JP4927246B2 - Coextrusion laminated polyester film - Google Patents

Coextrusion laminated polyester film Download PDF

Info

Publication number
JP4927246B2
JP4927246B2 JP2000142959A JP2000142959A JP4927246B2 JP 4927246 B2 JP4927246 B2 JP 4927246B2 JP 2000142959 A JP2000142959 A JP 2000142959A JP 2000142959 A JP2000142959 A JP 2000142959A JP 4927246 B2 JP4927246 B2 JP 4927246B2
Authority
JP
Japan
Prior art keywords
film
light
particles
polyester
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000142959A
Other languages
Japanese (ja)
Other versions
JP2001322218A (en
Inventor
一弘 椚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000142959A priority Critical patent/JP4927246B2/en
Publication of JP2001322218A publication Critical patent/JP2001322218A/en
Application granted granted Critical
Publication of JP4927246B2 publication Critical patent/JP4927246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、透過散乱光の色調に変化がなく、光拡散性に優れ、全光線透過量の減少も少なく、しかも製造が容易なポリエステルフィルムに関する。詳しくは、本発明は、照明カバー、電飾看板、採光ガラス用窓貼りフィルム等、各種光源を有効にかつ均一な明るさを確保することが求められるような用途、ワープロやOA機器に使用されている液晶ディスプレイや液晶カラーテレビのバックライト光源の拡散パネル材料等に好適な光拡散ポリエステルフィルムに関するものである。
【0002】
【従来の技術】
光源の光を効果的に用いるため、照明カバーや液晶表示装置等には光拡散フィルムが利用されてきている。
【0003】
光を拡散させる方法として従来用いられている技術として、粒子をフィルムに配合したり、粒子を分散させた樹脂をフィルムに塗布したりすることにより、微粒子と樹脂の屈折率の差を利用する方法がある。例えば、特開平3−78701号公報などには、炭酸カルシウム粒子を使用した例が記載されているが、光拡散剤として粒径の大きな無機粒子を大量に使用する場合は、全光線透過量の減少やフィルム強度が低下することがある。また、使用する無機粒子の種類によっては、白色光の特定波長領域の光が吸収されて、透過散乱された光の色調が変わることがある。さらに、特開平7−209502号公報には、樹脂に炭酸カルシウムやシリカ微粒子を分散させた組成物をフィルムに塗布する方法、また特開平9−211207号公報には、ポリスチレン樹脂粒子を樹脂に分散させた組成物をフィルムに塗布する方法がそれぞれ開示されている。しかしながら、フィルムを原材料に用い、2次加工としてフィルム表面に塗布することで光拡散層を生成する場合、製造コストが上がるだけでなく、ゴミの付着や塗布スジや塗布ムラなどの品質上の問題が発生することもある。
【0004】
【発明が解決しようとする課題】
本発明は上記実情に鑑みなされたものであって、その解決課題は、光拡散性に優れ、全光線透過量の減少も少なく、品質の安定した光拡散性のポリエステルフィルムを提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討した結果、特定の構成を採用することにより、表面欠陥が少なく表面の平坦性および光拡散性に優れ、かつ全光線透過量の減少が少ないフィルムが得られることを見いだし、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち、本発明の要旨は、少なくとも2層以上の層からなる、厚み2〜500μmの配向ポリエステルフィルムであり、一方の最外層の厚みが0.2μm以上であり、当該最外層中に平均粒子径1.5〜50μmの粒子を1.0〜10.0重量%含有し、当該最外層以外の層の厚さが前記平均粒子径の0.2倍以上であり、全光線透過量が60%以上であり、拡散透過率が50%以上であることを特徴とする共押出積層ポリエステルフィルムに存する。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明におけるポリエステルとは、テレフタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸等のような芳香族ジカルボン酸と、エチレングリコール、ジエチレングリコール、テトラメチレングリコール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール等のようなグリコールとのエステルを主たる成分とするポリエステルである。当該ポリエステルは、芳香族ジカルボン酸とグリコールとを直接重合させて得られるほか、芳香族ジカルボン酸ジアルキルエステルとグリコールとをエステル交換反応させた後、重縮合させる方法、あるいは芳香族ジカルボン酸のジグリコールエステルを重縮合させる等の方法によっても得られる。本発明で用いるポリエステルの代表的なものとしては、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)等が例示される。かかるポリエステルは、共重合されないホモポリマーであってもよく、またジカルボン酸成分の10モル%以下が主成分以外のジカルボン酸成分、またはジオール成分の10モル%以下が主成分以外のジオール成分であるような共重合ポリエステルであってもよい。
【0009】
