JP2006276828A - Optical module and manufacturing method for the same - Google Patents

Optical module and manufacturing method for the same Download PDF

Info

Publication number
JP2006276828A
JP2006276828A JP2005324792A JP2005324792A JP2006276828A JP 2006276828 A JP2006276828 A JP 2006276828A JP 2005324792 A JP2005324792 A JP 2005324792A JP 2005324792 A JP2005324792 A JP 2005324792A JP 2006276828 A JP2006276828 A JP 2006276828A
Authority
JP
Japan
Prior art keywords
lens
fused
positioning
holding member
optical module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005324792A
Other languages
Japanese (ja)
Other versions
JP2006276828A5 (en
Inventor
Daisuke Satani
大助 佐谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005324792A priority Critical patent/JP2006276828A/en
Publication of JP2006276828A publication Critical patent/JP2006276828A/en
Publication of JP2006276828A5 publication Critical patent/JP2006276828A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/737Articles provided with holes, e.g. grids, sieves

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical module capable of fixing a lens firmly with high positioning precision without using any adhesive agent. <P>SOLUTION: The optical module has a lens member with a lens part and an installation part and a holding member for holding the lens member at the installation part. The installation part has a fused part for transmitting an irradiated laser beam and a first positioning part becoming a reference for positioning in an optical axial direction of the lens part. The holding member has a fusing part which is arranged opposite to the fused part and fuses itself into the fused part with the laser beam and a second positioning part which is abutted to the first positioning part in a fused state and positions the lens member. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はカメラ等に組み込まれる光学モジュールについて、該光学モジュールの光学部材と保持部材との取付構造に関する。   The present invention relates to an optical module incorporated in a camera or the like and a mounting structure between an optical member and a holding member of the optical module.

カメラ等に組み込まれる焦点検出装置では、二次結像レンズの位置ずれによって測距誤差が生じる。そのため、二次結像レンズを保持部材に高い精度で位置決め固定することが要求されている。通常、二次結像レンズの固定には接着剤が使用されるが、レンズの固定が必ずしも十分でない点や接着剤の付着により光学面の汚れが発生しうる点などで問題がある。そのため、二次結像レンズの固定に関して接着以外の固定方法がなお追求されている。   In a focus detection device incorporated in a camera or the like, a distance measurement error occurs due to a positional deviation of the secondary imaging lens. Therefore, it is required to position and fix the secondary imaging lens to the holding member with high accuracy. Usually, an adhesive is used for fixing the secondary imaging lens. However, there are problems in that the lens is not necessarily fixed enough and the optical surface may be soiled due to adhesion of the adhesive. For this reason, fixing methods other than adhesion are still being pursued for fixing the secondary imaging lens.

例えば、特開平7−272302号公報(以下特許文献1と称する)には、超音波溶着によって対物レンズをレンズホルダーに固定した対物レンズ装置が開示されている。
特開平7−272302号公報
For example, Japanese Patent Application Laid-Open No. 7-272302 (hereinafter referred to as Patent Document 1) discloses an objective lens device in which an objective lens is fixed to a lens holder by ultrasonic welding.
JP 7-272302 A

しかし、上記特許文献1の場合には超音波溶着器の接触子で溶着箇所を局所加熱する必要があるが、組立作業において溶着箇所に接触子を当てて高い精度で位置決めを行うのは困難である。また、溶着箇所に接触子を当てるためにレンズおよび保持部材の形状やレイアウトにも制約が生じる点でも改善の余地がある。
本発明は上記従来技術の課題を解決するためのものであって、その目的は、接着剤を使用することなく、高い位置決め精度でレンズを強固に固定できる光学モジュールおよびその製造方法を提供することである。
However, in the case of the above-mentioned Patent Document 1, it is necessary to locally heat the welding location with the contact of the ultrasonic welder. However, it is difficult to perform positioning with high accuracy by applying the contact to the welding location in the assembly work. is there. In addition, there is room for improvement in that the shape and layout of the lens and the holding member are restricted because the contact is applied to the welded portion.
The present invention is for solving the above-described problems of the prior art, and an object thereof is to provide an optical module capable of firmly fixing a lens with high positioning accuracy without using an adhesive, and a method for manufacturing the same. It is.

第1の発明は、レンズ部および取付部を有するレンズ部材と、取付部でレンズ部材を保持する保持部材とを有する光学モジュールであって、取付部は、保持部材との反対側から照射されたレーザー光を透過するレンズ側被融着部と、レンズ部の光軸方向の位置決め基準となる第1位置決め部と、を有し、保持部材は、レンズ側被融着部に対向して配置されてレーザー光によりレンズ側被融着部と融着する融着部と、融着した状態で第1位置決め部と当接してレンズ部材との相対距離を規制する第2位置決め部と、を有することを特徴とする。   1st invention is an optical module which has a lens member which has a lens part and an attaching part, and a holding member which holds a lens member by an attaching part, and the attaching part was irradiated from the opposite side to a holding member A lens-side fused portion that transmits laser light; and a first positioning portion that serves as a positioning reference in the optical axis direction of the lens portion, and the holding member is disposed to face the lens-side fused portion. A fused portion that is fused to the lens-side fused portion by laser light, and a second positioning portion that contacts the first positioning portion in a fused state and regulates the relative distance from the lens member. It is characterized by.

第2の発明は、レンズ部および取付部を有するレンズ部材と、取付部でレンズ部材を保持する保持部材とを有する光学モジュールであって、取付部は、照射されたレーザー光を透過する被融着部と、レンズ部の光軸方向の位置決め基準となる第1位置決め部と、を有し、保持部材は、被融着部に対向して配置されてレーザー光により被融着部と融着する融着部と、融着した状態で第1位置決め部と当接してレンズ部材を位置決めする第2位置決め部と、を有することを特徴とする。   A second invention is an optical module having a lens member having a lens portion and an attachment portion, and a holding member for holding the lens member by the attachment portion, wherein the attachment portion is to be melted to transmit the irradiated laser light. A holding portion and a first positioning portion that serves as a positioning reference in the optical axis direction of the lens portion, and the holding member is disposed facing the fusion-bonded portion and is fused to the fusion-bonded portion by laser light. And a second positioning portion that contacts the first positioning portion and positions the lens member in a fused state.

