脂の変形で、両者の係合を強硬なものとして固定するのである。 That is, in a state where the “concave structure or uneven structure” on the outermost peripheral edge surface of the lens is engaged with the “convex structure or uneven structure” formed on the fixing part of the holder, the holder resin of the fixing part is melted and heated. Due to the deformation of the holder resin and the lens resin , the engagement between the two is fixed as being strong.

この場合においては「レンズの最外周コバ面に形成された凹凸構造と、ホルダの固定部に形成された凸凹構造とを、互いに螺合しあう螺子構造」とすることができるOite in this case may be a "concave-convex structure formed on the outermost peripheral edge surface of the lens, and a concave-convex structure formed in the fixed part of the holder, screw structures mutually screwed together."

請求項1記載のレンズ固定方法において、レンズの最外周コバ面を「光軸方向へのテー
パ面」として形成し、固定部において融解し、熱により「レンズの最外周コバ面に向かっ
て膨らむように変形」したホルダ樹脂により上記テーパ面でレンズを固定することができ
る(請求項3)。
2. The lens fixing method according to claim 1, wherein the outermost peripheral edge surface of the lens is formed as a "tapered surface in the optical axis direction", melted at the fixing portion, and "expands toward the outermost peripheral edge surface of the lens" by heat. The lens can be fixed on the tapered surface by the holder resin deformed to ( Claim 3 ).

請求項1または2または3記載のレンズ固定方法は、上記の如く、レンズおよびホルダが「互いに相溶性の無い異なる樹脂」であり、ホルダの固定部を融解し、融解したホルダ樹脂の熱によりレンズの最外周コバ面部分を融解し、ホルダとレンズとの固定部において、融解したホルダ樹脂を、レンズの最外周コバ面内側に侵入させ、融解した樹脂同士の凹凸構造を形成して固化させることを特ホルダとレンズとの固定部において「融解した樹脂同士の凹凸構造を形成して固化させる」ものである
従って、融解した樹脂相互が相溶性を持たないので、各樹脂の熱による変形により、両者が接触する部分に「凹凸構造」が自然に形成される。
The lens fixing method according to claim 1, 2 or 3, as described above , the lens and the holder are “different resins that are not compatible with each other”, the fixing portion of the holder is melted, and the lens is heated by the heat of the melted holder resin. The outermost edge part of the lens is melted, and at the fixing part between the holder and the lens, the melted holder resin is allowed to enter inside the outermost edge part of the lens to form a concavo-convex structure between the melted resins and solidify. the is "solidify to form an uneven structure between the resins were melt" shall in the fixed portion of the Japanese holder and the lens.
Accordingly, since the melted resins are not compatible with each other, a “concave / convex structure” is naturally formed in a portion where both of the resins come into contact with each other due to heat deformation of each resin.

レンズとホルダの材料としての「相溶性の無い異なる樹脂の組合せ」としては、以下の如きものを例示することができる。   Examples of the “combination of different resins having no compatibility” as the material of the lens and the holder include the following.

レンズ ホルダ樹脂
COP(シクロオレフィンポリマー) PC(ポリカーボネート)
COP LCP(液晶ポリマー)
COP PBT(ポリブチレンテレフタレート)
COP PPS(ポリフェニレンサルファイド)
PC LCP
PC PBT
PMMA LCP
PMMA PBT 。
Lens holder resin
COP (cycloolefin polymer) PC (polycarbonate)
COP LCP (Liquid Crystal Polymer)
COP PBT (Polybutylene terephthalate)
COP PPS (polyphenylene sulfide)
PC LCP
PC PBT
PMMA LCP
PMMA PBT.

この場合にも、レンズの最外周コバ面やホルダの固定部に凹凸構造を形成したり、レンズの最外周コバ面を粗面化したりすることにより、上記「凹凸構造」の形成が有効に助長される。また、凹凸構造や凹構造を形成すると、レンズをホルダに固定するときに、レンズに作用する「熱膨張するホルダ樹脂からの力」を有効に軽減させることができる。   In this case as well, the formation of the “concave / convex structure” can be effectively promoted by forming a concave / convex structure on the outermost peripheral edge surface of the lens and the fixing part of the holder, or by roughening the outermost peripheral edge surface of the lens. Is done. In addition, when the concavo-convex structure or the concave structure is formed, the “force from the thermally expanding holder resin” acting on the lens can be effectively reduced when the lens is fixed to the holder.

請求項1または2または3記載のレンズ固定方法において「レンズの有効レンズ面領域外に、レンズ形状の一部としてレーザ光反射面を予め形成しておき、レンズ光軸方向から照射される固定用のレーザ光を、レーザ光反射面により反射させて、固定部へ照射する」ことができる(請求項4)。 4. The lens fixing method according to claim 1, wherein the laser light reflecting surface is formed in advance as a part of the lens shape outside the effective lens surface area of the lens and irradiated from the lens optical axis direction. the laser beam, is reflected by the laser light reflecting surface, is irradiated to the fixed portion "it can (claim 4).

また、請求項1〜4の任意の1に記載のレンズ固定方法において「ホルダに固定されるレンズの、固定用のレーザ光が入射する「入射側レンズ面の有効レンズ面領域外」に、レンズ形状の一部として、レンズ光軸に対して傾いた屈折面を形成しておき、固定用のレーザ光を上記屈折面からレンズ内に入射させ、上記屈折面により固定用のレーザ光を最外周コバ面に向けて屈折させることにより、固定部に照射する」ことができる(請求項5)。
「固定用のレーザ光」は固定部に集光するので、上記レーザ光反射面や屈折面では、光エネルギが集中せず、従って、レーザ光反射面や屈折面が溶融することはない。
Further, in the lens fixing method according to any one of claims 1 to 4, "the lens fixed to the holder is incident to" outside the effective lens surface area of the incident side lens surface "where the fixing laser light is incident". As part of the shape, a refracting surface inclined with respect to the optical axis of the lens is formed, and a fixing laser beam is made incident on the lens from the refracting surface. by refracted toward the edge surface is irradiated to the fixed portion "it can (claim 5).
Since the “fixing laser beam” is focused on the fixing portion, the light energy is not concentrated on the laser beam reflecting surface and the refracting surface, and therefore the laser beam reflecting surface and the refracting surface are not melted.

この発明のレンズユニットは、請求項1〜5の任意の1に記載のレンズ固定方法により、樹脂製のホルダに、このホルダの樹脂と相溶性のない材質のレンズを固定してなるレンズユニットである(請求項6)。 The lens unit of the present invention is a lens unit formed by fixing a lens made of a material incompatible with the resin of the holder to a resin holder by the lens fixing method according to any one of claims 1 to 5. ( Claim 6 ).

以上に説明したように、この発明のレンズ固定方法では、レンズとホルダとが相溶性がない材質であるにも拘わらず樹脂製のホルダに樹脂製のレンズを固定できる。この固定は、レンズの最外周コバ面と「レンズ光軸に平行なホルダ内周面」とを「相溶性がないレンズ樹脂とホルダ樹脂の凹凸構造」で固定するので「レンズ光軸に平行な力」がレンズに作用しても、上記凹凸構造による固定が容易に降伏することがなく、レンズのホルダに対する「抜けの抵抗力」が極めて大きい。 As described above, in the lens fixing method of the present invention, the resin lens can be fixed to the resin holder even though the lens and the holder are incompatible materials. This fixing is performed by fixing the outermost peripheral edge surface of the lens and the “inner holder inner peripheral surface parallel to the lens optical axis” with the uneven structure of the lens resin and the holder resin that are not compatible ”. Even if the “force” acts on the lens, the fixing by the concavo-convex structure does not yield easily, and the “resisting resistance” to the lens holder is extremely large.

図1は、請求項1、4に記載のレンズ固定方法の実施の1形態を説明するための図である。図1(a)において、符号10はホルダ、符号20、30はレンズ、符号40は押さえ部材、符号50は「開口絞りとなる遮光板」、符号MLは固定用のレーザ光を示している。 FIG. 1 is a view for explaining one embodiment of a lens fixing method according to claims 1 and 4 . In FIG. 1A, reference numeral 10 denotes a holder, reference numerals 20 and 30 denote lenses, reference numeral 40 denotes a pressing member, reference numeral 50 denotes a “light-blocking plate serving as an aperture stop”, and reference numeral ML denotes a fixing laser beam.

