JP4923255B2 - Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same - Google Patents

Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same Download PDF

Info

Publication number
JP4923255B2
JP4923255B2 JP2006302150A JP2006302150A JP4923255B2 JP 4923255 B2 JP4923255 B2 JP 4923255B2 JP 2006302150 A JP2006302150 A JP 2006302150A JP 2006302150 A JP2006302150 A JP 2006302150A JP 4923255 B2 JP4923255 B2 JP 4923255B2
Authority
JP
Japan
Prior art keywords
cylindrical bodies
angle
scattered light
incident optical
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006302150A
Other languages
Japanese (ja)
Other versions
JP2008116410A (en
Inventor
文昭 但馬
善郎 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2006302150A priority Critical patent/JP4923255B2/en
Publication of JP2008116410A publication Critical patent/JP2008116410A/en
Application granted granted Critical
Publication of JP4923255B2 publication Critical patent/JP4923255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、複数の細径円柱体が平行や同軸に配されているナノカーボンチューブ、光ファイバ、めっき線、蒸着線や蜘蛛の糸などにおいて、個々の細径円柱体の直径、屈折率及び、それらの中心軸間距離並びに入射光軸と間隔のなす角を同時にはかる測定方法、およびこの測定方法を用いた装置に関するものである。   The present invention relates to a nanocarbon tube, an optical fiber, a plated wire, a vapor deposition wire, a string of straws, etc., in which a plurality of small-diameter cylinders are arranged in parallel or coaxially. The present invention relates to a measuring method for simultaneously measuring the distance between the central axes and the angle formed between the incident optical axis and an apparatus using the measuring method.

細径円柱体の直径を求める方法としては、特許文献1に、繊維製造時の外径測定を、レーザ光の回折強度の比率を基に求める方法により行い、外径10μm程度の繊維が測定できることが示されている。
又、特許文献2、3では、レーザ光による被測定細線のフラウンフォーファ回折像の回
折パターンからその外径を算出する方法によって、外径17.5μmの細線の測定ができ
ることが開示されている。
As a method for obtaining the diameter of the thin cylindrical body, it is possible to measure a fiber having an outer diameter of about 10 μm in Patent Document 1 by measuring the outer diameter during fiber production based on the ratio of the diffraction intensity of laser light. It is shown.
Patent Documents 2 and 3 disclose that a thin line having an outer diameter of 17.5 μm can be measured by a method of calculating the outer diameter from the diffraction pattern of the Fraunhofer diffraction image of the thin line to be measured by laser light. Yes.

しかしながら、nmオーダーの細径円柱体の外径測定となると有効な測定方法がなかった。
そこで、本発明者らは非特許文献1に示すようにレーザ光を被測定物に対して垂直、或いは水平に偏光したレーザ光を用いて、被測定物による散乱強度を測定し、ある式の基に計算した計算値との偏差から、その外径および屈折率を測定する方法を開発した。この方法によれば、外径240nm程度の細い円柱体が測定できることを示した。
However, there was no effective measurement method when measuring the outer diameter of a small-diameter cylindrical body on the order of nm.
Therefore, as shown in Non-Patent Document 1, the present inventors use a laser beam obtained by polarizing a laser beam vertically or horizontally with respect to the object to be measured, and measure the scattering intensity by the object to be measured. We developed a method to measure the outer diameter and refractive index from the deviation from the calculated value based on the base. According to this method, it was shown that a thin cylindrical body having an outer diameter of about 240 nm can be measured.

更に、より細径のナノファイバーの外径及び屈折率を測定する方法として、本発明者らは特許文献4に示す測定方法及び測定装置を提案している。この方法を用いることで90nm程度と細いナノファイバーの外径を測定することが可能となっている。   Furthermore, the present inventors have proposed the measuring method and measuring apparatus shown in Patent Document 4 as a method for measuring the outer diameter and refractive index of a nanofiber having a smaller diameter. By using this method, it is possible to measure the outer diameter of nanofibers as thin as about 90 nm.

特開平5−45130号公報JP-A-5-45130 特開平6−288723号公報JP-A-6-288723 特開平6−241733号公報JP-A-6-241733 但馬文昭、西山善郎、「約120nmのくもの糸の太さと屈折率の測定の可能性の検討」、平成16年春季第64回応用物理学会学術講演会講演予稿集、社団法人 応用物理学会、平成16年3月Fumiaki Tajima, Yoshiro Nishiyama, “Examination of the possibility of measuring the thickness and refractive index of a spider thread with a thickness of about 120 nm”, Proceedings of the 64th Annual Meeting of the Japan Society of Applied Physics, Japan Society of Applied Physics, March 2004 特開2006−242591号公報JP 2006-242591 A

