JP2006242591A - Method and device for measuring outer diameter and refractive index of nano fiber - Google Patents

Method and device for measuring outer diameter and refractive index of nano fiber Download PDF

Info

Publication number
JP2006242591A
JP2006242591A JP2005054852A JP2005054852A JP2006242591A JP 2006242591 A JP2006242591 A JP 2006242591A JP 2005054852 A JP2005054852 A JP 2005054852A JP 2005054852 A JP2005054852 A JP 2005054852A JP 2006242591 A JP2006242591 A JP 2006242591A
Authority
JP
Japan
Prior art keywords
outer diameter
refractive index
nanofiber
scattered light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005054852A
Other languages
Japanese (ja)
Other versions
JP2006242591A5 (en
Inventor
Fumiaki Tajima
文昭 但馬
Yoshiro Nishiyama
善郎 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2005054852A priority Critical patent/JP2006242591A/en
Publication of JP2006242591A publication Critical patent/JP2006242591A/en
Publication of JP2006242591A5 publication Critical patent/JP2006242591A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for accurately measuring the outer diameter of a nano carbon tube having an outer diameter of several nm to several tens nm and a narrower nano fiber having an outer diameter of 200 nm or smaller. <P>SOLUTION: A deviation index expressed by a function of the outer diameter and the refractive index of the nano fiber is calculated based on the measured scattered light intensity of scattered light of a predetermined scattering angle obtained by projecting perpendicularly polarized light polarized perpendicularly to the length direction of the nano fiber to the nano fiber and the calculated scattered light intensity calculated from the scattering angle. A combination of the outer diameter and refractive index of the nano fiber having a minimum deviation index is determined. Thus, the outer diameter and refractive index of the nano fiber is determined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ナノカーボンチューブ、極細繊維編素、金属系超電導線編素などの極めて細いナノファイバー状物体、特に外径が200nm以下の細径円柱体の外径、およびその屈折率の両者を同時に測定する方法およびその測定装置に関するものである。   The present invention relates to both the outer diameter and the refractive index of an extremely thin nanofibrous object such as a nanocarbon tube, an ultrafine fiber knitted fabric, and a metallic superconducting wire knitted fabric, particularly a thin cylindrical body having an outer diameter of 200 nm or less The present invention relates to a method for measuring simultaneously and a measuring apparatus therefor.

ナノカーボンチューブ、極細径繊維、金属系超電導線などの製造、或いはその特性に関して、これらの外径は大きな影響を与えることが知られている。そこで、その外径の測定方法が開発されてきている。
特許文献1では、繊維製造時の外径測定を、レーザ光の回折強度の比率を基に求める方法により行い、外径10μm程度の繊維が測定できることが示されている。
又、特許文献2、3では、レーザ光による被測定細線のフラウンフォーファ回折像の回折パターンからその外径を算出する方法によって、外径17.5μmの細線の測定ができることが開示されている。
It is known that these outer diameters have a great influence on the production of nanocarbon tubes, ultrafine fibers, metallic superconducting wires, etc., or their characteristics. Accordingly, methods for measuring the outer diameter have been developed.
Patent Document 1 shows that a fiber having an outer diameter of about 10 μm can be measured by measuring the outer diameter at the time of fiber production based on a method of obtaining the ratio of the diffraction intensity of laser light.
Patent Documents 2 and 3 disclose that a thin line having an outer diameter of 17.5 μm can be measured by a method of calculating the outer diameter from the diffraction pattern of the Fraunhofer diffraction image of the thin line to be measured by laser light. Yes.

しかしながら、nmオーダーのナノファイバーの外径測定となると有効な測定方法がなかった。
そこで、本発明者らは非特許文献1に示すようにレーザ光を被測定物に対して垂直、或いは水平に偏光したレーザ光を用いて、被測定物による散乱強度を測定し、ある式の基に計算した計算値との偏差から、その外径および屈折率を測定する方法を開発した。この方法によれば、外径240nm程度の細い円柱体を測定できることを示した。
However, there was no effective measurement method for measuring the outer diameter of nanofibers in the order of nm.
Therefore, as shown in Non-Patent Document 1, the present inventors use a laser beam obtained by polarizing a laser beam vertically or horizontally with respect to the object to be measured, and measure the scattering intensity by the object to be measured. We developed a method to measure the outer diameter and refractive index from the deviation from the calculated value based on the base. According to this method, it was shown that a thin cylindrical body having an outer diameter of about 240 nm can be measured.