ホルダ10は筒状であり、図における下方の端部の、符号11で示す部分は「光束通過用開口を有するレンズ受け部」であり、ホルダ10における図の上方の部分は、レンズ挿入用に開放した「レンズ挿入部」となっている。レンズ挿入部はまた「レーザ光MLの入射部」でもある。   The holder 10 has a cylindrical shape, and the portion indicated by reference numeral 11 in the lower end portion in the drawing is a “lens receiving portion having a light beam passage opening”, and the upper portion in the drawing in the holder 10 is for lens insertion. It is an open “lens insertion part”. The lens insertion portion is also a “laser light ML incident portion”.

図1の実施の形態においては、ホルダ10に2枚のレンズ20と30とが挿入配置され、これらレンズ20、30の間に開口絞りとなる遮光板50が配置されている。レンズ20は、一方のレンズ面をレンズ受け部11の開口位置に合せ「有効レンズ面領域」外の部分をレンズ受け部11に受けられている。   In the embodiment of FIG. 1, two lenses 20 and 30 are inserted and arranged in the holder 10, and a light shielding plate 50 serving as an aperture stop is arranged between these lenses 20 and 30. In the lens 20, one lens surface is aligned with the opening position of the lens receiving portion 11, and a portion outside the “effective lens surface area” is received by the lens receiving portion 11.

図1(a)の状態は「レーザ光によるレンズ30の固定が行われている状態」を示している。レンズ光軸方向は図の上下方向である。レンズ光軸が図の上下方向であることに関しては、以下の各形態においても同様である。 The state of FIG. 1A shows a “state where the lens 30 is fixed by laser light”. The lens optical axis direction is the vertical direction in the figure. The same applies to the following embodiments regarding the lens optical axis being in the vertical direction in the figure.

なお、この実施の形態において、ホルダ10の内周面は円筒面を形成し、レンズ20、30の形状は何れも円形である。遮光板50は、レンズ20、30の間に配置され「レンズ周辺部を遮光する開口絞り」として機能する。
レンズ30は、遮光板50を介してレンズ20に重なるように配置されている。
レンズ30は、図に示す「有効レンズ面領域」の外側にコバ部(レンズ30の一部をなすが、レンズとして機能しない部分)を有する。レンズ30の「コバ部」は主として4つの「コバ面部分」を有する。即ち、レンズ光軸に平行なコバ面部分31Aと、図1(a)において「上側レンズ面の、有効レンズ面領域の外側にあるコバ面部分31Bと、下側レンズ面の有効レンズ面領域外にあるコバ面部分31Cと、下側のレンズ面の有効レンズ面領域外でコバ面部分31Cの内側にある斜面状のコバ面部分32である。
In this embodiment, the inner peripheral surface of the holder 10 forms a cylindrical surface, and the lenses 20 and 30 have a circular shape. The light shielding plate 50 is disposed between the lenses 20 and 30 and functions as an “aperture stop that shields the lens periphery”.
The lens 30 is disposed so as to overlap the lens 20 via the light shielding plate 50.
The lens 30 has an edge portion (a portion that forms part of the lens 30 but does not function as a lens) outside the “effective lens surface region” shown in the drawing. The “edge portion” of the lens 30 mainly has four “edge surface portions”. That is, the edge surface portion 31A parallel to the lens optical axis, “the edge surface portion 31B of the upper lens surface outside the effective lens surface region, and the lower lens surface outside the effective lens surface region” in FIG. And a sloped edge surface portion 32 inside the edge surface portion 31C outside the effective lens surface area of the lower lens surface.

レンズ光軸に平行なコバ面部分31Aは「最外周コバ面(以下、最外周コバ面31Aという。)」であり、ホルダ10の内周面に近接している。
レンズ20、30とも最外周コバ面はレンズ光軸と平行な円筒面をなす。そして、ホルダ10の内周面の直径と、レンズ20、30の最外周コバ面の直径とは0.01mmの差であり、このため、光軸合せされた状態でレンズ20、30がホルダ10内に設置された状態で、レンズ20の最外周コバ面、レンズ30の最外周コバ面31Aは、ホルダ10の内周面に「0.005mm」の間隙を隔して近接する。この状態は、最外周コバ面31Aとホルダ内周面とが実質的に摺接している状態であり、レンズ20、30はホルダ10にセットされた状態で自動的に光軸合せされる。
The edge surface portion 31A parallel to the lens optical axis is the “outermost edge surface (hereinafter referred to as the outermost edge surface 31A)”, and is close to the inner periphery surface of the holder 10.
The outermost peripheral edge surfaces of both the lenses 20 and 30 form a cylindrical surface parallel to the lens optical axis. The diameter of the inner peripheral surface of the holder 10 and the diameter of the outermost peripheral edge surface of the lenses 20 and 30 are a difference of 0.01 mm. For this reason, the lenses 20 and 30 are held in the holder 10 in a state where the optical axes are aligned. The outermost peripheral edge surface of the lens 20 and the outermost peripheral edge surface 31A of the lens 30 are close to the inner peripheral surface of the holder 10 with a gap of “0.005 mm”. In this state, the outermost peripheral edge surface 31 </ b> A and the holder inner peripheral surface are substantially in sliding contact with each other, and the optical axes of the lenses 20 and 30 are automatically adjusted while being set in the holder 10.

勿論、ホルダ内径とレンズ外径との間にある程度の差があり、光軸合せが必要な場合には、ホルダにレンズをセットする際に光軸合せを行うことは言うまでもない。
押さえ部材40は「円筒状」であって、図1(a)に示すように、レンズ30のコバ面部分31Bの部分を図の上方から押圧し、レンズ20、30のホルダ10に対する位置関係を固定される配置に保持する。図1の例において、押さえ部材40の下側端部面(底面部)は平面状であってコバ面部分31Bに密着する。
Of course, when there is a certain difference between the inner diameter of the holder and the outer diameter of the lens, and it is necessary to align the optical axis, it goes without saying that the optical axis is aligned when the lens is set in the holder.
The holding member 40 is “cylindrical”, and as shown in FIG. 1A, the edge surface portion 31 </ b> B of the lens 30 is pressed from the upper side of the drawing, and the positional relationship of the lenses 20, 30 with respect to the holder 10 is determined. Hold in a fixed arrangement. In the example of FIG. 1, the lower end surface (bottom surface) of the pressing member 40 is planar and is in close contact with the edge surface portion 31 </ b> B.

なお、上述の如く、この実施の形態において、ホルダ10の内周面は円筒状、レンズ20、30の形状は円形であるが、ホルダ10に要求される形態・形状は「筒状であって、レンズの最外周コバ面に近接もしくは当接する固定部を、固定用のレーザ光により融解可能である」ことであり、このような条件を満たす限りにおいて形態や形状は自由である。   As described above, in this embodiment, the inner peripheral surface of the holder 10 is cylindrical, and the shapes of the lenses 20 and 30 are circular. However, the shape and shape required for the holder 10 is “cylindrical. The fixing portion that is close to or in contact with the outermost peripheral edge surface of the lens can be melted by the fixing laser beam. ”As long as such a condition is satisfied, the form and shape are free.

レンズ30においてコバ部のレンズ光軸方向の表面部分であるコバ面部分31B、31Cはレンズ光軸に直交する平面であり、斜面状のコバ面部分32は円錐面状である。この斜面状のコバ面部分32は「レーザ光反射面」であり、従って、以下ではレーザ光反射面32と言う。   In the lens 30, edge surface portions 31B and 31C, which are surface portions of the edge portion in the lens optical axis direction, are planes orthogonal to the lens optical axis, and the inclined edge surface portion 32 is conical. This sloped edge surface portion 32 is a “laser light reflecting surface”, and is therefore hereinafter referred to as a laser light reflecting surface 32.