前記本発明者らによる特許文献4において提案した外径の測定方法では、特許文献1乃至特許文献3及び非特許文献1に示す測定方法に比べて、より細径のナノファイバーの外径測定が可能である。
しかしながら、ナノカーボンチューブなどのチューブ状の円柱体ではその内径を知ることや、同軸でコア部と外周に配されるクラッド部を持つ光ファイバなどの同軸円柱体では、そのコア部の直径や光ファイバ自体の直径、コアの偏芯度、個々の屈折率などを制御することが特性向上に対する重要な要素であり、これらの値を知ることが必要となっている。
更に、めっき線などの外周に被覆層を持つ円柱体のその被覆層厚みなどを直接知る方法、複合構造を採る神経繊維などの生体構造の解明においても、その寸法や屈折率などを知ることが望まれている。
そこで、本発明では、これらを精度良く、且つ効率よく測定する測定方法およびその測定方法を用いた装置を提供するものである。
In the outer diameter measuring method proposed in Patent Document 4 by the present inventors, the outer diameter measurement of a nanofiber having a smaller diameter is performed as compared with the measuring methods shown in Patent Document 1 to Patent Document 3 and Non-Patent Document 1. Is possible.
However, tube-shaped cylinders such as nanocarbon tubes know their inner diameter, and coaxial cylinders such as optical fibers that have a core and a clad disposed on the outer periphery of the core have a diameter and light of the core. Controlling the diameter of the fiber itself, the eccentricity of the core, the individual refractive index, and the like are important factors for improving the characteristics, and it is necessary to know these values.
In addition, it is possible to know the dimensions, refractive index, etc. in the method of directly knowing the thickness of the coating layer of a cylindrical body having a coating layer on the outer periphery of a plated wire, etc., and in the elucidation of biological structures such as nerve fibers taking a composite structure. It is desired.
Therefore, the present invention provides a measuring method for measuring these with high accuracy and efficiency, and an apparatus using the measuring method.

本発明に係る測定方法は、中心軸が平行関係を持つ複数の円柱体の長さ方向に対して平行に偏光した平行偏光光を前記複数の円柱体に投射し、前記複数の円柱体の個々で前記平行偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法である。 Measuring method according to the present invention, the parallel-polarized light polarized parallel to the length direction of the plurality of cylindrical bodies central axis has a parallel relationship projected on the plurality of cylindrical bodies, each of said plurality of cylinder The scattering angle and scattered light intensity of the scattered light generated by reflecting a part of the parallel polarized light are measured at a plurality of observation points arranged on the circumference around the plurality of cylindrical bodies. A plurality of calculations based on an equation considering multiple scattering between cylinders from the distance from the observation point to the center of the cylinder and the scattering angle for each cylinder when the scattering intensity is measured The scattered light intensity is calculated, and from the plurality of measured scattered light intensities obtained by the measurement and the calculated plurality of calculated scattered light intensities, the individual diameters, refractive indexes, central axis distances and Calculate the deviation index expressed as a function of the angle between the incident optical axis and the interval. Deriving individual diameters, refractive indices, central axis distances and angles formed by the intervals between the incident optical axes and the individual cylinder diameters and refractions to minimize the deviation index. rate, determine the angle between the center axis distance and the incident optical axis and the distance, the diameter of the cylindrical body, the refractive index, a method for measuring the angle of the central axis between the distance and the incident optical axis and distance.

本発明に係る他の測定方法は、同一の中心軸を持つ複数の円柱体の長さ方向に対して平行に偏光した平行偏光光を前記複数の円柱体に投射し、前記複数の円柱体の個々で前記平行偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法である。 Another measuring method according to the present invention is to project the parallel-polarized light polarized parallel to the length direction of the plurality of cylindrical bodies having the same central axis in said plurality of cylinder, said plurality of cylinder The scattering angle and the scattered light intensity of the scattered light generated by reflecting a part of the parallel polarized light individually are measured at a plurality of observation points arranged on the circumference around the plurality of cylindrical bodies, When measuring the measured scattering intensity, from the distance from the observation point for each cylindrical body to the center of the cylindrical body and the scattering angle for each cylindrical body, a plurality of formulas based on the multiple scattering between the cylindrical bodies are considered. The calculated scattered light intensity is calculated, and from the plurality of measured scattered light intensities obtained by the measurement and the calculated calculated scattered light intensities, the individual diameter, refractive index, and center axis distance of the plurality of cylindrical bodies And a deviation index expressed as a function of the angle between the incident optical axis and the interval is calculated. Deriving individual diameters, refractive indices, central axis distances and angles formed by the intervals between the incident optical axes and the individual cylinder diameters and refractions to minimize the deviation index. rate, determine the angle between the center axis distance and the incident optical axis and the distance, the diameter of the cylindrical body, the refractive index, a method for measuring the angle of the central axis between the distance and the incident optical axis and distance.

上記3つの測定方法において、上記平行偏光光に代えて垂直偏光光を用いることも可能である。In the above three measurement methods, vertically polarized light can be used instead of the parallel polarized light.

本発明に係る装置は、請求項1乃至請求項のいずれかの測定方法を用いた装置である。
An apparatus according to the present invention is an apparatus using the measurement method according to any one of claims 1 to 4 .

本発明によれば、投射されたレーザ光が被測定物である複数の円柱体による散乱によって生じる散乱光の散乱光強度及びその散乱角度を基に、被測定物の直径、屈折率及び中心軸間距離及び入射光軸と間隔のなす角の関数となる偏差指標を算出し、適正化することによって、複数の円柱体の直径、屈折率及び中心軸間距離及び入射光軸と間隔のなす角を同時に、効率よく且つ精度良く求めることを可能とするもので、工業上顕著な効果を奏するものである。   According to the present invention, the diameter, refractive index, and central axis of the object to be measured based on the scattered light intensity and the scattering angle of the scattered light caused by the scattering of the projected laser light by the plurality of cylindrical bodies that are the object to be measured. By calculating and optimizing a deviation index that is a function of the distance between and the angle between the incident optical axis and the angle, the diameter, refractive index and the distance between the central axes, and the angle between the incident optical axis Can be obtained efficiently and accurately at the same time, and has an industrially significant effect.

本発明の測定に供される被測定物の形態を図1に示す。
図1(a)は、中心軸が平行関係を持つ場合の例を示し、a−1、a−2は中心軸間距離Lが異なる2本の円柱体で構成されている例、a−3は中心軸間距離Lで内部に円柱体を持つ2本の円柱体で構成されている例である。図1(b)は同一の中心軸を持つ同軸円柱体の例で、b−1、b−4は中実の多重円柱体を示し、光ファイバや外面に被覆層が設けられているめっき線などの例である。b−2、b−3は中空の円柱体(円筒体)の例で、b−3はb−1の中空内に同軸の円柱体が配されているものである。図1(c)は中心軸が平行関係を持つ円柱体と同軸円柱体が存在する場合の例で、c−1はb−1のような同軸円柱体に偏心軸を持つもう一体の円柱体が加わった構成の例で、c−2はb−4の内部円柱体の中心軸が偏心している状態の例である。以上のようにいくつかの被測定物の例を示したが、本発明に供される被測定物の形態は本発明の要件を満たしていれば図1に限定されない。
The form of the object to be measured used for the measurement of the present invention is shown in FIG.
FIG. 1A shows an example in which the central axes have a parallel relationship, and a-1 and a-2 are examples in which two cylindrical bodies having different distances L between the central axes are formed, a-3 Is an example of two cylindrical bodies having a cylindrical body inside at a distance L between the central axes. FIG. 1B is an example of a coaxial cylindrical body having the same central axis, and b-1 and b-4 are solid multi-cylindrical bodies, and an optical fiber and a plating wire provided with a coating layer on the outer surface. It is an example. b-2 and b-3 are examples of hollow cylindrical bodies (cylindrical bodies), and b-3 is a coaxial cylindrical body arranged in the hollow of b-1. FIG. 1 (c) shows an example in which a cylindrical body having a central axis in parallel and a coaxial cylindrical body exist, and c-1 is another cylindrical body having an eccentric axis in a coaxial cylindrical body such as b-1. C-2 is an example of a state in which the central axis of the inner cylindrical body of b-4 is eccentric. As described above, some examples of the object to be measured are shown. However, the form of the object to be measured used in the present invention is not limited to FIG. 1 as long as the requirements of the present invention are satisfied.

図1に示す形態の被測定物(複数の円柱体からなる)における本発明の直径及び屈折率、並びに中心軸間距離及び入射光軸と間隔のなす角の測定方法は、図2のフローチャートに沿って行う。
図2の散乱光強度Iを測定するために、図3に示す直径・屈折率測定装置1で、被測定物2に対して、光源3から波長λnm(446.1nm)のレーザ光3aを発光し、そのレーザ光3aが偏向装置4で被測定物に対して垂直偏光、或いは水平偏光とされ、検出部5上面に支持台5bで支持された被測定物2に投射される。レーザ光3aは、被測定物2により一部が反射され、レーザ光3aの光軸に対して散乱角度θに配置された検出器6で、その測定散乱光強度Iが測定される。この手順で、散乱角度θ(i=0・・・n)を変化させてその時の測定散乱光強度I(i=0・・・n)を順次測定していく。
又は、図4のように複数の検出器6(図4の場合は28基)を、被測定物2を支持する
支持台5bの円周上に配置し、各々の検出器6の散乱角度θで測定散乱光強度Iを測
定することでも良い。
The method for measuring the diameter and refractive index of the present invention and the angle between the central axis and the angle between the incident optical axis and the object to be measured (consisting of a plurality of cylindrical bodies) shown in FIG. 1 is shown in the flowchart of FIG. Do along.
In order to measure the scattered light intensity I i in FIG. 2, the laser beam 3a having the wavelength λ nm (446.1 nm) is emitted from the light source 3 to the object to be measured 2 with the diameter / refractive index measuring apparatus 1 shown in FIG. The light is emitted, and the laser beam 3a is made vertically or horizontally polarized with respect to the object to be measured by the deflecting device 4 and projected onto the object to be measured 2 supported on the upper surface of the detection unit 5 by the support base 5b. A part of the laser beam 3a is reflected by the object to be measured 2, and the measured scattered light intensity I is measured by the detector 6 disposed at the scattering angle θ with respect to the optical axis of the laser beam 3a. In this procedure, the scattering angle θ i (i = 0... N) is changed, and the measured scattered light intensity I i (i = 0... N) at that time is sequentially measured.
Alternatively, as shown in FIG. 4, a plurality of detectors 6 (28 in the case of FIG. 4) are arranged on the circumference of the support base 5 b that supports the DUT 2, and the scattering angle θ of each detector 6. i in may be to measure the measuring scattered light intensity I i.