特開平5−45130号公報JP-A-5-45130 特開平6−288723号公報JP-A-6-288723 特開平6−241733号公報JP-A-6-241733 但馬文昭、西山善郎、「約120nmのくもの糸の太さと屈折率の測定の可能性の検討」、平成16年春季第64回応用物理学会学術講演会講演予稿集、社団法人 応用物理学会、平成16年3月Fumiaki Tajima, Yoshiro Nishiyama, “Examination of the possibility of measuring the thickness and refractive index of a spider thread with a thickness of about 120 nm”, Proceedings of the 64th Annual Meeting of the Japan Society of Applied Physics, Japan Society of Applied Physics, March 2004

前記、本発明者らによる外径測定方法では、240nmと先の特許文献1から3で示された測定方法に比べて、より細径の円柱体の外径測定が可能であったが、ナノカーボンチューブなどの数nmから200nm程度のより細いナノファイバーの外径を精度良く測定することは難しかった。
そこで、本発明では数nmから数10nm程度の外径を有するナノカーボンチューブや外径200nm以下のより細いナノファイバーの外径を精度良く測定する方法およびその測定装置を提供するものである。
In the outer diameter measuring method by the present inventors, it was possible to measure the outer diameter of a columnar body having a smaller diameter as compared with the measuring method shown in Patent Documents 1 to 3 of 240 nm and earlier. It was difficult to accurately measure the outer diameter of thinner nanofibers of several nanometers to 200 nm, such as carbon tubes.
Therefore, the present invention provides a method and a measuring apparatus for accurately measuring the outer diameter of a nanocarbon tube having an outer diameter of several nanometers to several tens of nanometers or a thinner nanofiber having an outer diameter of 200 nm or less.

請求項1記載の発明は、ナノファイバーの長さ方向に対して垂直に偏向された垂直偏光を、前記ナノファイバーに投射して得られる所定散乱角度の散乱光による測定散乱光強度と、前記散乱角度から算出した計算散乱光強度とから、前記ナノファイバーの外径及び屈折率の関数で表される偏差指標を算出し、この偏差指標を最小とする前記ナノファイバーの外径および屈折率の組み合わせを求めることで、前記ナノファイバーの外径および屈折率を求めることを特徴とするナノファイバーの外径及び屈折率の測定方法である。   According to the first aspect of the present invention, the measured scattered light intensity by the scattered light having a predetermined scattering angle obtained by projecting the vertically polarized light, which is deflected perpendicularly to the length direction of the nanofiber, onto the nanofiber, and the scattering From the calculated scattered light intensity calculated from the angle, a deviation index represented by a function of the outer diameter and refractive index of the nanofiber is calculated, and the combination of the outer diameter and refractive index of the nanofiber that minimizes the deviation index By determining the outer diameter and refractive index of the nanofiber, the outer diameter and refractive index of the nanofiber are measured.

請求項2記載の発明は、ナノファイバーの長さ方向に対して平行に偏向された平行偏光を、前記ナノファイバーに投射して得られる所定散乱角度の散乱光による測定散乱光強度と、前記散乱角度から算出した計算散乱光強度とから、前記ナノファイバーの外径及び屈折率の関数で表される偏差指標を算出し、この偏差指標を最小とする前記ナノファイバーの外径および屈折率の組み合わせを求めることで、前記ナノファイバーの外径および屈折率を求めることを特徴とするナノファイバーの外径及び屈折率の測定方法である。   According to the second aspect of the present invention, the measured scattered light intensity by the scattered light having a predetermined scattering angle obtained by projecting parallel polarized light deflected parallel to the length direction of the nanofiber onto the nanofiber, and the scattering From the calculated scattered light intensity calculated from the angle, a deviation index represented by a function of the outer diameter and refractive index of the nanofiber is calculated, and the combination of the outer diameter and refractive index of the nanofiber that minimizes the deviation index By determining the outer diameter and refractive index of the nanofiber, the outer diameter and refractive index of the nanofiber are measured.

請求項3記載の発明は、外径および屈折率を測定する前記ナノファイバーの外径が200nm以下であることを特徴とする請求項1又は請求項2記載のナノファイバーの外径および屈折率の測定方法である。   The invention according to claim 3 is characterized in that the outer diameter of the nanofiber for measuring the outer diameter and the refractive index is 200 nm or less, and the outer diameter and refractive index of the nanofiber according to claim 1 or 2 This is a measurement method.