固定用のレーザ光MLは、押さえ部材40内を導光されて、図の上方のレンズ挿入部からレンズ光軸に平行に入射する。この実施の形態において、レーザ光MLは「レンズ光軸に直交する平断面による光束断面がリング状で、リングの幅が伝搬方向に狭まる収束性を有する光束」である。このような光束形態をもった光束を「リング状収束光」と呼ぶ。リング状収束光を生成する方法に付いては後述する。
ホルダ10は材質的には「固定用のレーザ光を吸収して溶解する樹脂」であり、具体的には、黒色等の有色樹脂や「黒色等に着色された樹脂」であることができるが、固定用のレーザ光を吸収しやすい色の塗料を「レーザ光の波長の光を透過させる樹脂の表面に塗布した構成」としてもよい。
The fixing laser beam ML is guided through the pressing member 40 and is incident in parallel to the lens optical axis from the upper lens insertion portion in the drawing. In this embodiment, the laser light ML is “a light beam having a convergence property in which a light beam cross section by a plane cross section orthogonal to the lens optical axis is a ring shape and the width of the ring is narrowed in the propagation direction”. A light beam having such a light beam shape is called “ring-shaped convergent light”. A method for generating the ring-shaped convergent light will be described later.
The material of the holder 10 is “resin that absorbs and dissolves the fixing laser beam”, and specifically, it can be colored resin such as black or “resin colored in black”. Further, a color paint that easily absorbs the fixing laser light may be “applied on the surface of a resin that transmits light of the wavelength of the laser light”.

レンズ20、30のうち、少なくともレンズ30は「樹脂レンズ」である。レンズ30をホルダ10に固定すれば、レンズ20は「レンズ30とレンズ受け部11とにより挟持された状態」でホルダ10に固定的に保持されることになるので、レンズ20は必ずしもホルダ10に固定する必要が無い。レンズ20は樹脂レンズでもガラスレンズでもよい。   Among the lenses 20 and 30, at least the lens 30 is a “resin lens”. If the lens 30 is fixed to the holder 10, the lens 20 is fixedly held by the holder 10 in a “state sandwiched between the lens 30 and the lens receiving portion 11”. There is no need to fix. The lens 20 may be a resin lens or a glass lens.

押さえ部材40は固定用のレーザ光MLに対して透明である。言うまでも無いが、レンズ30もレーザ光MLに対して透明である。   The pressing member 40 is transparent to the fixing laser beam ML. Needless to say, the lens 30 is also transparent to the laser light ML.

さて、ホルダ10に対してレンズ20とレンズ30を図1の如く挿入配置し、押さえ部材40で抑えた状態において、図の如く、リング状収束光である固定用のレーザ光MLを抑え部材40により導光すると、レーザ光MLはレンズ30のコバ面部分31Bから樹脂レンズ30内に入射し、レーザ光反射面32により、レンズ光軸に平行な最外周コバ面31Aに向けて反射され、固定部YPに照射される。即ち、固定部YPは「ホルダの、レンズ光軸に平行な内周面部」であり、最外周コバ面31Aと実質的に摺接する。   In the state where the lens 20 and the lens 30 are inserted and arranged in the holder 10 as shown in FIG. 1 and suppressed by the pressing member 40, the fixing laser light ML, which is ring-shaped convergent light, is suppressed as shown in the figure. The laser light ML enters the resin lens 30 from the edge surface portion 31B of the lens 30 and is reflected and fixed by the laser light reflecting surface 32 toward the outermost peripheral edge surface 31A parallel to the lens optical axis. The part YP is irradiated. That is, the fixed portion YP is “the inner peripheral surface portion of the holder parallel to the lens optical axis”, and substantially contacts the outermost peripheral edge surface 31A.

レーザ光MLは「リング状収束光」であるので、レーザ光反射面32により反射されたレーザ光MLは固定部YPに「レンズ光軸に直交するリング状」に集光しているが、レーザ光MLとホルダ10との位置関係を調整することにより、固定部YPに照射されるレーザ光MLの照射状態を「帯状リング状」にすることもでき、固定部YPへの「レーザ光のエネルギ集中状態」を調整できる。   Since the laser light ML is “ring-shaped convergent light”, the laser light ML reflected by the laser light reflecting surface 32 is focused on the fixed portion YP in a “ring shape orthogonal to the lens optical axis”. By adjusting the positional relationship between the light ML and the holder 10, the irradiation state of the laser light ML irradiated to the fixed portion YP can be changed to a “band-like ring shape”. "Concentration state" can be adjusted.

固定部YPにおいて、固定用のレーザ光MLはホルダ10の内壁に吸収されてホルダ内壁を発熱させ、ホルダ内壁部のホルダ樹脂を融解させる。このとき、レンズ30の最外周コバ面31Aもホルダ10側からの熱で融解する。   In the fixing part YP, the fixing laser beam ML is absorbed by the inner wall of the holder 10 to cause the holder inner wall to generate heat and melt the holder resin on the holder inner wall. At this time, the outermost peripheral edge surface 31A of the lens 30 is also melted by heat from the holder 10 side.

しかしながら、レンズ30を構成するレンズ樹脂とホルダ樹脂とは「相溶性がない」ので、これら両者の融解した部分同士が相溶性により一体となることはない。このとき、ホルダ10の固定部YPにおいて融解したホルダ樹脂は、熱により「膨らむように変形」し、図1(b)に示すように、変形した部分10Aが、融解して軟化したレンズ30の最外周コバ面を押圧し、レンズ30内部に入り込むように変形させる。 However, since the lens resin and the holder resin constituting the lens 30 are “not compatible”, the melted portions of the both are not integrated due to the compatibility. At this time, the holder resin melted in the fixing portion YP of the holder 10 is “deformed so as to swell” by heat, and the deformed portion 10A of the lens 30 is melted and softened as shown in FIG. The outermost peripheral edge surface is pressed and deformed so as to enter the lens 30.

従って、レーザ光の照射を停止して、融解したホルダ樹脂を固化させれば、図1(b)に示す状態が固定され「融解した樹脂同士に凹凸構造」が形成され、この凹凸構造により、レンズ30はホルダ10に固化される。なお、ホルダ樹脂、レンズの融解部分が固化する段階で、若干の収縮が生じるが「固定状態」には全く影響が無いことが確認された。   Therefore, if the irradiation of the laser beam is stopped and the melted holder resin is solidified, the state shown in FIG. 1B is fixed, and a “concave structure between the melted resins” is formed. The lens 30 is solidified on the holder 10. It was confirmed that there was no influence on the “fixed state” although slight contraction occurred at the stage where the melted portion of the holder resin and the lens was solidified.

レーザ光によりレンズ30をホルダ10に固定する工程は、例えば、数秒もしくはそれより短い時間で完了するようにできる。   The step of fixing the lens 30 to the holder 10 with the laser light can be completed in a few seconds or shorter time, for example.

図1(b)に示すように、レンズ30に「レンズ光軸方向の力F」が作用した場合を考えると、固定部における凹凸構造において、ホルダ樹脂の「膨らむように変形」した部分10Aは、力Fに直交する向きにレンズ30内に入り込んでいるため、固定部は力F(レンズ30をホルダ10から抜き出すように作用する。)に対して強い「抜けの抵抗力」を発揮する。   As shown in FIG. 1B, when the “force F in the optical axis direction of the lens” is applied to the lens 30, the portion 10A of the holder resin “deformed so as to swell” is formed in the concavo-convex structure in the fixed portion. Since the lens enters the lens 30 in a direction orthogonal to the force F, the fixing portion exerts a strong “resisting resistance” against the force F (acts so as to extract the lens 30 from the holder 10).

具体的な例として、レンズ30の最外周コバ面31Aの直径を10mmとし、レンズ30の材質を前述のCOP(日本ゼオン社製商品名「ZEONEX E48R」)とし、ホルダ10の材質(ホルダ樹脂)をPC(ポリカーボネート)とした場合に、レンズ30をホルダ10から抜き出すのに力Fとして8KgWtを必要とした。   As a specific example, the diameter of the outermost peripheral edge surface 31A of the lens 30 is 10 mm, the material of the lens 30 is the aforementioned COP (trade name “ZEONEX E48R” manufactured by Zeon Corporation), and the material of the holder 10 (holder resin) When PC is polycarbonate (polycarbonate), 8 kgWt was required as the force F to extract the lens 30 from the holder 10.

これに対して、図1(c)に示すように、レンズLNとホルダHLとの固定部において「熱により膨らむように変形した部分」がレンズ30内に力Fと同じ向きに入り込むようにして固定した場合、レンズLNをホルダHLから抜き出すのに必要な力Fは0.8KgWであった。このことから、レンズ最外周コバ面とホルダ内周面とを「凹凸構造」により固定することが「抜けの抵抗力」を極めて有効に大きくすることがわかる。   On the other hand, as shown in FIG. 1C, the “part deformed so as to swell due to heat” in the fixing portion between the lens LN and the holder HL enters the lens 30 in the same direction as the force F. When fixed, the force F required to extract the lens LN from the holder HL was 0.8 kgW. From this, it can be seen that fixing the outermost peripheral edge surface of the lens and the inner peripheral surface of the holder by the “concave / convex structure” extremely increases the “resisting resistance”.