第3の発明は、第1または第2の発明において、取付部は、被融着部の厚さが第1位置決め部の厚さよりも薄く設定されてなることを特徴とする。
第4の発明は、第1から第3のいずれかの発明において、融着部は、被融着部よりもレーザー光の波長の吸収率が高く設定されてなることを特徴とする。
第5の発明は、第1から第4のいずれかの発明において、取付部は、被融着部の被融着面に向けてレーザー光を収束させる集光光学素子部をさらに有することを特徴とする。
The third invention is characterized in that, in the first or second invention, the attachment portion is configured such that the thickness of the fused portion is set to be thinner than the thickness of the first positioning portion.
According to a fourth invention, in any one of the first to third inventions, the fusion part is set to have a higher absorption rate of the wavelength of the laser beam than the fusion-bonded part.
According to a fifth invention, in any one of the first to fourth inventions, the attachment portion further includes a condensing optical element portion for converging the laser light toward the fusion-bonded surface of the fusion-bonded portion. And

第6の発明は、第1から第5のいずれかの発明において、取付部のレーザー光透過領域は、レンズ部と同等の透過性を有することを特徴とする。
第7の発明は、レンズ部を有するレンズ部材を、保持部材に保持する光学モジュールの製造方法であって、レンズ部材と保持部材とを融着する際に、レンズ部材に設けた第1位置決め部と保持部材に設けた第2位置決め部とを当接させることによりレンズ部材を保持部材に位置決めすることを特徴とする。
A sixth invention is characterized in that, in any one of the first to fifth inventions, the laser light transmission region of the mounting portion has the same transparency as the lens portion.
7th invention is a manufacturing method of the optical module which hold | maintains the lens member which has a lens part to a holding member, Comprising: The 1st positioning part provided in the lens member when fuse | melting a lens member and a holding member The lens member is positioned on the holding member by bringing the lens member into contact with a second positioning portion provided on the holding member.

第8の発明は、第7の発明において、レンズ部材を保持部材に保持した状態で、レンズ部材を介して保持部材にレーザー光を照射することにより融着を行うことを特徴とする。   The eighth invention is characterized in that, in the seventh invention, fusion is performed by irradiating the holding member with laser light through the lens member while the lens member is held by the holding member.

本発明では、被融着部を透過して融着部に照射されたレーザー光によって、レンズ部材を保持部材に融着させて強固に固定できる。また、融着状態では第1位置決め部と第2位置決め部との当接によって、レンズ部の光軸方向位置決めを高い精度で行うことができる。   In the present invention, the lens member can be fused to the holding member and firmly fixed by the laser beam transmitted through the fused portion and irradiated to the fused portion. Further, in the fused state, the lens portion can be positioned with high accuracy by the contact between the first positioning portion and the second positioning portion.

(第1実施形態の説明)
図1から図7は本発明の光学モジュールの第1実施形態を示す図である。第1実施形態では、光学モジュールがカメラの焦点検出装置を構成する。
図1に示すように、焦点検出装置は、レンズ保持部材11と、入射光の赤外線成分を除去する赤外カットフィルタ12と、絞りマスク13と、セパレータレンズ14と、光学センサパッケージ15とを備えている。
(Description of the first embodiment)
1 to 7 are views showing a first embodiment of the optical module of the present invention. In the first embodiment, the optical module constitutes a camera focus detection device.
As shown in FIG. 1, the focus detection apparatus includes a lens holding member 11, an infrared cut filter 12 that removes an infrared component of incident light, an aperture mask 13, a separator lens 14, and an optical sensor package 15. ing.

レンズ保持部材11は焦点検出装置の本体部分を構成し、焦点検出装置の各構成部品が位置決めされて取り付けられる。このレンズ保持部材11は、黒色のように光の波長を吸収しやすい色の熱可塑性樹脂(プラスチックなど)で成形されている。
図1においてレンズ保持部材11の上面側(入射側)および左下側(センサ取付側)には開口部が形成され、入射側の開口部には測距光束を分離して不要な光束を除去するための視野マスク16が取り付けられている。視野マスク16には被写体からの光束を通過させる矩形状の開口16aが複数形成されている。
The lens holding member 11 constitutes a main body portion of the focus detection device, and each component of the focus detection device is positioned and attached. The lens holding member 11 is formed of a thermoplastic resin (such as plastic) having a color that easily absorbs the wavelength of light, such as black.
In FIG. 1, openings are formed on the upper surface side (incident side) and lower left side (sensor mounting side) of the lens holding member 11, and the distance measuring light beam is separated from the incident side opening portion to remove unnecessary light fluxes. A field mask 16 is attached. The field mask 16 is formed with a plurality of rectangular openings 16a through which light flux from the subject passes.