本発明のフィルムは、少なくとも2層以上の構造の共押出積層フィルムであり、特定の粒子を特定量含有する光拡散機能を有する層を必須とするものである。
【0010】
光拡散特性を付与するために、本発明は二軸配向ポリエステルフィルムでは、従来配合されなかったような、大粒子を多量配合するが、そのために、製膜安定性を犠牲にしてしまう問題点がある。かかる問題点を解決するために、本発明では、フィルムを2層以上の構造とするものである。2層以上のフィルムとするために、製膜連続性を付与する層を共押し出しすることが好ましい。
【0011】
光拡散性を与える層は、全光線透過量と拡散透過率を高度に両立させるため、平均粒子径が1.5〜50μm、好ましくは2.0〜30μm、さらに好ましくは3.0〜20μmの粒子を含有させる。平均粒子径が1.5μm未満では、拡散透過率が低くなり好ましくない。また、平均粒子径が50μmを超える場合は、粒子が起点となってフィルムの破れやすくなり、製造段階、製造後の双方において、問題となり、また、フィルム表面の粗度が大きくなりすぎ好ましくない。
【0012】
本発明で用いる粒子の光拡散層中の含有量は、1.0〜10.0重量%、好ましくは1.5〜8.0重量%、さらに好ましくは2.0〜6.0重量%である。粒子の含有量が1.0重量%未満では、拡散透過率が低くなり好ましくない。また、含有量が10.0重量%を超えると、フィルムが破れやすくなり、また、フィルムの表面粗度が大きくなり過ぎて平面性が損なわれるようになるので好ましくない。
【0013】
かかる微粒子の例として、酸化珪素、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸リチウム、リン酸マグネシウム、フッ化リチウム、酸化アルミニウム、酸化チタン、カオリン、タルク、カーボンブラック、窒化ケイ素、窒化ホウ素、および特公昭59−5216号公報に記載されているような架橋高分子微粉体を挙げることができ、本発明を満足させるものであればこれらに限定されるものではないが、特に球状シリカ粒子が好ましい。球状シリカの粒子形状は、全光線透過率と拡散透過率との点から球状に近いほど好ましく、球形比は通常0.90〜1.0、好ましくは0.93〜1.0、さらに好ましくは0.96〜1.0である。球形比が0.90未満では拡散透過率が低下する傾向にある。
【0014】
この際、配合する微粒子は、単成分でもよく、また、2成分以上を同時に用いてもよい。2成分以上用いる場合は、少なくとも1成分の粒子の平均粒子径および含有量が上記した範囲内にあればよい。
【0015】
光拡散層の厚さは、0.2μm以上、好ましくは1.0μm以上である。光拡散層の厚さが0.2μm未満では、拡散透過率を上げることができず好ましくない。
【0016】
光拡散層以外の層は、実質的に粒子を含まないポリエステルを用いても構わない。通常ポリエステルフィルムは、製膜性や作業性を良くする目的で、フィルム表面に突起を形成させ、フィルムに易滑性を付与するが、本発明においては、光拡散層に用いた粒子が、フィルム表面に突起を形成するため、光拡散層以外の層に粒子が配合されていなくとも易滑性を得ることができる。
【0017】
光拡散層以外の層の厚さは特に制限しないが、適度なフィルム強度、連続製膜性等を付与するため、ある程度の厚さが必要である。光拡散層に配合した粒子径や粒子量により必要な厚さは変化するが、本発明においては、光拡散層に配合した粒子径の0.2倍以上の厚さが好ましい。光拡散層に配合した粒子径の0.2倍未満では、フィルム強度、連続製膜性の点で問題となる場合がある。
【0018】
本発明において、実質的に粒子を含まないポリエステルとは、重合触媒の目的以外で添加される粒子がなく合成されたものである。このポリエステルは、光を吸収したり散乱させる不溶性粒子を含有しないか、含有してもその絶対量が少ないため、フィルムとした場合高い透明性を有する。
【0019】
本発明の積層フィルムの全厚みは、通常2〜500μmの範囲である。フィルム全厚みが2μm未満では、光拡散性が不十分となる傾向があり、500μmを超えると、製膜時の延伸が製膜機の制限により困難になる場合がある。
【0020】
本発明のフィルムは、全光線透過量が通常60%以上、好ましくは65%以上、さらに好ましくは70%以上で、拡散透過率が通常50%以上、好ましくは55%以上、さらに好ましくは60%以上である。全光線透過量が60%未満や拡散透過率が50%未満では、光拡散フィルムとしての性能が不十分となる傾向があり、その場合、塗布などにより光拡散層を形成させる必要が生じたり、用途が限定されてしまうおそれがある。
【0021】
本発明のポリエステルフィルムには、必要に応じて、帯電防止剤、着色剤、酸化防止剤、消泡剤、蛍光増白剤、難燃性付与等の添加剤を配合してもよい。
【0022】
また、本発明のポリエステルフィルムの片面または両面に反射防止処理を施して使用してもよい。この反射防止処理としては、表面に微小凹凸を形成することによるエンボス処理や、反射波の光干渉を利用した薄膜形成処理等が挙げられる。さらに、必要に応じ、易滑性、離型性、帯電防止性、易接着性等を付与する目的のコーティング処理を行うこともできる。
【0023】
本発明の積層フィルムとは、全ての層が口金から共溶融押出しされる共押出法により、押出されたものが二軸方向に延伸、熱固定されたものが好ましい。共押出方法としては、フィードブロックタイプまたはマルチマニホールドタイプにいずれを用いてもよい。
【0024】
本発明の積層フィルムの製造方法をさらに具体的に説明するが、本発明の構成要件を満足する限り、以下の例示に特に限定されるものではない。
【0025】
特定の粒子を所定量含有したポリエステル(A層)と実質的に粒子を含まないポリエステル(B層)を、各々別の溶融押出装置に供給し、当該ポリマーの融点以上の温度に加熱し溶融する。次いで、溶融したポリマーを押出口金内において層流状で接合積層させてスリット状のダイから押出し、回転冷却ドラム上でガラス転移温度以下の温度になるように急冷固化し、実質的に非晶状態の未配向シートを得る。この場合、シートの平面性を向上させるため、シートと回転冷却ドラムとの密着性を高めることが好ましく、本発明においては静電印加密着法および/または液体塗布密着法が好ましく採用される。
【0026】