図2以下に上記実施の形態における変形例を示す。なお、繁雑を避けるため、ホルダ、レンズについて、以下の各図面においても、図1におけると同様、レンズに対して符号30、ホルダに対して符号10を付する。   The modification in the said embodiment is shown below from FIG. In addition, in order to avoid complication, about a holder and a lens, also in each following drawing, like FIG. 1, the code | symbol 30 is attached | subjected with respect to a lens and the code | symbol 10 with respect to a holder.

図2の実施の形態は、請求項2記載のレンズ固定方法の実施の1形態であり、固定部の様子を説明図として示している。レンズ30の最外周コバ面30Aは、図2(a)に模式的に示すように予め粗面化されている。固定部にレーザ光を照射すると、ホルダ10の融解したホルダ樹脂が熱により膨らむように変形して、レンズ30の最外周コバ面の微小な凹凸に入り込んで固化する。図中、符号10Bが「最外周コバ面の微小な凹凸に入り込んで固化したホルダ樹脂」を示す。   The embodiment of FIG. 2 is an embodiment of the lens fixing method according to claim 2 and shows the state of the fixing portion as an explanatory diagram. The outermost peripheral edge surface 30A of the lens 30 is roughened in advance as schematically shown in FIG. When the fixing portion is irradiated with laser light, the melted holder resin of the holder 10 is deformed so as to swell due to heat, and enters and is solidified into minute irregularities on the outermost peripheral edge surface of the lens 30. In the figure, reference numeral 10B indicates “a holder resin that has entered and solidified into minute irregularities on the outermost peripheral edge surface”.

この固定過程で、レンズ30の側にも融解が生じるが、粗面化のため、融解したホルダ樹脂からの伝熱は、図1の実施の形態の場合に比して少なく、固定の際に、ホルダ10の「融解した樹脂からの力の作用」も少なくてすみ、固定の際にレンズ30に大きな力が加わらないため、レンズ30に発生する内部ストレスが小さくてすむ。   In this fixing process, the lens 30 is also melted. However, due to the roughening, heat transfer from the melted holder resin is less than that in the embodiment of FIG. In addition, the “effect of the force from the molten resin” of the holder 10 can be reduced, and a large force is not applied to the lens 30 at the time of fixing, so that the internal stress generated in the lens 30 can be reduced.

この場合にも、レンズ30に「レンズ光軸方向の力F」が作用した場合、固定部における凹凸構造において、ホルダ樹脂の変形した部分10Bは「力Fに直交する向き」にレンズ30内に入り込んでいるため、固定部は力F(レンズ30をホルダ10から抜き出すように作用する。)に対して強い「抜けの抵抗力」を発揮する。   Also in this case, when the “force F in the lens optical axis direction” acts on the lens 30, the deformed portion 10 </ b> B of the holder resin in the concavo-convex structure in the fixed portion enters the lens 30 in the “direction orthogonal to the force F”. Since it has entered, the fixing portion exerts a strong “resisting resistance” against the force F (acts so as to extract the lens 30 from the holder 10).

図3は、レンズ固定方法の参考例を2例示す。
これらの参考例では、ホルダ10に固定されるレンズ30の最外周コバ面に、予め「凹構造」が形成されている。
図3(a)に示す例では凹構造30Cは「断面形状が矩形形状」であり、図3(b)に示すように、融解して「膨らむように変形」したホルダ樹脂10Cを凹構造30C内に入り込ませ、固化させてレンズ30をホルダ10に固定する。
図3(c)に示す例では凹構造30Dは「断面形状が三角形形状」であり、図3(d)に示すように、融解して「膨らむように変形」したホルダ樹脂10Dを凹構造30D内に入り込ませ、固化させてレンズ30をホルダ10に固定する。
FIG. 3 shows two reference examples of the lens fixing method .
In these reference examples, a “concave structure” is formed in advance on the outermost peripheral edge surface of the lens 30 fixed to the holder 10.
In the example shown in FIG. 3A, the concave structure 30C has a “cross-sectional shape of a rectangular shape”, and as shown in FIG. 3B, the holder resin 10C melted and “deformed to swell” is formed into the concave structure 30C. The lens 30 is fixed to the holder 10 by entering into the inside and solidifying.
In the example shown in FIG. 3C, the concave structure 30D has a “triangular cross-sectional shape”. As shown in FIG. 3D, the holder resin 10D that has been melted and “deformed to swell” is formed into the concave structure 30D. The lens 30 is fixed to the holder 10 by entering into the inside and solidifying.

図3(a)、(b)に示す例も(c)、(d)に示す例も、レンズ30に「レンズ光軸方向の力F」が作用した場合、固定部における凹構造において、ホルダ樹脂の「熱により膨らむように変形」した部分10C、10Dは、力Fに直交する向きにレンズ30の凹構造30C、30D内に入り込んでいるため、固定部は力Fに対して強い「抜けの抵抗力」を発揮する。   3A and 3B and the examples shown in FIGS. 3C and 3D, when the “force F in the lens optical axis direction” is applied to the lens 30, the holder in the concave structure in the fixed portion Since the portions 10C and 10D of the resin “deformed so as to swell due to heat” enter the concave structures 30C and 30D of the lens 30 in a direction perpendicular to the force F, the fixing portion is strong against the force F. Of resistance.

図4に示す参考例では、レンズ30の最外周コバ面に予め形成される凹構造は段差30Eである。図4(b)に示すように、融解して「膨らむように変形」したホルダ樹脂10Eを段差30Eの凹部に入り込ませ、固化させてレンズ30をホルダ10に固定する。
図4(a)、(b)に示す例も、レンズ30に「レンズ光軸方向の力F」が作用した場合、固定部における凹構造(段差30E)において、ホルダ樹脂の「膨らむように変形」した部分10Eは、力Fに直交する向きにレンズ30の凹構造(段差)30Eの凹部に入り込んでいるため、固定部は力Fに対して強い「抜けの抵抗力」を発揮する。
In the reference example shown in FIG. 4, the concave structure formed in advance on the outermost peripheral edge surface of the lens 30 is a step 30E. As shown in FIG. 4B, the holder resin 10 </ b> E that has been melted and “deformed to swell” enters the concave portion of the step 30 </ b> E and is solidified to fix the lens 30 to the holder 10.
In the example shown in FIGS. 4A and 4B, when the “force F in the lens optical axis direction” is applied to the lens 30, the holder resin is deformed so as to swell in the concave structure (step 30E) in the fixing portion. Since the portion 10E that has entered the concave portion of the concave structure (step) 30E of the lens 30 in a direction orthogonal to the force F, the fixed portion exerts a strong “resistance to slip” against the force F.

図5は、別の参考例を2例示す。
これらの実施の形態においては、ホルダ10に固定されるレンズ30の最外周コバ面には、予め凹凸構造が形成されている。図5(a)に示す例では凹凸構造30Fは断面形状が矩形波形状であり、図5(b)に示すように、融解して「膨らむように変形」したホルダ樹脂10Fを凹凸構造30Fの凹部に入り込ませ、固化させてレンズ30をホルダ10に固定する。
図5(c)に示す例では凹構造30Gは断面形状が鋸歯状であり、図5(d)に示すように、融解して「膨らむように変形」したホルダ樹脂10Gを凹凸構造30Gの凹部に入り込ませ、固化させてレンズ30をホルダ10に固定する。
FIG. 5 shows two other reference examples .
In these embodiments, an uneven structure is formed in advance on the outermost peripheral edge surface of the lens 30 fixed to the holder 10. In the example shown in FIG. 5A, the concavo-convex structure 30F has a rectangular wave cross-sectional shape, and as shown in FIG. 5B, the holder resin 10F that has been melted and “deformed so as to swell” is removed from the concavo-convex structure 30F. The lens 30 is fixed to the holder 10 by entering into the recess and solidifying.
In the example shown in FIG. 5C, the concave structure 30G has a sawtooth cross-sectional shape. As shown in FIG. 5D, the holder resin 10G that has been melted and "deformed to swell" is formed into a concave portion of the concave-convex structure 30G. The lens 30 is fixed to the holder 10 by entering and solidifying.

図5(a)、(b)に示す例も(c)、(d)に示す例も、レンズ30に「レンズ光軸方向の力F」が作用した場合、固定部における凹構造において、ホルダ樹脂の「膨らむように変形」した部分10F、10Gは、力Fに直交する向きにレンズ30の凹凸構造30F、30Gの凹部に入り込んでいるため、固定部は力Fに対して強い「抜けの抵抗力」を発揮する。   5 (a) and 5 (b) as well as the examples shown in (c) and (d), when the “force F in the lens optical axis direction” acts on the lens 30, the holder in the concave structure in the fixed portion Since the portions 10F and 10G of the resin “deformed so as to swell” enter the concave portions of the concave-convex structures 30F and 30G of the lens 30 in a direction orthogonal to the force F, the fixing portion is strong against the force F. Demonstrate resistance.

図5(c)のように、レンズ30の最外周コバ面が断面鋸歯状の凹凸構造30Gを有する場合、この凹凸構造を「螺子溝」として形成する一方、ホルダ10の固定部には、上記螺子溝と緩く螺合する螺子山を形成し、レンズ30とホルダ10とを上記螺子溝・螺子山の螺合により係合させておき、この状態でレーザ光の照射を行って両者を固定するようにしても良いAs shown in FIG. 5C, when the outermost peripheral edge surface of the lens 30 has a concavo-convex structure 30G having a sawtooth cross section, this concavo-convex structure is formed as a “screw groove”, while the fixing portion of the holder 10 A screw thread that is loosely screwed with the screw groove is formed, and the lens 30 and the holder 10 are engaged with each other by screwing the screw groove and the screw thread, and in this state, laser light irradiation is performed to fix both. it may be so.

勿論、最外周コバ面の凹凸構造の断面形状は、図5に示す形状に限られない。レンズ30の最外周コバ面の凹構造もしくは凹凸構造に係合しあう凸構造もしくは凸凹構造を、ホルダ10の固定部に形成しておき、両者を係合させた状態で固定部へのレーザ光照射を行うことができる(請求項2)ことも勿論である。
図6は、別の参考例を示している。
レンズ30の最外周コバ面は光軸方向に傾斜するテーパ面30Hとして形成され、固定部において、融解して「膨らむように変形」したホルダ樹脂10Hをテーパ面30Hに突き当てさせ、テーパ面30Hでレンズ10を固定する。この場合にも、レンズ30に「レンズ光軸方向の力F」が作用した場合、固定部におけるテーパ面30Hと、ホルダ樹脂の「膨らむように変形」した部分10Hの係合が、力Fに対して抗力を生じるので、固定部は力Fに対して強い「抜けの抵抗力」を発揮する。
Of course, the cross-sectional shape of the concavo-convex structure on the outermost peripheral edge surface is not limited to the shape shown in FIG. A convex structure or a concave-convex structure that engages with a concave structure or a concave-convex structure on the outermost peripheral edge surface of the lens 30 is formed in the fixed portion of the holder 10, and the laser beam is applied to the fixed portion in a state in which both are engaged. Of course, irradiation can be performed ( claim 2 ).
FIG. 6 shows another reference example .
The outermost peripheral edge surface of the lens 30 is formed as a tapered surface 30H inclined in the optical axis direction. In the fixed portion, the holder resin 10H melted and “deformed so as to swell” is caused to abut against the tapered surface 30H. Then, the lens 10 is fixed. Also in this case, when “the force F in the lens optical axis direction” is applied to the lens 30, the engagement between the tapered surface 30 </ b> H in the fixed portion and the portion 10 </ b> H of the holder resin “deformed to swell” is applied to the force F. On the other hand, since a drag force is generated, the fixing portion exhibits a strong “resisting resistance” against the force F.

図3〜図6に示した参考例の場合も、固定の際にホルダ10の融解して「膨らむように変形」するホルダ樹脂から「レンズ30へ作用する力」が小さく、固定の際にレンズ30に大きな力が加わらないため、レンズ30に発生する内部ストレスが小さくてすむ。 In the case of the reference examples shown in FIGS. 3 to 6, the “force acting on the lens 30” is small from the holder resin that melts and “deforms to swell” when the holder 10 is melted at the time of fixing. Since no large force is applied to the lens 30, the internal stress generated in the lens 30 can be reduced.

図2〜図6に示した参考例のように最外周コバ面を粗面化し、あるいは凹構造や凹凸構造を形成する場合には、レンズ30自体が融解しなくても、融解して「膨らむように変形」したホルダ樹脂が粗面の微小な凹凸の凹部や、凹構造・凹凸構造の凹部に入り込んで固定が行われるので、レンズ30が「ガラスレンズ」であってもホルダ10への良好な固定を行うことができるWhen the outermost peripheral edge surface is roughened as in the reference examples shown in FIGS. 2 to 6 or a concave structure or a concavo-convex structure is formed, even if the lens 30 itself does not melt, it melts and “swells”. Since the holder resin that has been deformed ”enters the concave portion of the rough surface with the minute irregularities or the concave portion of the concave structure / concave structure, the fixing is performed. Can be fixed.

図1(a)に示す実施の形態のように、レンズ30のレンズ形状の一部として、レーザ光反射面32を予め形成しておき、レンズ光軸方向から照射される固定用のレーザ光MLを、レーザ光反射面MLにより反射させて、固定部YPへ照射する場合、レーザ光反射面MLの断面形状を凸面や凹面とすることにより、固定部YPへ照射されるレーザ光の集光状態を調整することもできる。「レンズ形状の一部として形成されるレーザ光反射面」は、図1のレーザ光反射面32に限らない。   As in the embodiment shown in FIG. 1A, a laser beam reflecting surface 32 is formed in advance as part of the lens shape of the lens 30, and the fixing laser beam ML irradiated from the lens optical axis direction. Is reflected by the laser light reflecting surface ML and irradiated to the fixed part YP, the condensing state of the laser light irradiated to the fixed part YP by making the cross-sectional shape of the laser light reflecting surface ML convex or concave Can also be adjusted. The “laser light reflecting surface formed as a part of the lens shape” is not limited to the laser light reflecting surface 32 in FIG.

例えば、図7に示す実施の形態では、ホルダ10に対してレンズ20とレンズ30とが押さえ部材40で抑えられた状態で、レンズ30がホルダ10に固定されるが、この実施の形態ではレンズ30における「図で上方のレンズ面」が凹面である。   For example, in the embodiment shown in FIG. 7, the lens 30 is fixed to the holder 10 in a state where the lens 20 and the lens 30 are held by the holding member 40 with respect to the holder 10. The “upper lens surface in FIG. 30” in FIG.

この実施の形態では、リング状収束光である固定用のレーザ光MLは、レンズ30の凹面の側から図の如くレンズ光軸に対して傾いて入射し、レンズ30の凹面の作用により、レンズ光軸から離れる向きに屈折され、遮光板50に接する平面状のコバ面部分31Cの部分で「全反射」し、固定部YPの部分に集光し、レンズ30をホルダ10に固定する。   In this embodiment, the fixing laser light ML, which is ring-shaped convergent light, is incident with an inclination with respect to the lens optical axis as shown in FIG. The lens 30 is fixed to the holder 10 by being refracted in a direction away from the optical axis and “totally reflected” at the flat edge portion 31C in contact with the light-shielding plate 50 and condensed at the fixed portion YP.

この実施の形態では、コバ面部分31Cが「レーザ光反射面」となっている。レーザ光MLは、コバ面部分31Cにより「レンズ内部で全反射される」ので、遮光板50に熱作用を及ぼさず、遮光板50がレーザ光MLにより溶けることがない。   In this embodiment, the edge surface portion 31C is a “laser light reflecting surface”. Since the laser beam ML is “totally reflected inside the lens” by the edge portion 31C, the laser beam ML is not affected by the laser beam ML.

この発明のレンズ固定方法において、固定用のレーザ光MLは、レンズ30内を通して固定部YPに照射されるが、上に説明した例のように、レーザ光MLをレンズ内でレーザ光反射面により反射させて固定部YPに照射するのではなく、「レンズ内を通して直接」に固定部YPに照射することも可能である。   In the lens fixing method of the present invention, the fixing laser beam ML is irradiated to the fixing portion YP through the lens 30. As in the example described above, the laser beam ML is reflected by the laser beam reflecting surface in the lens. Instead of reflecting and irradiating the fixed part YP, it is also possible to irradiate the fixed part YP “directly through the lens”.