請求項4記載の発明は、レーザ光を発光する光源部と、レーザ光を被測定物長さ方向に対して垂直な垂直偏光、若しくは水平な水平偏光とする光偏向部と、レーザ光の光軸上に、固定状態で備わる被測定物を支持固定する支持台と、被測定物により散乱されたレーザ光の散乱光強度を検出して外部に出力する検出器を有し、この検出器が所定散乱角度になるように回転し、その散乱角度を外部に出力する検出部と、前記検出部より出力される散乱角度および散乱光強度から計算散乱光強度と偏差指標を算出して被測定物の外径及び屈折率を算出する演算部とで、構成されることを特徴とするナノファイバーの外径および屈折率の測定装置である。   According to a fourth aspect of the present invention, there is provided a light source unit that emits laser light, a light deflecting unit that converts the laser light into vertical polarization or horizontal horizontal polarization perpendicular to the length direction of the object to be measured, and light of the laser light. On the shaft, there is a support base for supporting and fixing the object to be measured provided in a fixed state, and a detector for detecting the scattered light intensity of the laser light scattered by the object to be measured and outputting it to the outside. A detection unit that rotates to a predetermined scattering angle and outputs the scattering angle to the outside, and calculates the scattered light intensity and deviation index from the scattering angle and scattered light intensity output from the detection unit, and the object to be measured It is the measuring part comprised by the calculating part which calculates the outer diameter and refractive index of nanofiber, It is the measuring apparatus of the outer diameter and refractive index of nanofiber characterized by the above-mentioned.

請求項5記載の発明は、レーザ光を発光する光源部と、レーザ光を被測定物長さ方向に対して垂直な垂直偏光、若しくは水平な水平偏光とする光偏向部と、レーザ光の光軸上に、固定状態で備わる被測定物を支持固定する支持台と、被測定物により散乱されたレーザ光の散乱光強度を検出して外部に出力する検出器が前記支持台の周囲に円周上に、散乱角度となる所定角度で少なくとも2基以上備えられる検出部と、前記検出部より出力される散乱角度および散乱光強度から計算散乱光強度と偏差指標を算出して被測定物の外径及び屈折率を算出する演算部とで、構成されることを特徴とするナノファイバーの外径および屈折率の測定装置である。   According to a fifth aspect of the present invention, there is provided a light source unit that emits laser light, a light deflecting unit that converts the laser light into vertical polarization or horizontal horizontal polarization perpendicular to the length direction of the object to be measured, and light of the laser light. A support base for supporting and fixing the measurement object provided in a fixed state on the axis, and a detector for detecting the scattered light intensity of the laser light scattered by the measurement object and outputting it to the outside are circled around the support base. On the circumference, at least two detection units provided at a predetermined angle as the scattering angle, and the calculated scattered light intensity and deviation index are calculated from the scattering angle and scattered light intensity output from the detection unit, and the measured object An apparatus for measuring an outer diameter and a refractive index of a nanofiber, characterized in that it is configured with a calculation unit that calculates an outer diameter and a refractive index.

本発明によれば、200nm以下の外径を有するナノファイバーの外径およびその屈折率を効率良く且つ精度良く測定することを可能とするもので、工業上顕著な効果を奏するものである。   According to the present invention, it is possible to efficiently and accurately measure the outer diameter of a nanofiber having an outer diameter of 200 nm or less and its refractive index, and this has a remarkable industrial effect.

