JP2006187910A - Biaxially oriented laminated film - Google Patents

Biaxially oriented laminated film Download PDF

Info

Publication number
JP2006187910A
JP2006187910A JP2005000538A JP2005000538A JP2006187910A JP 2006187910 A JP2006187910 A JP 2006187910A JP 2005000538 A JP2005000538 A JP 2005000538A JP 2005000538 A JP2005000538 A JP 2005000538A JP 2006187910 A JP2006187910 A JP 2006187910A
Authority
JP
Japan
Prior art keywords
layer
polyester
weight
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005000538A
Other languages
Japanese (ja)
Other versions
JP2006187910A5 (en
JP4563822B2 (en
Inventor
Hiroshi Kusume
博 楠目
Atsushi Koyamamatsu
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005000538A priority Critical patent/JP4563822B2/en
Publication of JP2006187910A publication Critical patent/JP2006187910A/en
Publication of JP2006187910A5 publication Critical patent/JP2006187910A5/ja
Application granted granted Critical
Publication of JP4563822B2 publication Critical patent/JP4563822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented laminated film having a practically sufficient reflecting capacity in a visible region, stably formed even if fine particles are added in a high concentration, having excellent ply separation force and suitable as a base material for a reflecting panel for use in a liquid crystal display or an internal illumination type decorative illumination signboard. <P>SOLUTION: The biaxially oriented laminated film comprises a layer A consisting of a polyester composition, which is composed of 45-80 wt.% of fine particles with an average particle size of 0.1-10 μm and 20-55 wt.% of a polyester with an intrinsic viscosity of 0.45-0.65, and a layer B, which is adjacent to the layer A and consists of a polyester composition composed of 0.1-15 wt.% of fine particles with an average particle size of 0.1-10 μm and 85-99.9 wt.% of the polyester with an intrisic viscosity of 0.45-0.65, and the peel strength of the layers A and B is 200 g or above. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二軸配向積層フィルムに関し、詳しくは、高い延伸性能と高反射率を有する、二軸配向積層フィルムに関する。   The present invention relates to a biaxially oriented laminated film, and more particularly to a biaxially oriented laminated film having high stretching performance and high reflectance.

液晶ディスプレイにおいて従来、ディスプレイの背面からライトを当てるバックライト方式が採用されていた。近年、特開昭63−62104号公報に示されるようなサイドライト方式が、薄型で均一に照明できるメリットから、広く用いられるようになっている。このサイドライト方式とはある厚みを持ったアクリル板などのエッジより冷陰極管などの照明を当てる方式で、網点印刷のために、照明光が均一に分散され、均一な明るさをもった画面が得られる。この方式では、画面の背面でなくエッジ部に照明を設置するためバックライト方式より薄型にできる。この場合、照明光の画面背面への逃げを防ぐために画面の背面に反射板を設置する。この反射板には光の高い反射性および高い拡散性が要求される。   Conventionally, a liquid crystal display employs a backlight system in which light is applied from the back of the display. In recent years, a sidelight system as disclosed in Japanese Patent Laid-Open No. 63-62104 has been widely used because of its merit of being thin and uniform. This sidelight method is a method of illuminating a cold cathode tube or the like from an edge of an acrylic board or the like with a certain thickness. For halftone printing, the illumination light is evenly distributed and has a uniform brightness. A screen is obtained. This method can be made thinner than the backlight method because the lighting is installed not at the back of the screen but at the edge. In this case, in order to prevent the illumination light from escaping to the back of the screen, a reflector is installed on the back of the screen. This reflector is required to have high light reflectivity and high diffusibility.

この目的に沿う液晶ディスプレイ反射板用に適したポリエステルフィルムを得る方法として、非相溶樹脂を含有せしめる方法が知られている。これは比較的安価にできる方法である。たとえば特公平8−16175号公報に記載されている。   As a method for obtaining a polyester film suitable for a liquid crystal display reflector that meets this purpose, a method of incorporating an incompatible resin is known. This is a method that can be made relatively inexpensive. For example, it is described in Japanese Patent Publication No. 8-16175.

特開昭63−137927号公報JP-A-63-137927 特公平8−16175号公報Japanese Patent Publication No. 8-16175 特開平3−76727号公報Japanese Patent Laid-Open No. 3-76727 特開平3−132331号公報JP-A-3-132331

しかし、非相溶樹脂を添加するだけでは反射率を向上させる点で不十分であり、できあがった液晶ディスプレイの画面の明るさも不十分であった。また、酸化チタンなどの微粒子を高濃度添加した場合には、反射効率の向上こそ期待できるが、たとえば45重量%程度にまで高濃度添加した場合、微粒子濃度が非常に高いため、破断が多発し製膜することが非常に困難である。また、層中に高濃度の微粒子が存在するとフィルムの層間剥離力に劣り、層間で剥がれるという問題も生じ易い。   However, the addition of an incompatible resin is not sufficient in terms of improving the reflectance, and the brightness of the resulting liquid crystal display screen is also insufficient. In addition, when a high concentration of fine particles such as titanium oxide is added, an improvement in reflection efficiency can be expected. However, when a high concentration is added up to about 45% by weight, for example, the concentration of the fine particles is so high that breakage frequently occurs. It is very difficult to form a film. Further, when a high concentration of fine particles is present in the layer, the film is inferior in the delamination force, and the problem of peeling between the layers is likely to occur.

本発明は、かかる従来技術の問題点を解決することを課題とする。すなわち、本発明は、実用上十分な可視光領域の反射性能を備え、高濃度に微粒子を添加しても安定して製膜できる積層フィルムでありながら、高い層間剥離力を備える、液晶ディスプレイや内照式電飾看板用の反射板用に好適な、二軸配向積層フィルムを提供することを目的とする。   An object of the present invention is to solve the problems of the prior art. That is, the present invention provides a practically sufficient visible light region reflection performance, a liquid crystal display having a high delamination force while being a laminated film that can be stably formed even if fine particles are added at a high concentration. An object is to provide a biaxially oriented laminated film suitable for a reflector for an internally illuminated electric signboard.

すなわち、本発明は、平均粒子径0.1〜10μmの微粒子45〜80重量%および極限粘度数0.45〜0.65のポリエステル20〜55重量%からなるポリエステル組成物の層A、この層と隣接し平均粒子径0.1〜10μmの微粒子0.1〜15重量%および極限粘度数0.45〜0.65のポリエステル85〜99.9重量%からなるポリエステル組成物の層Bを含む積層フィルムであり、層Aと層Bとの剥離強度が200g以上である、二軸配向積層フィルムである。   That is, the present invention relates to a layer A of a polyester composition comprising 45 to 80% by weight of fine particles having an average particle size of 0.1 to 10 μm and 20 to 55% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65. A layer B of polyester composition consisting of 0.1 to 15% by weight of fine particles having an average particle size of 0.1 to 10 μm and 85 to 99.9% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65. It is a laminated film, and is a biaxially oriented laminated film having a peel strength between layer A and layer B of 200 g or more.