また、レンズ保持部材11の内部には、コンデンサレンズと、該コンデンサレンズを透過した光束をセンサ取付側の開口部11aに反射させる折り返しミラーとが配置されている(コンデンサレンズおよび折り返しミラーの図示は省略する)。
さらに、図2に示すようにセンサ取付側の開口部11aの周囲にはセパレータレンズ14の外形に対応する凹陥部11bが形成される。この凹陥部11bには組み立て順に、赤外カットフィルタ12、絞りマスク13およびセパレータレンズ14が配置される。そして、セパレータレンズ14の取り付け後に、レンズ保持部材11の凹陥部11bの位置には外側から光学センサパッケージ15が装着される。なお、レンズ保持部材11とセパレータレンズ14とはレーザー融着で固定される。
Further, inside the lens holding member 11, a condenser lens and a folding mirror that reflects the light beam transmitted through the condenser lens to the opening 11a on the sensor mounting side are disposed (the condenser lens and the folding mirror are illustrated). (Omitted).
Further, as shown in FIG. 2, a recess 11b corresponding to the outer shape of the separator lens 14 is formed around the opening 11a on the sensor mounting side. An infrared cut filter 12, a diaphragm mask 13 and a separator lens 14 are arranged in the concave portion 11b in the order of assembly. Then, after the separator lens 14 is attached, the optical sensor package 15 is attached to the position of the recessed portion 11b of the lens holding member 11 from the outside. The lens holding member 11 and the separator lens 14 are fixed by laser fusion.

凹陥部11bの、図2における奥行方向の底面には、赤外カットフィルタ12を嵌め込むための段付部11cが開口部11aの周囲に形成されている。また、凹陥部11bの底面には、セパレータレンズ14の挿入方向に突出する一組の軸部17,18と、融着部19と、位置決め基部20とが形成されている。
一組の軸部17,18は開口部11aを隔てて左右に配置される。図中左側に位置する一方の軸部17は円形断面であって、図中右側に位置する他方の軸部18は軸部17と同形状の軸本体の上下2箇所に突起部が形成されている。軸部18の各突起部は基端側から軸方向に沿ってそれぞれ延長し、各突起部の頂面は軸部幅方向に沿った水平面をなしている。
A stepped portion 11c for fitting the infrared cut filter 12 is formed around the opening 11a on the bottom surface of the recessed portion 11b in the depth direction in FIG. A pair of shaft portions 17 and 18 projecting in the insertion direction of the separator lens 14, a fused portion 19, and a positioning base portion 20 are formed on the bottom surface of the recessed portion 11 b.
The pair of shaft portions 17 and 18 are arranged on the left and right sides with the opening 11a therebetween. One shaft portion 17 located on the left side in the drawing has a circular cross section, and the other shaft portion 18 located on the right side in the drawing has protrusions formed at two upper and lower portions of the shaft body having the same shape as the shaft portion 17. Yes. Each projecting portion of the shaft portion 18 extends from the base end side along the axial direction, and the top surface of each projecting portion forms a horizontal plane along the shaft portion width direction.

融着部19および位置決め基部20はいずれも凹陥部11bの底面に形成されている。融着部19は各軸部17,18の周辺に間隔をおいて配置されている。一方、位置決め基部20はセパレータレンズ14の上辺部近傍に2つ、下辺部近傍に2つ配置されている。
融着部19およびレンズ位置決め基部20はセパレータレンズ14の挿入方向に突出した円筒状の台座であって、その先端部は凹陥部11bの底面と平行な平坦面をなしている。なお、位置決め基部20の高さ(凹陥部底面からの突出量)は融着部19の高さよりもわずかに低く設定されている。
The fused portion 19 and the positioning base portion 20 are both formed on the bottom surface of the recessed portion 11b. The fused portion 19 is disposed around the shaft portions 17 and 18 with a space therebetween. On the other hand, two positioning bases 20 are disposed in the vicinity of the upper side of the separator lens 14 and two in the vicinity of the lower side.
The fused portion 19 and the lens positioning base portion 20 are cylindrical pedestals that protrude in the insertion direction of the separator lens 14, and their tip portions form a flat surface parallel to the bottom surface of the recessed portion 11 b. The height of the positioning base portion 20 (the amount of protrusion from the bottom surface of the recessed portion) is set slightly lower than the height of the fused portion 19.

絞りマスク13には、折り返しミラーからの光束を通過させる円形状の開口13aが中央部に複数形成されている。また、絞りマスク13は融着部19および位置決め基部20と干渉する箇所は切り欠かれており、その両側部には軸部17,18との対応位置に挿通孔13bがそれぞれ形成されている。焦点検出装置の組立時には各挿通孔13bに軸部17,18がそれぞれ挿入される。   The aperture mask 13 is formed with a plurality of circular openings 13a through which the light flux from the folding mirror passes. Further, the diaphragm mask 13 is notched at portions where it interferes with the fused portion 19 and the positioning base portion 20, and through holes 13b are formed at positions corresponding to the shaft portions 17 and 18 on both sides thereof. When the focus detection device is assembled, the shaft portions 17 and 18 are inserted into the respective insertion holes 13b.

セパレータレンズ14は透光性の熱可塑性樹脂(プラスチック等)で形成され、測距光束や後述のレーザー光が透過できるようになっている。セパレータレンズ14は、1対のレンズを複数組配置して構成されたレンズ部14aと、レンズ部14aの外周部に形成される取付部14bとを有している。なお、レンズ部14aは絞りマスク13を通過した測距光束をセンサ上に結像させる役目を果たす。   The separator lens 14 is made of a light-transmitting thermoplastic resin (plastic or the like), and can transmit a distance measuring light beam and a laser beam described later. The separator lens 14 has a lens portion 14a configured by arranging a plurality of pairs of lenses, and a mounting portion 14b formed on the outer peripheral portion of the lens portion 14a. The lens unit 14a serves to form an image of the distance measuring light beam that has passed through the aperture mask 13 on the sensor.

取付部14bには、レンズ部14aを隔てて軸部17,18の対応位置に位置決め穴21,22がそれぞれ形成されている。各位置決め穴21,22はレンズ部14aの光軸方向に沿って開口されている。そして、図中左側に位置する一方の位置決め穴21は円形に形成され、図中右側に位置する他方の位置決め穴22はセパレータレンズ14の幅方向に延長する長穴に形成されている。この一方の位置決め穴21は一方の軸部17と嵌合し、レンズ部14aの光軸方向に垂直な面の並進方向移動を規定する。また、他方の位置決め穴22は突起部を有する他方の軸部18と嵌合し、レンズ部14aの光軸方向に垂直な面の回転方向移動を規定する。   Positioning holes 21 and 22 are formed in the attachment portion 14b at positions corresponding to the shaft portions 17 and 18 with the lens portion 14a interposed therebetween. The positioning holes 21 and 22 are opened along the optical axis direction of the lens portion 14a. One positioning hole 21 located on the left side in the figure is formed in a circular shape, and the other positioning hole 22 located on the right side in the figure is formed as a long hole extending in the width direction of the separator lens 14. The one positioning hole 21 is fitted to the one shaft portion 17 and defines the translational movement of the surface perpendicular to the optical axis direction of the lens portion 14a. Further, the other positioning hole 22 is fitted to the other shaft portion 18 having the projection portion, and defines the rotational movement of the surface perpendicular to the optical axis direction of the lens portion 14a.

取付部14bの一面には融着部19との対応位置にレンズ側被融着部23が形成され、位置決め基部20の対応位置にレンズ側位置決め基部24がそれぞれ形成されている。レンズ側被融着部23およびレンズ側位置決め基部24は、レンズ部14aの光軸方向に突出した円筒状の台座であって、その先端部はレンズ部14aの光軸と垂直な平坦面をなしている。また、レンズ側位置決め基部24の高さ(取付部14bの一面からの突出量)はレンズ側被融着部23の高さよりもわずかに低く設定されている。   A lens-side fused portion 23 is formed at a position corresponding to the fused portion 19 on one surface of the mounting portion 14 b, and a lens-side positioning base portion 24 is formed at a corresponding position of the positioning base portion 20. The lens-side fused portion 23 and the lens-side positioning base portion 24 are cylindrical pedestals that protrude in the optical axis direction of the lens portion 14a, and their tip portions form a flat surface perpendicular to the optical axis of the lens portion 14a. ing. The height of the lens-side positioning base 24 (the amount of protrusion from one surface of the mounting portion 14b) is set slightly lower than the height of the lens-side fused portion 23.

また、取付部14bの他面では、位置決め穴21,22およびレンズ側被融着部23の裏側部分が矩形状に切り欠かれてくぼんでいる。そのため、レンズ側被融着部23の光軸方向厚さは、レンズ側位置決め基部24の光軸方向厚さよりも薄くなっている。
さらに、図7に示すように、セパレータレンズ14の表面は、レンズ部14aの光学面とレンズ側被融着部23の平坦面およびその裏面とを除き、研磨やブラスト処理等による粗面化処理が施されている。そのため、セパレータレンズ14の粗面部分では、乱反射や迷光の発生が抑制されることとなる。一方、レンズ側被融着部23の平坦面からその裏面までのレーザー光透過領域では、レンズ部14aと同等の光線の透過性が確保される。そのため、レンズ側被融着部23の裏面に対してレーザー光をレンズ部14aの光軸と平行に照射すると、レーザー光は取付部14bを透過してレンズ側被融着部23の平坦面からほぼそのまま射出される。
Further, on the other surface of the attachment portion 14b, the positioning holes 21 and 22 and the back side portions of the lens-side fused portion 23 are cut out into a rectangular shape and recessed. Therefore, the thickness in the optical axis direction of the lens side fused portion 23 is thinner than the thickness in the optical axis direction of the lens side positioning base portion 24.
Further, as shown in FIG. 7, the surface of the separator lens 14 is roughened by polishing, blasting or the like, except for the optical surface of the lens portion 14a and the flat surface of the lens-side fused portion 23 and the back surface thereof. Is given. Therefore, irregular reflection and generation of stray light are suppressed at the rough surface portion of the separator lens 14. On the other hand, in the laser light transmission region from the flat surface of the lens-side fused portion 23 to its back surface, the same light transmittance as that of the lens portion 14a is secured. Therefore, when laser light is irradiated on the back surface of the lens-side fused portion 23 in parallel with the optical axis of the lens portion 14 a, the laser light is transmitted through the attachment portion 14 b and from the flat surface of the lens-side fused portion 23. It is injected almost as it is.

ここで、レンズ保持部材11とセパレートレンズ14とのレーザー融着の工程を図5および図6を参照しつつ説明する。
図5はレンズ保持部材11とセパレータレンズ14との融着前の状態を示す縦断面図である。図5では、レンズ保持部材11の凹陥部11bに一面側を向けたセパレータレンズ14が取り付けられており、この取付状態では融着部19の先端とレンズ側被融着部23の先端とが互いに接触している。一方、位置決め基部20およびレンズ側位置決め基部24の先端は、それぞれ間隔Lをおいて対向した状態となる。
Here, a laser fusion process between the lens holding member 11 and the separate lens 14 will be described with reference to FIGS.
FIG. 5 is a longitudinal sectional view showing a state before the lens holding member 11 and the separator lens 14 are fused. In FIG. 5, a separator lens 14 facing one surface is attached to the recessed portion 11 b of the lens holding member 11. In this attached state, the tip of the fused portion 19 and the tip of the lens side fused portion 23 are mutually connected. In contact. On the other hand, the tips of the positioning base 20 and the lens side positioning base 24 are opposed to each other with an interval L therebetween.

融着時には、セパレータレンズ14の他面側(レンズ保持部材11との反対側)からレンズ側被融着部23に対してレーザー光を照射する。レーザー光はレンズ側被融着部23を透過し、レーザー光の波長の吸収率が高くなる保持部材11との界面部分(レンズ側被融着部23および融着部19の先端面)を融解する。これによりレンズ保持部材11とセパレータレンズ14とが融着される。なお、融着時には融着部19とレンズ側被融着部23との接合箇所が溶解した樹脂で太径となるが、融着部19およびレンズ側被融着部23は軸部17,18や位置決め基部20,24から間隔をおいて配置されているため、融着時に部材間の干渉が生じることはない。   At the time of fusion, laser light is irradiated to the lens-side fused portion 23 from the other surface side of the separator lens 14 (opposite side to the lens holding member 11). The laser light passes through the lens-side fused portion 23 and melts the interface portion (the lens-side fused portion 23 and the tip surface of the fused portion 19) with the holding member 11 where the absorption rate of the wavelength of the laser light is increased. To do. Thereby, the lens holding member 11 and the separator lens 14 are fused. At the time of fusion, the joint portion between the fused portion 19 and the lens side fused portion 23 has a large diameter due to the melted resin, but the fused portion 19 and the lens side fused portion 23 are the shaft portions 17 and 18. Further, since the positioning bases 20 and 24 are spaced from each other, there is no interference between the members at the time of fusion.

一方、上記の融解によってレンズ保持部材11とセパレータレンズ14とが間隔Lだけ接近し、位置決め基部20の先端とレンズ側位置決め基部24の先端とが互いに接触する。したがって、図6に示す融着後の状態では、位置決め基部20およびレンズ側位置決め基部24によってレンズ保持部材11とセパレータレンズ14との相対距離が規定されることとなる。   On the other hand, the lens holding member 11 and the separator lens 14 approach each other by the distance L due to the above melting, and the tip of the positioning base 20 and the tip of the lens side positioning base 24 come into contact with each other. Therefore, in the state after fusion shown in FIG. 6, the relative distance between the lens holding member 11 and the separator lens 14 is defined by the positioning base 20 and the lens-side positioning base 24.

光学センサパッケージ15には、セパレータレンズ14と相対する面にラインセンサが複数組配置されている(ラインセンサの図示は省略する)。組立後の焦点検出装置では、光学センサパッケージ15がセパレータレンズ14で分割された2つの像を検出する。なお、この2像間の間隔に基づいて、図示しないCPUが公知の演算式によるデフォーカス量(合焦位置からのズレ量)の演算を行う。   The optical sensor package 15 has a plurality of line sensors arranged on the surface facing the separator lens 14 (illustration of the line sensors is omitted). In the assembled focus detection device, the optical sensor package 15 detects two images divided by the separator lens 14. Based on the interval between the two images, a CPU (not shown) calculates a defocus amount (a shift amount from the in-focus position) using a known arithmetic expression.

以下、第1実施形態の焦点検出装置の効果を説明する。
第1実施形態では、レンズ保持部材11とセパレータレンズ14とがレーザー融着で強固に固定されるので、融着後においてレンズ部14aのがたつきによる光学性能低下を防止できる。また、融着状態では位置決め基部20とレンズ側位置決め基部24とによってレンズ保持部材11とセパレータレンズ14との相対距離が規定されるので、レンズ部14bの光軸方向位置決めが高い精度で行われる。
Hereinafter, the effect of the focus detection apparatus of the first embodiment will be described.
In the first embodiment, since the lens holding member 11 and the separator lens 14 are firmly fixed by laser fusion, it is possible to prevent a decrease in optical performance due to rattling of the lens portion 14a after fusion. In the fused state, the relative distance between the lens holding member 11 and the separator lens 14 is defined by the positioning base 20 and the lens-side positioning base 24, so that the optical positioning of the lens portion 14b is performed with high accuracy.

第1実施形態では、セパレータレンズ14の他面側からレンズ側被融着部23にレーザー光をピンポイントに照射して融着するので、容易に融着作業を行うことができる。また、融着作業のためにレンズ保持部材11およびセパレータレンズ14の形状やレイアウトに大きな制約が生じることもない。しかも、第1実施形態では固定に接着剤を用いないので、レンズ部14aの光学面が接着剤で汚れることもない。   In the first embodiment, since the laser beam is irradiated to the lens-side fused portion 23 from the other surface side of the separator lens 14 to the pinpoint, the fusion work can be easily performed. Further, there is no great restriction on the shape and layout of the lens holding member 11 and the separator lens 14 due to the fusion work. In addition, since no adhesive is used for fixing in the first embodiment, the optical surface of the lens portion 14a is not soiled by the adhesive.

第1実施形態ではレンズ側被融着部23の光軸方向厚さを薄くすることで融着時のレーザー光の照射量をより少なくでき、取付部14bでの不要な発熱が抑制される。さらに、融着部19はレンズ側被融着部23よりもレーザー光の波長の吸収率が高いので、レーザー光の照射時にはレンズ側被融着部23と融着部19との界面で高熱が発生し易くなり、より短時間で融着を行うことができる。   In the first embodiment, by reducing the thickness of the lens-side fused portion 23 in the optical axis direction, the amount of laser light applied during fusion can be reduced, and unnecessary heat generation at the mounting portion 14b is suppressed. Further, since the fused portion 19 has a higher absorption rate of the wavelength of the laser beam than the lens-side fused portion 23, a high heat is generated at the interface between the lens-side fused portion 23 and the fused portion 19 during laser light irradiation. It becomes easy to generate | occur | produce and it can fuse | fuse in a shorter time.

第1実施形態では、レーザー光透過領域となるレンズ側被融着部23の平坦面およびその裏面は粗面化処理が施されておらず、上記のレーザー光透過領域はレンズ部14aと同様に光束を透過させる。そのため、セパレータレンズ14に照射されるレーザー光は、レンズ側被融着部23と融着部19との界面まで効率的に到達する。したがって、融着時において、レーザー光によるセパレータレンズ14の不要な熱変形は抑制される。   In the first embodiment, the flat surface and the back surface of the lens-side fused portion 23 to be a laser light transmission region are not roughened, and the laser light transmission region is the same as the lens portion 14a. Transmits light flux. Therefore, the laser light applied to the separator lens 14 efficiently reaches the interface between the lens-side fused portion 23 and the fused portion 19. Therefore, unnecessary thermal deformation of the separator lens 14 due to the laser beam is suppressed at the time of fusion.

(第2実施形態の説明)
図8は第2実施形態においてレンズ保持部材にセパレータレンズを取り付けた状態を示す正面図である。図9は第2実施形態におけるレンズ保持部材11とセパレータレンズ14との融着前の状態を示す縦断面図である。なお、以下の第2実施形態の説明では、第1実施形態と共通の構成には同一符号を付して重複説明を省略する。
(Description of Second Embodiment)
FIG. 8 is a front view showing a state in which the separator lens is attached to the lens holding member in the second embodiment. FIG. 9 is a longitudinal sectional view showing a state before the lens holding member 11 and the separator lens 14 are fused together in the second embodiment. In the following description of the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第2実施形態では、セパレータレンズ14の取付部14bに凸レンズ状の集光光学素子25が一体成形されている。図8に示すように、集光光学素子25は取付部14bの他面側に4つ形成されている。各集光光学素子25の形成位置は、一面側のレンズ側被融着部23の位置にそれぞれ対応する(図9参照)。また、集光光学素子25の光学面形状は、取付部14bの他面側から入射する光束をレンズ側被融着部23の平坦面(被融着面)の近傍に収束させるように設計されている。   In the second embodiment, a convex lens-shaped condensing optical element 25 is integrally formed on the attachment portion 14 b of the separator lens 14. As shown in FIG. 8, four condensing optical elements 25 are formed on the other surface side of the attachment portion 14b. The formation position of each condensing optical element 25 corresponds to the position of the lens-side fused portion 23 on one surface side (see FIG. 9). The optical surface shape of the condensing optical element 25 is designed so that the light beam incident from the other surface side of the mounting portion 14b is converged to the vicinity of the flat surface (the surface to be fused) of the lens side fused portion 23. ing.

また、第1実施形態と同様にセパレータレンズ14の表面は、レンズ部14aおよび集光光学素子25の光学面とレンズ側被融着部23の平坦面とを除き、粗面化処理が施されている(粗面化処理を施した箇所の図示は図7とほぼ共通するので省略する)。すなわち、集光光学素子25の光学面からレンズ側被融着部23の平坦面までのレーザー光透過領域では、レンズ部14aと同等の光線の透過性が確保されている。   Similarly to the first embodiment, the surface of the separator lens 14 is roughened except for the optical surfaces of the lens portion 14a and the condensing optical element 25 and the flat surface of the lens-side fused portion 23. (The illustration of the portion subjected to the roughening treatment is omitted since it is almost the same as FIG. 7). That is, in the laser light transmission region from the optical surface of the condensing optical element 25 to the flat surface of the lens-side fused portion 23, the same light transmittance as that of the lens portion 14a is ensured.

以下、第2実施形態でのレンズ保持部材11およびセパレータレンズ14の取付時の状態を説明する。まず、第1実施形態と同様に、レンズ保持部材11の凹陥部11bに、一面側を凹陥部11bに向けてセパレータレンズ14を配置する。次に、取付部14bの他面側からレンズ側被融着部23に対してレーザー光を照射する。このとき、集光光学素子25がレンズ側被融着部23の平坦面(被融着面)の近傍にレーザー光を収束させる。   Hereinafter, the state at the time of attachment of the lens holding member 11 and the separator lens 14 in 2nd Embodiment is demonstrated. First, as in the first embodiment, the separator lens 14 is arranged in the concave portion 11b of the lens holding member 11 with one surface side facing the concave portion 11b. Next, laser light is irradiated to the lens-side fused portion 23 from the other surface side of the attachment portion 14b. At this time, the condensing optical element 25 converges the laser light in the vicinity of the flat surface (the surface to be fused) of the lens side fused portion 23.

そして、集光光学素子25によって収束したレーザー光は、レーザー光の波長の吸収率が高くなる保持部材11との界面部分を融解する。これによりレンズ保持部材11とセパレータレンズ14とが融着される。なお、上記のレーザー光透過領域はレンズ部14aと同様に光束を透過させるので、レーザー光は保持部材11との界面部分まで効率的に到達し、この点でもレーザー光によるセパレータレンズ14の不要な熱変形は抑制される。   The laser beam converged by the condensing optical element 25 melts the interface portion with the holding member 11 where the absorption rate of the wavelength of the laser beam is increased. Thereby, the lens holding member 11 and the separator lens 14 are fused. In addition, since the laser beam transmission region transmits the light beam in the same manner as the lens portion 14a, the laser beam efficiently reaches the interface portion with the holding member 11, and in this respect, the separator lens 14 is not required by the laser beam. Thermal deformation is suppressed.

また、第2実施形態においても、融着後には位置決め基部20の先端とレンズ側位置決め基部24の先端とが互いに接触し、位置決め基部20およびレンズ側位置決め基部24によってレンズ保持部材11とセパレータレンズ14との相対距離が規定される。
上記の第2実施形態は第1実施形態と同様の効果に加えて以下の効果を有する。第2実施形態では集光光学素子25でレーザー光を収束させるので、第1実施形態よりも少ないエネルギ量でレンズ保持部材11およびセパレータレンズ14を効率的に融着できる。しかも、第2実施形態では、レーザー光によるセパレータレンズ14の熱変形が第1実施形態よりも大幅に抑制されるので、より高い精度で光学モジュールを製造できる。
Also in the second embodiment, the tip of the positioning base 20 and the tip of the lens side positioning base 24 come into contact with each other after fusion, and the lens holding member 11 and the separator lens 14 are contacted by the positioning base 20 and the lens side positioning base 24. Relative distance is defined.
The second embodiment has the following effects in addition to the same effects as those of the first embodiment. In the second embodiment, since the laser beam is converged by the condensing optical element 25, the lens holding member 11 and the separator lens 14 can be efficiently fused with a smaller amount of energy than in the first embodiment. In addition, in the second embodiment, the thermal deformation of the separator lens 14 due to the laser light is significantly suppressed as compared with the first embodiment, so that the optical module can be manufactured with higher accuracy.

(実施形態の補足事項)
以上、本発明を上記の実施形態によって説明してきたが、本発明の技術的範囲は上記実施形態に限定されるものではない。本発明の光学モジュールは焦点検出装置のセパレータレンズとレンズ保持部材との位置決めに限定されることなく、一般的な光学部材の位置決め固定の場合に広く適用してもよい。
(Supplementary items of the embodiment)
As mentioned above, although this invention has been demonstrated by said embodiment, the technical scope of this invention is not limited to the said embodiment. The optical module of the present invention is not limited to the positioning of the separator lens and the lens holding member of the focus detection device, and may be widely applied in the case of fixing the positioning of a general optical member.

また、上記第2実施形態の集光光学素子は凸レンズの光学面に限定されることなく、例えば、集光作用のあるプリズムやフレネルレンズなどであってもよい。さらに、上記実施形態においてセパレータレンズの表面に施す粗面化処理は、塗装などの着色処理で代替してもよい。   Further, the condensing optical element of the second embodiment is not limited to the optical surface of the convex lens, and may be, for example, a condensing prism or Fresnel lens. Further, the roughening treatment applied to the surface of the separator lens in the above embodiment may be replaced by a coloring treatment such as painting.

光学モジュールの1実施形態を示す分解斜視図An exploded perspective view showing one embodiment of an optical module レンズ保持部材におけるセンサ取付側の開口部付近の拡大図Enlarged view of the vicinity of the opening on the sensor mounting side of the lens holding member 第1実施形態におけるセパレータレンズの取付状態を示す正面図The front view which shows the attachment state of the separator lens in 1st Embodiment 図3のA−A断面図AA sectional view of FIG. 第1実施形態におけるレンズ保持部材とセパレータレンズとの融着前の状態を示す縦断面図The longitudinal cross-sectional view which shows the state before melt | fusion of the lens holding member and separator lens in 1st Embodiment レンズ保持部材とセパレータレンズとの融着状態を示す縦断面図A longitudinal sectional view showing a fused state between the lens holding member and the separator lens セパレータレンズにおいて粗面化処理が施される部分を示す図The figure which shows the part in which a roughening process is performed in a separator lens 第2実施形態におけるセパレータレンズの取付状態を示す正面図The front view which shows the attachment state of the separator lens in 2nd Embodiment. 第2実施形態におけるレンズ保持部材とセパレータレンズとの融着前の状態を示す縦断面図The longitudinal cross-sectional view which shows the state before melt | fusion of the lens holding member and separator lens in 2nd Embodiment

符号の説明Explanation of symbols

11…レンズ保持部材、14…セパレータレンズ、14a…レンズ部、14b…取付部、19…融着部、20…位置決め基部、23…レンズ側被融着部、24…レンズ側位置決め基部、25…集光光学素子
DESCRIPTION OF SYMBOLS 11 ... Lens holding member, 14 ... Separator lens, 14a ... Lens part, 14b ... Mounting part, 19 ... Fusion part, 20 ... Positioning base part, 23 ... Lens side fused part, 24 ... Lens side positioning base part, 25 ... Condensing optical element

Claims (8)

レンズ部および取付部を有するレンズ部材と、前記取付部で前記レンズ部材を保持する保持部材とを有する光学モジュールであって、
前記取付部は、前記保持部材との反対側から照射されたレーザー光を透過するレンズ側被融着部と、前記レンズ部の光軸方向の位置決め基準となる第1位置決め部と、を有し、
前記保持部材は、前記レンズ側被融着部に対向して配置されて前記レーザー光により前記レンズ側被融着部と融着する融着部と、前記融着した状態で前記第1位置決め部と当接して前記レンズ部材との相対距離を規制する第2位置決め部と、を有することを特徴とする光学モジュール。
An optical module having a lens member having a lens portion and an attachment portion, and a holding member for holding the lens member at the attachment portion,
The mounting portion includes a lens-side fused portion that transmits laser light emitted from the side opposite to the holding member, and a first positioning portion that serves as a positioning reference in the optical axis direction of the lens portion. ,
The holding member is disposed to face the lens-side fused portion and is fused to the lens-side fused portion by the laser beam, and the first positioning portion in the fused state And a second positioning part that regulates a relative distance from the lens member by contacting with the lens member.
レンズ部および取付部を有するレンズ部材と、前記取付部で前記レンズ部材を保持する保持部材とを有する光学モジュールであって、
前記取付部は、照射されたレーザー光を透過する被融着部と、前記レンズ部の光軸方向の位置決め基準となる第1位置決め部と、を有し、
前記保持部材は、前記被融着部に対向して配置されて前記レーザー光により前記被融着部と融着する融着部と、前記融着した状態で前記第1位置決め部と当接して前記レンズ部材を位置決めする第2位置決め部と、を有することを特徴とする光学モジュール。
An optical module having a lens member having a lens portion and an attachment portion, and a holding member for holding the lens member at the attachment portion,
The mounting portion includes a fused portion that transmits the irradiated laser light, and a first positioning portion that serves as a positioning reference in the optical axis direction of the lens portion,
The holding member is disposed so as to face the fused portion, and is fused with the fused portion by the laser beam and in contact with the first positioning portion in the fused state. An optical module comprising: a second positioning portion that positions the lens member.
前記取付部は、前記被融着部の厚さが前記第1位置決め部の厚さよりも薄く設定されてなることを特徴とする請求項1または請求項2に記載の光学モジュール。   The optical module according to claim 1, wherein the attachment portion is configured such that a thickness of the fused portion is set to be thinner than a thickness of the first positioning portion. 前記融着部は、前記被融着部よりも前記レーザー光の波長の吸収率が高く設定されてなることを特徴とする請求項1から請求項3のいずれか1項に記載の光学モジュール。   4. The optical module according to claim 1, wherein the fusion part is set to have a higher absorptance of the wavelength of the laser light than the fusion part. 5. 前記取付部は、前記被融着部の被融着面に向けて前記レーザー光を収束させる集光光学素子部をさらに有することを特徴とする請求項1から請求項4のいずれか1項に記載の光学モジュール。   The said attachment part further has a condensing optical element part which converges the said laser beam toward the to-be-fused surface of the said to-be-fused part, The any one of Claims 1-4 characterized by the above-mentioned. The optical module as described. 前記取付部のレーザー光透過領域は、前記レンズ部と同等の透過性を有することを特徴とする請求項1から請求項5のいずれか1項に記載の光学モジュール。   6. The optical module according to claim 1, wherein the laser light transmission region of the attachment portion has the same transparency as the lens portion. レンズ部を有するレンズ部材を、保持部材に保持する光学モジュールの製造方法であって、
前記レンズ部材と前記保持部材とを融着する際に、前記レンズ部材に設けた第1位置決め部と前記保持部材に設けた第2位置決め部とを当接させることにより前記レンズ部材を前記保持部材に位置決めすることを特徴とする光学モジュールの製造方法。
A method of manufacturing an optical module for holding a lens member having a lens portion on a holding member,
When the lens member and the holding member are fused, the lens member is held by bringing the first positioning portion provided on the lens member into contact with the second positioning portion provided on the holding member. A method for manufacturing an optical module, characterized by comprising:
前記レンズ部材を前記保持部材に保持した状態で、前記レンズ部材を介して前記保持部材にレーザー光を照射することにより前記融着を行うことを特徴とする請求項7に記載の光学モジュールの製造方法。

8. The optical module according to claim 7, wherein the fusion is performed by irradiating the holding member with a laser beam through the lens member in a state where the lens member is held by the holding member. Method.

JP2005324792A 2005-03-02 2005-11-09 Optical module and manufacturing method for the same Pending JP2006276828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324792A JP2006276828A (en) 2005-03-02 2005-11-09 Optical module and manufacturing method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005057707 2005-03-02
JP2005324792A JP2006276828A (en) 2005-03-02 2005-11-09 Optical module and manufacturing method for the same

Publications (2)

Publication Number Publication Date
JP2006276828A true JP2006276828A (en) 2006-10-12
JP2006276828A5 JP2006276828A5 (en) 2008-12-11

Family

ID=37211610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324792A Pending JP2006276828A (en) 2005-03-02 2005-11-09 Optical module and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2006276828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040152A (en) * 2008-08-08 2010-02-18 Hitachi Media Electoronics Co Ltd Optical pickup device and laser welding structure of optical component
JP2012048271A (en) * 2011-12-06 2012-03-08 Canon Inc Method for fixing optical component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479710A (en) * 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Attaching method for plastic lens
JPH0672458A (en) * 1992-08-26 1994-03-15 Takeuchi Press Ind Co Ltd Tube with sealing cup
JP2001243811A (en) * 2000-02-29 2001-09-07 Koito Mfg Co Ltd Lighting fixture for vehicle and manufacturing method of the same
JP2004205774A (en) * 2002-12-25 2004-07-22 Konica Minolta Holdings Inc Optical unit
JP2005316044A (en) * 2004-04-28 2005-11-10 Canon Inc Lens fixing method and lens unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479710A (en) * 1987-09-21 1989-03-24 Fuji Photo Film Co Ltd Attaching method for plastic lens
JPH0672458A (en) * 1992-08-26 1994-03-15 Takeuchi Press Ind Co Ltd Tube with sealing cup
JP2001243811A (en) * 2000-02-29 2001-09-07 Koito Mfg Co Ltd Lighting fixture for vehicle and manufacturing method of the same
JP2004205774A (en) * 2002-12-25 2004-07-22 Konica Minolta Holdings Inc Optical unit
JP2005316044A (en) * 2004-04-28 2005-11-10 Canon Inc Lens fixing method and lens unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040152A (en) * 2008-08-08 2010-02-18 Hitachi Media Electoronics Co Ltd Optical pickup device and laser welding structure of optical component
JP2012048271A (en) * 2011-12-06 2012-03-08 Canon Inc Method for fixing optical component

Similar Documents

Publication Publication Date Title
US7286307B2 (en) Method for fixing optical member and optical unit
JP5127171B2 (en) OPTICAL DEVICE AND OPTICAL DEVICE MANUFACTURING METHOD
US7522355B2 (en) Lens unit and manufacturing method thereof
JP4779315B2 (en) Lens unit manufacturing method
JP4933277B2 (en) Lens fixing method and lens unit
JP2001246488A (en) Manufacturing method for container
JP6827177B2 (en) In-vehicle camera and its assembly method
JP2009186699A (en) Lens unit and method of manufacturing the same
JP2006276828A (en) Optical module and manufacturing method for the same
JP4241473B2 (en) Method for manufacturing a combination lens
JP2006167946A (en) Lamp device for vehicle and light welding method
JP2005345653A5 (en)
JP2005345654A (en) Optical unit and method for fixing optical member
JP2005316044A (en) Lens fixing method and lens unit
JP5003059B2 (en) Optical module and manufacturing method thereof
JP5026168B2 (en) Manufacturing method of optical fiber sensor unit and optical fiber sensor unit
JP2006017795A (en) Lens unit and manufacturing method thereof
KR20210033500A (en) Light receiving module
JP2010204569A (en) Lens unit and manufacturing method thereof
JP2013252667A (en) Resin part, photoelectronic sensor and method for manufacturing resin part
JP2004063331A (en) Vehicular lighting fixture
JP4574216B2 (en) Optical unit
JP2010175674A (en) Imaging module and method for manufacturing the same
JP2800963B2 (en) High energy light beam connector
US20230324771A1 (en) Camera module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809