本発明においてはこのようにして得られたシートを二軸方向に延伸してフィルム化する。延伸条件について具体的に述べると、前記未延伸シートを好ましくは縦方向に70〜145℃で2〜6倍に延伸し、縦一軸延伸フィルムとした後、横方向に90〜160℃で2〜6倍延伸を行い、150〜250℃で1〜600秒間熱処理を行うことが好ましい。さらにこの際、熱処理の最高温度ゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1〜20%弛緩する方法が好ましい。また、必要に応じて再縦延伸、再横延伸を付加することも可能である。
【0027】
本発明の積層フィルムは、その要求特性に応じて必要な特性、例えば接着性、帯電防止性、耐候性および表面硬度の向上のため、必要に応じて縦延伸終了後、横延伸のテンター入口前においてコートをしてテンター内で乾燥するいわゆるインラインコートを行ってもよい。また、積層フィルムの製造後にオフラインコートで各種のコートを行ってもよい。このようなコートは片面、両面のいずれでもよい。コーティングの材料としては、オフラインコーティングの場合は水系および/または溶媒系のいずれでもよいが、インラインコーティングの場合は水系または水分散系が好ましい。
【0028】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および用語の定義は次のとおりである。
(1)粒子平均粒径
走査型電子顕微鏡にてフィルム中の粒子を観察し、粒子毎に最大径と最小径を求め、その相加平均を粒子一個の粒径(直径)とした。粒子群の平均粒径は、かかる粒径の等価球換算値の体積分率50%における点の粒径(直径)を指す。
(2)拡散光量と全光線透過量
日本電色工業社製分球式濁度計NDH−300Aによりフィルムの拡散光量と全光線透過量を測定した。
(3)フィルムの積層厚さ
フィルム小片をエポキシ樹脂にて固定成形した後、ミクロトームで切断し、フィルムの断面を透過型電子顕微鏡写真にて観察した。その断面のうちフィルム表面とほぼ平行に2本、明暗によって界面が観察される。その2本の界面とフィルム表面までの距離を10枚の写真から測定し、平均値を積層厚さとした。
(4)透過散乱光の色調
白色蛍光灯にフィルムをかざして透過散乱された光の色調を目視で観察し、下記基準で評価した。
【0029】
〇:白色蛍光灯の光とほとんど変わらない
×:色調が変わっている(例えば、やや黄色みを帯びている等)
(5)連続製膜性
連続製膜性を下記のランクに分けて評価した。
【0030】
○:破断無く連続して製膜が可能
△:時々破断が発生するため、連続して製膜できない場合がある
×:破断が多発するために連続して製膜ができない
次に、実施例および比較例において用いたポリエステルの製造方法について説明する。
(ポリエステル−Aの製造)
テレフタル酸ジメチル100重量部とエチレングリコール60部とを出発原料とし、触媒として酢酸マグネシウム・4水塩0.09重量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去と共に徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了した。この反応混合物にエチルアシッドフォスフェート0.04部、三酸化アンチモン0.04部を加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、4時間を経た時点で反応を停止し、窒素加圧下ポリマーを吐出させた。得られたポリエステルの粘度は0.65であった。
(ポリエステル−Bの製造)
ポリエステル−Aを乾燥した後、平均粒子径4.2μm、球形比0.98の球状シリカ粒子を3.0重量%となるようにベント式二軸押出機にて押出しポリエステル−Bを得た。
(ポリエステル−Cの製造)
ポリエステル−Bの製造において、球状シリカの粒子径を10μmに変更した以外はポリエステル−Bと同様に方法でポリエステル−Cを製造した。
【0031】
実施例1
A層としてポリエステル−Bを180℃で4時間乾燥し、285℃に設定したメインの押出機に、B層としてポリエステル−Aを285℃に設定したサブの押出機に送り込んだ。
【0032】
メイン押出機のポリマーとサブ押出機のポリマーを、ギヤポンプ、フィルターを介して、フィードブロックで合流させシート状に押出し、表面温度を30℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、厚み260μmの実質的に非晶質のシートを得た。
【0033】
次いで、得られた非晶質のシートをシートの流れ方向に83℃で3.5倍、さらにシートの流れと直交する方向に87℃で3.7倍延伸し、235℃で3秒間熱処理を行った後、冷却して、A層/B層=5μm/10μmの厚み構成で全層厚み15μmの二軸配向フィルムを製造した。
【0034】
比較例1
ポリエステルCを180℃で4時間乾燥後し、285℃に設定した押出機に供給し、ギヤポンプ、フィルターを介して、ダイよりキャスティングドラムにシート状に押出し、表面温度を30℃に設定した回転冷却ドラムで静電印加冷却法を利用して急冷固化させ、厚み260μmの実質的に非晶質のシートを得た。
【0035】
得られた非晶質シートを縦方向に83℃で3.6倍延伸した後、230℃で10秒間、幅方向に2%弛緩しながら熱処理を施し、厚み38μmの単層二軸配向フィルムを製造したが、破断が多発しフィルムが得られなかった。
【0036】
実施例2〜8、比較例2〜6
実施例1において、内層に配合する添加粒子の種類、粒子径、添加量およびフィルムの厚み構成を下記表1〜2に示すとおりに変更した以外は実施例1と同様の方法で二軸配向フィルムを製造した。
【0037】
以上、得られたフィルムの物性、性能もまとめて下記表1〜2に示す。
【0038】
なお、比較例1および2に関しては連続製膜性が悪く、評価するためのフィルムが得られなかった。
【0039】
【表1】

Figure 0004927246
【0040】
【表1】
Figure 0004927246
【0041】
【発明の効果】