本発明に係る外径および屈折率の測定方法は、図1のフローチャートに示すように進められる。
先ず、図2に示す外径・屈折率測定装置1で、被測定物2に対して、光源3から波長λnm(543.5nm)のレーザ光3aを発光し、そのレーザ光3aが偏向装置4で被測定物に対して垂直偏光、或いは水平偏光とされ、検出部5上面に支持台5bで支持された被測定物2に投射される。レーザ光3aは、被測定物2により一部が反射され、レーザ光3aの光軸に対して散乱角度θに配置された検出器6で、その測定散乱光強度Iが測定される。この手順で、散乱角度θ(i=0・・・n)を変化させてその時の測定散乱光強度I(i=0・・・n)を順次測定していく。
又は、図3のように複数の検出器6(図3の場合は28基)を、被測定物2を支持する支持台5bの円周上に配置し、各々の検出器6の散乱角度θで測定散乱光強度Iを測定することでも良い。
The outer diameter and refractive index measurement method according to the present invention proceeds as shown in the flowchart of FIG.
First, the outer diameter / refractive index measuring apparatus 1 shown in FIG. 2 emits laser light 3a having a wavelength of λ nm (543.5 nm) from the light source 3 to the object to be measured 2, and the laser light 3a is deflected by the deflecting device 4. Thus, the polarized light or the horizontally polarized light is applied to the object to be measured and is projected onto the object to be measured 2 supported on the upper surface of the detection unit 5 by the support base 5b. A part of the laser beam 3a is reflected by the object to be measured 2, and the measured scattered light intensity I is measured by the detector 6 disposed at the scattering angle θ with respect to the optical axis of the laser beam 3a. In this procedure, the scattering angle θ i (i = 0... N) is changed, and the measured scattered light intensity I i (i = 0... N) at that time is sequentially measured.
Alternatively, as shown in FIG. 3, a plurality of detectors 6 (28 in the case of FIG. 3) are arranged on the circumference of the support 5 b that supports the DUT 2, and the scattering angle θ of each detector 6. i in may be to measure the measuring scattered light intensity i i.

これらの検出角度θと測定散乱光強度Iは、図1に記した外径・屈折率同時解析プログラムを搭載したパーソナルコンピュータのような演算部7に送られる。
この演算部7内で計算散乱光強度σが計算される。
本発明では、この計算散乱光強度を求める式として、種々検討を重ねた結果、第1種と第3種ベッセル関数を用いて表すことにより、これ以降の外径、屈折率の算出において精度の良い値が得られることを見出したものである。
その計算散乱光強度σの算出に際しては、垂直偏光で散乱させた場合は、数1を用いて計算し、水平偏光を散乱させた場合は、数2を用いて計算を行う。
These detection angles θ i and measured scattered light intensity I i are sent to a calculation unit 7 such as a personal computer equipped with the simultaneous outer diameter / refractive index analysis program shown in FIG.
The calculated scattered light intensity σ i is calculated in the calculation unit 7.
In the present invention, as a result of various studies as a formula for calculating the calculated scattered light intensity, by using the first type and the third type Bessel function, the accuracy of the calculation of the outer diameter and the refractive index can be improved. It has been found that a good value can be obtained.
When calculating the calculated scattered light intensity σ i , calculation is performed using Equation 1 when scattered by vertically polarized light, and calculation is performed using Equation 2 when scattered horizontally polarized light.

Figure 2006242591
ここで、添字‖は水平偏光によるものを表し、kは波数、rは被測定物の半径(D/2)、J(x)は第一種ベッセル関数、H (1)(=J(x)+iY(x))は第三種ベッセル関数を表し、mは次数である。
Figure 2006242591
Here, the subscript 表 し represents horizontal polarization, k is the wave number, r 0 is the radius of the object to be measured (D 0/2 ), J m (x) is the first-type Bessel function, and H m (1) ( = J m (x) + iY m (x)) represents a Bessel function of the third kind, and m is an order.

Figure 2006242591
ここで、添字⊥は垂直偏光によるものを表し、J (x)は第一種ベッセル関数を表し、H ’(1)(=J(x)+iY(x))は第三種ベッセル関数を表し、mは次数である。
Figure 2006242591
Here, the subscript ⊥ represents vertical polarization, J m (x) represents a first-class Bessel function, and H m ′ (1) (= J m (x) + iY m (x)) Represents a triple Bessel function, where m is the order.

ところで、数1、数2で示した計算散乱光強度の式は、繊維編素や蜘蛛の糸のような透明性の高い材質の外径、屈折率の測定に有効であるが、金属系超伝導線のような反射の強い金属などの場合や、カーボンナノチューブなどのような中空試料では、この計算散乱光強度式をより適した式に変えることで、本発明の外径、屈折率の同時測定を行うことができる。   By the way, the calculated scattered light intensity formulas shown in Equations 1 and 2 are effective for measuring the outer diameter and refractive index of highly transparent materials such as fiber knitted fabrics and yarns. In the case of a highly reflective metal such as a conductive wire or a hollow sample such as a carbon nanotube, the calculated scattered light intensity formula can be changed to a more suitable formula, so that the outer diameter and the refractive index of the present invention can be adjusted simultaneously. Measurements can be made.