これらの測定した散乱角度θと測定散乱光強度Iは、図2に記した直径・屈折率・中心軸間距離及び入射光軸と間隔のなす角同時解析プログラムを搭載したパーソナルコンピュータのような演算部7に送られる。
この演算部7内で計算散乱光強度σが計算される。
本発明では、この計算散乱光強度σを、円柱体の数が2の場合には数1に表す式を用いて求める。これ以降の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の算出において精度の良い値が得られることからこの式では、第1種と第3種ベッセル関数を用いて表している。その計算散乱光強度σの算出に際しては、垂直偏光で散乱させた場合は、添字⊥の式を用いて計算し、水平偏光を散乱させた場合は、添字‖の式を用いて計算を行う。
These measured scattering angle θ i and measured scattered light intensity I i are the same as those of a personal computer equipped with the simultaneous analysis program for the diameter, refractive index, distance between the central axes and the angle between the incident optical axis and the distance shown in FIG. To the operation unit 7.
The calculated scattered light intensity σ i is calculated in the calculation unit 7.
In the present invention, the calculated scattered light intensity σ i is obtained by using the equation expressed by Equation 1 when the number of cylindrical bodies is two. Since accurate values can be obtained in the subsequent calculation of the diameter, refractive index, distance between the central axes, and the angle between the incident optical axis and this expression, this expression is expressed using the first and third kind Bessel functions. ing. When calculating the calculated scattered light intensity σ i , if it is scattered by vertically polarized light, it is calculated using the subscript 式 equation, and if it is scattered horizontally polarized light, it is calculated using the subscript 添 equation. .

Figure 0004923255
ここで、図5は数1における幾何学関係を示し、添字‖は水平偏光によるものを表し添字⊥は垂直偏光によるものを表す、kは波数、r10、r20は被測定物の半径(D10/2、D20/2)、J(x)は第一種ベッセル関数、H (1)(=J(x)+iY(x))は第三種ベッセル関数を表し、mは次数である。
Figure 0004923255
Here, FIG. 5 shows the geometrical relationship in equation (1), where the subscript ‖ indicates horizontal polarization and the subscript ⊥ indicates vertical polarization, k is the wave number, r 10 and r 20 are the radii of the object to be measured ( D 10/2, D 20/ 2), J m (x) is the first kind Bessel function, H m (1) (= J m (x) + iY m (x)) represents a third kind Bessel function , M is the order.

ところで、数1で示した計算散乱光強度の式は、図1に示すような被測定物の形態によって適当な式を選択する。例えば、円筒形体で内の円柱体が偏心しているような場合には、数1に示す式を数2の式に変えることにより、より精度のある結果が得られ、円柱体の数が3以上の場合にも、数1に示す式を適時拡張することで個々の円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を算出できる。
また、数1の式は繊維編素や蜘蛛の糸のような透明性の高い材質の測定に有効であるが、金属系超伝導線のような反射の強い金属などの場合や、カーボンナノチューブなどのような中空試料では、この計算散乱光強度式をより適した式に変えることで、本発明の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の同時測定を行うことができる。
By the way, as the formula of the calculated scattered light intensity shown in Equation 1, an appropriate formula is selected according to the form of the object to be measured as shown in FIG. For example, in the case where the cylindrical body is eccentric in a cylindrical shape, a more accurate result can be obtained by changing the formula shown in Formula 1 to the formula of Formula 2, and the number of column bodies is 3 or more. In this case, the diameter, the refractive index, the distance between the central axes, and the angle formed between the incident optical axes can be calculated by expanding the expression shown in Equation 1 as appropriate.
In addition, the formula (1) is effective for measuring highly transparent materials such as fiber knitting fabrics and cocoon threads, but in the case of highly reflective metals such as metallic superconducting wires, carbon nanotubes, etc. For hollow samples like this, the calculated scattered light intensity formula can be changed to a more suitable formula to simultaneously measure the diameter, refractive index, central axis distance, and angle between the incident optical axis and the present invention. Can do.

Figure 0004923255
ただし、j=1、2。上記Hj(q)c/sについては、EをHに読み替える。図6は数2における幾何学関係を示している。
Figure 0004923255
However, j = 1,2. For H j (q) c / s , replace E with H. FIG. 6 shows the geometric relationship in equation (2).

次に、測定した測定散乱光強度Iと測定角度θから算出した計算散乱光強度σを用いて、数3に示す直径D、屈折率n、中心軸間距離L、入射光軸と間隔のなす角ψを包含する形式の偏差指標U(n,D,n,D,L,ψ)を作成する。この偏差指標を直径D,D、屈折率n,nと中心軸間距離Lの関数として、偏差指標が最小となる点(n10,D10,n20,D20,L,ψ)を求め、その時の直径D、D、屈折率n、n、中心軸間距離L、入射光軸と間隔のなす角ψの組み合わせを被測定物の直径及び屈折率、並びに中心軸間距離とする。 Next, using the calculated scattered light intensity σ i calculated from the measured measured scattered light intensity I i and the measured angle θ i , the diameter D j , the refractive index n j , the center-to-axis distance L, and the incident light shown in Equation 3 A deviation index U (n 1 , D 1 , n 2 , D 2 , L, ψ) of a form including an angle ψ formed by an axis and an interval is created. As a function of the deviation index as a function of the diameters D 1 and D 2 , the refractive indexes n 1 and n 2 and the distance L between the central axes, the point at which the deviation index is minimum (n 10 , D 10 , n 20 , D 20 , L 0 , Ψ 0 ), and the combination of the diameter D 1 , D 2 , the refractive index n 1 , n 2 , the distance L between the central axes, and the angle ψ formed by the interval between the incident optical axis and the refractive index of the object to be measured. And the distance between the central axes.

先ず、この計算は偏差指標が、直径D10、D20、屈折率n10、n20、中心軸間距離Lの時、I (opt)=bσ(n10,D10,n20,D20,L,ψ)の場合に最適分布を示し、この最適分布における最適偏差指標U (opt)(n,D,n,D,L,ψ)を数3のように表す。 First, in this calculation, when the deviation index is the diameter D 10 , D 20 , the refractive index n 10 , n 20 , and the center axis distance L 0 , I i (opt) = bσ i (n 10 , D 10 , n 20 , D 20 , L 0 , ψ 0 ), the optimum distribution is shown, and the optimum deviation index U T (opt) (n 1 , D 1 , n 2 , D 2 , L, ψ) in this optimum distribution is expressed by the following equation (3). It expresses like this.

Figure 0004923255
ここで、Nは測定数、bは入射波強度を表す。
Figure 0004923255
Here, N represents the number of measurements, and b represents the incident wave intensity.

次いで、直径D、D、屈折率n、n、中心軸間距離Lの関数としての偏差指標の集合Gを、G={n,D,n,D,L,ψ|U (opt)(n,D,n,D,L,ψ)≦U(n10,D10,n20,D20,L,ψ)}として、その範囲内において、nmin、nmax、Dmin、Dmax、Lmin、Lmaxを求める。
次に求めた各値と、n10、D10、n20、D20、Lとの差、直径に関しては(Dmin−D10,Dmax−D10)、(Dmin−D20,Dmax−D20)、屈折率に関しては(nmin−n10,nmax−n10)、(nmin−n20,nmax−n20)、中心軸間距離に関しては(Lmin−L10,Lmax−L10)、(Lmin−L20,Lmax−L20)を不確実さと定義し、この値を最小とする点(n10,D10,n20,D20,L,ψ)を求めることにより、被測定物の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を算出する。
Next, a set G of deviation indexes as a function of the diameters D 1 and D 2 , the refractive indexes n 1 and n 2 , and the center axis distance L is expressed as G = {n 1 , D 1 , n 2 , D 2 , L, ψ | U T (opt) (n 1 , D 1 , n 2 , D 2 , L, ψ) ≦ U T (n 10 , D 10 , n 20 , D 20 , L 0 , ψ 0 )} Within the range, n min , n max , D min , D max , L min , and L max are obtained.
Next, regarding each of the obtained values and the difference between n 10 , D 10 , n 20 , D 20 , and L 0 and the diameter, (D min −D 10 , D max −D 10 ), (D min −D 20 , D max −D 20 ), (n min −n 10 , n max −n 10 ) regarding the refractive index, (n min −n 20 , n max −n 20 ), and (L min −L 20 ) regarding the distance between the central axes. 10 , L max −L 10 ) and (L min −L 20 , L max −L 20 ) are defined as uncertainties, and a point (n 10 , D 10 , n 20 , D 20 , L) that minimizes this value is defined. 0 , ψ 0 ), the diameter of the object to be measured, the refractive index, the distance between the central axes, and the angle formed by the incident optical axis are calculated.

以下に、実施例を用いて本発明を説明する。
被測定物としては、中心軸が平行関係を持ち、中心軸間距離が大きい試料A(図1(a)a−1相当)と中心軸間距離が小さい試料B、C(図1(a)a−2相当)を用いた
これらの試料を図2の直径・屈折率測定装置1の支持台5bにセットして、波長λ=441.6nmのレーザ光を投射し、散乱角度θを0度から150度の間で、2度刻みに
順次変化させ、その散乱強度を測定し、測定散乱光強度Iとした。
Hereinafter, the present invention will be described using examples.
As an object to be measured, sample A (corresponding to a-1 in FIG. 1 (a)) having a central axis in parallel and a large distance between the central axes and samples B and C having a small distance between the central axes (FIG. 1 (a)). These samples using a-2) are set on the support 5b of the diameter / refractive index measuring apparatus 1 in FIG. 2, and a laser beam having a wavelength λ = 441.6 nm is projected, and the scattering angle θ i is set to 0. Then, the scattering intensity was measured in order of 2 degrees between 150 degrees and 150 degrees, and the scattering intensity was measured to obtain the measured scattered light intensity I i .

次にパーソナルコンピュータに先の散乱角度θと測定散乱光強度Iを入力し、散乱
角度θから計算散乱光強度σを求め、測定散乱光強度Iと求めた計算散乱光強度σから偏差指標U(n,D,n,D,L,ψ)を計算し、U(n,D,n,D,L,ψ)を最小とする値を最適値として求め、その時のD、n、D、n、Lを各々直径、屈折率及び中心軸間距離とした。その結果を表1に記した。
なお、測定は、垂直偏光及び水平偏光の両者で行なっている。
Next, the previous scattering angle θ i and the measured scattered light intensity I i are input to a personal computer, the calculated scattered light intensity σ i is obtained from the scattered angle θ i, and the calculated scattered light intensity I i is obtained as the calculated scattered light intensity σ. deviation index from i U I (n 1, D 1, n 2, D 2, L, ψ) was calculated, and U I (n 1, D 1 , n 2, D 2, L, ψ) and the minimum The values were determined as optimum values, and D 1 , n 1 , D 2 , n 2 , and L at that time were taken as the diameter, the refractive index, and the distance between the central axes, respectively. The results are shown in Table 1.
The measurement is performed with both vertically polarized light and horizontally polarized light.

Figure 0004923255
Figure 0004923255

表1から明らかなように、中心軸が平行関係を持つ2つの円柱体からなる試料A、B、C(図1(a)に示す形態)では、中心軸間距離がnmオーダーでも、μmオーダーで離れていても精度良く各円柱体の直径、屈折率が求められていることがわかる。
垂直偏光を用いた場合と水平偏光を用いた場合での得られる精度には大きな差が無いこともわかる。
As is clear from Table 1, in the samples A, B, and C (form shown in FIG. 1 (a)) having two cylindrical bodies whose central axes have a parallel relationship, even if the distance between the central axes is on the order of nm, it is on the order of μm. It can be seen that the diameter and the refractive index of each cylindrical body are accurately obtained even if they are separated from each other.
It can also be seen that there is no significant difference in the accuracy obtained when using vertically polarized light and when using horizontally polarized light.

被測定物の形態例を示す模式図である。It is a schematic diagram which shows the form example of a to-be-measured object. 本発明に係る測定方法フローチャートである。It is a measuring method flowchart concerning the present invention. 直径・屈折率・中心間距離測定装置の一例を示す図である。It is a figure which shows an example of a diameter / refractive index / center distance measuring apparatus. 直径・屈折率・中心間距離測定装置の別の一例を示す図である。It is a figure which shows another example of a diameter / refractive index / center distance measuring apparatus. 数1の幾何学表示を示す説明図である。It is explanatory drawing which shows the geometric display of Numerical formula 1. 数2の幾何学表示を示す説明図である。It is explanatory drawing which shows the geometric display of Numerical formula 2.

符号の説明Explanation of symbols

1 測定装置
2 被測定物
3 光源
3a レーザ光
3b 散乱光
4 偏向装置
5a 検出部
5b 支持台
6 検出器
7 演算部
θ 散乱角度
測定光散乱強度
σ 計算散乱光強度
、D 直径
、n 屈折率
L 中心軸間距離
ψ 入射光軸と間隔Lのなす角
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Measured object 3 Light source 3a Laser light 3b Scattered light 4 Deflector 5a Detection part 5b Support base 6 Detector 7 Arithmetic part θ i Scattering angle I i Measurement light scattering intensity σ i Calculated scattered light intensity D 1 , D 2 Diameter n 1 , n 2 Refractive index L Center axis distance ψ Angle formed by incident optical axis and distance L

Claims (5)

中心軸が平行関係を持つ複数の円柱体の長さ方向に対して平行に偏光した平行偏光光を前記複数の円柱体に投射し
前記複数の円柱体の個々で前記平行偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、
前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、
前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、
前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、
前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める
円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法。
Projecting parallel polarized light, which is polarized parallel to the length direction of the plurality of cylindrical bodies having a parallel relationship with the central axis, onto the plurality of cylindrical bodies ,
A plurality of observations arranged on a circumference around the plurality of cylindrical bodies, and a scattering angle and a scattered light intensity of scattered light generated by reflection of a part of the parallel polarized light by each of the plurality of cylindrical bodies. Measure at point,
Based on an equation considering multiple scattering between cylinders from the distance from the observation point for each cylinder to the center of the cylinder and the scattering angle for each cylinder when the measured scattering intensity is measured calculating the calculated scattered light intensity,
Based on the plurality of measured scattered light intensities obtained by the measurement and the calculated plurality of calculated scattered light intensities, the individual diameters, refractive indexes, distances between the central axes, and intervals between the incident optical axes of the plurality of cylindrical bodies are formed. Calculate the deviation index expressed as a function of angle,
Deriving individual diameters, refractive indices, central axis distances and angle combinations between the incident optical axes and the intervals of the plurality of cylindrical bodies that minimize the deviation index,
Finding the individual diameter, refractive index, center axis distance and angle between the incident optical axis of the plurality of cylindrical bodies ,
A method of measuring the diameter, refractive index, distance between central axes, and the angle between the incident optical axis and the cylinder.
同一の中心軸を持つ複数の円柱体の長さ方向に対して平行に偏光した平行偏光光を前記複数の円柱体に投射し
前記複数の円柱体の個々で前記平行偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、
前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、
前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、
前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、
前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める
円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法。
Parallel-polarized light polarized parallel to the length direction of the plurality of cylindrical bodies having the same central axis projected on the plurality of cylindrical bodies,
A plurality of observations arranged on a circumference around the plurality of cylindrical bodies, and a scattering angle and a scattered light intensity of scattered light generated by reflection of a part of the parallel polarized light by each of the plurality of cylindrical bodies. Measure at point,
Based on an equation considering multiple scattering between cylinders from the distance from the observation point for each cylinder to the center of the cylinder and the scattering angle for each cylinder when the measured scattering intensity is measured calculating the calculated scattered light intensity,
Based on the plurality of measured scattered light intensities obtained by the measurement and the calculated plurality of calculated scattered light intensities, the individual diameters, refractive indexes, distances between the central axes, and intervals between the incident optical axes of the plurality of cylindrical bodies are formed. Calculate the deviation index expressed as a function of angle,
Deriving individual diameters, refractive indices, central axis distances and angle combinations between the incident optical axes and the intervals of the plurality of cylindrical bodies that minimize the deviation index,
Finding the individual diameter, refractive index, center axis distance and angle between the incident optical axis of the plurality of cylindrical bodies ,
A method of measuring the diameter, refractive index, distance between central axes, and the angle between the incident optical axis and the cylinder.
中心軸が平行関係を持つ複数の円柱体の長さ方向に対して直交する向きに偏光した垂直偏光光を前記複数の円柱体に投射し
前記複数の円柱体の個々で前記垂直偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、
前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、
前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、
前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、
前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める
円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法。
Projecting vertically polarized light polarized in a direction orthogonal to the length direction of a plurality of cylindrical bodies having a parallel relationship with the central axis onto the plurality of cylindrical bodies ,
A plurality of observations in which a scattering angle and a scattered light intensity of scattered light generated by reflection of a part of the vertically polarized light by each of the plurality of cylindrical bodies are arranged on the circumference around the plurality of cylindrical bodies. Measure at point,
Based on an equation considering multiple scattering between cylinders from the distance from the observation point for each cylinder to the center of the cylinder and the scattering angle for each cylinder when the measured scattering intensity is measured calculating the calculated scattered light intensity,
Based on the plurality of measured scattered light intensities obtained by the measurement and the calculated plurality of calculated scattered light intensities, the individual diameters, refractive indexes, distances between the central axes, and intervals between the incident optical axes of the plurality of cylindrical bodies are formed. Calculate the deviation index expressed as a function of angle,
Deriving individual diameters, refractive indices, central axis distances and angle combinations between the incident optical axes and the intervals of the plurality of cylindrical bodies that minimize the deviation index,
Finding the individual diameter, refractive index, center axis distance and angle between the incident optical axis of the plurality of cylindrical bodies ,
A method of measuring the diameter, refractive index, distance between central axes, and the angle between the incident optical axis and the cylinder.
同一の中心軸を持つ複数の円柱体の長さ方向に対して直交する向きに偏光した垂直偏光光を前記複数の円柱体に投射し
前記複数の円柱体の個々で前記垂直偏光光の一部が反射して生じる散乱光の散乱角度と散乱光強度とを、前記複数の円柱体の周囲で円周上に配された複数の観測点で測定し、
前記測定散乱強度を測定したときの、前記円柱体ごとの前記観測点から円柱体中心までの距離と前記円柱体ごとの散乱角度とから、円柱体間の多重散乱を考慮した式に基づいて複数の計算散乱光強度を算出し、
前記測定により得た複数の測定散乱光強度と、前記算出した複数の計算散乱光強度とから、前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の関数で表される偏差指標を算出し、
前記偏差指標を最小とする前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の組み合わせを導出して、
前記複数の円柱体の個々の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角を求める
円柱体の直径、屈折率、中心軸間距離及び入射光軸と間隔のなす角の測定方法。
Projecting vertically polarized light polarized in a direction orthogonal to the length direction of a plurality of cylinders having the same central axis onto the plurality of cylinders ,
A plurality of observations in which a scattering angle and a scattered light intensity of scattered light generated by reflection of a part of the vertically polarized light by each of the plurality of cylindrical bodies are arranged on the circumference around the plurality of cylindrical bodies. Measure at point,
Based on an equation considering multiple scattering between cylinders from the distance from the observation point for each cylinder to the center of the cylinder and the scattering angle for each cylinder when the measured scattering intensity is measured calculating the calculated scattered light intensity,
Based on the plurality of measured scattered light intensities obtained by the measurement and the calculated plurality of calculated scattered light intensities, the individual diameters, refractive indexes, distances between the central axes, and intervals between the incident optical axes of the plurality of cylindrical bodies are formed. Calculate the deviation index expressed as a function of angle,
Deriving individual diameters, refractive indices, central axis distances and angle combinations between the incident optical axes and the intervals of the plurality of cylindrical bodies that minimize the deviation index,
Finding the individual diameter, refractive index, center axis distance and angle between the incident optical axis of the plurality of cylindrical bodies ,
A method of measuring the diameter, refractive index, distance between central axes, and the angle between the incident optical axis and the cylinder.
請求項1乃至請求項のいずれかの測定方法を用いた装置。 Device using any of the measuring method of claims 1 to 4.
JP2006302150A 2006-11-07 2006-11-07 Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same Active JP4923255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302150A JP4923255B2 (en) 2006-11-07 2006-11-07 Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302150A JP4923255B2 (en) 2006-11-07 2006-11-07 Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008116410A JP2008116410A (en) 2008-05-22
JP4923255B2 true JP4923255B2 (en) 2012-04-25

Family

ID=39502446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302150A Active JP4923255B2 (en) 2006-11-07 2006-11-07 Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4923255B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027977A (en) * 1975-12-17 1977-06-07 Western Electric Company, Method and apparatus for determining ratio of core radius to cladding radius in clad optical fibers
JPS6353402A (en) * 1986-08-25 1988-03-07 Furukawa Electric Co Ltd:The Measurement of eccentricity for light transmitting long-sized body
JPS6425027A (en) * 1987-07-21 1989-01-27 Asahi Glass Co Ltd Measuring method of amount of eccentricity between core and clad of optical fiber and direction of eccentricity
JP2598499B2 (en) * 1988-12-21 1997-04-09 株式会社フジクラ Optical fiber spacing measurement method
JP2006242591A (en) * 2005-02-28 2006-09-14 Yokohama National Univ Method and device for measuring outer diameter and refractive index of nano fiber

Also Published As

Publication number Publication date
JP2008116410A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP6943874B2 (en) Systems and methods for constructing and inspecting composite photonic structures
Stoddart et al. Optical fibre SERS sensors
Jamali et al. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling
Axelrod Evanescent excitation and emission in fluorescence microscopy
JP6480720B2 (en) Hole measuring apparatus and hole measuring method using non-rotating CPS pen
Lorenser et al. Accurate modeling and design of graded-index fiber probes for optical coherence tomography using the beam propagation method
JP2011530075A (en) Noncontact measurement of porous material density using optical coherence tomography material refractive index measurement
US20160047976A1 (en) Fibre-Optic Sensor and Use Thereof
CN110709204B (en) System and method for measuring curvature radius and thermal expansion of small sample in real time
US9927602B2 (en) Confocal microscopy methods and devices
CN107505121A (en) The angle measurement apparatus and method of electro-optic crystal light pass surface normal and the optical axis of crystal
CN104568982A (en) Detection method and detection system for sub-surface defects of optical components
JP6840747B2 (en) Sensor devices and methods for inspecting the surface of cylindrical hollow enclosures
Lee et al. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning
Malek et al. Microtomography imaging of an isolated plant fiber: a digital holographic approach
TW201912563A (en) Method for imaging 1-d nanomaterials
Maruyama et al. Confocal volume in laser Raman microscopy depth profiling
de Sivry-Houle et al. All-fiber few-mode optical coherence tomography using a modally-specific photonic lantern
JP4923255B2 (en) Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same
Ashraf et al. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder
JP2006242591A (en) Method and device for measuring outer diameter and refractive index of nano fiber
Nasse et al. High-resolution mapping of the three-dimensional point spread function in the near-focus region of a confocal microscope
JP2015094637A (en) Absorption microscope
RU2426103C1 (en) Method of coherent x-ray phase microscopy
CN108519057B (en) Three-dimensional sensing device and method for optical fiber side fluorescent substance deposition microprobe and preparation method of microprobe

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350