本発明によれば、実用上十分な可視光領域の反射性能を備え、高濃度に微粒子を添加しても安定して製膜できる積層フィルムでありながら、高い層間剥離力を備える、液晶ディスプレイや内照式電飾看板用の反射板用基材として好適な、二軸配向積層フィルムを提供することができる。   According to the present invention, a liquid crystal display having a high delamination force while being a laminated film that has a practically sufficient visible light region reflection performance and can be stably formed even if fine particles are added at a high concentration. A biaxially oriented laminated film that is suitable as a base material for a reflector for an internally illuminated electric signboard can be provided.

以下、本発明を詳細に説明する。
[ポリエステル]
ポリエステル組成物のポリエステルとしては、ジカルボン酸成分とジオール成分とからなるポリエステルを用いる。ジカルボン酸としては、例えばテレフタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸、4,4’―ジフェニルジカルボン酸、アジピン酸、セバシン酸を挙げることができる。ジオールとしては、例えばエチレングリコール、1,4―ブタンジオール、1,4―シクロヘキサンジメタノール、1,6―ヘキサンジオールを挙げることができる。これらのポリエステルの中で、ポリエチレンテレフタレートが好ましい。
Hereinafter, the present invention will be described in detail.
[polyester]
As the polyester of the polyester composition, a polyester composed of a dicarboxylic acid component and a diol component is used. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, and sebacic acid. Examples of the diol include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol. Of these polyesters, polyethylene terephthalate is preferred.

ポリエステルは、好ましくは共重合ポリエステル、特に好ましくは共重合ポリエチレンテレフタレートを用いる。共重合成分の割合は、全ジカルボン酸成分あたり、好ましくは4〜15モル%、さらに好ましくは5〜14モル%、さらに好ましくは3〜14モル%、特に好ましくは6〜13モル%である。共重合成分の割合が4モル%未満であると微粒子を含有する層、例えば45重量%以上の不活性粒子を含有する場合において、製膜できないことがあり好ましくない。共重合成分の割合が15モル%を超えると熱寸法安定性に欠けたフィルムになったり、製膜すらできない状況に陥る可能性があり好ましくない。   The polyester is preferably a copolyester, particularly preferably copolyethylene terephthalate. The ratio of the copolymerization component is preferably 4 to 15 mol%, more preferably 5 to 14 mol%, further preferably 3 to 14 mol%, and particularly preferably 6 to 13 mol% per total dicarboxylic acid component. When the proportion of the copolymerization component is less than 4 mol%, a layer containing fine particles, for example, 45% by weight or more of inert particles may not be formed, which is not preferable. If the proportion of the copolymerization component exceeds 15 mol%, it may be a film lacking in thermal dimensional stability, or a situation where even film formation cannot be achieved is not preferable.

ポリエステルが、ポリエチレンテレフレートである場合、共重合成分としては、例えば、イソフタル酸、2,6−ナフタレンジカルボン酸を挙げることができる。イソフタル酸および/または2,6−ナフタレンジカルボン酸を用い、合計の共重合量を4〜15モル%とした共重合ポリエチレンテレフタレートは、好ましいポリエステルである。
ポリエステルには、添加剤、たとえば、酸化防止剤、帯電防止剤、蛍光増白剤、紫外線吸収剤が添加されていてもよい。
When the polyester is polyethylene terephthalate, examples of the copolymer component include isophthalic acid and 2,6-naphthalenedicarboxylic acid. Copolymerized polyethylene terephthalate using isophthalic acid and / or 2,6-naphthalenedicarboxylic acid and having a total copolymerization amount of 4 to 15 mol% is a preferred polyester.
Additives such as antioxidants, antistatic agents, fluorescent whitening agents, and ultraviolet absorbers may be added to the polyester.

[層構成]
本発明において層Aは、平均粒子径0.1〜10μmの微粒子45〜80重量%および極限粘度数0.45〜0.65のポリエステル20〜55重量%からなるポリエステル組成物の層である。このポリエステルの極限粘度数は、好ましくは0.47〜0.63、さらに好ましくは0.49〜0.61である。極限粘度数が0.45に満たないと延伸性が極めて損なわれフィルムとならない場合があり、0.65を越えると、押出し圧力が高い、また溶融ろ過の際の圧力が高くなり過ぎるといった製造上の問題が生ずる。
[Layer structure]
In the present invention, layer A is a layer of a polyester composition comprising 45 to 80% by weight of fine particles having an average particle size of 0.1 to 10 μm and 20 to 55% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65. The intrinsic viscosity of this polyester is preferably 0.47 to 0.63, more preferably 0.49 to 0.61. If the intrinsic viscosity is less than 0.45, the stretchability may be extremely impaired and the film may not be formed. If it exceeds 0.65, the extrusion pressure is high, and the pressure during melt filtration is too high. Problem arises.

層Aと隣接する層Bは、平均粒子径0.1〜10μmの微粒子0.1〜15重量%および極限粘度数0.45〜0.65のポリエステル85〜99.9重量%からなるポリエステル組成物の層である。このポリエステルの極限粘度数は、好ましくは0.46〜0.63、さらに好ましくは0.47〜0.61である。極限粘度が0.45に満たないと延伸性が極めて損なわれフィルムとならない場合があり、0.65を越えると、押出し圧力が高い、また溶融ろ過の際の圧力が高くなり過ぎるといった製造上の問題が生ずる。
本発明においては層Aと層Bは隣接するが、層Aの両面に層Bが配置された3層構成の積層フィルムである態様が好ましい形態である。
Layer B adjacent to layer A is a polyester composition comprising 0.1 to 15% by weight of fine particles having an average particle size of 0.1 to 10 μm and 85 to 99.9% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65. It is a layer of things. The intrinsic viscosity of this polyester is preferably 0.46 to 0.63, more preferably 0.47 to 0.61. If the intrinsic viscosity is less than 0.45, the stretchability may be extremely impaired and the film may not be formed. If it exceeds 0.65, the extrusion pressure is high, and the pressure during melt filtration becomes too high. Problems arise.
In the present invention, the layer A and the layer B are adjacent to each other, but an embodiment of a laminated film having a three-layer structure in which the layer B is disposed on both sides of the layer A is a preferable embodiment.

[微粒子]
本発明において層Aは、平均粒子径0.1〜10μmの微粒子を45〜80重量%、好ましくは50〜70重量%、さらに好ましくは50〜60重量%含有する。45重量%未満であると反射率が低く、80重量%を超えると破断しやすく、フィルムとならない場合がある。
[Fine particles]
In the present invention, the layer A contains 45 to 80% by weight, preferably 50 to 70% by weight, more preferably 50 to 60% by weight of fine particles having an average particle size of 0.1 to 10 μm. If it is less than 45% by weight, the reflectivity is low, and if it exceeds 80% by weight, it tends to break and may not be a film.

層Bは、平均粒子径0.1〜10μmの微粒子を0.1〜15重量%、好ましくは0.5〜14重量、さらに好ましくは1.0〜13重量%含有する。0.1重量%未満であると最表層にも利用されることから滑り性が悪く、非常に扱い難いフィルムとなる。15重量%を超えると、延伸性が不安定になることがある。   Layer B contains 0.1 to 15% by weight, preferably 0.5 to 14% by weight, and more preferably 1.0 to 13% by weight of fine particles having an average particle size of 0.1 to 10 μm. If it is less than 0.1% by weight, it is also used for the outermost layer, so that the film has poor slipperiness and is very difficult to handle. If it exceeds 15% by weight, the stretchability may become unstable.

微粒子の平均粒子径は0.1〜10μmであるが、好ましくは0.1〜5μm、さらに好ましくは0.3〜3μmである。平均粒径が0.1μm未満であると分散性が極端に悪くなり、粒子の凝集が起こるため、生産工程上のトラブルが発生し易く、フィルムに粗大突起を形成し、光沢の劣ったフィルムになる可能性がある。10μmを超えるとフィルムの表面が粗くなったり、延伸性に劣ったフィルムになる。   The average particle diameter of the fine particles is 0.1 to 10 μm, preferably 0.1 to 5 μm, and more preferably 0.3 to 3 μm. If the average particle size is less than 0.1 μm, the dispersibility becomes extremely poor and the aggregation of the particles occurs. Therefore, troubles in the production process are likely to occur, and coarse projections are formed on the film, resulting in a film with poor gloss. There is a possibility. When it exceeds 10 μm, the film surface becomes rough or the film has poor stretchability.

微粒子としては、反射性能を向上させる観点から、白色顔料を用いることが好ましい。微粒子としては、酸化チタン、硫酸バリウム、炭酸カルシウム、二酸化珪素を例示することができる。なお、酸化チタンは、ルチル型のものが好ましい。これはルチル型のものは、アナターゼ型のものよりも光線を長時間ポリエステルフィルムに照射した後の黄変が少なく、色差の変化を抑制するのに適しているからである。   As the fine particles, it is preferable to use a white pigment from the viewpoint of improving the reflection performance. Examples of the fine particles include titanium oxide, barium sulfate, calcium carbonate, and silicon dioxide. The titanium oxide is preferably a rutile type. This is because the rutile type has less yellowing after irradiating the polyester film with light for a longer time than the anatase type, and is suitable for suppressing the change in color difference.

微粒子のなかでも反射率の向上の観点からは硫酸バリウムが特に好ましい。硫酸バリウムは板状、球状いずれの粒子形状でも良い。特にルチル型酸化チタンは、分散性を向上させるために、ステアリン酸等の脂肪酸およびその誘導体等を用いて処理して用いると、フィルムの光沢度を一層向上させることができるので好ましい。   Among the fine particles, barium sulfate is particularly preferable from the viewpoint of improving the reflectance. Barium sulfate may have a plate-like or spherical particle shape. In particular, rutile titanium oxide is preferably used after treatment with a fatty acid such as stearic acid or a derivative thereof in order to improve dispersibility, since the glossiness of the film can be further improved.

ルチル型酸化チタンを用いる場合には、ポリエステルに添加する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行うことが好ましい。精製プロセスの工業的手段としては、粉砕手段で例えばジェットミル、ボールミルを適用することができ、分級手段としては、例えば乾式もしくは湿式の遠心分離を適用することができる。これらの手段は2種以上を組み合わせ、段階的に精製しても良い。   When rutile titanium oxide is used, it is preferable to adjust the particle size and remove coarse particles using a purification process before adding to the polyester. As industrial means of the purification process, for example, a jet mill or a ball mill can be applied as a pulverizing means, and as a classification means, for example, dry or wet centrifugation can be applied. Two or more of these means may be combined and purified step by step.

微粒子をポリエステルに含有させる方法としては各種の方法を用いることができる。その代表的な方法として、下記のような方法を挙げることができる。
(ア)ポリエステル合成時のエステル交換反応もしくはエステル化反応終了前に添加、もしくは重縮合反応開始前に添加する方法。
(イ)ポリエステルに添加し、溶融混練する方法。
(ウ)上記(ア)または(イ)の方法において不活性粒子を多量添加したマスターペレットを製造し、これらと添加剤を含有しないポリエステルとを混練して所定量の添加物を含有させる方法。
(エ)上記(ウ)のマスターペレットをそのまま使用する方法。
Various methods can be used as a method of incorporating the fine particles into the polyester. The following method can be mentioned as the typical method.
(A) A method of adding before transesterification or esterification reaction at the time of polyester synthesis or adding before the start of polycondensation reaction.
(A) A method of adding to polyester and melt-kneading.
(C) A method of producing master pellets to which a large amount of inert particles are added in the method (a) or (b) above, and kneading these with a polyester not containing an additive to contain a predetermined amount of additive.
(D) A method of using the master pellet of (c) as it is.

上記(ウ)または(エ)の方法をとることが好ましい。なお、上記(ア)の方法を用いる場合には、酸化チタンにおいてはグリコールに分散したスラリーとして、反応系に添加することが好ましい。   It is preferable to take the above method (c) or (d). In addition, when using the method of said (a), it is preferable to add to a reaction system as a slurry disperse | distributed to glycol in titanium oxide.

一般的に微粒子は、凝集して粗大凝集粒子となることが多い。本発明では、粗大凝集粒子の個数を減らすために、製膜時のフィルターとして線径15μm以下のステンレス鋼細線よりなる平均目開き10〜100μm、好ましくは平均目開き15〜50μmの不織布型フィルターを用い、溶融ポリマーを濾過することが好ましい。   In general, fine particles often aggregate to become coarse aggregate particles. In the present invention, in order to reduce the number of coarse agglomerated particles, a non-woven filter having an average opening of 10 to 100 μm, preferably an average opening of 15 to 50 μm, made of stainless steel fine wire having a wire diameter of 15 μm or less is used as a filter during film formation. It is preferred to use and filter the molten polymer.

[添加剤]
ポリエステル組成物には、添加剤として、例えば酸化アルミニウム、酸化マグネシウムやアクリル樹脂、尿素樹脂、メラミン樹脂のような有機フィラー、ポリエチレン、ポリプロピレン、エチレン−プロピレンターポリマー、オレフィン系アイオノマーのような他の樹脂、酸化防止剤、紫外線吸収剤を本発明の範囲を逸脱しない範囲内で、必要に応じて配合してもよい。
[Additive]
In the polyester composition, other additives such as aluminum oxide, magnesium oxide, acrylic resin, urea resin, organic filler such as melamine resin, polyethylene, polypropylene, ethylene-propylene terpolymer, olefinic ionomer as additives. In addition, an antioxidant and an ultraviolet absorber may be blended as necessary within a range not departing from the scope of the present invention.

蛍光増白剤を用いる場合、ポリエステル組成物に対する濃度として、好ましくは0.005〜0.5重量%、さらに好ましくは0.01〜0.3重量%の範囲で配合するとよい。0.005重量%未満では350nm付近の波長域の反射率が十分でなく、反射板とした時に照度が十分なものとならないことから好ましくない。0.5重量%を越えると、蛍光増白剤の持つ特有の色が現れてしまうため好ましくない。   When using a fluorescent brightening agent, the concentration relative to the polyester composition is preferably 0.005 to 0.5% by weight, more preferably 0.01 to 0.3% by weight. If it is less than 0.005% by weight, the reflectance in the wavelength region near 350 nm is not sufficient, and the illuminance is not sufficient when the reflector is used. If it exceeds 0.5% by weight, a characteristic color of the fluorescent brightening agent appears, which is not preferable.

蛍光増白剤としては、例えばOB−1(イーストマン社製)、Uvitex−MD(チバガイギー社製)、JP−Conc(日本化学工業所製)を用いることができる。
また、必要に応じて酸化防止剤、紫外線吸収剤、蛍光増白剤等を有する塗剤を本フィルムの少なくとも片面に塗布することもできる。
As the fluorescent brightening agent, for example, OB-1 (manufactured by Eastman), Uvitex-MD (manufactured by Ciba Geigy), or JP-Conc (manufactured by Nippon Chemical Industry Co., Ltd.) can be used.
Further, if necessary, a coating agent having an antioxidant, an ultraviolet absorber, a fluorescent brightening agent, and the like can be applied to at least one surface of the film.

[積層]
本発明の二軸配向積層フィルムは、A層/B層の2層構成を含む積層フィルムであり、例えば、A層/B層の2層構成であっても良く、B層/A層/B層の3層構成であってよい。特にB層/A層/B層の3層構成は、良好な反射特性が得られることから好ましい。
[Lamination]
The biaxially oriented laminated film of the present invention is a laminated film including a two-layer constitution of A layer / B layer, and may be a two-layer constitution of A layer / B layer, for example, B layer / A layer / B It may be a three-layer structure of layers. In particular, a three-layer structure of B layer / A layer / B layer is preferable because good reflection characteristics can be obtained.

A層とB層との間の層間剥離強度は、200g以上、好ましくは220g以上、さらに好ましくは240g以上、最も好ましくは250g以上である。200g未満であるとフィルムの傷などが起点となり、剥離し易い。層間剥離強度の上限は、特に定めはしないが例えば高々1000gであろう。1000gを越えるようなフィルムの作製は、層間の密着性から考慮すると極めて難しいからである。   The delamination strength between the A layer and the B layer is 200 g or more, preferably 220 g or more, more preferably 240 g or more, and most preferably 250 g or more. If it is less than 200 g, scratches on the film will be the starting point, and it will be easy to peel off. The upper limit of the delamination strength is not specifically defined, but will be 1000 g at most. This is because production of a film exceeding 1000 g is extremely difficult in consideration of adhesion between layers.

またフィルムの片面または両面に、他の機能を付与するために、他の層をさらに積層した積層体としても良い。ここでいう他の層として、透明なポリエステル樹脂層、金属薄膜やハードコート層、インク受容層を例示することができる。   Moreover, in order to provide other functions to one side or both sides of the film, a laminate in which other layers are further laminated may be used. Examples of other layers herein include a transparent polyester resin layer, a metal thin film, a hard coat layer, and an ink receiving layer.

[製造方法]
本発明のフィルムを製造する方法の一例を説明する。ダイから溶融したポリマーをフィードブロックを用いた同時多層押出し法により、積層未延伸シートを製造する。すなわちA層を形成するポリマーの溶融物とB層を形成するポリマーの溶融物を、フィードブロックを用いて例えばB層/A層/B層となるように積層し、ダイに展開して押出しを実施する。この時、フィードブロックで積層されたポリマーは積層された形態を維持している。また、マルチマニホルールドダイでも製膜可能であるが、剥離強度を上げる点ではフィードブロックを用いる方がより好ましい。
[Production method]
An example of the method for producing the film of the present invention will be described. A laminated unstretched sheet is produced by a simultaneous multilayer extrusion method using a feed block from a polymer melted from a die. That is, the polymer melt for forming the A layer and the polymer melt for forming the B layer are laminated to form, for example, B layer / A layer / B layer using a feed block, and developed on a die and extruded. carry out. At this time, the polymer laminated by the feed block maintains the laminated form. A multi-manifold die can also be used to form a film, but it is more preferable to use a feed block in terms of increasing the peel strength.

ダイより押出された未延伸シートは、キャスティングドラムで冷却固化され、未延伸フィルムとなる。この未延伸状フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。この延伸は2個以上のロールの周速差を利用して行うのが好ましい。延伸温度はポリエステルのガラス転移点(Tg)以上の温度、更にはTg〜70℃高い温度とするのが好ましい。延伸倍率は、用途の要求特性にもよるが、縦方向、縦方向と直交する方向(以降、横方向と呼ぶ)ともに、好ましくは2.5〜4.0倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満とするとフィルムの厚み斑が悪くなり、4.0倍を超えると製膜中に破断が発生し易くなり好ましくない。   The unstretched sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. This unstretched film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls. The stretching temperature is preferably a temperature equal to or higher than the glass transition point (Tg) of the polyester, and more preferably a temperature higher by Tg to 70 ° C. The draw ratio is preferably 2.5 to 4.0 times, more preferably 2.8 to both the longitudinal direction and the direction orthogonal to the longitudinal direction (hereinafter referred to as the transverse direction), although it depends on the required characteristics of the application. 3.9 times. If it is less than 2.5 times, the thickness unevenness of the film is deteriorated, and if it exceeds 4.0 times, breakage tends to occur during film formation, which is not preferable.

縦延伸後のフィルムは、続いて、横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これら処理はフィルムを走行させながら行う。横延伸の処理はポリエステルのガラス転移点(Tg)より高い温度から始める。そしてTgより(5〜70)℃高い温度まで昇温しながら行う。横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが通常逐次的に昇温する。例えばテンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、ゾーン毎に所定温度の加熱媒体を流すことで昇温する。横延伸の倍率は、この用途の要求特性にもよるが、好ましくは2.5〜4.5倍、さらに好ましくは2.8〜3.9倍である。2.5倍未満であるとフィルムの厚み斑が悪くなり良好なフィルムが得られず、4.5倍を超えると製膜中に破断が発生し易くなる。   The film after longitudinal stretching is subsequently subjected to lateral stretching, heat setting, and thermal relaxation to form a biaxially oriented film. These treatments are performed while the film is running. The transverse stretching process starts from a temperature higher than the glass transition point (Tg) of the polyester. And it is performed while raising the temperature to (5 to 70) ° C. higher than Tg. Although the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially. For example, the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone. The transverse stretching ratio is preferably 2.5 to 4.5 times, more preferably 2.8 to 3.9 times, although it depends on the required characteristics of this application. If the thickness is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained.

横延伸後のフィルムは両端を把持したまま(Tm−10)〜(Tm−100)℃で定幅または10%以下の幅減少下で熱処理して熱収縮率を低下させるのがよい。これより高い温度であるとフィルムの平面性が悪くなり、厚み斑が大きくなり好ましくない。また、熱処理温度が(Tm−80)℃より低いと熱収縮率が大きくなることがある。また、熱固定後フィルム温度を常温に戻す過程で(Tm−10)〜(Tm−100)℃以下の領域の熱収縮量を調整するために、把持しているフィルムの両端を切り落し、フィルム縦方向の引き取り速度を調整し、縦方向に弛緩させることができる。弛緩させる手段としてはテンター出側のロール群の速度を調整する。弛緩させる割合として、テンターのフィルムライン速度に対してロール群の速度ダウンを行い、好ましくは0.1〜1.5%の速度ダウンすなわち弛緩(以降この値を弛緩率という)を実施する。より好ましくは0.2〜1.2%の弛緩率、さらに好ましくは0.3〜1.0%の弛緩率を実施し縦方向の熱収縮率を調整する。また、フィルム横方向は両端を切り落すまでの過程で幅減少させて、所望の熱収縮率を得ることもできる。   The film after transverse stretching is preferably heat treated at (Tm-10) to (Tm-100) ° C. with a constant width or a width reduction of 10% or less while lowering both ends to reduce the thermal shrinkage. When the temperature is higher than this, the flatness of the film is deteriorated, and the thickness unevenness becomes large, which is not preferable. On the other hand, if the heat treatment temperature is lower than (Tm-80) ° C., the thermal shrinkage rate may increase. Moreover, in order to adjust the thermal shrinkage in the region of (Tm-10) to (Tm-100) ° C. or lower in the process of returning the film temperature to room temperature after heat setting, both ends of the film being held are cut off, The direction take-up speed can be adjusted and relaxed in the vertical direction. As a means for relaxing, the speed of the roll group on the tenter exit side is adjusted. As the rate of relaxation, the speed of the roll group is reduced with respect to the film line speed of the tenter, and preferably the speed is reduced by 0.1 to 1.5%, that is, relaxation (hereinafter this value is referred to as the relaxation rate). More preferably, a relaxation rate of 0.2 to 1.2%, more preferably a relaxation rate of 0.3 to 1.0% is performed to adjust the heat shrinkage rate in the longitudinal direction. Further, the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, so that a desired heat shrinkage rate can be obtained.

このようにして得られる本発明の積層フィルムの85℃の熱収縮率は、直交する2方向ともに0.7%以下、さらに好ましくは0.6%以下、最も好ましくは0.5%以下の達成が可能である。2軸延伸後のフィルムの厚みは、好ましくは25〜250μm、さらに好ましくは30〜220μm、さらに好ましくは40〜200μmである。25μm以下であると、反射率が低下し、250μmを超えるとこれ以上厚くしても反射率の上昇が望めないことから好ましくない。   The laminated film of the present invention thus obtained has a heat shrinkage rate of 85 ° C. of 0.7% or less, more preferably 0.6% or less, and most preferably 0.5% or less in two orthogonal directions. Is possible. The thickness of the film after biaxial stretching is preferably 25 to 250 μm, more preferably 30 to 220 μm, and still more preferably 40 to 200 μm. If the thickness is 25 μm or less, the reflectance is lowered, and if it exceeds 250 μm, the reflectance cannot be increased even if it is thicker than this, which is not preferable.

本発明の積層白色ポリエステルフィルムの少なくとも一方の表面の反射率は波長400〜700nmの平均反射率で90%以上、さらに好ましくは92%以上、さらに好ましくは94%以上である。90%未満であると十分な画面の輝度を得ることができない。   The reflectance of at least one surface of the laminated white polyester film of the present invention is 90% or more, more preferably 92% or more, more preferably 94% or more, with an average reflectance of a wavelength of 400 to 700 nm. If it is less than 90%, sufficient screen brightness cannot be obtained.

以下、実施例により本発明を詳述する。
なお、各特性値は以下の方法で測定した。
(1)フィルム厚み
フィルムサンプルをエレクトリックマイクロメーター(アンリツ製 K−402B)にて、10点厚みを測定し、平均値をフィルムの厚みとした。
Hereinafter, the present invention is described in detail by way of examples.
Each characteristic value was measured by the following method.
(1) Film thickness A film sample was measured for 10-point thickness with an electric micrometer (K-402B manufactured by Anritsu), and the average value was taken as the thickness of the film.

(2)各層の厚み
サンプルを三角形に切り出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。そして、包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を50nm厚の薄膜切片にした後、透過型電子顕微鏡を用いて、加速電圧100kvにて観察撮影し、写真から各層の厚みを測定し、平均厚みを求めた。
(2) Thickness of each layer A sample was cut into a triangle, fixed in an embedded capsule, and then embedded in an epoxy resin. Then, after embedding the embedded sample with a microtome (ULTRACUT-S), a cross section parallel to the longitudinal direction was made into a thin film section having a thickness of 50 nm, and then observed and photographed with a transmission electron microscope at an acceleration voltage of 100 kv. The thickness of each layer was measured and the average thickness was determined.

(3)反射率
分光光度計(島津製作所製UV−3101PC)に積分球を取り付け、BaS0白板を100%とした時の反射率を400〜700nmにわたって測定した。得られたチャートより2nm間隔で反射率を読み取った。上記の範囲内で平均値を求めた。
(3) an integrating sphere attached to the reflectance spectrophotometer (Shimadzu UV-3101PC), the reflectance when BaS0 4 white plate was 100% was measured over 400 to 700 nm. The reflectance was read from the obtained chart at intervals of 2 nm. An average value was determined within the above range.

(4)延伸性
縦方向2.9〜3.4倍、横方向3.5〜3.7倍に延伸して製膜し、安定に製膜できるか観察した。下記基準で評価した。
○:1時間以上安定に製膜できる
△:10分間以上1時間未満の間に切断が生ずる。
×:10分間以内に切断が発生し、安定な製膜ができない。
(4) Stretchability The film was stretched in the longitudinal direction of 2.9 to 3.4 times and in the lateral direction of 3.5 to 3.7 times to observe whether it could be stably formed. Evaluation was made according to the following criteria.
○: Stable film formation for 1 hour or more Δ: Cutting occurs for 10 minutes or more and less than 1 hour.
X: Cutting occurs within 10 minutes, and stable film formation is not possible.

(5)熱収縮率
85℃に設定されたオーブン中でフィルムを無緊張状態で30分間保持し、加熱処理前後の標点間距離を測定し、下記式により熱収縮率(85℃熱収縮率)を算出した。
熱収縮率%=((L0−L)/L0)×100
L0:熱処理前の標点間距離
L :熱処理後の標点間距離
(5) Thermal shrinkage rate The film was held in an oven set at 85 ° C. for 30 minutes in an unstrained state, the distance between the gauge points before and after the heat treatment was measured, and the thermal shrinkage rate (85 ° C. thermal shrinkage rate) according to the following formula: ) Was calculated.
Thermal shrinkage% = ((L0−L) / L0) × 100
L0: Distance between gauge points before heat treatment L: Distance between gauge points after heat treatment

(6)ガラス転移点(Tg)、融点(Tm)
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20m/分で測定を行った。
(6) Glass transition point (Tg), melting point (Tm)
Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 m / min.

(7)フィルムの層間剥離強度
長さ150mm、幅20mmの短冊状にフィルムを切り出し測定したい層と層とを予め50mm剥離しておき、引張り試験機のチャックにそれぞれ挟み込み、100mm/分で引張り、フラットな部分をチャートから読み取り、5回測定の平均値をその層間剥離強度とした。
(7) Interlaminar peel strength of film A strip of film having a length of 150 mm and a width of 20 mm was cut in advance by 50 mm from the layer to be measured, sandwiched between chucks of a tensile tester, and pulled at 100 mm / min. The flat part was read from the chart, and the average value of five measurements was taken as the delamination strength.

(8)極限粘度数測定
剥離させた各層を約0.1gずつ精秤し、オルトクロロフェノール25mlに加熱溶解させる。放冷後遠心分離機にて微粒子を分離し、粘度計にて測定した。その後、この得られた値Aを下記式にて補正を行った。
極限粘度数=A/{(100−微粒子濃度%)/100}
(8) Intrinsic viscosity number measurement About 0.1 g of each peeled layer is precisely weighed and dissolved in 25 ml of orthochlorophenol by heating. After standing to cool, fine particles were separated with a centrifuge and measured with a viscometer. Thereafter, the obtained value A was corrected by the following equation.
Intrinsic viscosity number = A / {(100−fine particle concentration%) / 100}

(9)微粒子の平均粒子径
HORIBA製LA−750パーティクルサイズアナライザー(Particle Size Analyzer)を用いて測定した。50マスパーセントに相当する粒子径を読み取り、この値を平均粒子径とした。
(9) Average particle diameter of fine particles The average particle diameter was measured using an LA-750 particle size analyzer (Particle Size Analyzer) manufactured by HORIBA. The particle diameter corresponding to 50 mass percent was read, and this value was taken as the average particle diameter.

[実施例1〜4]
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの酸成分に対して12mol%)、エチレングリコール96重量部、ジエチレングリコール3.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150〜235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し重縮合反応を行った。得られた共重合ポリエステルの極限粘度数は表1に記す通りであり、融点は224℃、ジエチレングリコール成分量は2.5wt%であった。このポリエステル樹脂に表1に示す微粒子を添加し、それぞれ270℃に加熱された2台の押出機に供給し、A層ポリマー、B層ポリマーをA層とB層がB層/A層/B層となるような3層フィードブロック装置を使用して合流させ、その積層状態を保持したままダイスよりシート状に成形した。さらにこのシートを表面温度25℃の冷却ドラムで冷却固化した未延伸フィルムを表2に記載された温度にて加熱し長手方向(縦方向)に延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に直交する方向(横方向)に延伸した。その後テンター内で表2の温度で熱固定を行い、表2に示す温度領域にて記入された縦方向の弛緩、横方向の幅入れを行い、室温まで冷やして二軸延伸フィルムを得た。得られたフィルムの反射板基材としての物性は表2の通りであった。
[Examples 1 to 4]
132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% with respect to the acid component of the polyester), 96 parts by weight of ethylene glycol, 3.0 parts by weight of diethylene glycol, 0.05 part by weight of manganese acetate, 0. 012 parts by weight were charged into a rectification column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor. Subsequently, while stirring, the pressure in the reactor was gradually reduced to 0.5 mmHg and the temperature was raised to 290 ° C. to carry out a polycondensation reaction. The intrinsic viscosity of the obtained copolyester was as shown in Table 1, the melting point was 224 ° C., and the diethylene glycol component amount was 2.5 wt%. The fine particles shown in Table 1 are added to this polyester resin and supplied to two extruders each heated to 270 ° C., and the A layer polymer and B layer polymer are composed of B layer / A layer / B The layers were merged using a three-layer feed block device so as to form layers, and formed into a sheet shape from a die while maintaining the laminated state. Further, an unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 25 ° C. was heated at a temperature described in Table 2 to be stretched in the longitudinal direction (longitudinal direction), and cooled with a roll group at 25 ° C. Subsequently, while holding both ends of the longitudinally stretched film with clips, the film was drawn into a tenter and stretched in a direction (lateral direction) perpendicular to the longitudinal direction in an atmosphere heated to 120 ° C. Thereafter, heat setting was performed in the tenter at the temperature shown in Table 2, longitudinal relaxation and lateral width entered in the temperature range shown in Table 2 were performed, and the resultant was cooled to room temperature to obtain a biaxially stretched film. Table 2 shows the physical properties of the obtained film as a reflector substrate.

Figure 2006187910
Figure 2006187910

Figure 2006187910
Figure 2006187910

[実施例5〜6]
酢酸マンガンを0.05重量部を酢酸チタン0.02重量部に変更し、テレフタル酸ジメチル360重量部、2,6−ナフタレンジカルボン酸ジメチル62重量部とする以外は、実施例1に同様に実施し共重合ポリエステルを得た。得られた共重合ポリエステルの極限粘度数は表1に示す通りであり、融点は225℃、ジエチレングリコール成分量は2.5wt%であった。このポリエステル樹脂に表1に示す微粒子を添加し、実施例1と同様にして、表2に示すようにフィルムを作製した。
[Examples 5 to 6]
The same procedure as in Example 1 was carried out except that 0.05 part by weight of manganese acetate was changed to 0.02 part by weight of titanium acetate to give 360 parts by weight of dimethyl terephthalate and 62 parts by weight of dimethyl 2,6-naphthalenedicarboxylate. A copolyester was obtained. The intrinsic viscosity of the obtained copolyester was as shown in Table 1, the melting point was 225 ° C., and the diethylene glycol component amount was 2.5 wt%. Fine particles shown in Table 1 were added to this polyester resin, and films were produced as shown in Table 2 in the same manner as in Example 1.

[実施例7〜8]
イソフタル酸ジメチルをポリエステルの酸成分(ここではテレフタル酸ジメチルとイソフタル酸ジメチル)に対してそれぞれ4mol%、15mol%に変更した以外、実施例5同様に実施した。結果を表1に示す。
[Examples 7 to 8]
The same procedure as in Example 5 was performed, except that dimethyl isophthalate was changed to 4 mol% and 15 mol%, respectively, with respect to the acid component of the polyester (here, dimethyl terephthalate and dimethyl isophthalate). The results are shown in Table 1.

[比較例1]
ジメチルテレフタレート85重量部、エチレングリコール60重量部とを酢酸カルシウム0.09重量部を触媒として常法に従い、エステル交換反応をせしめた後、リン化合物としてポリマーに対し0.18重量%となるようにトリメチルホスフェート10重量%含有するエチレングリコール溶液を添加し、次いで重合触媒として三酸化アンチモン0.03重量部を添加した。その後、高温減圧下にて常法に従い重縮合反応を行い極限粘度数は表1に示すポリエチレンテレフタレートを得た。融点は257℃、ジエチレングリコール成分量は1.2wt%であった。この樹脂に表1に示した微粒子を添加し、A、Bの層とした。表2に記載した条件にて作製した。
[Comparative Example 1]
After transesterification according to a conventional method using 85 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol as a catalyst using 0.09 part by weight of calcium acetate, 0.18% by weight as a phosphorus compound with respect to the polymer is obtained. An ethylene glycol solution containing 10% by weight of trimethyl phosphate was added, and then 0.03 part by weight of antimony trioxide was added as a polymerization catalyst. Thereafter, a polycondensation reaction was carried out according to a conventional method under high temperature and reduced pressure to obtain polyethylene terephthalate having intrinsic viscosity shown in Table 1. The melting point was 257 ° C., and the diethylene glycol component amount was 1.2 wt%. The fine particles shown in Table 1 were added to this resin to form layers A and B. It produced on the conditions described in Table 2.

[比較例2]
比較例1と同様にして、表1、2に示す条件にて実施した。
[Comparative Example 2]
It carried out on the conditions shown in Table 1, 2 like the comparative example 1.

[比較例3、4]
比較例1と同様にして、表1、2に示す条件で製膜した。延伸性能が極めて低く、製膜時の切断が多発した。
[Comparative Examples 3 and 4]
In the same manner as in Comparative Example 1, films were formed under the conditions shown in Tables 1 and 2. Stretching performance was extremely low, and cutting during film formation occurred frequently.

[比較例5、6]
二酸化ゲルマニウム0.04重量部を三酸化アンチモン0.04重量部に変更する以外は実施例1と同様にして共重合ポリエステル樹脂を得た。この樹脂を用いて実施例1と同様にして表1、2に示す通り実施した。
[Comparative Examples 5 and 6]
A copolymer polyester resin was obtained in the same manner as in Example 1 except that 0.04 part by weight of germanium dioxide was changed to 0.04 part by weight of antimony trioxide. Using this resin, the same procedure as in Example 1 was performed as shown in Tables 1 and 2.

[比較例7]
比較例1の樹脂を用い、3層フィルムの表層(表面と裏面)として無機微粒子として炭酸カルシウムを14重量%添加し、芯層の樹脂としてポリエチレンテレフタレートに非相溶樹脂であるポリメチルペンテン樹脂を10重量%、ポリエチレングリコール1重量%混合し、比較例1と同様にしてフィルムを作製した。表1、2に示すが、反射率が劣った結果であった。
[Comparative Example 7]
Using the resin of Comparative Example 1, 14% by weight of calcium carbonate was added as inorganic fine particles as the surface layers (front and back surfaces) of the three-layer film, and polymethylpentene resin, which is an incompatible resin with polyethylene terephthalate, was used as the core layer resin. A film was prepared in the same manner as in Comparative Example 1 by mixing 10% by weight and 1% by weight of polyethylene glycol. As shown in Tables 1 and 2, the reflectance was inferior.

本発明の二軸配向積層フィルムは、光線の反射率が高く、各種の反射板、中でも特に液晶ディスプレイの反射板や太陽電池のバックシート、内照式電飾看板の反射板用基材として最適に用いることができる。   The biaxially oriented laminated film of the present invention has high light reflectivity, and is most suitable as a reflector for various reflectors, especially for liquid crystal display reflectors, solar cell backsheets, and internally illuminated signboards. Can be used.

また、紙代替、すなわちカード、ラベル、シール、宅配伝票、ビデオプリンタ用受像紙、インクジェット、バーコードプリンタ用受像紙、ポスター、地図、無塵紙、表示板、白板、感熱転写、オフセット印刷、テレフォンカード、ICカードなどの各種印刷記録に用いられる受容シートの基材としても用いることができる。   Also, paper replacement, ie cards, labels, stickers, home delivery slips, video printer image paper, ink jet, barcode printer image paper, posters, maps, dust-free paper, display boards, white boards, thermal transfer, offset printing, telephone cards It can also be used as a base material for receiving sheets used for various printing records such as IC cards.

Claims (4)

平均粒子径0.1〜10μmの微粒子45〜80重量%および極限粘度数0.45〜0.65のポリエステル20〜55重量%からなるポリエステル組成物の層A、この層と隣接し平均粒子径0.1〜10μmの微粒子0.1〜15重量%および極限粘度数0.45〜0.65のポリエステル85〜99.9重量%からなるポリエステル組成物の層Bを含む積層フィルムであり、層Aと層Bとの剥離強度が200g以上である、二軸配向積層フィルム。   Layer A of a polyester composition comprising 45 to 80% by weight of fine particles having an average particle size of 0.1 to 10 μm and 20 to 55% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65, an average particle size adjacent to this layer A laminated film comprising layer B of a polyester composition comprising 0.1 to 15% by weight of fine particles of 0.1 to 10 μm and 85 to 99.9% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65, A biaxially oriented laminated film having a peel strength between A and layer B of 200 g or more. 平均粒子径0.1〜10μmの微粒子45〜80重量%および極限粘度数0.45〜0.65のポリエステル20〜55重量%からなるポリエステル組成物の層Aと、この層の両面に設けられた平均粒子径0.1〜10μmの微粒子0.1〜15重量%および極限粘度数0.45〜0.65のポリエステル85〜99.9重量%からなるポリエステル組成物の層Bとからなる積層フィルムであり、層Aと層Bとの剥離強度が200g以上である、二軸配向積層フィルム。   A layer A of a polyester composition comprising 45 to 80% by weight of fine particles having an average particle size of 0.1 to 10 μm and 20 to 55% by weight of a polyester having an intrinsic viscosity of 0.45 to 0.65 is provided on both sides of this layer. A layer B comprising a polyester composition layer B comprising 0.1 to 15% by weight of fine particles having an average particle size of 0.1 to 10 μm and 85 to 99.9% by weight of polyester having an intrinsic viscosity of 0.45 to 0.65 A biaxially oriented laminated film which is a film and has a peel strength between layer A and layer B of 200 g or more. A層および/またはB層のポリエステルが、4〜15モル%の共重合成分を含む共重合ポリエチレンテレフタレートである、請求項1または2に記載の二軸配向積層フィルム。   The biaxially oriented laminated film according to claim 1 or 2, wherein the polyester of the A layer and / or the B layer is a copolymerized polyethylene terephthalate containing a copolymer component of 4 to 15 mol%. 反射率が90%以上である、請求項1〜3のいずれかに記載の二軸配向積層フィルム。   The biaxially oriented laminated film according to any one of claims 1 to 3, wherein the reflectance is 90% or more.
JP2005000538A 2005-01-05 2005-01-05 Biaxially oriented laminated film Active JP4563822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000538A JP4563822B2 (en) 2005-01-05 2005-01-05 Biaxially oriented laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000538A JP4563822B2 (en) 2005-01-05 2005-01-05 Biaxially oriented laminated film

Publications (3)

Publication Number Publication Date
JP2006187910A true JP2006187910A (en) 2006-07-20
JP2006187910A5 JP2006187910A5 (en) 2007-06-07
JP4563822B2 JP4563822B2 (en) 2010-10-13

Family

ID=36795534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000538A Active JP4563822B2 (en) 2005-01-05 2005-01-05 Biaxially oriented laminated film

Country Status (1)

Country Link
JP (1) JP4563822B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083369A (en) * 2007-10-01 2009-04-23 Teijin Dupont Films Japan Ltd Laminated film
JP2009126094A (en) * 2007-11-26 2009-06-11 Teijin Dupont Films Japan Ltd Laminated film
JP2009212432A (en) * 2008-03-06 2009-09-17 Teijin Dupont Films Japan Ltd White polyester film for solar cell backside protection film
JP2010224446A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd White film for reflection film of backlight unit of liquid crystal display device
JP2010254779A (en) * 2009-04-23 2010-11-11 Teijin Dupont Films Japan Ltd White polyester film for rear surface protection sheet for solar cell
JP2011011370A (en) * 2009-06-30 2011-01-20 Teijin Dupont Films Japan Ltd White reflecting film
JP5970815B2 (en) * 2010-08-27 2016-08-17 東レ株式会社 White laminated film manufacturing method and white laminated polyester film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137927A (en) * 1986-12-01 1988-06-09 Toray Ind Inc White polyester film
JPH0216051A (en) * 1988-07-05 1990-01-19 Toray Ind Inc Composite film and image forming material
JPH0376727A (en) * 1989-08-17 1991-04-02 Toray Ind Inc White polyester film
JP2001232737A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd White laminated polyester film
JP2002080620A (en) * 2000-09-08 2002-03-19 Toray Ind Inc Polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137927A (en) * 1986-12-01 1988-06-09 Toray Ind Inc White polyester film
JPH0216051A (en) * 1988-07-05 1990-01-19 Toray Ind Inc Composite film and image forming material
JPH0376727A (en) * 1989-08-17 1991-04-02 Toray Ind Inc White polyester film
JP2001232737A (en) * 2000-02-22 2001-08-28 Toyobo Co Ltd White laminated polyester film
JP2002080620A (en) * 2000-09-08 2002-03-19 Toray Ind Inc Polyester film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083369A (en) * 2007-10-01 2009-04-23 Teijin Dupont Films Japan Ltd Laminated film
JP2009126094A (en) * 2007-11-26 2009-06-11 Teijin Dupont Films Japan Ltd Laminated film
JP2009212432A (en) * 2008-03-06 2009-09-17 Teijin Dupont Films Japan Ltd White polyester film for solar cell backside protection film
JP2010224446A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd White film for reflection film of backlight unit of liquid crystal display device
JP2010254779A (en) * 2009-04-23 2010-11-11 Teijin Dupont Films Japan Ltd White polyester film for rear surface protection sheet for solar cell
JP2011011370A (en) * 2009-06-30 2011-01-20 Teijin Dupont Films Japan Ltd White reflecting film
JP5970815B2 (en) * 2010-08-27 2016-08-17 東レ株式会社 White laminated film manufacturing method and white laminated polyester film

Also Published As

Publication number Publication date
JP4563822B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP3946183B2 (en) White polyester film
JP5173417B2 (en) Laminated film
JP4275138B2 (en) Polyester film for reflector
JP3734172B2 (en) Laminated polyester film
JP4734237B2 (en) Method for producing laminated film for reflector
JP4933737B2 (en) Laminated polyester film
JP4971690B2 (en) Biaxially stretched film
JP4971689B2 (en) Laminated film
JP2010138261A (en) Polyester film for laminated glass, and its layered product
JP2010224446A (en) White film for reflection film of backlight unit of liquid crystal display device
JP4782617B2 (en) Polyester laminated film roll
JP2007328150A (en) White reflection film
JP4563822B2 (en) Biaxially oriented laminated film
JP5021974B2 (en) Laminated film
JP4896454B2 (en) Laminated film
JP5108271B2 (en) Biaxially stretched laminated polyester film
JP5456962B2 (en) Laminated film
JP2007322875A (en) Reflection film
KR20170104455A (en) White reflective film for direct surface light source and direct surface light source using same
JP2009122220A (en) Laminated film
JP5702482B2 (en) White reflective film
JP5495345B2 (en) White reflective film
JP2005074882A (en) Laminated film for vapor deposition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250