次に、測定した測定散乱光強度Iと検出角度θから算出した計算散乱光強度計算σを用いて、数3で示す外径Dと屈折率nを包含する形式の偏差指標U(n,D)を作成する。この偏差指標を外径Dと屈折率nの関数として、偏差指標が最小となる点(n,D)を求め、その場合の外径Dと屈折率nの組み合わせを被測定物の外径および屈折率とする。 Next, using the measured scattered light intensity calculation σ i calculated from the measured measured scattered light intensity I i and the detected angle θ i , the deviation index U (including the outer diameter D and the refractive index n shown in Equation 3 is used. n, D). Using this deviation index as a function of the outer diameter D and the refractive index n, a point (n 0 , D 0 ) at which the deviation index is minimum is obtained, and the combination of the outer diameter D and the refractive index n in that case is determined from the outside of the object to be measured. Diameter and refractive index.

先ず、この計算は、偏差指標が外径D及び屈折率nの時、I (opt)=bσ(n,D)の場合に最適分布を示し、この最適分布における最適偏差指標U (opt)(n,D)を数3のように表す。 First, this calculation shows an optimal distribution when I i (opt) = bσ i (n 0 , D 0 ) when the deviation index is the outer diameter D 0 and the refractive index n 0 , and the optimal deviation in this optimal distribution The index U T (opt) (n, D) is expressed as in Equation 3.

Figure 2006242591
ここで、Nは測定数、bは入射波強度を表す。
Figure 2006242591
Here, N represents the number of measurements, and b represents the incident wave intensity.

次いで、外径Dおよび屈折率nの関数としての偏差指標の集合Gを、G={n,D|U (opt)(n,D)≦U(n,D)}として、その範囲内において、数4からnmin、nmax、Dmin、Dmaxを求める。求めた各値とn、Dとの差、外径に関しては、(Dmin−D,D−D)、屈折率に関しては、(nmin−n,nmax−n)を不確実さと定義し、この値を最小とする点(n、D)を求めることにより、被測定物の外径、屈折率を算出する。 Then, a set G of deviation indices as a function of the outer diameter D and the refractive index n is set as G = {n, D | U T (opt) (n, D) ≦ U T (n 0 , D 0 )}. Within that range, n min , n max , D min , and D max are determined from Equation 4. The difference between the obtained values and n 0 , D 0 , the outer diameter is (D min −D 0 , D 0 −D 0 ), and the refractive index is (n min −n 0 , n max −n 0). ) Is defined as uncertain, and the point (n 0 , D 0 ) that minimizes this value is calculated to calculate the outer diameter and refractive index of the object to be measured.

Figure 2006242591
Figure 2006242591

このようにして計算した一例として、外径500nmの繊維編素の偏差指標U(n,D
)を図4(a)、図4(b)に外径Dと屈折率nの関数として示す。図4(a)は、グローバル座標で示したもので、図4(b)は、U(n,D)が最小点を示す座標(n、D)近傍を拡大して示したものである。
As an example calculated in this manner, a deviation index U (n, D) of a fiber braid having an outer diameter of 500 nm.
) Are shown as a function of the outer diameter D and the refractive index n in FIGS. 4 (a) and 4 (b). FIG. 4A shows the global coordinates, and FIG. 4B shows an enlarged view of the vicinity of coordinates (n 0 , D 0 ) where U (n, D) indicates the minimum point. is there.

以下に、実施例を用いて本発明を説明する。
先ず、被測定物として、外径250nm、200nmの繊維編素、外径150nm、100nm、90nmの蜘蛛の糸を用いた。これらの外径は、予め走査電子顕微鏡(SEM)を用いて実測している。
これらの試料を図2の外径・屈折率測定装置1の支持台5bにセットして、波長λ=534.5nmのレーザ光を投射し、散乱角度θを0度から150度の間で、2度刻みに順次変化させ、その散乱強度を測定し、測定散乱光強度Iとした。
Hereinafter, the present invention will be described using examples.
First, fiber knitting elements having outer diameters of 250 nm and 200 nm, and warp yarns having outer diameters of 150 nm, 100 nm, and 90 nm were used as objects to be measured. These outer diameters are measured in advance using a scanning electron microscope (SEM).
These samples are set on the support 5b of the outer diameter / refractive index measuring apparatus 1 of FIG. 2, and a laser beam having a wavelength λ = 534.5 nm is projected, and the scattering angle θ i is between 0 ° and 150 °. The scattering intensity was measured in order of 2 degrees, and the scattering intensity was measured to obtain the measured scattered light intensity I i .

次にパーソナルコンピュータに先の散乱角度θと測定散乱光強度Iを入力し、散乱角度θから計算散乱光強度σを求め、測定散乱光強度Iと求めた計算散乱光強度σから偏差指標U(n,D)を計算し、U(n,D)を最小とする値を最適値として求め、その時のDとnを各々外径及び屈折率とした。その結果を表1に実測値と共に記した。なお、測定は、垂直偏光及び水平偏光の両者で行なった。 Next, the previous scattering angle θ i and the measured scattered light intensity I i are input to a personal computer, the calculated scattered light intensity σ i is obtained from the scattered angle θ i, and the calculated scattered light intensity I i is obtained as the calculated scattered light intensity σ. A deviation index U (n, D) is calculated from i , a value that minimizes U (n, D) is obtained as an optimum value, and D and n at that time are taken as an outer diameter and a refractive index, respectively. The results are shown in Table 1 together with the actual measurement values. The measurement was performed with both vertically polarized light and horizontally polarized light.

Figure 2006242591
Figure 2006242591

表1から明らかなように、本発明により求められた外径は、90nmの細径のナノファイバーにおいても走査電子顕微鏡による実測値と数%以内の値が得られていることがわかる。   As is apparent from Table 1, it can be seen that the outer diameter obtained by the present invention is a value measured by a scanning electron microscope and a value within several percent even in a nanofiber having a small diameter of 90 nm.

本発明に係る測定方法フローチャートMeasuring method flowchart according to the present invention 外径・屈折率測定装置の一例Example of outer diameter / refractive index measuring device 外径・屈折率測定装置の別の一例Another example of outer diameter / refractive index measuring device 外径500nm試料の外径Dと屈折率nによる偏差指標の変化Change of deviation index by outer diameter D and refractive index n of sample with outer diameter of 500 nm

符号の説明Explanation of symbols

1 外径・屈折率測定装置
2 被測定物(ナノファイバー)
3 光源
3a レーザ光
3b 散乱光
4 偏向装置
5a 検出部
5b 支持台
6 検出器
7 演算部
θ 散乱角度
測定光散乱強度
σ 計算散乱光強度
D 外径
n 屈折率
1 Outer diameter / refractive index measuring device 2 Object to be measured (nanofiber)
DESCRIPTION OF SYMBOLS 3 Light source 3a Laser beam 3b Scattered light 4 Deflector 5a Detection part 5b Support stand 6 Detector 7 Calculation part (theta) i Scattering angle I i Measurement light scattering intensity (sigma) i Calculation scattered light intensity D Outer diameter n Refractive index

Claims (5)

ナノファイバーの長さ方向に対して垂直に偏向された垂直偏光を、前記ナノファイバーに投射して得られる所定散乱角度の散乱光による測定散乱光強度と、
前記散乱角度から算出した計算散乱光強度とから、
前記ナノファイバーの外径及び屈折率の関数で表される偏差指標を算出し、この偏差指標を最小とする前記ナノファイバーの外径および屈折率の組み合わせを求めることで、前記ナノファイバーの外径および屈折率を求めることを特徴とするナノファイバーの外径及び屈折率の測定方法。
The measured scattered light intensity by the scattered light at a predetermined scattering angle obtained by projecting the vertically polarized light, which is deflected perpendicularly to the length direction of the nanofiber, onto the nanofiber, and
From the calculated scattered light intensity calculated from the scattering angle,
By calculating a deviation index represented by a function of the outer diameter and refractive index of the nanofiber, and obtaining a combination of the outer diameter and refractive index of the nanofiber that minimizes the deviation index, the outer diameter of the nanofiber And a method of measuring the outer diameter and refractive index of the nanofiber, wherein the refractive index is obtained.
ナノファイバーの長さ方向に対して平行に偏向された平行偏光を、前記ナノファイバーに投射して得られる所定散乱角度の散乱光による測定散乱光強度と、
前記散乱角度から算出した計算散乱光強度とから、
前記ナノファイバーの外径及び屈折率の関数で表される偏差指標を算出し、この偏差指標を最小とする前記ナノファイバーの外径および屈折率の組み合わせを求めることで、前記ナノファイバーの外径および屈折率を求めることを特徴とするナノファイバーの外径及び屈折率の測定方法。
Measured scattered light intensity by scattered light of a predetermined scattering angle obtained by projecting parallel polarized light deflected parallel to the length direction of the nanofiber onto the nanofiber, and
From the calculated scattered light intensity calculated from the scattering angle,
By calculating a deviation index represented by a function of the outer diameter and refractive index of the nanofiber, and obtaining a combination of the outer diameter and refractive index of the nanofiber that minimizes the deviation index, the outer diameter of the nanofiber And a method of measuring the outer diameter and refractive index of the nanofiber, wherein the refractive index is obtained.
外径および屈折率を測定する前記ナノファイバーの外径が200nm以下であることを特徴とする請求項1又は請求項2記載のナノファイバーの外径および屈折率の測定方法。 The method for measuring the outer diameter and refractive index of a nanofiber according to claim 1 or 2, wherein the outer diameter of the nanofiber for measuring the outer diameter and the refractive index is 200 nm or less. レーザ光を発光する光源部と、
レーザ光を被測定物長さ方向に対して垂直な垂直偏光、若しくは水平な水平偏光とする光偏向部と、
レーザ光の光軸上に、固定状態で備わる被測定物を支持固定する支持台と、
被測定物により散乱されたレーザ光の散乱光強度を検出して外部に出力する検出器を有し、この検出器が所定散乱角度になるように回転し、その散乱角度を外部に出力する検出部と、
前記試料回転ステージと前記検出器より出力される散乱角度および散乱光強度から計算散乱光強度と偏差指標を算出して被測定物の外径及び屈折率を算出する演算部とで、
構成されることを特徴とするナノファイバーの外径および屈折率の測定装置。
A light source that emits laser light;
An optical deflector that converts laser light into vertical polarization or horizontal horizontal polarization perpendicular to the length direction of the object to be measured;
A support base for supporting and fixing a measurement object provided in a fixed state on the optical axis of the laser beam;
A detector that detects the scattered light intensity of the laser light scattered by the object to be measured and outputs it to the outside. The detector rotates to reach a predetermined scattering angle, and the scattering angle is output to the outside. And
With the calculation unit that calculates the calculated scattered light intensity and deviation index from the scattering angle and scattered light intensity output from the sample rotation stage and the detector, and calculates the outer diameter and refractive index of the object to be measured,
An apparatus for measuring the outer diameter and refractive index of a nanofiber, characterized in that it is configured.
レーザ光を発光する光源部と、
レーザ光を被測定物長さ方向に対して垂直な垂直偏光、若しくは水平な水平偏光とする光偏向部と、
レーザ光の光軸上に、固定状態で備わる被測定物を支持固定する支持台と、
被測定物により散乱されたレーザ光の散乱光強度を検出して外部に出力する検出器が前記支持台の周囲に円周上に、散乱角度となる所定角度で少なくとも2基以上備えられる検出部と、
前記検出器より出力される散乱角度および散乱光強度から計算散乱光強度と偏差指標を算出して被測定物の外径及び屈折率を算出する演算部とで、
構成されることを特徴とするナノファイバーの外径および屈折率の測定装置。
A light source that emits laser light;
An optical deflector that converts laser light into vertical polarization or horizontal horizontal polarization perpendicular to the length direction of the object to be measured;
A support base for supporting and fixing a measurement object provided in a fixed state on the optical axis of the laser beam;
At least two detectors that detect the scattered light intensity of the laser light scattered by the object to be measured and output it to the outside are provided around the support base on the circumference at a predetermined angle as a scattering angle. When,
With a calculation unit that calculates the calculated scattered light intensity and deviation index from the scattering angle and scattered light intensity output from the detector to calculate the outer diameter and refractive index of the object to be measured,
An apparatus for measuring the outer diameter and refractive index of a nanofiber, characterized in that it is configured.
JP2005054852A 2005-02-28 2005-02-28 Method and device for measuring outer diameter and refractive index of nano fiber Pending JP2006242591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054852A JP2006242591A (en) 2005-02-28 2005-02-28 Method and device for measuring outer diameter and refractive index of nano fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054852A JP2006242591A (en) 2005-02-28 2005-02-28 Method and device for measuring outer diameter and refractive index of nano fiber

Publications (2)

Publication Number Publication Date
JP2006242591A true JP2006242591A (en) 2006-09-14
JP2006242591A5 JP2006242591A5 (en) 2008-04-10

Family

ID=37049172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054852A Pending JP2006242591A (en) 2005-02-28 2005-02-28 Method and device for measuring outer diameter and refractive index of nano fiber

Country Status (1)

Country Link
JP (1) JP2006242591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116410A (en) * 2006-11-07 2008-05-22 Yokohama National Univ Method of measuring diameter, refractive index, distance between center axes and angle between incident light axis and interval of cylindrical object, and apparatus using the same
CN102207375A (en) * 2010-03-31 2011-10-05 梁红 Novel device for measuring diameter of optical fiber
CN104034696A (en) * 2014-05-16 2014-09-10 浙江大学 Nano optical fiber refractive index sensor with high sensitivity and large measurement range

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010057845, 土田陽, ""レーザ光散乱による繊維径、屈折率、複屈折の測定"", 繊維機械学会誌, 198403, Vol.37, No.3, pages T39−T47, JP *
JPN6010057847, 但馬文昭, ""約120nmのクモの糸の太さと屈折率の測定の可能性の検討"", 応用物理学関係連合講演会講演予稿集, 20040328, Vol.51, No.3, page 1071, JP *
JPN6010057849, Fumiaki Tajima, ""Development of Measurement System for Diameter and Refractive Index of Silk Fibroin Filament Based", Journal of Insect Biotechnology and Sericology, 20040630, Vol.73, No.2, pages 85−88, JP *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116410A (en) * 2006-11-07 2008-05-22 Yokohama National Univ Method of measuring diameter, refractive index, distance between center axes and angle between incident light axis and interval of cylindrical object, and apparatus using the same
CN102207375A (en) * 2010-03-31 2011-10-05 梁红 Novel device for measuring diameter of optical fiber
CN104034696A (en) * 2014-05-16 2014-09-10 浙江大学 Nano optical fiber refractive index sensor with high sensitivity and large measurement range

Similar Documents

Publication Publication Date Title
Jamali et al. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling
Rotenberg et al. Plasmon scattering from single subwavelength holes
Maruyama et al. Confocal volume in laser Raman microscopy depth profiling
Wang et al. Hard-X-ray directional dark-field imaging using the speckle scanning technique
Mikhaylov et al. Shack–Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging
JP2006242591A (en) Method and device for measuring outer diameter and refractive index of nano fiber
Wasserroth et al. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures
US9417262B2 (en) Scanning probe microscope and sample observation method using same
JP5453407B2 (en) Coherent nonlinear microscopy system and method with modulation of focal volume for probing nanostructures of organized materials
Castagné et al. Near field optical behaviour of C supertips
JP2015025764A (en) Defect inspection apparatus
JP2008002891A (en) Surface state inspection device and surface state inspection method
JP4923255B2 (en) Method for measuring diameter of cylindrical body, refractive index, distance between central axes, and angle formed between incident optical axis and apparatus using the same
JP7234693B2 (en) Fiber length measuring method, fiber length measuring device and fiber length measuring program
Mirzaeimoghri et al. Nano-printed miniature compound refractive lens for desktop hard x-ray microscopy
Hiraga et al. Nanometer scale marker for fluorescent microscopy
Rhodes et al. Sub-wavelength characterisation of optical focal structures
JP5018194B2 (en) Observation device
Payne et al. Quantitative morphometric analysis of single gold nanoparticles by optical extinction microscopy: Material permittivity and surface damping effects
JP5724441B2 (en) Optical characteristic evaluation method and optical element inspection method
Abbasirad et al. A fully automated dual-tip scanning near-field optical microscope for localized optical excitation and detection in the visible and near-infrared
RU2426103C1 (en) Method of coherent x-ray phase microscopy
Degtyarev et al. Theoretical and experimental study of aperture size effects on the polarization sensitivity of near-field microscopy fiber-optic probes
Michihata et al. Measurement of diameter of sub-micrometer fiber based on analysis of scattered light intensity distribution under standing wave illumination
Walther et al. Interslit coupling via ultrafast dynamics across gold-film hole arrays

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222