図8は、このような場合の実施の1形態を示す図である。
この実施の形態では、レンズ30の、固定用のレーザ光MLの入射側レンズ面の有効レンズ面領域外に、レンズ形状の一部として、レンズ光軸に対して傾いた屈折面31Dを形成しておき、レンズ30にレーザ光MLを入射させ、屈折面31Dにより固定用のレーザ光を最外周コバ面31Aに向けて屈折させることにより、固定部YPに照射して固定を行うレンズ固定方法である(請求項5)。
FIG. 8 is a diagram showing an embodiment in such a case.
In this embodiment, a refracting surface 31D inclined with respect to the lens optical axis is formed as a part of the lens shape outside the effective lens surface region of the lens 30 on the incident side lens surface of the fixing laser light ML. In the lens fixing method, the laser beam ML is incident on the lens 30 and the fixing laser beam is refracted toward the outermost peripheral edge surface 31A by the refracting surface 31D to irradiate and fix the fixing portion YP. ( Claim 5 ).

図8には図示されていないが、レンズ30のホルダ10への固定時に、レンズ30のレーザ光入射側の有効レンズ面領域外(例えば、屈折面31Dの外側のレンズ光軸に直交する平面状部分)を、図1や図7の筒状の押さえ部材40により抑えて固定できることは言うまでもない。   Although not shown in FIG. 8, when the lens 30 is fixed to the holder 10, the lens 30 is outside the effective lens surface area on the laser light incident side (for example, a planar shape orthogonal to the lens optical axis outside the refractive surface 31 </ b> D). Needless to say, the portion) can be held down and fixed by the cylindrical pressing member 40 shown in FIGS.

図8の如き実施の形態においては、固定部YPに集光するレーザMLは最外周コバ面31Aに対して直交せず、最外周コバ面31Aに対して傾きを持つ。固定用のレーザ光MLのエネルギを固定部YPに溶融エネルギとして有効に集中させるには、最外周コバ面部分31Aに対してなるべく「傾き角が小さい(直交に近い)」ことが好ましい。レーザ光MLの固定部YPへの入射角が最外周コバ面部分31Aに対して傾くほど、最外周コバ面部分31Aでの反射成分が大きくなり、固定に使用されるエネルギが減少するし、反射した固定用のレ-ザ光MLが遮光板50に入射して遮光板50を損傷したりする虞がある。 In the embodiment as shown in FIG. 8, the laser ML focused on the fixed portion YP is not orthogonal to the outermost peripheral edge surface 31A but has an inclination with respect to the outermost peripheral edge surface 31A. In order to effectively concentrate the energy of the fixing laser beam ML as the melting energy on the fixed portion YP, it is preferable that “the inclination angle is as small as possible (close to orthogonal)” with respect to the outermost peripheral edge surface portion 31A. As the incident angle of the laser beam ML to the fixed portion YP is inclined with respect to the outermost peripheral edge surface portion 31A, the reflection component at the outermost peripheral edge surface portion 31A increases, and the energy used for fixing decreases, and the reflection is reduced. The fixed laser beam ML may enter the light shielding plate 50 and damage the light shielding plate 50.

このような理由で、レーザ光MLは最外周コバ面部分31Aに対してなるべく直交に近い状態で入射するのが好ましい。しかし、図8の実施の形態であると、レーザ光束MLのレンズ光軸に対する傾きが大きくなり、このような収束レーザ光束を生成するのに反射鏡等が必要になる。   For this reason, it is preferable that the laser beam ML is incident on the outermost peripheral edge surface portion 31A as close to orthogonal as possible. However, in the embodiment of FIG. 8, the inclination of the laser beam ML with respect to the lens optical axis increases, and a reflecting mirror or the like is required to generate such a convergent laser beam.

このような場合の実施の1形態を、図9に示す。
図9に示す実施の形態は、図8に示した例の変形例となっている。
即ち、図9に示すように、レンズ30のレーザ光入射側のレンズ面の有効レンズ面領域外にレンズ形状の一部として形成された「レンズ光軸に対して傾いた屈折面31D」に合わせて、押さえ部材43の光射出面43Dを形成しておき、レンズ30を抑えるとき光射出面43Dと屈折面31Dが摺り合うようにする。
One embodiment in such a case is shown in FIG.
The embodiment shown in FIG. 9 is a modification of the example shown in FIG.
That is, as shown in FIG. 9, the lens 30 is aligned with the “refractive surface 31D inclined with respect to the lens optical axis” formed as a part of the lens shape outside the effective lens surface area of the lens surface on the laser light incident side. Thus, the light emission surface 43D of the pressing member 43 is formed, and when the lens 30 is suppressed, the light emission surface 43D and the refractive surface 31D slide.

また、押さえ部材43の内周面はレンズ光軸方向に傾くテーパ状の反射面43Aとし、リング状収束光であるレーザ光MLを、レンズ光軸に対する傾きが大きくなるように反射させる。このようにすれば、押さえ部材43内を導光され、テーパ状の反射面43Aで内部反射されたレーザ光MLは、屈折面31Dからスムーズに樹脂レンズ30内に入射して固定部YPに照射される。図9の場合のように、屈折面31Dと光射出面43Dとに対してレーザ光MLが直交するようにすれば、レーザ光MLの主光線の光路は屈折面31Dにより屈折されない。   The inner circumferential surface of the pressing member 43 is a tapered reflecting surface 43A that is inclined in the lens optical axis direction, and reflects the laser light ML that is ring-shaped convergent light so that the inclination with respect to the lens optical axis is increased. In this way, the laser light ML guided through the pressing member 43 and internally reflected by the tapered reflecting surface 43A is smoothly incident on the resin lens 30 from the refracting surface 31D and irradiated to the fixing portion YP. Is done. As in the case of FIG. 9, if the laser light ML is orthogonal to the refracting surface 31D and the light emitting surface 43D, the optical path of the principal ray of the laser light ML is not refracted by the refracting surface 31D.

上に説明した実施の各形態によりレンズ30をホルダ10に固定することにより、請求項6記載のレンズユニットを得ることができる。 The lens unit according to claim 6 can be obtained by fixing the lens 30 to the holder 10 according to each of the embodiments described above .

最後に、固定用のレーザ光を「リング状収束光」とする装置例を説明する。
図10において、符号LD1、LD2、・・LDNは複数個(N個)の半導体レーザを示す。これら複数個の半導体レーザLD1〜LDNからのレーザ光は、ビーム合成手段100に入射し、ビーム合成手段100により合成されてカップリング光CPとなって、単一の光ファイバFの入射端FIにカップリングし、光ファイバF内を伝搬して光ファイバFの射出端FOから射出する。
Finally, an example of an apparatus in which the fixing laser light is “ring-shaped convergent light” will be described.
In FIG. 10, symbols LD1, LD2,... LDN indicate a plurality (N) of semiconductor lasers. The laser beams from the plurality of semiconductor lasers LD1 to LDN are incident on the beam combining unit 100, and are combined by the beam combining unit 100 to become coupling light CP, which enters the incident end FI of the single optical fiber F. Coupled, propagated in the optical fiber F, and emitted from the emission end FO of the optical fiber F.

具体的には、半導体レーザLD1〜LDNとしては、波長:970nm帯で高出力の半導体レーザを用いることができ、光ファイバFとしては、コア径:φ100μmでNA:0.22の石英系マルチモードファイバを用いることができる。また、独立したN個の半導体レーザLD1〜LDNに代えて、半導体レーザアレイ(例えば、上記波長:970nm帯の高出力の発光部がアレイ配列したもの)を好適に用いることができる。
図10において、符号CL1は第1のコリメートレンズ、符号CL2は第2のコリメートレンズ、符号FTは光束変換光学素子、符号IPは結像面を示す。結像面IPは光加工時には、被加工面に合致する位置もしくは近傍の位置に設定される。
Specifically, as the semiconductor lasers LD1 to LDN, high-power semiconductor lasers with a wavelength of 970 nm band can be used, and as the optical fiber F, a quartz multimode with a core diameter of φ100 μm and NA of 0.22 is used. Fiber can be used. Further, in place of the N semiconductor lasers LD1 to LDN which are independent of each other, a semiconductor laser array (for example, an array of high-power light emitting portions in the above-mentioned wavelength: 970 nm band) can be suitably used.
In FIG. 10, reference sign CL1 denotes a first collimating lens, reference sign CL2 denotes a second collimating lens, reference sign FT denotes a light beam conversion optical element, and reference sign IP denotes an imaging surface. The imaging surface IP is set at a position that matches or is close to the processing surface during optical processing.