本発明のポリエステルフィルムは、光拡散性に優れ、全光線透過量の減少も少なく、しかも製造が容易であり、照明カバー、電飾看板、採光ガラス用窓貼りフィルム等、各種光源を有効にかつ均一な明るさを確保する用途やワープロやOA機器に使用されている液晶ディスプレイや液晶カラーテレビのバックライト光源の拡散パネル材料に有利に使用でき、その工業的価値は高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester film that has no change in the color tone of transmitted and scattered light, is excellent in light diffusibility, has a small decrease in total light transmission, and is easy to manufacture. Specifically, the present invention is used for applications such as lighting covers, electric signboards, window glass films for daylighting glass, etc. that require various types of light sources to ensure effective and uniform brightness, word processors and OA equipment. The present invention relates to a light diffusing polyester film suitable for a diffusion panel material for a backlight source of a liquid crystal display or a liquid crystal color television.
[0002]
[Prior art]
In order to effectively use light from a light source, a light diffusing film has been used for lighting covers, liquid crystal display devices, and the like.
[0003]
As a technique conventionally used as a method of diffusing light, a method of utilizing the difference in refractive index between fine particles and resin by blending particles into a film or applying a resin in which particles are dispersed to a film There is. For example, Japanese Patent Application Laid-Open No. 3-78701 discloses an example using calcium carbonate particles. However, when a large amount of inorganic particles having a large particle size is used as a light diffusing agent, the total light transmission amount is Decrease and film strength may decrease. In addition, depending on the type of inorganic particles used, light in a specific wavelength region of white light may be absorbed, and the color tone of the transmitted and scattered light may change. Further, JP-A-7-209502 discloses a method of applying a composition in which calcium carbonate or silica fine particles are dispersed in a resin to a film, and JP-A-9-21207 discloses that polystyrene resin particles are dispersed in a resin. A method for applying the prepared composition to a film is disclosed. However, when a film is used as a raw material and a light diffusing layer is formed by applying it to the film surface as a secondary process, not only the manufacturing cost increases, but also quality problems such as dust adhesion, coating stripes and coating unevenness May occur.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and a solution to the problem is to provide a light diffusible polyester film having excellent light diffusibility, little decrease in total light transmission, and stable quality. .
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor has adopted a specific configuration, whereby a film having few surface defects, excellent surface flatness and light diffusibility, and little decrease in total light transmission amount. Has been found, and the present invention has been completed.
[0006]
[Means for Solving the Problems]
That is, the gist of the present invention is an oriented polyester film having a thickness of 2 to 500 μm composed of at least two layers , the thickness of one outermost layer being 0.2 μm or more, and an average particle diameter in the outermost layer. 1.0 to 10.0% by weight of particles of 1.5 to 50 μm are contained, the thickness of the layer other than the outermost layer is 0.2 times or more of the average particle diameter, and the total light transmission amount is 60%. Thus, the coextruded laminated polyester film has a diffuse transmittance of 50% or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
The polyester in the present invention is an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, ethylene glycol, diethylene glycol, tetramethylene glycol, neopentyl glycol, 1,4-cyclohexanedi It is a polyester mainly composed of an ester with glycol such as methanol. The polyester is obtained by directly polymerizing an aromatic dicarboxylic acid and a glycol, or by a transesterification reaction between an aromatic dicarboxylic acid dialkyl ester and a glycol, followed by polycondensation, or an aromatic dicarboxylic acid diglycol. It can also be obtained by a method such as polycondensation of an ester. Typical examples of the polyester used in the present invention include polyethylene terephthalate, polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like. Such a polyester may be a homopolymer that is not copolymerized, and 10 mol% or less of the dicarboxylic acid component is a dicarboxylic acid component other than the main component, or 10 mol% or less of the diol component is a diol component other than the main component. Such a copolyester may be used.
[0009]
The film of the present invention is a coextruded laminated film having a structure of at least two layers, and essentially comprises a layer having a light diffusion function containing a specific amount of specific particles.
[0010]
In order to impart light diffusing properties, the present invention is a biaxially oriented polyester film that contains a large amount of large particles that have not been blended in the past, but there is a problem in that film formation stability is sacrificed. is there. In order to solve this problem, in the present invention, the film has a structure of two or more layers. In order to obtain a film having two or more layers, it is preferable to co-extrude a layer imparting film forming continuity.
[0011]
The layer imparting light diffusibility has a total particle transmission amount and diffuse transmittance of high compatibility, so that the average particle size is 1.5 to 50 μm, preferably 2.0 to 30 μm, more preferably 3.0 to 20 μm. Include particles. If the average particle size is less than 1.5 μm, the diffuse transmittance is undesirably low. On the other hand, when the average particle diameter exceeds 50 μm, the film tends to be broken starting from the particles, which causes a problem both in the production stage and after the production, and the roughness of the film surface becomes too large.
[0012]
The content of the particles used in the present invention in the light diffusion layer is 1.0 to 10.0% by weight, preferably 1.5 to 8.0% by weight, more preferably 2.0 to 6.0% by weight. is there. If the content of the particles is less than 1.0% by weight, the diffusion transmittance is lowered, which is not preferable. On the other hand, if the content exceeds 10.0% by weight, the film tends to be torn, and the surface roughness of the film becomes too large, so that the flatness is impaired.
[0013]
Examples of such fine particles include silicon oxide, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, lithium phosphate, magnesium phosphate, lithium fluoride, aluminum oxide, titanium oxide, kaolin, talc, carbon black, silicon nitride. , Boron nitride, and crosslinked polymer fine powder as described in JP-B-59-5216 are not limited to these as long as they satisfy the present invention. Spherical silica particles are preferred. The particle shape of the spherical silica is preferably as spherical as possible from the viewpoint of total light transmittance and diffuse transmittance, and the spherical ratio is usually 0.90 to 1.0, preferably 0.93 to 1.0, and more preferably. 0.96 to 1.0. When the spherical ratio is less than 0.90, the diffuse transmittance tends to decrease.
[0014]
At this time, the fine particles to be blended may be a single component, or two or more components may be used simultaneously. When two or more components are used, the average particle size and content of at least one component particle may be within the above-described range.
[0015]
The thickness of the light diffusion layer is 0.2 μm or more, preferably 1.0 μm or more. When the thickness of the light diffusion layer is less than 0.2 μm, it is not preferable because the diffusion transmittance cannot be increased.
[0016]
For layers other than the light diffusion layer, polyester that does not substantially contain particles may be used. Usually, the polyester film is formed with protrusions on the film surface for the purpose of improving the film formability and workability, and imparts easy slipperiness to the film. In the present invention, the particles used in the light diffusion layer are the film. Since the protrusions are formed on the surface, the slipperiness can be obtained even if no particles are blended in a layer other than the light diffusion layer.
[0017]
The thickness of the layers other than the light diffusion layer is not particularly limited, but a certain degree of thickness is necessary in order to impart appropriate film strength, continuous film forming property, and the like. Although the required thickness varies depending on the particle diameter and the amount of particles blended in the light diffusion layer, in the present invention, a thickness of 0.2 times or more the particle diameter blended in the light diffusion layer is preferable. If the particle diameter is less than 0.2 times the particle size blended in the light diffusion layer, there may be a problem in terms of film strength and continuous film forming property.
[0018]
In the present invention, the polyester substantially free of particles is synthesized without particles added for purposes other than the purpose of the polymerization catalyst. This polyester does not contain insoluble particles that absorb or scatter light, or even if contained, the absolute amount thereof is small, so that it has high transparency when made into a film.
[0019]
The total thickness of the laminated film of the present invention is usually in the range of 2 to 500 μm. If the total thickness of the film is less than 2 μm, the light diffusibility tends to be insufficient, and if it exceeds 500 μm, stretching during film formation may be difficult due to limitations of the film forming machine.
[0020]
The film of the present invention has a total light transmittance of usually 60% or more, preferably 65% or more, more preferably 70% or more, and a diffuse transmittance of usually 50% or more, preferably 55% or more, more preferably 60%. That's it. If the total light transmission amount is less than 60% or the diffuse transmittance is less than 50%, the performance as a light diffusion film tends to be insufficient. In that case, it becomes necessary to form a light diffusion layer by coating, There is a risk that the application will be limited.
[0021]
If necessary, the polyester film of the present invention may contain additives such as an antistatic agent, a colorant, an antioxidant, an antifoaming agent, a fluorescent whitening agent, and imparting flame retardancy.
[0022]
Further, the polyester film of the present invention may be used after being subjected to antireflection treatment on one side or both sides. Examples of the antireflection treatment include an embossing treatment by forming minute irregularities on the surface, a thin film forming treatment using optical interference of reflected waves, and the like. Furthermore, if necessary, a coating treatment for the purpose of imparting easy slipping, releasability, antistatic property, easy adhesion and the like can be performed.
[0023]
The laminated film of the present invention is preferably one in which all the layers are stretched in the biaxial direction and heat-set by a co-extrusion method in which all layers are co-melt extruded from the die. As a coextrusion method, any of a feed block type or a multi-manifold type may be used.
[0024]
Although the manufacturing method of the laminated | multilayer film of this invention is demonstrated more concretely, as long as the structural requirements of this invention are satisfied, it is not specifically limited to the following illustrations.
[0025]
A polyester (A layer) containing a predetermined amount of specific particles and a polyester (B layer) substantially free of particles are supplied to separate melt-extrusion apparatuses, heated to a temperature equal to or higher than the melting point of the polymer, and melted. . Next, the molten polymer is bonded and laminated in a laminar flow in an extrusion die, extruded from a slit die, rapidly cooled and solidified on a rotating cooling drum to a temperature below the glass transition temperature, and substantially amorphous. An unoriented sheet in a state is obtained. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum. In the present invention, an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed.
[0026]
In the present invention, the sheet thus obtained is stretched biaxially to form a film. Specifically describing the stretching conditions, the unstretched sheet is preferably stretched 2 to 6 times in the longitudinal direction at 70 to 145 ° C. to form a longitudinally uniaxially stretched film, and then 2 to 90 in the lateral direction at 2 to 90 ° C. It is preferable to perform 6-fold stretching and heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the maximum temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet is preferable. Further, it is possible to add re-longitudinal stretching and re-lateral stretching as necessary.
[0027]
The laminated film of the present invention is used after the end of the longitudinal stretching and before the entrance of the tenter for lateral stretching, as necessary, in order to improve the necessary properties according to the required properties, such as adhesion, antistatic properties, weather resistance and surface hardness. A so-called in-line coating may be performed in which a coating is applied and dried in a tenter. Moreover, you may perform various coatings by offline coating after manufacture of a laminated | multilayer film. Such a coat may be either single-sided or double-sided. The coating material may be either water-based and / or solvent-based for offline coating, but is preferably water-based or water-dispersed for in-line coating.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. In addition, the measurement methods and terms used in the present invention are defined as follows.
(1) Particle average particle diameter The particles in the film were observed with a scanning electron microscope, the maximum diameter and the minimum diameter were determined for each particle, and the arithmetic average was defined as the particle diameter (diameter) of one particle. The average particle diameter of the particle group refers to the particle diameter (diameter) at a point where the volume fraction of the equivalent sphere equivalent value of the particle diameter is 50%.
(2) Amount of diffused light and total amount of transmitted light The amount of diffused light and the amount of transmitted light of the film were measured with a Nippon Denshoku Industries Co., Ltd., ballistic turbidimeter NDH-300A.
(3) Lamination thickness of film After fixing a film piece with an epoxy resin, it cut | disconnected with the microtome, and observed the cross section of the film with the transmission electron microscope photograph. Two of the cross-sections are observed in parallel with the film surface, and the interface is observed by light and dark. The distance between the two interfaces and the film surface was measured from 10 photographs, and the average value was defined as the laminated thickness.
(4) Color Tone of Transmitted and Scattered Light The film was held over a white fluorescent lamp, and the color tone of the transmitted and scattered light was visually observed and evaluated according to the following criteria.
[0029]
◯: Almost the same as the light of white fluorescent light ×: The color tone has changed (for example, it is slightly yellowish)
(5) Continuous film-forming property Continuous film-forming property was evaluated in the following ranks.
[0030]
○: Continuous film formation is possible without breaking. Δ: Continuous film formation may occur due to occasional breakage. X: Continuous film formation is not possible due to frequent breakage. A method for producing the polyester used in the comparative example will be described.
(Production of polyester-A)
100 parts by weight of dimethyl terephthalate and 60 parts of ethylene glycol are used as starting materials, 0.09 parts by weight of magnesium acetate tetrahydrate as a catalyst is placed in the reactor, the reaction start temperature is 150 ° C., and the methanol is gradually distilled off. The reaction temperature was raised to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially completed. To this reaction mixture, 0.04 part of ethyl acid phosphate and 0.04 part of antimony trioxide were added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C. to 280 ° C. On the other hand, the pressure was gradually reduced from normal pressure, and finally 0.3 mmHg. After 4 hours from the start of the reaction, the reaction was stopped and the polymer was discharged under nitrogen pressure. The viscosity of the obtained polyester was 0.65.
(Production of polyester-B)
After drying the polyester-A, spherical silica particles having an average particle size of 4.2 μm and a spherical ratio of 0.98 were extruded with a vent type twin screw extruder so as to be 3.0% by weight to obtain a polyester-B.
(Production of polyester-C)
In the production of polyester-B, polyester-C was produced in the same manner as for polyester-B except that the particle diameter of the spherical silica was changed to 10 μm.
[0031]
Example 1
Polyester-B as layer A was dried at 180 ° C. for 4 hours and fed to a main extruder set at 285 ° C. and fed into a sub-extruder set at 285 ° C. as polyester B.
[0032]
The polymer of the main extruder and the polymer of the sub-extruder are merged with a feed block through a gear pump and a filter and extruded into a sheet shape. The electrostatic cooling method is used with a rotary cooling drum whose surface temperature is set to 30 ° C. And solidified rapidly to obtain a substantially amorphous sheet having a thickness of 260 μm.
[0033]
Next, the obtained amorphous sheet was stretched 3.5 times at 83 ° C. in the flow direction of the sheet and 3.7 times at 87 ° C. in the direction perpendicular to the flow of the sheet, and heat treated at 235 ° C. for 3 seconds. Then, the mixture was cooled to produce a biaxially oriented film having a thickness of A / B = 5 μm / 10 μm and a total thickness of 15 μm.
[0034]
Comparative Example 1
Polyester C is dried at 180 ° C for 4 hours, supplied to an extruder set at 285 ° C, extruded through a gear pump and a filter into a casting drum from a die, and cooled at a surface temperature of 30 ° C. The drum was quenched and solidified using an electrostatic application cooling method to obtain a substantially amorphous sheet having a thickness of 260 μm.
[0035]
The obtained amorphous sheet was stretched 3.6 times in the longitudinal direction at 83 ° C., and then heat treated while being relaxed 2% in the width direction at 230 ° C. for 10 seconds to form a single-layer biaxially oriented film having a thickness of 38 μm. Although manufactured, breakage occurred frequently and a film was not obtained.
[0036]
Examples 2-8, Comparative Examples 2-6
In Example 1, a biaxially oriented film was prepared in the same manner as in Example 1 except that the type of added particles to be blended in the inner layer, the particle diameter, the added amount, and the film thickness configuration were changed as shown in Tables 1 and 2 below. Manufactured.
[0037]
The physical properties and performance of the obtained film are also summarized in Tables 1 and 2 below.
[0038]
In Comparative Examples 1 and 2, the continuous film-forming property was poor, and a film for evaluation could not be obtained.
[0039]
[Table 1]
Figure 0004927246
[0040]
[Table 1]
Figure 0004927246
[0041]
【Effect of the invention】
The polyester film of the present invention is excellent in light diffusibility, has little decrease in total light transmission, is easy to manufacture, and effectively uses various light sources such as a lighting cover, an electric signboard, and a window pasting film for daylighting glass. It can be used advantageously for liquid crystal displays used in word processors and OA equipment for ensuring uniform brightness, and as diffusion panel materials for backlight sources of liquid crystal color televisions, and its industrial value is high.

Claims (2)

少なくとも2層以上の層からなる、厚み2〜500μmの配向ポリエステルフィルムであり、一方の最外層の厚みが0.2μm以上であり、当該最外層中に平均粒子径1.5〜50μmの粒子を1.0〜10.0重量%含有し、当該最外層以外の層の厚さが前記平均粒子径の0.2倍以上であり、全光線透過量が60%以上であり、拡散透過率が50%以上であることを特徴とする共押出積層ポリエステルフィルム。It is an oriented polyester film having a thickness of 2 to 500 μm composed of at least two layers, one outermost layer having a thickness of 0.2 μm or more, and particles having an average particle diameter of 1.5 to 50 μm in the outermost layer. 1.0 to 10.0% by weight, the thickness of the layer other than the outermost layer is 0.2 times or more of the average particle diameter, the total light transmittance is 60% or more, and the diffuse transmittance is A co-extruded laminated polyester film characterized by being 50% or more. 平均粒子径1.5〜50μmの粒子が、球形比0.90〜1.0の球状シリカであることを特徴とする請求項1記載の共押出積層ポリエステルフィルム。  The coextruded laminated polyester film according to claim 1, wherein the particles having an average particle diameter of 1.5 to 50 µm are spherical silica having a spherical ratio of 0.90 to 1.0.
JP2000142959A 2000-05-16 2000-05-16 Coextrusion laminated polyester film Expired - Fee Related JP4927246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142959A JP4927246B2 (en) 2000-05-16 2000-05-16 Coextrusion laminated polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142959A JP4927246B2 (en) 2000-05-16 2000-05-16 Coextrusion laminated polyester film

Publications (2)

Publication Number Publication Date
JP2001322218A JP2001322218A (en) 2001-11-20
JP4927246B2 true JP4927246B2 (en) 2012-05-09

Family

ID=18649839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142959A Expired - Fee Related JP4927246B2 (en) 2000-05-16 2000-05-16 Coextrusion laminated polyester film

Country Status (1)

Country Link
JP (1) JP4927246B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979369B1 (en) * 2002-03-15 2010-08-31 키모토 컴파니 리미티드 Transparent hard coat film, Transparent conductive hard coat film, Touch panel using thins film, and Liquid crystal display device using this touch panel
JP4583105B2 (en) * 2004-08-12 2010-11-17 三菱樹脂株式会社 Coextrusion laminated polyester film
JP2006169469A (en) * 2004-12-20 2006-06-29 Mitsubishi Polyester Film Copp Easily bondable optically used polyester film
JP4766873B2 (en) * 2004-12-20 2011-09-07 三菱樹脂株式会社 Coextrusion laminated polyester film
JP2006312263A (en) * 2005-05-09 2006-11-16 Mitsubishi Polyester Film Copp Laminated mat-like polyester film
JP4766995B2 (en) * 2005-11-04 2011-09-07 三菱樹脂株式会社 Biaxially stretched polyester film
JP2007146056A (en) * 2005-11-29 2007-06-14 Mitsubishi Polyester Film Copp Light scattering biaxially-oriented polyester film
KR100885608B1 (en) 2006-05-30 2009-02-24 주식회사 엘지화학 Multi-layered light diffusion plate and liquid crystal display device comprising the same
TWI408044B (en) * 2010-12-31 2013-09-11 Shinkong Materials Technology Corp Multi-functional polyester films and a method for manufacturing the same
JP2013047356A (en) * 2012-12-07 2013-03-07 Mitsubishi Plastics Inc Light scattering biaxially oriented polyester film
DE102016200875A1 (en) * 2016-01-22 2017-07-27 Mitsubishi Polyester Film Gmbh Biaxially oriented, UV-stabilized, single or multi-layer polyester film with a combination of silicon dioxide particles as light scattering particles and a UV stabilizer as well as processes for their production and their use in greenhouse shade mats
WO2018062397A1 (en) 2016-09-30 2018-04-05 ユニチカ株式会社 Polyester film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141797A (en) * 1995-11-17 1997-06-03 Toray Ind Inc Biaxially oriented laminated polyester film
JPH09211207A (en) * 1996-02-01 1997-08-15 Nitto Denko Corp Light control film
JPH11223712A (en) * 1998-02-09 1999-08-17 Tomoegawa Paper Co Ltd Diffusion tacky adhesive sheet and liquid crystal display device using the same
JPH11348210A (en) * 1998-06-04 1999-12-21 Mitsubishi Kagaku Polyester Film Kk Laminated polyester film
JP4357069B2 (en) * 2000-03-09 2009-11-04 三菱樹脂株式会社 Polyester film

Also Published As

Publication number Publication date
JP2001322218A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP4196306B2 (en) Light diffusion film
KR101084903B1 (en) Light diffusion film
JP3946183B2 (en) White polyester film
JP4927246B2 (en) Coextrusion laminated polyester film
JP4715510B2 (en) Light diffusion film
JP4979105B2 (en) Optical polyester film
JP4357069B2 (en) Polyester film
JP2007031496A (en) Optical polyester film
JP5937847B2 (en) Laminated polyester film
JP5076791B2 (en) Light diffusion film
JP5163085B2 (en) Surface light diffusing polyester film
JP4678662B2 (en) Laminated polyester film
JP4583105B2 (en) Coextrusion laminated polyester film
JP2006187910A (en) Biaxially oriented laminated film
JP5108271B2 (en) Biaxially stretched laminated polyester film
JP2001098088A (en) Polyester film
JP2001253957A (en) Polyester film
JP2004330504A (en) Semi-transmittable reflecting laminated polyester film and liquid crystal display
JP5114661B2 (en) Light diffusing film and method for producing the same
WO2010023891A1 (en) Biaxially stretched polyester film
JP2009139889A (en) Surface light-diffusing polyester film
JP2009139890A (en) Surface light-diffusing polyester film
JP2007015108A (en) Laminated polyester film
JP2001171061A (en) Transparent polyester film
KR20160103413A (en) White polyester film with low surface gloss and method of manufacturing the same and reflective sheet using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees