JP4929317B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP4929317B2
JP4929317B2 JP2009166269A JP2009166269A JP4929317B2 JP 4929317 B2 JP4929317 B2 JP 4929317B2 JP 2009166269 A JP2009166269 A JP 2009166269A JP 2009166269 A JP2009166269 A JP 2009166269A JP 4929317 B2 JP4929317 B2 JP 4929317B2
Authority
JP
Japan
Prior art keywords
sample
dispensing
container
reaction
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009166269A
Other languages
Japanese (ja)
Other versions
JP2009236929A (en
Inventor
秀之 矢浪
功夫 山崎
雅明 塙
仁 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009166269A priority Critical patent/JP4929317B2/en
Publication of JP2009236929A publication Critical patent/JP2009236929A/en
Application granted granted Critical
Publication of JP4929317B2 publication Critical patent/JP4929317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は試料を試薬と混合することにより試料中の特定成分の定性・定量分析を行うための分析装置の試料分注機構及び自動分析装置に係り、特に時間あたりの分注処理能力の高い試料分注機構及びそれを備えた自動分析装置に関する。   TECHNICAL FIELD The present invention relates to a sample dispensing mechanism and an automatic analyzer for performing qualitative and quantitative analysis of specific components in a sample by mixing the sample with a reagent, and in particular, a sample having a high dispensing processing capacity per hour. The present invention relates to a dispensing mechanism and an automatic analyzer equipped with the dispensing mechanism.

血液,尿等の生体試料中の特定成分分析に用いられる医用自動分析装置を例にとり説明すると、このような自動分析装置は、患者数の多い大病院,中小病院,医院から検査を請け負い検査を行う検査センターなどにおいて効率良く分析を行うのになくてはならない装置になっている。   Taking an example of an automatic medical analyzer used for analysis of specific components in biological samples such as blood and urine, such an automatic analyzer is undertaken from a large hospital, small / medium hospital, or clinic with a large number of patients. This is an indispensable device for efficient analysis at the inspection center.

このような自動分析装置は、コンパクトでより多種類の分析ができ、かつ処理速度の高いものが望まれており、従来種々のものが提案されている。   Such an automatic analyzer is desired to be compact and capable of performing more types of analysis and having a high processing speed, and various types of automatic analyzers have been proposed.

処理速度を高める一つの手段としては、試料分注速度の向上が挙げられる。2つのサンプリングノズルを設け、各サンプリングノズルは異なったタイミングで1つのサンプル容器から2つの反応容器にサンプリング可能な試料分注機構を備えた自動化学分析装置が特許文献1に開示されている。   One means for increasing the processing speed is to increase the sample dispensing speed. Patent Document 1 discloses an automatic chemical analysis apparatus provided with two sampling nozzles, each of which has a sample dispensing mechanism capable of sampling from one sample container to two reaction containers at different timings.

また、一つのサンプリングアームに複数のサンプリングノズルを設け、夫々のノズルは独立した吐出制御が可能な試料分注装置が特許文献2に記載されている。   Further, Patent Document 2 discloses a sample dispensing apparatus in which a plurality of sampling nozzles are provided in one sampling arm, and each nozzle is capable of independent discharge control.

特開平3−140869号公報JP-A-3-140869 特開2001−66316号公報JP 2001-66316 A

特許文献1に記載の方法はそれぞれの分注プローブが異なったタイミングで分注動作可能なことから600テスト/時間と同等の動作で1200テスト/時間に対処させることができるとしている。しかし、実施例の記載に基づけば、2つの分注プローブは1つのプローブ軸で支持されており、2つの分注プローブは全く独立して試料の分注動作はできないものと考えられる。すなわち、構造上2つの分注プローブを同一のプローブ回転平面上に配置することができないと考えられるので、2つの分注プローブの分注動作を同期させる必要があると考えられる。   According to the method described in Patent Document 1, since each dispensing probe can perform a dispensing operation at different timings, it can handle 1200 tests / hour with an operation equivalent to 600 tests / hour. However, based on the description of the examples, it is considered that the two dispensing probes are supported by one probe shaft, and the two dispensing probes cannot perform the sample dispensing operation completely independently. That is, since it is considered that two dispensing probes cannot be arranged on the same probe rotation plane because of the structure, it is considered necessary to synchronize the dispensing operations of the two dispensing probes.

また、特許文献2に記載の方法は2つの分注プローブが同一の分注アームに設けられているので、同様に異なったタイミングで分注動作ができないものと思われる。   Further, in the method described in Patent Document 2, since two dispensing probes are provided on the same dispensing arm, it is considered that the dispensing operation cannot be performed at different timings as well.

本発明の目的は、複数の分注プローブを各々独立して分注動作が可能な試料分注プローブを備え分注速度の向上、フレキシブルな分注動作タイミングを可能にした、試料分注プローブ及びそれを備えた自動分析装置を提供することにある。   An object of the present invention is to provide a sample dispensing probe that includes a sample dispensing probe capable of independently dispensing a plurality of dispensing probes, improves dispensing speed, and enables flexible dispensing operation timing. It is to provide an automatic analyzer equipped with the same.

本発明の試料分注プローブは医用自動分析装置に好適であるが、これに限らず、無機/有機試料の分析装置等にも適用できることは言うまでもない。   The sample dispensing probe of the present invention is suitable for an automatic medical analyzer, but it is needless to say that the sample dispensing probe can be applied to an inorganic / organic sample analyzer or the like.

本発明の課題解決手段は次の通りである。   The problem solving means of the present invention is as follows.

分析対象試料を収容する複数の試料容器を載置可能で、かつ該複数の試料容器の配置を変更可能な機構を備えた試料容器搭載機構と、分析対象試料と試薬を混合する反応容器を複数載置可能で、かつ該複数の反応容器の配置を変更可能な機構を備えた反応容器搭載機構と、試料を前記試料容器から分取し、前記反応容器へ吐出するための試料分注機構と、を備えた試料分注装置において、前記試料分注装置は、試料の分取,吐出のためのノズルを複数備え、かつ該ノズルは各々独立して試料の分取,吐出のためのノズルの上下動作が可能であり、かつ該ノズルは各々独立して前記試料容器と前記反応容器の間で移動可能な機構を備えたことを特徴とする試料分注装置。   A plurality of sample containers for storing the sample to be analyzed can be placed, and a sample container mounting mechanism having a mechanism capable of changing the arrangement of the plurality of sample containers, and a plurality of reaction containers for mixing the sample to be analyzed and the reagent are provided. A reaction container mounting mechanism having a mechanism that can be placed and capable of changing the arrangement of the plurality of reaction containers; a sample dispensing mechanism for dispensing a sample from the sample container and discharging the sample to the reaction container; The sample dispensing apparatus includes a plurality of nozzles for sample dispensing and discharge, and each of the nozzles independently includes a nozzle for sample dispensing and discharge. A sample dispensing apparatus characterized in that it can move up and down and each of the nozzles has a mechanism that can move independently between the sample container and the reaction container.

試料容器搭載機構は試料容器の位置を移動させることができるものであれば、どのような形態のものでも良い。例えば、複数の試料容器を周上に配置するサンプルディスクを備えたものでも良い。この場合、サンプルディスクと表現しているが必ずしも円板状である必要はない。そのため「ディスクの周上」という表現を用いているが、円板状のディスクの場合は円周上と読み替えることができる。   The sample container mounting mechanism may be of any form as long as the position of the sample container can be moved. For example, a sample disk having a plurality of sample containers arranged on the circumference may be used. In this case, although it is expressed as a sample disk, it is not always necessary to have a disk shape. Therefore, the expression “on the circumference of the disk” is used, but in the case of a disk-shaped disk, it can be read as “on the circumference”.

また、試料容器を1つまたは複数搭載できるラックを用い、このラックを移動させる形態のものであっても良い。   Moreover, the thing of the form which uses the rack which can mount one or more sample containers and moves this rack may be sufficient.

反応容器搭載機構も同様である。反応ディスクのような形態であっても良いし、反応容器が直線的に移動できるようなものであっても良い。   The same applies to the reaction vessel mounting mechanism. It may be in the form of a reaction disk, or the reaction vessel may be moved linearly.

以上に示したように、本発明において独立に動作可能である複数の試料分注装置を持つ分析装置では時間あたりの処理能力が高く付加価値の高い自動分析装置を提供できる。   As described above, in the present invention, an analyzer having a plurality of sample dispensing devices that can operate independently can provide an automatic analyzer with high processing capacity per time and high added value.

本発明を適用した自動分析装置の上面図。The top view of the automatic analyzer to which the present invention is applied. 本発明を適用した自動分析装置の斜視図。The perspective view of the automatic analyzer to which the present invention is applied. 本発明のサンプル分注プローブの動作を上から見た図。The figure which looked at the operation | movement of the sample dispensing probe of this invention from the top. 本発明のサンプル分注プローブを横から見た図。The figure which looked at the sample dispensing probe of this invention from the side. 本発明のサンプル分注プローブ機構の斜視図。The perspective view of the sample dispensing probe mechanism of this invention. 分注タイミングを示すタイミングチャート。The timing chart which shows dispensing timing. 本発明の別の実施例を示す図。The figure which shows another Example of this invention. 本発明の別の実施例を示す図。The figure which shows another Example of this invention.

本発明の各試料分注機構は試料を採取し、前記反応容器に試料を吐出する動作を繰り返す。複数のノズルを有することにより一つの試料分注機構が試料採取後に反応ディスクへ試料を吐出している最中にその他のノズルが試料の採取を行うことにより試料採取の待機時間を埋めることが可能となり、高速処理を実現することが可能となる。   Each sample dispensing mechanism of the present invention repeats the operation of collecting a sample and discharging the sample into the reaction vessel. By having multiple nozzles, it is possible to fill the waiting time for sample collection by sampling other samples while one sample dispensing mechanism discharges the sample to the reaction disk after sample collection. Thus, high-speed processing can be realized.

複数の試料分注機構が独立に分注動作可能であることにより頻繁に試料容器からの採取動作が可能となるが、これに伴い試料容器の採取位置への移動時間が短くなるため試料容器を所定の場所へ移動する時間がなくなり、ひいては処理能力を落とす要因となるが、各試料分注機構が複数の試料採取位置から採取可能とすることにより処理能力の低下を防ぐことができる。   Since multiple sample dispensing mechanisms can be independently dispensed, frequent sampling operations can be performed from the sample container.With this, the movement time of the sample container to the sampling position is shortened. Although there is no time to move to a predetermined location, which causes a reduction in processing capacity, it is possible to prevent a decrease in processing capacity by allowing each sample dispensing mechanism to collect from a plurality of sample collection positions.

ノズルは試料採取位置と前記反応ディスクとの往復運動が可能な移動機構を備えれば良く、試料分注機構の移動軌跡は直線的であっても湾曲であっても良いが、各々の試料分注機構が独立に動作可能となるために互いに干渉しない手段を有することが必要である。例えば同一平面内での試料分注機構が動作を行う場合、試料採取位置と反応ディスクとの間にて互いの動作を拘束させないよう試料分注機構の動作軌跡上に逃げ位置を設けたり、全く軌跡が干渉しないように機構を配置する。もしくは機構の移動部を上下に配置することにより互いに干渉しないようにする。もしくは試料採取位置と反応ディスクとの中点に回転軸を設け、この回転軸により複数の試料分注機構を試料採取位置または反応ディスクに移動させる機構が考えられる。回転軸による移動の場合、複数の試料採取位置または複数の反応ディスク位置に試料分注機構を移動させるため各試料分注機構に回転軸以外の移動手段を有することがあってもよい。   The nozzle only needs to have a moving mechanism capable of reciprocating between the sample collection position and the reaction disk, and the movement trajectory of the sample dispensing mechanism may be linear or curved. It is necessary to have means that do not interfere with each other in order for the dispensing mechanism to be able to operate independently. For example, when the sample dispensing mechanism operates in the same plane, an escape position is provided on the operation path of the sample dispensing mechanism so as not to restrain the mutual movement between the sample collection position and the reaction disk. Position the mechanism so that the trajectory does not interfere. Alternatively, the moving parts of the mechanism are arranged vertically so as not to interfere with each other. Alternatively, a mechanism may be considered in which a rotation shaft is provided at the midpoint between the sample collection position and the reaction disk, and a plurality of sample dispensing mechanisms are moved to the sample collection position or the reaction disk by this rotation shaft. In the case of movement by the rotating shaft, each sample dispensing mechanism may have moving means other than the rotating shaft in order to move the sample dispensing mechanism to a plurality of sample collection positions or a plurality of reaction disk positions.

またノズルに液面検知機能を備え、前記液面検知機能にて試料容器内に確実に試料を採取するにあたり最低限度の試料があるかどうかの確認を行っても良い。複数の試料分注機構を有する分析装置の場合、任意の試料分注機構にて試料容器内に確実に試料を採取するのに十分量の試料がないと判定された時点でその判断結果を元に次に同一の試料から採取を行う試料分注装置は予定していた試料容器からの試料採取を中止し次に採取を行う試料容器へ採取元を変更することにより不要動作を減らすことが可能となる。   Further, the nozzle may be provided with a liquid level detection function, and the liquid level detection function may be used to confirm whether or not there is a minimum number of samples for reliably collecting a sample in the sample container. In the case of an analyzer having a plurality of sample dispensing mechanisms, based on the determination result when it is determined that there is not enough sample in the sample container to reliably collect samples in any sample dispensing mechanism. Next, the sample dispensing device that collects the same sample next time can reduce unnecessary operations by stopping the sampling from the planned sample container and changing the sampling source to the next sample container It becomes.

また、ノズルに詰まり検知機能を備え、前記詰まり検知機能にて試料容器内に流路内の詰まりの発生要因の存在有無を確認しても良い。複数の試料分注機構を有する分析装置の場合、任意の試料分注機構にて試料容器内に詰まり要因が存在するとされた時点でその判断結果を元に次に同一の試料から採取を行う試料分注装置は予定していた試料容器からの試料採取を中止し次に採取を行う試料容器へ採取元を変更することにより無駄動作を減らすことが可能となる。   Further, the nozzle may be provided with a clogging detection function, and the clogging detection function may be used to check whether a clogging factor in the flow path is present in the sample container. In the case of an analyzer having a plurality of sample dispensing mechanisms, a sample to be collected from the same sample based on the determination result when a clogging factor is present in the sample container by any sample dispensing mechanism The dispensing apparatus can reduce the wasteful operation by stopping the sampling from the sample container and changing the sampling source to the sample container to be sampled next.

また、ノズルが何らかの異常により動作不可能となった場合でも、独立に動作可能な複数の試料分注機構を有することにより、全ての試料分注機構が異常により動作不可能とならなければ、正常動作中の試料分注機構にて分析動作を継続することが可能となる。   In addition, even if the nozzle becomes inoperable due to some abnormality, it has a plurality of sample dispensing mechanisms that can operate independently. The analysis operation can be continued by the sample dispensing mechanism in operation.

また、複数のノズルのうち少なくとも1つのノズルが動作可能であれば、複数の試料分注機構のうち動作可能な試料分注機構のみを動作させることで分析を実行することが可能となる。   Further, if at least one of the plurality of nozzles is operable, the analysis can be performed by operating only the operable sample dispensing mechanism among the plurality of sample dispensing mechanisms.

試料分注では流路内での薄まり回避を目的として反応容器に分注する量以外にダミーを吸引している。このダミーは最終的には洗浄槽へ吐出・廃棄される。複数の試料分注機構を有することにより処理能力は上がるが、例えば小児試料のように試料量が極端に少ない場合などは処理能力を落としてでも該当試料に依頼された全ての項目を分析することの方が価値がある。例えば試料容器の情報により全ての試料分注機構を使うのではなく特定の試料分注機構のみで試料の採取・分注を行うことにより少量の試料の場合であっても依頼された全ての項目を分析できるようにする。前記例のように試料容器種別にて動作の切り分けを行う場合、例えば操作画面から本機能の有効/無効を設定できるようにすることにより、より付加価値の高い装置を提供できる。   In sample dispensing, the dummy is sucked in addition to the amount dispensed into the reaction vessel in order to avoid thinning in the flow path. This dummy is finally discharged and discarded into the cleaning tank. By having multiple sample dispensing mechanisms, the processing capacity will increase, but if the sample volume is extremely small, such as a pediatric sample, all items requested for that sample will be analyzed even if the processing capacity is reduced. Is more valuable. For example, all items requested even in the case of a small amount of sample by collecting and dispensing a sample only with a specific sample dispensing mechanism instead of using all the sample dispensing mechanisms according to the information of the sample container Can be analyzed. When the operation is separated according to the sample container type as in the above example, for example, by enabling / disabling the function from the operation screen, a device with higher added value can be provided.

ノズルの数は多いほうが高速処理が可能であるが、機構同士の逃げ位置を設けなければならない、試料の反応容器への吐出後の試薬吐出用の試薬分注機構の増加などスペースの問題が発生する等の問題が生じるので、処理能力等に応じて適宜選択することが望ましい。   Higher processing speed is possible with a larger number of nozzles, but there is a problem with space, such as the need to provide a relief position between mechanisms and an increase in the reagent dispensing mechanism for dispensing reagents after dispensing the sample into the reaction container. Therefore, it is desirable to select appropriately according to the processing capacity.

以下、図面を用いて本発明の実施の形態を説明する。図1は本発明の実施例の上面図、図2は斜視図である。反応ディスク36には反応容器35が円周上に並んでいる。反応ディスク36の内側に試薬ディスク42が、外側に試薬ディスク41が配置されている。試薬ディスク41,42にはそれぞれ複数の試薬容器40が円周上に載置可能である。1つの試薬容器40には2つの試薬が入る。反応ディスク36の近くにサンプル容器10を載せたラック11を移動する搬送機構12が設置されている。試薬ディスク41と試薬ディスク42の上にレール25,26が配置され、レール25にはレールと平行な方向および上下方向に移動可能な試薬プローブ20,21が、レール26にはレールと3軸方向に移動可能な試薬プローブ22,23が設置されている。試薬プローブ20,21,22,23はそれぞれ試薬用ポンプ24と接続している。反応容器35と搬送機構12の間には、回転及び上下動可能なサンプルプローブ15,16が設置されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a top view of an embodiment of the present invention, and FIG. 2 is a perspective view. Reaction vessels 35 are arranged on the circumference of the reaction disk 36. A reagent disk 42 is disposed inside the reaction disk 36 and a reagent disk 41 is disposed outside. A plurality of reagent containers 40 can be placed on the circumference of each of the reagent disks 41 and 42. Two reagents enter one reagent container 40. A transport mechanism 12 for moving the rack 11 on which the sample container 10 is placed is installed near the reaction disk 36. Rails 25 and 26 are arranged on the reagent disk 41 and the reagent disk 42. The rail 25 includes reagent probes 20 and 21 movable in a direction parallel to the rail and in the vertical direction. Removable reagent probes 22 and 23 are installed. Each of the reagent probes 20, 21, 22, and 23 is connected to a reagent pump 24. Between the reaction vessel 35 and the transport mechanism 12, sample probes 15 and 16 that can be rotated and moved up and down are installed.

サンプルプローブ15,16は回転軸を中心に円弧を描きながら移動してサンプル容器から反応容器へのサンプル分注を交互に行う。お互いの動きが干渉しないよう、プローブ高さを変えられる機構を備え、分注タイミングと高さの調整を予めプログラムされた通りに実行するようになっている。   The sample probes 15 and 16 move while drawing an arc around the rotation axis, and alternately perform sample dispensing from the sample container to the reaction container. A mechanism capable of changing the probe height is provided so that the movements of each other do not interfere with each other, and the adjustment of the dispensing timing and the height is executed as programmed in advance.

更に別の態様のサンプル分注機構の構成を図3および図4を用いて説明する。図3はサンプルプローブの軌跡を装置上面から示したもの、図4はサンプルプローブの構造を装置前面から示したもの、図5はサンプルプローブの移動機構を示す斜視図である。サンプルプローブ15,16はラック11上のサンプルプローブによる吸引位置にあるサンプル容器61と反応容器35のうちサンプルプローブにて試料吐出位置となる反応容器62に移動する。サンプルプローブ15は前記サンプル容器61と反応容器62に加え洗浄位置63の3個所に移動可能であり65はサンプルプローブ15の軌跡を示している。一方サンプルプローブ16は前記サンプル容器61と反応容器62に加え洗浄位置64の3箇所に移動可能であり66はサンプルプローブ16の軌跡を示している。   The configuration of a sample dispensing mechanism according to another embodiment will be described with reference to FIGS. FIG. 3 shows the locus of the sample probe from the top of the apparatus, FIG. 4 shows the structure of the sample probe from the front of the apparatus, and FIG. 5 is a perspective view showing the moving mechanism of the sample probe. The sample probes 15 and 16 are moved from the sample container 61 and the reaction container 35 at the suction position by the sample probe on the rack 11 to the reaction container 62 that is the sample discharge position by the sample probe. In addition to the sample container 61 and the reaction container 62, the sample probe 15 can be moved to three positions of the cleaning position 63, and 65 indicates the locus of the sample probe 15. On the other hand, the sample probe 16 can be moved to three locations of the cleaning position 64 in addition to the sample container 61 and the reaction container 62, and 66 indicates the locus of the sample probe 16.

サンプルプローブ15はサンプル容器61と反応容器62との前後方向の移動を図には示していない駆動源によりレール71に沿って移動可能でありさらに洗浄位置63とサンプル容器61および反応容器62との左右方向の移動を図には示していない駆動源によりレール73に沿って移動可能である。前後方向の移動動作と左右方向の移動動作とは、どちらか一方の動作に対し他方が追従して動作を行う。これによりサンプルプローブヘッド75はレール71とレール73により構成される平面内を移動可能となるとともに、上下動作機構を有するノズル77により3次元空間を移動可能となる。   The sample probe 15 can be moved along the rail 71 by a driving source not shown in the drawing between the sample container 61 and the reaction container 62. Further, the sample probe 15 can move between the cleaning position 63, the sample container 61, and the reaction container 62. The movement in the left-right direction can be moved along the rail 73 by a drive source not shown in the drawing. The moving operation in the front-rear direction and the moving operation in the left-right direction are performed by the other following the one. As a result, the sample probe head 75 can move in a plane constituted by the rail 71 and the rail 73, and can move in a three-dimensional space by the nozzle 77 having the vertical movement mechanism.

同様にサンプルプローブ16はサンプル容器61と反応容器62との前後方向の移動を図には示していない駆動源によりレール72に沿って移動可能でありさらに洗浄位置63とサンプル容器61および反応容器62との左右方向の移動を図には示していない駆動源によりレール74に沿って移動可能である。前後方向の移動動作と左右方向の移動動作とは、どちらか一方の動作に対し他方が追従して動作を行う。これによりサンプルプローブヘッド76はレール72とレール74により構成される平面内を移動可能となるとともに、上下動作機構を有するノズル78により3次元空間を移動可能となる。   Similarly, the sample probe 16 can be moved along the rail 72 by a driving source not shown in the drawing between the sample container 61 and the reaction container 62, and the cleaning position 63, the sample container 61, and the reaction container 62 are further moved. It is possible to move along the rail 74 by a driving source not shown in the drawing. The moving operation in the front-rear direction and the moving operation in the left-right direction are performed by the other following the one. As a result, the sample probe head 76 can move in a plane constituted by the rail 72 and the rail 74, and can move in a three-dimensional space by the nozzle 78 having the vertical movement mechanism.

またサンプルプローブ15,16は液面検知機能および詰まり検知機能を有し、サンプルプローブ15,16はそれぞれサンプル用ポンプ14に接続している。サンプルプローブ15,16はそれぞれ独立な駆動系により制御されている。   The sample probes 15 and 16 have a liquid level detection function and a clogging detection function, and the sample probes 15 and 16 are connected to the sample pump 14, respectively. The sample probes 15 and 16 are controlled by independent drive systems.

36の周囲には、攪拌装置30,31,光源50,検出光学装置51,容器洗浄機構45が配置されている。容器洗浄機構45は洗浄用ポンプ46に接続している。サンプルプローブ15,16,試薬プローブ20,21,22,23,攪拌装置30,31のそれぞれの動作範囲に洗浄ポート54が設置されている。サンプル用ポンプ14,試薬用ポンプ24,洗浄用ポンプ46,検出光学装置51,反応容器35,試薬ディスク41,試薬プローブ20,21,22,23,サンプルプローブ15,16はそれぞれコントローラ60に接続している。   Around 36, stirring devices 30 and 31, a light source 50, a detection optical device 51, and a container cleaning mechanism 45 are arranged. The container cleaning mechanism 45 is connected to the cleaning pump 46. A cleaning port 54 is installed in each operation range of the sample probes 15 and 16, the reagent probes 20, 21, 22 and 23, and the stirring devices 30 and 31. The sample pump 14, the reagent pump 24, the washing pump 46, the detection optical device 51, the reaction vessel 35, the reagent disk 41, the reagent probes 20, 21, 22, 23, and the sample probes 15 and 16 are connected to the controller 60, respectively. ing.

この装置を用いての分析手順を説明する。   An analysis procedure using this apparatus will be described.

サンプル容器10には血液等の検査対象の試料が入れられ、ラック11に載せられて搬送機構12によって運ばれる。   A sample to be inspected, such as blood, is placed in the sample container 10, placed on a rack 11, and carried by a transport mechanism 12.

サンプルプローブ15または16によりサンプル容器61内の試料は採取された試料は、反応容器62へ分注される。   The sample collected in the sample container 61 by the sample probe 15 or 16 is dispensed into the reaction container 62.

サンプルプローブ15の初期位置は洗浄位置63でありサンプルプローブ16の初期位置は洗浄位置64である。   The initial position of the sample probe 15 is a cleaning position 63, and the initial position of the sample probe 16 is a cleaning position 64.

サンプルプローブ15は試料吸引位置へレール71およびレール73上を移動し、試料容器61上でサンプルプローブヘッド75が下降動作を行い試料吸引後に上昇し反応容器62へ吸引した試料を吐出するために移動し、サンプルプローブ16は試料吸引位置61へレール72およびレール74上を移動し、試料容器61上でサンプルプローブヘッド76が下降動作を行い試料吸引後に上昇し反応容器62へ吸引した試料を吐出するために移動する。   The sample probe 15 moves to the sample suction position on the rail 71 and the rail 73, and the sample probe head 75 moves down on the sample container 61 to move up to discharge the sample sucked into the reaction container 62. Then, the sample probe 16 moves on the rail 72 and the rail 74 to the sample suction position 61, the sample probe head 76 moves down on the sample container 61, rises after the sample is sucked, and discharges the sample sucked into the reaction container 62. To move on.

たとえば、サンプルプローブ15からサンプルを吸引する場合、図6に示したタイムチャートのようにサンプルプローブ15は試料吸引位置へ移動、試料吸引の後反応容器62へ吸引した試料を吐出するために移動する。サンプルプローブ15の反応容器62への移動とともにサンプルプローブ16は洗浄位置64からサンプル容器61へ移動を開始する。この際にサンプルプローブ15とサンプルプローブ16とはお互いがぶつからないようにするためにサンプルプローブ15は洗浄位置63を経由して反応容器62へと移動を行う。同様にサンプルプローブ16がサンプル容器61からの試料吸引を終えたら洗浄位置64を経由して反応容器62へ試料吐出のために移動する。これにより当該サンプル容器から試料を吸引する時間の短縮が可能となる。図6に示したタイムチャートの動作を行うためには2つのサンプリングプローブが交差しないように機構を配置すればよく、これを実現させる機構として前記図5で示した機構構成以外の実施例を図7,図8に示す。   For example, when a sample is aspirated from the sample probe 15, the sample probe 15 is moved to the sample aspirating position as shown in the time chart of FIG. 6, and is moved to eject the aspirated sample to the reaction container 62 after the sample is aspirated. . As the sample probe 15 moves to the reaction container 62, the sample probe 16 starts moving from the cleaning position 64 to the sample container 61. At this time, the sample probe 15 moves to the reaction vessel 62 via the cleaning position 63 so that the sample probe 15 and the sample probe 16 do not collide with each other. Similarly, when the sample probe 16 finishes sucking the sample from the sample container 61, the sample probe 16 moves to the reaction container 62 for discharging the sample via the cleaning position 64. As a result, the time for sucking the sample from the sample container can be shortened. In order to perform the operation of the time chart shown in FIG. 6, it is sufficient to arrange a mechanism so that the two sampling probes do not intersect with each other. As a mechanism for realizing this, an embodiment other than the mechanism configuration shown in FIG. 7 and FIG.

図7と図5との違いは、図5ではサンプルプローブの移動軌跡に沿った曲線のレール101を用いていたが、図7では平面内の駆動を行うためにレールを2軸(71,72)設けている点である。   The difference between FIG. 7 and FIG. 5 is that, in FIG. 5, a curved rail 101 along the movement locus of the sample probe is used, but in FIG. ) It is a point provided.

図8は図5において曲線レール101にて2つのサンプルプローブの干渉(接触)を回避していたのを直角に交わる2本のレールではなく鈍角に交差する2本の直線レールを用いることによりサンプルプローブヘッド75と76との干渉を避けている。   FIG. 8 is a sample obtained by using two linear rails crossing an obtuse angle instead of two rails crossing at right angles, in FIG. Interference between the probe heads 75 and 76 is avoided.

また当該サンプル容器からの試料吸引が予定分終了した際には搬送機構12により次のサンプル容器がサンプル吸引位置にラック11を搬送する。   When the sample suction from the sample container is completed for a predetermined amount, the transport mechanism 12 causes the next sample container to transport the rack 11 to the sample suction position.

また、図5,図7,図8のようにレールに沿って移動する分注機構にサンプルプローブが設けられているのではなく、該移動機構に分注アームを設け、該分注アームを回転移動または平行移動させることにより、分注可能な位置を調整可能とすることもできる。   In addition, the sample probe is not provided in the dispensing mechanism that moves along the rail as shown in FIGS. 5, 7, and 8, but a dispensing arm is provided in the moving mechanism, and the dispensing arm is rotated. It is also possible to adjust the position where dispensing is possible by moving or translating.

一定量の試薬が試薬ディスク41又は42に設置された試薬容器40から試薬プローブ20又は21又は22又は23から分注され、攪拌装置30,31にて攪拌し、一定時間反応した後検出光学装置51により測定され、測定結果として、図には明示されていない制御コンピュータに出力される。測定項目がさらに依頼されている場合は上記のサンプリングを繰り返し、サンプルプローブ15が反応容器35に採取した試料を吐出している最中にサンプルプローブ16がサンプル容器10から採取を行う。以後同一サンプル容器10の測定項目を終了した時点で次のサンプル容器10からサンプルプローブ15又は16にて試料が採取され、サンプルプローブ15又は16でラック11上にある全てのサンプル容器10について、設定された全ての測定項目のサンプリングが終了するまで繰り返される。   A certain amount of reagent is dispensed from the reagent probe 20 or 21 or 22 or 23 from the reagent container 40 installed on the reagent disk 41 or 42, stirred by the stirring devices 30 and 31, and reacted for a certain period of time. The measurement result is output to a control computer not explicitly shown in the figure. When further measurement items are requested, the above sampling is repeated, and the sample probe 16 collects from the sample container 10 while the sample probe 15 is discharging the sample collected in the reaction container 35. Thereafter, when the measurement items of the same sample container 10 are finished, a sample is collected from the next sample container 10 by the sample probe 15 or 16 and set for all the sample containers 10 on the rack 11 by the sample probe 15 or 16. It repeats until sampling of all the measurement items done is completed.

サンプルプローブ15又は16と試薬プローブ20又は21又は22又は23とは任意の組み合わせが可能である。これによりサンプルプローブ15又は16のいずれかがなんらかの異常により動作の継続が不可能となった場合でも他方のサンプルプローブにて分析装置上に配置される全ての試薬項目に対し分析動作を継続することが可能となる。   Any combination of the sample probe 15 or 16 and the reagent probe 20 or 21 or 22 or 23 is possible. As a result, even if either of the sample probes 15 or 16 becomes unable to continue the operation due to some abnormality, the analysis operation is continued for all the reagent items arranged on the analyzer with the other sample probe. Is possible.

またサンプリングプローブ15又は16のいずれか一方がすでに異常があることがわかっている場合、異常があるサンプルプローブのみを有効として分析を開始することができる。   When it is already known that either one of the sampling probes 15 or 16 is abnormal, the analysis can be started with only the sample probe having the abnormality being effective.

またサンプルプローブ15または16のいずれかにて、各々が有する詰まり検知機能によりサンプル容器10内の試料に詰まり要因が混入していると試料切れと判定された場合には、詰まりを検出したサンプルプローブは洗浄ポート54にて流路洗浄を行い、他方のサンプルプローブは該当試料からの採取動作を中止しラック11上の次のサンプル容器10からの試料採取に遷移することが可能である。状態判断により急遽ラック11上のサンプル容器10を試料採取位置への移動動作が間に合わない場合においても、サンプルプローブ15又は16は複数の位置より試料の採取が可能であるため必要以上の空きサイクルを発生させることなく分析動作を継続することが可能である。   In addition, in any of the sample probes 15 and 16, when it is determined that the clogging factor is mixed in the sample in the sample container 10 by the clogging detection function that each has, the sample probe that has detected clogging is detected. In the cleaning port 54, the channel cleaning is performed, and the other sample probe can stop the sampling operation from the corresponding sample and shift to the sampling from the next sample container 10 on the rack 11. Even if the movement of the sample container 10 on the rack 11 to the sample collection position is not in time due to the judgment of the state, the sample probe 15 or 16 can collect samples from a plurality of positions, so that an unnecessarily empty cycle is required. It is possible to continue the analysis operation without generating it.

また特に幼児試料のようにサンプル容器内の試料が極端に少ない場合はサンプルプローブ15または16のいずれか一方のみを使用することで試料採取時に必要となる、サンプルプローブ内での薄まり防止のための反応容器35には吐出されず洗浄槽へ廃棄されるダミーを減らすことができる。   Moreover, especially when there are extremely few samples in the sample container such as an infant sample, it is necessary to use only one of the sample probes 15 and 16 to prevent thinning in the sample probe, which is necessary when collecting samples. It is possible to reduce the number of dummies that are not discharged into the reaction vessel 35 and discarded into the cleaning tank.

10…サンプル容器、11…ラック、12…搬送機構、14…サンプル用ポンプ、15,16…サンプルプローブ、20,21,22,23…試薬プローブ、24…試薬用ポンプ、25,26…レール、30,31…攪拌装置、35…反応容器、36…反応ディスク、40…試薬容器、41,42…試薬ディスク、45…容器洗浄機構、46…洗浄用ポンプ、50…光源、51…検出光学装置、54…洗浄ポート、60…コントローラ、61…サンプル吸引位置のサンプル容器、62…サンプル吐出位置の反応容器、63…サンプルプローブ1の洗浄位置、64…サンプルプローブ2の洗浄位置、65…サンプルプローブ15の軌跡、66…サンプルプローブ16の軌跡、71,72…サンプルプローブ16用レール1、73,74…サンプルプローブ16用レール2、75…サンプルプローブ15ヘッド、76…サンプルプローブ16用ヘッド、77…サンプルプローブ15用ノズル、78…サンプルプローブ16用ノズル。   DESCRIPTION OF SYMBOLS 10 ... Sample container, 11 ... Rack, 12 ... Conveyance mechanism, 14 ... Sample pump, 15, 16 ... Sample probe, 20, 21, 22, 23 ... Reagent probe, 24 ... Reagent pump, 25, 26 ... Rail, 30, 31 ... Stirring device, 35 ... Reaction container, 36 ... Reaction disk, 40 ... Reagent container, 41, 42 ... Reagent disk, 45 ... Container cleaning mechanism, 46 ... Cleaning pump, 50 ... Light source, 51 ... Detection optical device , 54 ... Cleaning port, 60 ... Controller, 61 ... Sample container at sample suction position, 62 ... Reaction container at sample discharge position, 63 ... Cleaning position of sample probe 1, 64 ... Cleaning position of sample probe 2, 65 ... Sample probe 15 trajectories, 66... Sample probe 16 trajectories, 71, 72... Sample probe 16 rails 1, 73, 74. Rail probe 16 2,75 ... sample probe 15 head, 76 ... sample probe 16 head, 77 ... sample probe 15 nozzles, nozzle 78 ... sample probe 16.

Claims (5)

分析対象試料を収容する複数の試料容器を載置可能で、かつ該複数の試料容器の配置を変更可能な機構を備えた試料容器搭載手段と、
分析対象試料と試薬を混合する反応容器を複数載置可能で、かつ該複数の反応容器の配置を変更可能な機構を備えた反応容器搭載手段と、
試料を前記試料容器から分取し、前記反応容器へ吐出する試料分注手段と、
前記試料容器搭載手段、前記反応容器搭載手段、及び前記試料分注手段と接続され、これらを制御する制御手段と、を備えた自動分析装置であって、
前記試料分注手段は、前記試料容器搭載手段と前記反応容器搭載手段との間に、試料の分取・吐出のための分注機構を複数備え、かつ、
前記複数の分注機構は各々独立して前記試料容器と前記反応容器との間で移動することで、交互に、同一の試料容器から、同一のポジションにある反応容器へ分注することを特徴とした自動分析装置
A sample container mounting means provided with a mechanism capable of mounting a plurality of sample containers containing the sample to be analyzed and capable of changing the arrangement of the plurality of sample containers;
A reaction container mounting means having a mechanism capable of mounting a plurality of reaction containers for mixing a sample to be analyzed and a reagent and capable of changing the arrangement of the plurality of reaction containers;
Sample dispensing means for dispensing a sample from the sample container and discharging the sample to the reaction container;
An automatic analyzer comprising: a control means connected to and controlling the sample container mounting means, the reaction container mounting means, and the sample dispensing means,
The sample dispensing means comprises a plurality of dispensing mechanisms for sample dispensing / discharge between the sample container mounting means and the reaction container mounting means , and
Wherein the plurality of dispensing mechanism by moving between each independently the sample container and the reaction vessel, alternatively, from the same sample container, and a dispensing child to the reaction vessel at the same position A featured automatic analyzer .
請求項1記載の自動分析装置において、
前記複数の分注機構のプローブヘッドの移動軌跡が重ならないための逃げ位置を設けたことを特徴とする自動分析装置
The automatic analyzer according to claim 1, wherein
An automatic analyzer characterized in that an escape position is provided so that the movement trajectories of the probe heads of the plurality of dispensing mechanisms do not overlap.
請求項2記載の自動分析装置において、
前記複数の分注機構のノズルを洗浄するための複数のノズル洗浄機構を備え、
前記分注機構のプローブヘッドの移動軌跡は少なくとも、同一の試料容器,複数のノズル洗浄機構,同一のポジションにある反応容器を含むことを特徴とする自動分析装置
The automatic analyzer according to claim 2,
A plurality of nozzle cleaning mechanisms for cleaning the nozzles of the plurality of dispensing mechanisms;
The automatic analysis apparatus characterized in that the movement trajectory of the probe head of the dispensing mechanism includes at least the same sample container, a plurality of nozzle cleaning mechanisms, and reaction containers at the same position.
請求項3記載の自動分析装置において、The automatic analyzer according to claim 3,
前記分注機構は、第一分注機構と第二分注機構を備え、The dispensing mechanism includes a first dispensing mechanism and a second dispensing mechanism,
前記ノズル洗浄機構は、前記試料容器搭載手段と前記反応容器搭載手段との前記第一分注機構の移動軌跡上に備えられた、前記第一分注機構を洗浄する第一ノズル洗浄機構と、前記試料容器搭載手段と前記反応容器搭載手段との前記第二分注機構の移動軌跡上に備えられた、前記第二分注機構を洗浄する第二ノズル洗浄機構を備え、The nozzle cleaning mechanism includes a first nozzle cleaning mechanism for cleaning the first dispensing mechanism, provided on a movement trajectory of the first dispensing mechanism between the sample container mounting unit and the reaction container mounting unit. Provided with a second nozzle cleaning mechanism for cleaning the second dispensing mechanism provided on the movement trajectory of the second dispensing mechanism of the sample container mounting means and the reaction container mounting means;
前記制御手段は、前記第一分注機構を前記試料容器から前記反応容器のポジションに移動させる前に、前記第二分注機構を前記反応容器のポジションから前記第二ノズル洗浄機構に移動させることを特徴とする自動分析装置。The control means moves the second dispensing mechanism from the reaction container position to the second nozzle cleaning mechanism before moving the first dispensing mechanism from the sample container to the reaction container position. Automatic analyzer characterized by
請求項4記載の自動分析装置において、The automatic analyzer according to claim 4,
前記制御手段は、前記第一分注機構を前記試料容器から前記反応容器のポジションに移動させるとともに、前記第二分注機構を前記第二ノズル洗浄機構から前記試料容器への移動を開始させることを特徴とする自動分析装置。The control means moves the first dispensing mechanism from the sample container to the position of the reaction container and starts moving the second dispensing mechanism from the second nozzle cleaning mechanism to the sample container. Automatic analyzer characterized by
JP2009166269A 2009-07-15 2009-07-15 Automatic analyzer Expired - Lifetime JP4929317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166269A JP4929317B2 (en) 2009-07-15 2009-07-15 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166269A JP4929317B2 (en) 2009-07-15 2009-07-15 Automatic analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006174720A Division JP4366380B2 (en) 2006-06-26 2006-06-26 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2009236929A JP2009236929A (en) 2009-10-15
JP4929317B2 true JP4929317B2 (en) 2012-05-09

Family

ID=41251008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166269A Expired - Lifetime JP4929317B2 (en) 2009-07-15 2009-07-15 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP4929317B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120357B2 (en) 2009-10-14 2013-01-16 パナソニック株式会社 Electronic component mounting apparatus and electronic component mounting method
JP5667869B2 (en) * 2010-12-27 2015-02-12 株式会社日立ハイテクノロジーズ Automatic analyzer
CN103890589B (en) * 2011-10-18 2017-03-22 株式会社日立高新技术 Automated analyzer
JP6437985B2 (en) * 2016-11-16 2018-12-12 オカノ電機株式会社 Dispensing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329250A (en) * 1986-07-23 1988-02-06 Shimadzu Corp Automatic biochemical analyzer
JPH03140869A (en) * 1989-10-26 1991-06-14 Toshiba Corp Automatic apparatus for chemical analysis
JPH04279861A (en) * 1991-03-07 1992-10-05 Nippon Tectron Co Ltd Biochemical automatic analyzer
JPH10267936A (en) * 1997-03-25 1998-10-09 Olympus Optical Co Ltd Automatic analyzer

Also Published As

Publication number Publication date
JP2009236929A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP3972012B2 (en) Sample dispensing mechanism and automatic analyzer equipped with the same
JP4221349B2 (en) Automatic analyzer
EP3671218A1 (en) Blood analyzer and control method therefor
JP5600487B2 (en) Sample analyzer and liquid suction method
JP3914837B2 (en) Automatic analyzer
JP5850625B2 (en) Analysis apparatus and position confirmation method
JP5286120B2 (en) Automatic analyzer
EP2372371A2 (en) Automatic Analyzer
WO2012105398A1 (en) Automatic analyzing device
JP4929317B2 (en) Automatic analyzer
JP6521567B2 (en) Clinical examination equipment
JP4416763B2 (en) Automatic analyzer
JP4393481B2 (en) Automatic analyzer
JP2008209339A (en) Automatic analysis apparatus
JP4366380B2 (en) Automatic analyzer
JP5017421B2 (en) Automatic analyzer
JP4146873B2 (en) Automatic analyzer
JP4644731B2 (en) Automatic analyzer
JP4408404B2 (en) Automatic analyzer
JP2004117221A (en) Dispensing apparatus
JP2010117176A (en) Analyzer and dispensation controlling method therefor
JP4538487B2 (en) Automatic analyzer
WO2023122970A1 (en) Medical point-of-care testing device
JP2009053027A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4929317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term