第1、第2のコリメートレンズCL1、CL2は、図10においてはそれぞれ単レンズとして描かれているが、これに限らず2枚以上のレンズで構成しても良い。また、第1、第2のコリメートレンズCL1、CL2は同一のもの(同一の焦点距離を有するもの。)であっても良いし「焦点距離の異なるもの」であってもよい。また、これらコリメートレンズCL1、CL2のレンズ面は球面でもよいが、一方または両方の面が非球面形状であるレンズであることが好ましい。   Although the first and second collimating lenses CL1 and CL2 are depicted as single lenses in FIG. 10, they are not limited to this, and may be composed of two or more lenses. Further, the first and second collimating lenses CL1 and CL2 may be the same (having the same focal length) or “different focal lengths”. The lens surfaces of these collimating lenses CL1 and CL2 may be spherical surfaces, but it is preferable that one or both surfaces be aspherical.

光束変換光学素子FTは、入射側面が平面で、射出側面が円錐面となっている。光ファイバFの微小な光放射部(射出端面)FOは、光束変換光学素子FTを介して、第1のコリメートレンズCL1の物体側焦点位置に位置し、光放射部FOから放射される発散性の光束は、まず、光束変換光学素子FTに入射し、同素子の作用により、コリメートレンズCL1、CL2の光軸を軸とする中空の光束(光束断面形状はリング状である。)に変換されて第1のコリメートレンズCL1に入射し、同コリメートレンズCL1の作用により「互いに光軸に近づくような光束」となる。   The light beam conversion optical element FT has a flat incident surface and a conical surface on the exit surface. The minute light emitting part (exit end face) FO of the optical fiber F is located at the object-side focal position of the first collimating lens CL1 via the light beam conversion optical element FT, and is divergence emitted from the light emitting part FO. First, the light beam enters the light beam conversion optical element FT, and is converted into a hollow light beam (the cross-sectional shape of the light beam is a ring shape) about the optical axis of the collimating lenses CL1 and CL2 by the action of the element. Then, the light enters the first collimating lens CL1 and becomes a “light flux that approaches the optical axis with each other” by the action of the collimating lens CL1.

この平行光束は第2のコリメートレンズCL2により「リング状収束光」に変換され、結像面IP上にリング状に集光する。距離:DPはリング状に集光したレーザ光のリング径である。   This parallel light beam is converted into “ring-shaped convergent light” by the second collimating lens CL2, and is condensed in a ring shape on the imaging plane IP. Distance: DP is the ring diameter of the laser beam condensed in a ring shape.

変位手段300は、この例において、光束変換光学素子FTと第2のコリメートレンズCL2とを、第1のコリメートレンズCL1に対して、光軸方向に変位させる機能を有している。変位手段300としては、ズームレンズ等においてレンズ群を変位させる機構として従来から知られているものを適宜に用いることができる。   In this example, the displacement means 300 has a function of displacing the light beam conversion optical element FT and the second collimating lens CL2 in the optical axis direction with respect to the first collimating lens CL1. As the displacement means 300, a conventionally known mechanism for displacing a lens group in a zoom lens or the like can be used as appropriate.

変位手段300は手動によるものでも電動によるものでもよく、図示されないマイクロコンピュータ等の制御手段により「変位をプログラム制御する」ように構成することもできることは言うまでもない。また、変位手段300による光束変換光学素子FTの変位と、第2のコリメートレンズCL2の変位とは独立に行われる。   Needless to say, the displacement means 300 may be manually operated or electrically operated, and may be configured to “program and control displacement” by a control means such as a microcomputer (not shown). Further, the displacement of the light beam conversion optical element FT by the displacement means 300 and the displacement of the second collimating lens CL2 are performed independently.

なお、変位手段300のうちの少なくとも「駆動機構と、第1、第2のコリメートレンズCL1、CL2、光束変換光学素子FTと」は適宜のケーシング内に収納される。   It should be noted that at least “the driving mechanism, the first and second collimating lenses CL1 and CL2, and the light beam conversion optical element FT” of the displacement means 300 are housed in an appropriate casing.

光束変換光学素子FTを光軸方向において光放射部FOに近づくように変位させて、光束変換光学素子FTを第1のコリメートレンズCL1から遠ざけると、リング状の集光部のリング径:DPが小さくなる。即ち、第1のコリメートレンズCL1と光束変換光学素子FTとの間隔を調整することにより、上記リング径:DPを調整できる。   When the light beam converting optical element FT is displaced so as to approach the light emitting part FO in the optical axis direction, and the light beam converting optical element FT is moved away from the first collimating lens CL1, the ring diameter: DP of the ring-shaped condensing part is Get smaller. That is, the ring diameter DP can be adjusted by adjusting the distance between the first collimating lens CL1 and the light beam converting optical element FT.

このようにして得られたリング状収束光を、例えば、図1の押さえ部材40によりレンズ30に導光することにより、固定用のレーザ光MLとすることができる。   The ring-shaped convergent light obtained in this way is guided to the lens 30 by, for example, the pressing member 40 of FIG. 1, and can be used as the fixing laser light ML.

なお、上記光束変換光学素子の射出側面を円錐面とせずに角錐面とするか、屋根形面とすれば、固定用のレーザ光を固定部YPに2以上の点状に集光させることができ、これら2以上の点状に集光するレーザ光で複数の点状固定部を同時にまたは順次に照射することができる。また、例えば、図10に説明した装置から光束変換素子FTを除くと、固定用のレーザ光として「1点に集光するレーザ光」を得ることができ、このように1点に集光するレーザ光により「複数の点状固定部を順次に照射して固定を行う」ようにすることもできることは言うまでも無い。   In addition, if the exit side surface of the light beam converting optical element is not a conical surface but a pyramidal surface or a roof-shaped surface, the fixing laser beam can be condensed on the fixing portion YP in two or more points. It is possible to irradiate a plurality of point-shaped fixing portions simultaneously or sequentially with the laser light that is condensed into two or more points. Further, for example, when the light beam conversion element FT is removed from the apparatus described in FIG. 10, “laser light focused at one point” can be obtained as the fixing laser light, and thus focused at one point. Needless to say, it is also possible to perform "fixing by sequentially irradiating a plurality of point-like fixing portions" with laser light.

レンズ固定方法の実施の1形態を説明するための図である。It is a figure for demonstrating one Embodiment of the lens fixing method. レンズ固定方法の参考例を説明するための図である。It is a figure for demonstrating the reference example of the lens fixing method. レンズ固定方法の別参考例を説明するための図である。It is a figure for demonstrating another reference example of the lens fixing method. レンズ固定方法の他の参考例を説明するための図である。It is a figure for demonstrating the other reference example of the lens fixing method. レンズ固定方法の他の参考例を説明するための図である。It is a figure for demonstrating the other reference example of the lens fixing method. レンズ固定方法の他の参考例を説明するための図である。It is a figure for demonstrating the other reference example of the lens fixing method. レンズ固定方法の変形例を説明するための図である。It is a figure for demonstrating the modification of a lens fixing method. レンズ固定方法の変形例を説明するための図である。It is a figure for demonstrating the modification of a lens fixing method. レンズ固定方法の変形例を説明するための図である。It is a figure for demonstrating the modification of a lens fixing method. 固定用のレーザ光を生成する装置の1例を説明するための図である。It is a figure for demonstrating an example of the apparatus which produces | generates the laser beam for fixation.

符号の説明Explanation of symbols

10 ホルダ
30 レンズ
ML 固定用のレーザ光
YP 固定部
10A ホルダ樹脂の熱膨張した部分
F レンズ光軸方向に作用する力
10 Holder
30 lenses
ML fixing laser beam YP fixing part
10A Thermal expansion part of holder resin F Force acting in the lens optical axis direction

Claims (6)

樹脂製のレンズを、このレンズに対して相溶性のない樹脂で形成された筒状のホルダ内に固定する方法であって、
樹脂製のホルダの、レンズ光軸に平行な内周面部を固定部とし、上記ホルダ内に樹脂製のレンズを保持させ、該レンズの最外周コバ面を、上記固定部に近接もしくは当接させ、
固定用のレーザ光を、上記レンズ内を通して上記固定部に集光させて照射し、上記固定部におけるホルダの固定部を融解し、融解したホルダ固定部の熱によりレンズの最外周コバ面を融解し、上記固定部において、上記ホルダの融解した樹脂を、上記レンズの融解した最外周コバ面内側に侵入させ、融解した樹脂同士の凹凸構造を形成して固化させることにより、
上記レンズの光軸方向へ作用する力に対する、上記レンズのホルダからの抜けの抵抗力を高めることを特徴とするレンズ固定方法。
A resin lens, a method of securing compatibility with no tubular in the holder made of resin with respect to the lens,
The inner peripheral surface portion of the resin holder parallel to the optical axis of the lens is used as the fixed portion, the resin lens is held in the holder , and the outermost peripheral edge surface of the lens is brought close to or in contact with the fixed portion. ,
The fixing laser beam is condensed and irradiated through the lens onto the fixing part, the fixing part of the holder in the fixing part is melted, and the outermost edge surface of the lens is melted by the heat of the melted holder fixing part. Then, in the fixing portion, the molten resin of the holder is allowed to enter the melted outermost peripheral edge surface of the lens, and a concavo-convex structure between the melted resins is formed and solidified.
A method for fixing a lens, characterized by increasing a resistance force of the lens from coming out of a holder against a force acting in a direction of an optical axis of the lens.
請求項1記載のレンズ固定方法において、
レンズの最外周コバ面の凹構造もしくは凹凸構造に緩く係合しあう凸構造もしくは凸凹構造を、予めホルダの固定部に形成しておき、両者を係合させた状態で固定部への固定用のレーザ光の照射を行うことを特徴とするレンズ固定方法
The lens fixing method according to claim 1,
A convex or concave structure that loosely engages with the concave structure or concave-convex structure on the outermost peripheral edge surface of the lens is formed in advance on the fixing part of the holder, and fixed to the fixing part in a state in which both are engaged. The lens fixing method characterized by performing irradiation of the laser beam .
請求項1記載のレンズ固定方法において、
レンズの最外周コバ面を光軸方向に傾斜するテーパ面として形成し、固定部において、
融解し、熱により上記レンズの最外周コバ面に向かって膨らむように変形したホルダの樹
脂により上記テーパ面でレンズを固定することを特徴とするレンズ固定方法
The lens fixing method according to claim 1,
The outermost peripheral edge surface of the lens is formed as a tapered surface inclined in the optical axis direction.
A holder tree that has been melted and deformed to expand toward the outermost edge of the lens by heat.
A lens fixing method, wherein the lens is fixed on the tapered surface with oil .
請求項1〜3の任意の1に記載のレンズ固定方法において、The lens fixing method according to any one of claims 1 to 3,
レンズの有効レンズ面領域外に、レンズ形状の一部としてレーザ光反射面を予め形成しA laser light reflecting surface is formed in advance as part of the lens shape outside the effective lens surface area of the lens.
ておき、レンズ光軸方向から照射される固定用のレーザ光を、上記レーザ光反射面によりThe fixing laser light irradiated from the lens optical axis direction is caused to be reflected by the laser light reflecting surface.
反射させて、固定部へ照射することを特徴とするレンズ固定方法。A lens fixing method, wherein the lens is reflected and irradiated to a fixing portion.
請求項1〜4の任意の1に記載のレンズ固定方法において、
ホルダに固定されるレンズの、固定用のレーザ光が入射する入射側レンズ面の有効レン
ズ面領域外に、レンズ形状の一部として、レンズ光軸に対して傾いた屈折面を形成してお
き、固定用のレーザ光を上記屈折面から上記レンズ内に入射させ、上記屈折面によりレー
ザ光を最外周コバ面に向けて屈折させることにより、固定部に照射することを特徴とする
レンズ固定方法
In the lens fixing method according to any one of claims 1 to 4,
Effective lens on the lens surface fixed to the holder, on the lens surface on the incident side where the fixing laser beam is incident
As a part of the lens shape, a refractive surface inclined with respect to the lens optical axis is formed outside the surface area.
The fixing laser beam is incident on the lens through the refractive surface, and the laser beam is incident on the refractive surface.
The fixed part is irradiated by refracting the light toward the outermost edge.
Lens fixing method .
請求項1〜5の任意の1に記載のレンズ固定方法により、樹脂製のホルダに、このホ
ルダの樹脂と相溶性のない樹脂のレンズを固定してなるレンズユニット。
A lens unit formed by fixing a resin lens incompatible with a resin holder to a resin holder by the lens fixing method according to any one of claims 1 to 5 .
JP2007006410A 2007-01-15 2007-01-15 Lens fixing method and lens unit Expired - Fee Related JP4933277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006410A JP4933277B2 (en) 2007-01-15 2007-01-15 Lens fixing method and lens unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006410A JP4933277B2 (en) 2007-01-15 2007-01-15 Lens fixing method and lens unit

Publications (2)

Publication Number Publication Date
JP2008170905A JP2008170905A (en) 2008-07-24
JP4933277B2 true JP4933277B2 (en) 2012-05-16

Family

ID=39699021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006410A Expired - Fee Related JP4933277B2 (en) 2007-01-15 2007-01-15 Lens fixing method and lens unit

Country Status (1)

Country Link
JP (1) JP4933277B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205982798U (en) * 2016-07-20 2017-02-22 瑞声声学科技(苏州)有限公司 Lens module
CN205982793U (en) * 2016-07-20 2017-02-22 瑞声声学科技(苏州)有限公司 Lens module
JP2018054798A (en) * 2016-09-28 2018-04-05 日本電産サンキョー株式会社 Lens unit
JP2018054797A (en) * 2016-09-28 2018-04-05 日本電産サンキョー株式会社 Lens unit
CN108031971B (en) * 2017-12-13 2020-05-19 大族激光科技产业集团股份有限公司 Laser welding method for opaque plastics
CN108032526B (en) * 2017-12-13 2020-09-04 大族激光科技产业集团股份有限公司 Laser welding method for butt-jointed plastic workpieces

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184848A (en) * 2002-12-05 2004-07-02 Fuji Photo Film Co Ltd Lens-fitted photographic film unit
JP2005345654A (en) * 2004-06-02 2005-12-15 Canon Inc Optical unit and method for fixing optical member

Also Published As

Publication number Publication date
JP2008170905A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4933277B2 (en) Lens fixing method and lens unit
JP6147341B2 (en) Semiconductor laser module
JP2009186699A (en) Lens unit and method of manufacturing the same
US9566752B2 (en) Methods of forming a TIR optical fiber lens
JP7516351B2 (en) Optical Components and Semiconductor Laser Modules
JP2005316044A (en) Lens fixing method and lens unit
JP2007114664A (en) Optical element fixing method, manufacturing method of optical element fixing structure and optical communication module
JP4380615B2 (en) Light guide and light irradiation device
JP5026168B2 (en) Manufacturing method of optical fiber sensor unit and optical fiber sensor unit
JP5074253B2 (en) Semiconductor laser module, optical scanning device and image forming apparatus using the same
JP2005241822A (en) Fused optical part, fused optical part manufacturing method, and fused optical part manufacturing device
JP2013196891A (en) Method of manufacturing vehicle lamp
JP5149496B2 (en) Lens welding method
JP2009137175A (en) Light source device for image forming apparatus
JP6448486B2 (en) Optical fiber and light guide member
JP2005345654A (en) Optical unit and method for fixing optical member
JP5087457B2 (en) Lens fixing method and lens unit
JP5196778B2 (en) Irradiation optical system and irradiation apparatus
JP2015210306A (en) Optical connector and manufacturing method therefor
JP4959647B2 (en) Optical fiber end face processing apparatus and method
JP2006276828A (en) Optical module and manufacturing method for the same
JP2006162806A (en) Optical communications module and its manufacturing method
JP2004334003A (en) Manufacture method of optical coupler and optical recording device
JP2005024842A (en) Sealing structure for optical fiber end part, and sealing method thereof
JP2003322755A (en) Optical fiber collimator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees