JP4920624B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4920624B2
JP4920624B2 JP2008096877A JP2008096877A JP4920624B2 JP 4920624 B2 JP4920624 B2 JP 4920624B2 JP 2008096877 A JP2008096877 A JP 2008096877A JP 2008096877 A JP2008096877 A JP 2008096877A JP 4920624 B2 JP4920624 B2 JP 4920624B2
Authority
JP
Japan
Prior art keywords
expansion valve
indoor
heat exchanger
outdoor
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008096877A
Other languages
Japanese (ja)
Other versions
JP2009250479A (en
Inventor
利明 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008096877A priority Critical patent/JP4920624B2/en
Publication of JP2009250479A publication Critical patent/JP2009250479A/en
Application granted granted Critical
Publication of JP4920624B2 publication Critical patent/JP4920624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、一台の室外ユニットに複数台の室内ユニットを接続した、所謂マルチエアコンと呼ばれる空気調和機に関するものである。   The present invention relates to an air conditioner called a multi-air conditioner in which a plurality of indoor units are connected to one outdoor unit.

従来のマルチエアコンは、一般に、室外ユニットに圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を備え、室内ユニットには室内熱交換器、室内送風機等備えている。例えば、特許文献1、特許文献2が上げられる。   Conventional multi-air conditioners generally include an expansion valve in a connection path between an indoor unit and a compressor, an outdoor heat exchanger, an outdoor fan, and the like, and the indoor unit includes an indoor heat exchanger, an indoor fan, and the like. . For example, Patent Literature 1 and Patent Literature 2 are raised.

そこで、冷房運転中の室内ユニットに接続した膨張弁は各室内ユニット毎に室内熱交換器の入口温度と出口温度の差により室内熱交換器の出口付近で冷媒の蒸発がほぼ完了するように制御する。
特開平5−312427号公報 特開2005−69655号公報
Therefore, the expansion valve connected to the indoor unit in the cooling operation is controlled so that the evaporation of the refrigerant is almost completed near the outlet of the indoor heat exchanger by the difference between the inlet temperature and the outlet temperature of the indoor heat exchanger for each indoor unit. To do.
JP-A-5-31427 JP 2005-69655 A

しかしながら、上記方法では、ある1室に対応した室外ユニットの膨張弁が全開状態になっても、他室の室内ユニットの室内熱交換器出口付近の冷媒がまだ乾き状態であれば、その他室に対応した膨張弁を開方向に動作させる。ここで、「まだ乾き状態」とは、膨張弁で減圧され、少量のガスと液となった冷媒が室内熱交換器で蒸発して、全部冷媒ガスとなり、更に過熱ガスとなった状態をいう。   However, in the above method, even if the expansion valve of the outdoor unit corresponding to one room is fully opened, if the refrigerant near the outlet of the indoor heat exchanger of the indoor unit of the other room is still dry, Operate the corresponding expansion valve in the opening direction. Here, the “still dry state” means a state in which the refrigerant, which has been decompressed by the expansion valve, becomes a small amount of gas and liquid, evaporates in the indoor heat exchanger, becomes all refrigerant gas, and further becomes superheated gas. .

膨張弁が全開でない室の室内熱交換器出口付近の冷媒がまだ乾き状態であれば、その室に対応した膨張弁は開方向に制御され、冷媒循環量が増加する。すると、膨張弁が全開となっている室の室内ユニットの室内熱交換器へ流れる冷媒循環量は更に減少する。従って、膨張弁が全開の室は能力が減少するとともに、室内熱交換器の出口側が乾き、除湿されない空気が送風機に吸引されるため、送風機等に露付きが生じる。   If the refrigerant in the vicinity of the outlet of the indoor heat exchanger in the chamber where the expansion valve is not fully opened is still dry, the expansion valve corresponding to the chamber is controlled in the opening direction, and the amount of refrigerant circulation increases. Then, the refrigerant circulation amount flowing to the indoor heat exchanger of the indoor unit of the chamber in which the expansion valve is fully opened further decreases. Therefore, the capacity of the chamber in which the expansion valve is fully open is reduced, and the outlet side of the indoor heat exchanger is dried and air that is not dehumidified is sucked into the blower, so that the blower and the like are dewed.

本発明は、各室の能力のバランスが大きく崩れたり、露付きする問題のないマルチエアコンを提供することを目的とする。   An object of the present invention is to provide a multi-air conditioner in which the balance of the capabilities of the rooms is not greatly lost or is not exposed.

上記目的を達成するために本発明は、室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると他室の膨張弁を開方向への制御を禁止することを特徴としている。   In order to achieve the above object, the present invention includes an expansion valve in a connection path between a plurality of indoor units and compressors, outdoor heat exchangers, outdoor blowers, and the like, each having an indoor heat exchanger, an indoor fan, and the like. In an air conditioner equipped with an outdoor unit and provided with means for detecting the inlet temperature and outlet temperature of the indoor heat exchanger, during cooling operation, a difference between the outlet temperature and the inlet temperature of each indoor unit becomes a target value. The expansion valve is controlled as described above, and when at least one expansion valve is fully opened, control of the expansion valve in the other chamber in the opening direction is prohibited.

また本発明は、室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると各室の目標値との差が一定になるように各室の膨張弁を制御することを特徴としている。   The present invention also includes a plurality of indoor units and compressors including an indoor heat exchanger, an indoor fan, and the like, an outdoor unit including an expansion valve in a connection path between the compressor, the outdoor heat exchanger, the outdoor fan, and the indoor unit, In an air conditioner equipped with a means to detect the inlet and outlet temperatures of the indoor heat exchanger, the expansion valve is controlled so that the difference between the outlet temperature and the inlet temperature of each indoor unit becomes a target value during cooling operation. In addition, when at least one expansion valve is fully opened, the expansion valve in each chamber is controlled so that the difference from the target value in each chamber becomes constant.

また本発明は、室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると各室の目標値との差が各室の能力により決定される値になるように各室の膨張弁を制御することを特徴としている。   The present invention also includes a plurality of indoor units and compressors including an indoor heat exchanger, an indoor fan, and the like, an outdoor unit including an expansion valve in a connection path between the compressor, the outdoor heat exchanger, the outdoor fan, and the indoor unit, In an air conditioner equipped with a means to detect the inlet and outlet temperatures of the indoor heat exchanger, the expansion valve is controlled so that the difference between the outlet temperature and the inlet temperature of each indoor unit becomes a target value during cooling operation. In addition, when at least one expansion valve is fully opened, the expansion valve of each chamber is controlled so that the difference from the target value of each chamber becomes a value determined by the capacity of each chamber.

本発明によれば、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると、他室の膨張弁を開方向への制御を禁止したり、各室の目標値との差が各室の能力により決定される値になるように各室の膨張弁を制御したり、或いは各室の目標値との差が一定になるように各室の膨張弁を制御するため、各室毎の負荷変動や配管長の差による能力のアンバランスや露付きの問題が解消される。   According to the present invention, the expansion valve is controlled so that the difference between the outlet temperature and the inlet temperature of each indoor unit becomes a certain target value. When even one expansion valve is fully opened, the expansion valve of the other chamber is opened. Control the expansion valve of each chamber so that the difference from the target value of each chamber becomes a value determined by the capacity of each chamber, or the difference from the target value of each chamber is Since the expansion valve of each chamber is controlled so as to be constant, the problems of unbalanced capacity and dew condensation due to load fluctuations and pipe length differences in each chamber are solved.

以下、本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、一台の室外ユニットに2台の室内ユニットを接続したマルチエアコンの冷凍サイクル図であり、室外ユニット1に圧縮機2、室外熱交換器3、室外送風機17(図示せず)が搭載され、さらに第1の膨張弁4、第2の膨張弁5がそれぞれ第1の室内ユニット6、第2の室内ユニット7からの冷媒接続からのパイプに設けられている。第1の室内ユニット6は、家屋の複数ある居室の一室に設置され、第2の室内ユニット7は他室に設置されている。第1の膨張弁4、第2の膨張弁5は、図示しないステッピングモータに取り付けられそのステップ数により開度を調整されるようになっている。   FIG. 1 is a refrigeration cycle diagram of a multi air conditioner in which two indoor units are connected to one outdoor unit. A compressor 2, an outdoor heat exchanger 3, and an outdoor blower 17 (not shown) are connected to the outdoor unit 1. In addition, a first expansion valve 4 and a second expansion valve 5 are provided on pipes from the refrigerant connection from the first indoor unit 6 and the second indoor unit 7, respectively. The first indoor unit 6 is installed in a room of a plurality of living rooms, and the second indoor unit 7 is installed in another room. The first expansion valve 4 and the second expansion valve 5 are attached to a stepping motor (not shown), and the opening degree is adjusted by the number of steps.

第1の室内ユニット6、第2の室内ユニット7にはそれぞれ、第1の室内熱交換器8、第2の室内熱交換器9および第1の室内送風機22(図示せず)、第2の室内送風機23(図示せず)が搭載され、第1の室内熱交換器8、第2の室内熱交換器9の入口側には第1の入口サーミスター10、第2の入口サーミスター11が、出口側には第1の出口サーミスター14、第2の出口サーミスター15が設けられている。   The first indoor unit 6 and the second indoor unit 7 include a first indoor heat exchanger 8, a second indoor heat exchanger 9, a first indoor blower 22 (not shown), and a second indoor unit, respectively. An indoor blower 23 (not shown) is mounted, and a first inlet thermistor 10 and a second inlet thermistor 11 are provided on the inlet side of the first indoor heat exchanger 8 and the second indoor heat exchanger 9. On the outlet side, a first outlet thermistor 14 and a second outlet thermistor 15 are provided.

図2は電気回路図であり、室外制御回路16、室外送風機17、圧縮機2はそれぞれ電源に並列に接続している。室外送風機リレー18、圧縮機リレー19、第1の膨張弁4、第2の膨張弁5は室外制御回路16の出力により制御される。   FIG. 2 is an electric circuit diagram, and the outdoor control circuit 16, the outdoor blower 17, and the compressor 2 are connected in parallel to the power source. The outdoor fan relay 18, the compressor relay 19, the first expansion valve 4, and the second expansion valve 5 are controlled by the output of the outdoor control circuit 16.

第1の室内制御回路20、第2の室内制御回路21および第1の室内送風機22、第2の室内送風機23はそれぞれ電源に並列に接続している。第1の室内送風機リレー24、第2の室内送風機リレー25はそれぞれ第1の室内制御回路20、第2の室内制御回路21の出力により制御される。   The first indoor control circuit 20, the second indoor control circuit 21, the first indoor blower 22, and the second indoor blower 23 are connected to the power supply in parallel. The first indoor fan relay 24 and the second indoor fan relay 25 are controlled by the outputs of the first indoor control circuit 20 and the second indoor control circuit 21, respectively.

第1の入口サーミスター10、第2の入口サーミスター11は第1の室内熱交換器8、第2の室内熱交換器9の入口部の温度を、第1の出口サーミスター14、第2の出口サーミスター15は第1の室内熱交換器8、第2の室内熱交換器9の出口部の温度をそれぞれ第1の室内制御回路20、第2の室内制御回路21に入力している。更に、第1の室内制御回路20、第2の室内制御回路21は室外制御回路16と連絡している。   The first inlet thermistor 10 and the second inlet thermistor 11 set the temperatures of the inlets of the first indoor heat exchanger 8 and the second indoor heat exchanger 9 to the first outlet thermistor 14 and the second outlet thermistor 14, respectively. The outlet thermistor 15 inputs the temperatures of the outlets of the first indoor heat exchanger 8 and the second indoor heat exchanger 9 to the first indoor control circuit 20 and the second indoor control circuit 21, respectively. . Further, the first indoor control circuit 20 and the second indoor control circuit 21 are in communication with the outdoor control circuit 16.

以上のように構成されたマルチエアコンの本発明に特徴的な動作について、図3、図4のフローチャートを参照して説明する。図3に示すように、第1の室内ユニット6の冷房運転を開始すると(ステップS1)、第1の室内送風機リレー24が第1の室内制御回路20により閉路して第1の室内送風機22が駆動され(ステップS2)、室外送風機リレー18が室外制御回路16により閉路し、室外送風機17が駆動される(ステップS3)。室外制御回路16の出力により第1の膨張弁4はある設定値の開度P1(例えばステッピングモータのステップ数“100”で与えられる開度)となり(ステップS4)、第2の膨張弁5は全閉開度(例えばステッピングモータのステップ数“0”で与えられる開度)となる。   A characteristic operation of the present invention of the multi-air conditioner configured as described above will be described with reference to the flowcharts of FIGS. As shown in FIG. 3, when the cooling operation of the first indoor unit 6 is started (step S1), the first indoor blower relay 24 is closed by the first indoor control circuit 20, and the first indoor blower 22 is turned on. Driven (step S2), the outdoor fan relay 18 is closed by the outdoor control circuit 16, and the outdoor fan 17 is driven (step S3). The output of the outdoor control circuit 16 causes the first expansion valve 4 to have a certain opening P1 (for example, the opening given by the step number “100” of the stepping motor) (step S4), and the second expansion valve 5 The fully closed opening (for example, the opening given by the step number “0” of the stepping motor).

圧縮機リレー19が室外制御回路16により閉路し、圧縮機2は運転を開始し(ステップS5)、吐出ガスが、室外熱交換器3に送られる。この冷媒ガスは室外熱交換器3で室外空気と熱交換し、凝縮液化する。この凝縮液は第1の膨張弁4で減圧され、第1の室内熱交換器8で蒸発し、室内送風機17より送風された室内空気を冷却除湿する。蒸発した冷媒ガスは圧縮機2に戻る冷凍サイクルが繰り返される。第2の膨張弁5は全閉開度(閉じた状態にある)のため、第2の室内熱交換器9には、冷媒は流れない。   The compressor relay 19 is closed by the outdoor control circuit 16, the compressor 2 starts operation (step S5), and the discharge gas is sent to the outdoor heat exchanger 3. This refrigerant gas exchanges heat with outdoor air in the outdoor heat exchanger 3 to be condensed and liquefied. This condensate is depressurized by the first expansion valve 4, evaporated by the first indoor heat exchanger 8, and cools and dehumidifies the indoor air blown from the indoor blower 17. The refrigeration cycle in which the evaporated refrigerant gas returns to the compressor 2 is repeated. Since the second expansion valve 5 is fully closed (closed), the refrigerant does not flow through the second indoor heat exchanger 9.

ステップS7で第1の出口サーミスター14で検出される温度TOUT1と、ステップS6で第1の入口サーミスター10で検出される温度TIN1との差SH1(=TOUT1−TIN1)がある一定値(目標値)T1(例えば5℃)以上の場合(ステップS8の肯定判定)、第1の膨張弁4、第2の膨張弁5が全開でない限り(ステップS9、S10の否定判定)、第1の膨張弁4を所定ステップp0(例えば1ステップ)ずつ開制御(即ち、P1=P1+p0)し(ステップS11)、ステップS4に戻り、第1の膨張弁4を新たな開度P1に設定する。第1の膨張弁4、第2の膨張弁5のいずれか一方でも全開であればステップS9、S10の肯定判定)、第1の膨張弁4の開度をそのまま維持してステップS4に戻る。 The difference SH 1 (= T OUT1 −T IN1 ) between the temperature T OUT1 detected by the first outlet thermistor 14 in step S7 and the temperature T IN1 detected by the first inlet thermistor 10 in step S6 is obtained. If it is equal to or higher than a certain value (target value) T1 (for example, 5 ° C.) (positive determination in step S8), as long as the first expansion valve 4 and the second expansion valve 5 are not fully opened (negative determination in steps S9 and S10). Then, the first expansion valve 4 is controlled to be opened by a predetermined step p0 (for example, one step) (that is, P1 = P1 + p0) (step S11), the process returns to step S4, and the first expansion valve 4 is set to a new opening P1. Set. If either one of the first expansion valve 4 and the second expansion valve 5 is fully open, affirmative determination in steps S9 and S10), the opening degree of the first expansion valve 4 is maintained as it is, and the process returns to step S4.

ステップS6で第1の出口サーミスター14で検出される温度TOUT1と、ステップS7で第1の入口サーミスター10で検出される温度TIN1との差SH1(=TOUT1−TIN1)がある一定値(目標値)T1(例えば5℃)未満の場合(ステップS8の否定判定)、第1の膨張弁4を所定ステップp0(例えば1ステップ)ずつ閉制御(即ち、P1=P1−p0)し(ステップS12)、ステップS4に戻り、第1の膨張弁4を新たな開度P1に設定する。このようにして、第1の室内熱交換器8の出口付近で冷媒がほぼ完全に蒸発するように第1の膨張弁4の開度を調整する。 A difference SH 1 (= T OUT1 −T IN1 ) between the temperature T OUT1 detected by the first outlet thermistor 14 in step S6 and the temperature T IN1 detected by the first inlet thermistor 10 in step S7 is obtained. When it is less than a certain fixed value (target value) T1 (for example, 5 ° C.) (negative determination in step S8), the first expansion valve 4 is controlled to be closed by a predetermined step p0 (for example, one step) (that is, P1 = P1−p0). (Step S12), the process returns to Step S4, and the first expansion valve 4 is set to a new opening P1. In this way, the opening degree of the first expansion valve 4 is adjusted so that the refrigerant evaporates almost completely near the outlet of the first indoor heat exchanger 8.

ところで、マルチエアコンである以上、図4に示すように、第1の室内ユニット6の冷房運転中に更に、第2の室内ユニット7の冷房運転が開始されることがある。第2の室内ユニット7の冷房運転が開始されると(ステップS21)、第2の室内送風機リレー25が第2の室内制御回路21により閉路して第2の室内送風機23が駆動され(ステップS22)。室外制御回路16の出力により第2の膨張弁5はある設定値の開度P2(例えばステッピングモータのステップ数“100”で与えられる開度)となる(ステップS23)。   By the way, since it is a multi air conditioner, as shown in FIG. 4, the cooling operation of the second indoor unit 7 may be further started during the cooling operation of the first indoor unit 6. When the cooling operation of the second indoor unit 7 is started (step S21), the second indoor blower relay 25 is closed by the second indoor control circuit 21 and the second indoor blower 23 is driven (step S22). ). The output of the outdoor control circuit 16 causes the second expansion valve 5 to have a set opening P2 (for example, an opening given by the step number “100” of the stepping motor) (step S23).

圧縮機リレー19は室外制御回路16により閉路状態であり、圧縮機2は運転を継続し(ステップS24)、吐出ガスが、室外熱交換器3に送られる。この冷媒ガスは室外熱交換器3で室外空気と熱交換し、凝縮液化する。この凝縮液は第2の膨張弁5で減圧され、第2の室内熱交換器9で蒸発し、室内送風機17より送風された室内空気を冷却除湿する。蒸発した冷媒ガスは圧縮機2に戻る冷凍サイクルが繰り返される。なお、第1の室内ユニット6も冷房運転中であるため、第1の膨張弁4は上記の開度P1で開いた状態であり、第2の室内熱交換器9にも冷媒は流れることになる。   The compressor relay 19 is closed by the outdoor control circuit 16, the compressor 2 continues to operate (step S24), and the discharge gas is sent to the outdoor heat exchanger 3. This refrigerant gas exchanges heat with outdoor air in the outdoor heat exchanger 3 to be condensed and liquefied. The condensate is depressurized by the second expansion valve 5, evaporated by the second indoor heat exchanger 9, and cools and dehumidifies the indoor air blown from the indoor blower 17. The refrigeration cycle in which the evaporated refrigerant gas returns to the compressor 2 is repeated. Since the first indoor unit 6 is also in the cooling operation, the first expansion valve 4 is opened at the opening P1 and the refrigerant flows to the second indoor heat exchanger 9 as well. Become.

ステップS26で第2の出口サーミスター15で検出される温度TOUT2と、ステップS25で第2の入口サーミスター11で検出される温度TIN2との差SH2(=TOUT2−TIN2)がある一定値(目標値)T2(例えば5℃)以上の場合(ステップS27の肯定判定)、第2の膨張弁5、第1の膨張弁4が全開でない限り(ステップS28、S29の否定判定)、第2の膨張弁5を所定ステップp0(例えば1ステップ)ずつ開制御(即ち、P2=P2+p0)し(ステップS30)、ステップS23に戻り、第1の膨張弁4を新たな開度P2に設定する。第2の膨張弁5、第1の膨張弁4のいずれか一方でも全開であればステップS28、S29の肯定判定)、第2の膨張弁5の開度をそのまま維持してステップS23に戻る。 A difference SH 2 (= T OUT2 −T IN2 ) between the temperature T OUT2 detected by the second outlet thermistor 15 in step S26 and the temperature T IN2 detected by the second inlet thermistor 11 in step S25 is obtained. When it is equal to or higher than a certain value (target value) T2 (for example, 5 ° C.) (positive determination in step S27), unless the second expansion valve 5 and the first expansion valve 4 are fully opened (negative determination in steps S28 and S29). Then, the second expansion valve 5 is controlled to be opened by a predetermined step p0 (for example, one step) (that is, P2 = P2 + p0) (step S30), the process returns to step S23, and the first expansion valve 4 is set to a new opening P2. Set. If either one of the second expansion valve 5 and the first expansion valve 4 is fully open, an affirmative determination in steps S28 and S29), the opening degree of the second expansion valve 5 is maintained as it is, and the process returns to step S23.

ステップS26で第2の出口サーミスター15で検出される温度TOUT2と、ステップS25で第2の入口サーミスター11で検出される温度TIN2との差SH2(=TOUT2−TIN2)がある一定値(目標値)T2(例えば5℃)未満の場合(ステップS27の否定判定)、第2の膨張弁5を所定ステップp0(例えば1ステップ)ずつ閉制御(即ち、P2=P2−p0)し(ステップS31)、ステップS23に戻り、第2の膨張弁5を新たな開度P2に設定する。このようにして、第2の室内熱交換器9の出口付近で冷媒がほぼ完全に蒸発するように第2の膨張弁5の開度を調整する。 A difference SH 2 (= T OUT2 −T IN2 ) between the temperature T OUT2 detected by the second outlet thermistor 15 in step S26 and the temperature T IN2 detected by the second inlet thermistor 11 in step S25 is obtained. When it is less than a certain fixed value (target value) T2 (for example, 5 ° C.) (negative determination in step S27), the second expansion valve 5 is controlled to be closed by a predetermined step p0 (for example, one step) (that is, P2 = P2−p0). (Step S31), the process returns to Step S23, and the second expansion valve 5 is set to a new opening P2. In this way, the opening degree of the second expansion valve 5 is adjusted so that the refrigerant evaporates almost completely near the outlet of the second indoor heat exchanger 9.

通常、設定された室内温度まで冷房する場合、運転開始後に室外温度、室内温度を利用して、その時点で適切と思われる開度にする。しかしながら、室内温度の変化や、室外温度の変化、他の室内ユニットの運転状況に伴い、開度を変更する必要が生じる。例えば、上述したように、第2の室内ユニット7が運転を開始すると、第1の室内ユニット6の第1の室内熱交換器8内を循環する冷媒は減少する。そのため、第1の室内ユニット6の第1の室内熱交換器8内の冷媒は、第1の室内熱交換器8の出口に達する前に蒸発しやすくなり、SH2はその目標値よりも高くなってしまう。そこで第1の膨張弁4の開度を徐々に大きくして、第1の室内ユニット6の第1の室内熱交換器8内に流れる冷媒量を増やし、第1の室内熱交換器8の出口付近で蒸発が完了するようにして、SH2を目標値に近づけていく。このようにして、冷房運転制御を行っている。 Normally, when cooling to a set indoor temperature, the outdoor temperature and the indoor temperature are used after the start of operation, and the opening is considered appropriate at that time. However, it is necessary to change the opening degree in accordance with a change in indoor temperature, a change in outdoor temperature, and the operating status of other indoor units. For example, as described above, when the second indoor unit 7 starts operation, the refrigerant circulating in the first indoor heat exchanger 8 of the first indoor unit 6 decreases. Therefore, the refrigerant in the first indoor heat exchanger 8 of the first indoor unit 6 is likely to evaporate before reaching the outlet of the first indoor heat exchanger 8, and SH 2 is higher than its target value. turn into. Therefore, the opening degree of the first expansion valve 4 is gradually increased to increase the amount of refrigerant flowing into the first indoor heat exchanger 8 of the first indoor unit 6, and the outlet of the first indoor heat exchanger 8. The evaporation is completed in the vicinity, and SH 2 is brought closer to the target value. In this way, the cooling operation control is performed.

ところが、第1の室内ユニット6の負荷が大きかったり、長配管等により第1の膨張弁4を制御していくと開度が全開(例えば500ステップ)になっても、目標値T1に到達しない場合がある。もしここで、第2の膨張弁5が開方向に進むとすると、第2の室内ユニットに流れる冷媒量がさらに増加し、そのために、第1の室内ユニット6の第1の室内熱交換器8内に流れる冷媒量が減少する。すると、第1の室内熱交換器8が更に乾き方向に向かうため、SH1は目標値T1からさらに大きい値となってしまう。 However, if the load on the first indoor unit 6 is large or the first expansion valve 4 is controlled by a long pipe or the like, the target value T1 is not reached even if the opening degree is fully opened (for example, 500 steps). There is a case. Here, if the second expansion valve 5 advances in the opening direction, the amount of refrigerant flowing through the second indoor unit further increases. For this reason, the first indoor heat exchanger 8 of the first indoor unit 6 is increased. The amount of refrigerant flowing inside decreases. Then, since the first indoor heat exchanger 8 is directed further dry direction, SH 1 becomes a larger value from a target value T1.

そこで、第1の膨張弁4が全開になると(ステップS9、S29の肯定判定)、第2の膨張弁5の制御で開方向への制御を禁止するようにしている。これにより、第2の室内ユニット6の第2の熱交換器9内へそれ以上の量の冷媒が流れなくなり、結果的に第1の室内ユニット6の冷媒循環量が更に減少することがなく、第1の室内熱交換器8が更に乾き方向に向かうことが停止される。なお、第2の膨張弁5が先に全開になった場合(ステップS10、S28の肯定判定)も同様である。   Therefore, when the first expansion valve 4 is fully opened (affirmative determination in steps S9 and S29), control in the opening direction is prohibited by control of the second expansion valve 5. As a result, a larger amount of refrigerant does not flow into the second heat exchanger 9 of the second indoor unit 6, and as a result, the amount of refrigerant circulation in the first indoor unit 6 does not further decrease, The first indoor heat exchanger 8 is further stopped from moving in the drying direction. The same applies when the second expansion valve 5 is first fully opened (affirmative determination in steps S10 and S28).

次に、他の実施の形態について図5を参照して説明する。図3のステップS9若しくは図4のステップS29の肯定判定で、第1の室内ユニット6及び第2の室内ユニット7の冷房運転中に、第1の膨張弁4が全開になったとする(ステップS51)。このとき、ステップS53で第1の室内ユニット6の第1の出口サーミスター14で検出される温度TOUT1とステップS52で第1の入口サーミスター10で検出される温度TIN1との差SH1が上記目標値T1+αであり、ステップS55で第2の室内ユニット7の第2の出口サーミスター15で検出される温度TOUT2とステップS54で第2の入口サーミスター11で検出される温度TIN2との差SH2が上記目標値T2+βの場合、α=β即ち目標値との差が一定になるように第1の膨張弁4は全開開度のまま、第2の膨張弁5の開度を制御する。即ち、ステップS56で、α>βであれば第2の膨張弁5を閉制御し(ステップS57)、α<βであれば第2の膨張弁5を閉制御(ステップS58)しながら、α=βとなるように第1の膨張弁4を全開にしたまま第2の膨張弁5の開度を制御する。なお、第2の膨張弁5の開度の制御の手法については既知の手法を用いて行うことができる。 Next, another embodiment will be described with reference to FIG. In step S9 of FIG. 3 or step S29 of FIG. 4, it is assumed that the first expansion valve 4 is fully opened during the cooling operation of the first indoor unit 6 and the second indoor unit 7 (step S51). ). At this time, the difference SH 1 between the temperature T OUT1 detected by the first outlet thermistor 14 of the first indoor unit 6 in step S53 and the temperature T IN1 detected by the first inlet thermistor 10 in step S52. Is the target value T1 + α, the temperature T OUT2 detected by the second outlet thermistor 15 of the second indoor unit 7 in step S55 and the temperature T IN2 detected by the second inlet thermistor 11 in step S54. When the difference SH 2 is the target value T2 + β, the opening of the second expansion valve 5 is maintained while the first expansion valve 4 is fully opened so that α = β, that is, the difference from the target value is constant. To control. That is, in step S56, if α> β, the second expansion valve 5 is controlled to be closed (step S57). If α <β, the second expansion valve 5 is controlled to be closed (step S58). The opening degree of the second expansion valve 5 is controlled while the first expansion valve 4 is fully opened so that .beta. In addition, about the method of control of the opening degree of the 2nd expansion valve 5, it can carry out using a known method.

これにより、第1の膨張弁4が全開状態になったとき(ステップS9、S29の肯定判定)、第1の室内熱交換器8と第2の室内熱交換器9は若干乾き気味ではあるが第1の室内ユニット6と第2の室内ユニット7の冷媒循環量はバランスよく制御される。1つでも膨張弁が全開状態になると各室の目標値との差が一定になるように各室の膨張弁を制御する。なお、第2の膨張弁5が先に全開になった場合(ステップS10、S28の肯定判定)も同様である。   As a result, when the first expansion valve 4 is fully opened (affirmative determination in steps S9 and S29), the first indoor heat exchanger 8 and the second indoor heat exchanger 9 are slightly dry. The refrigerant circulation amounts of the first indoor unit 6 and the second indoor unit 7 are controlled with good balance. When even one expansion valve is fully opened, the expansion valve in each chamber is controlled so that the difference from the target value in each chamber becomes constant. The same applies when the second expansion valve 5 is first fully opened (affirmative determination in steps S10 and S28).

さらに別の実施の形態について図6を参照して説明する。ステップS61〜ステップS65は、図5のステップS51〜S55と同じであるので説明を省略する。この実施形態では、上記α、βを第1の室内ユニット6と第2の室内ユニット7の能力の差(例えば、第1の室内ユニット6の定格能力が2.0kW、第2の室内ユニット7の定格能力が3.0kW)により決定される値、例えば、α、βの比を目標値T1(例えば、5℃)、T2(例えば、3℃)の比(即ち、すなわち、α:β=5:3)にして第1の膨張弁4、第2の膨張弁5の開度を制御する。即ち、ステップS66で、α/β>5/3であれば第2の膨張弁5を閉制御し(ステップS67)、α/β<5/3であれば第2の膨張弁5を開制御(ステップS68)しながら、α:β=5:3となるように第1の膨張弁4を全開にしたまま第2の膨張弁5の開度を制御する。なお、第2の膨張弁5の開度の制御の手法については既知の手法を用いて行うことができる。   Still another embodiment will be described with reference to FIG. Steps S61 to S65 are the same as steps S51 to S55 in FIG. In this embodiment, α and β are the difference between the capacities of the first indoor unit 6 and the second indoor unit 7 (for example, the rated capacity of the first indoor unit 6 is 2.0 kW, and the second indoor unit 7 Is a ratio determined by a target value T1 (for example, 5 ° C.) and T2 (for example, 3 ° C.) (that is, α: β = 5: 3), the opening degree of the first expansion valve 4 and the second expansion valve 5 is controlled. That is, if α / β> 5/3 in step S66, the second expansion valve 5 is controlled to be closed (step S67), and if α / β <5/3, the second expansion valve 5 is controlled to be opened. (Step S68), the opening degree of the second expansion valve 5 is controlled with the first expansion valve 4 fully opened so that α: β = 5: 3. In addition, about the method of control of the opening degree of the 2nd expansion valve 5, it can carry out using a known method.

一般に室内ユニットの定格能力が小さいと冷媒循環量は小さくなる。そこで、冷媒が熱交換器を通過した時の圧力損失は定格能力の小さい方が小さくなる。そのため、冷媒が各室内ユニットの室内熱交換器で同程度の乾き状態になるための、出口温度と入口温度の温度差の目標値はT1、T2のように異なってくる。そこで、α、βの値も定格能力により変化させることが望ましい。それにより、第1の膨張弁4が全開状態になったとき(ステップS9、S29の肯定判定)冷媒循環量のバランスがよりよく制御される。なお、第2の膨張弁5が先に全開になった場合(ステップS10、S28の肯定判定)も同様である。   Generally, when the rated capacity of the indoor unit is small, the refrigerant circulation amount is small. Therefore, the pressure loss when the refrigerant passes through the heat exchanger is smaller when the rated capacity is smaller. Therefore, the target value of the temperature difference between the outlet temperature and the inlet temperature for the refrigerant to be dried to the same degree in the indoor heat exchanger of each indoor unit is different as T1 and T2. Therefore, it is desirable to change the values of α and β according to the rated capacity. Thereby, when the 1st expansion valve 4 will be in a full open state (affirmation determination of step S9, S29), the balance of refrigerant | coolant circulation amount is controlled better. The same applies when the second expansion valve 5 is first fully opened (affirmative determination in steps S10 and S28).

なお、上記の実施形態では冷房専用サイクルについて述べたが、図7に示すような四方弁26を搭載した冷暖房サイクルについても冷房運転時に同様の制御を適用することが可能である。また、上記の実施形態では、第1の入口サーミスター10、第2の入口サーミスター11および第1の出口サーミスター14、第2の出口サーミスター15は室内ユニットに設けているが、室外ユニットに設けてもよい。また、上記の実施形態は室内ユニットとして2台の場合について述べたが、2台以上複数の室内ユニットをもつマルチエアコンについても同様である。   In the above embodiment, the cooling only cycle has been described. However, the same control can be applied to the cooling / heating cycle equipped with the four-way valve 26 as shown in FIG. 7 during the cooling operation. In the above embodiment, the first inlet thermistor 10, the second inlet thermistor 11, the first outlet thermistor 14, and the second outlet thermistor 15 are provided in the indoor unit. May be provided. Moreover, although said embodiment described the case where there were two indoor units, it is the same also about the multi air conditioner which has two or more indoor units.

以上のように、上記のような制御を行うと、各室内ユニットの能力のバランスが大きく崩れたり、室内ユニットの出口付近で蒸発が完了しないことに伴う、室内送風機(例えばクロスフローファン)やルーバ等への露付きの問題のない空気調和機が提供される。   As described above, when the control as described above is performed, the balance between the capabilities of the indoor units is greatly lost, or the evaporation is not completed near the outlet of the indoor unit. An air conditioner that does not have a problem of exposure to the like is provided.

は、本発明の実施の形態に係るマルチエアコンの一例の冷凍サイクル図である。These are the refrigerating-cycle diagrams of an example of the multi air conditioner concerning an embodiment of the invention. は、上記マルチエアコン電気回路図である。These are the said multi air-conditioner electric circuit diagrams. は、上記マルチエアコンで第1の室内ユニットの冷房運転を開始した場合の動作の一例を説明するためのフローチャートである。These are the flowcharts for demonstrating an example of an operation | movement at the time of starting the air_conditionaing | cooling operation of a 1st indoor unit with the said multi air conditioner. は、上記マルチエアコンで第1の室内ユニットの冷房運転中に第2の室内ユニットの冷房運転が開始された場合の動作の一例を説明するためのフローチャートである。These are the flowcharts for demonstrating an example of operation | movement at the time of the air_conditionaing | cooling operation of a 2nd indoor unit being started during the air_conditioning | cooling operation of a 1st indoor unit with the said multi air conditioner. は、上記マルチエアコンで第1、第2の室内ユニットの冷房運転中に第1の膨張弁が全開状態になったときの動作の一例を説明するためのフローチャートである。These are the flowcharts for demonstrating an example of operation | movement when the 1st expansion valve will be in a full open state during the air_conditionaing | cooling operation of the 1st, 2nd indoor unit by the said multi air conditioner. は、上記マルチエアコンで第1、第2の室内ユニットの冷房運転中に第1の膨張弁が全開状態になったときの動作の他の例を説明するためのフローチャートである。These are the flowcharts for demonstrating the other example of operation | movement when a 1st expansion valve will be in a full open state during the air_conditionaing | cooling operation of the 1st, 2nd indoor unit by the said multi air conditioner. は、本発明の実施の形態に係るマルチエアコンの他の例の冷凍サイクル図である。These are the refrigerating-cycle diagrams of the other example of the multi air-conditioner which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 室外ユニット
2 圧縮機
3 室外熱交換器
4 第1の膨張弁
5 第2の膨張弁
6 第1の室内ユニット
7 第2の室内ユニット
8 第1の室内熱交換器
9 第2の室内熱交換器
10 第1の入口サーミスター
11 第2の入口サーミスター
14 第1の出口サーミスター
15 第2の出口サーミスター
16 室外制御回路
17 室外送風機
18 室外送風機リレー
19 圧縮機リレー
20 第1の室内制御回路
21 第2の室内制御回路
22 第1の室内送風機
23 第2の室内送風機
24 第1の室内送風機リレー
25 第2の室内送風機リレー
26 四方弁
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 1st expansion valve 5 2nd expansion valve 6 1st indoor unit 7 2nd indoor unit 8 1st indoor heat exchanger 9 2nd indoor heat exchange Unit 10 First inlet thermistor 11 Second inlet thermistor 14 First outlet thermistor 15 Second outlet thermistor 16 Outdoor control circuit 17 Outdoor blower 18 Outdoor blower relay 19 Compressor relay 20 First indoor control Circuit 21 Second indoor control circuit 22 First indoor blower 23 Second indoor blower 24 First indoor blower relay 25 Second indoor blower relay 26 Four-way valve

Claims (3)

室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると他室の膨張弁を開方向への制御を禁止することを特徴とする空気調和機。   A plurality of indoor units equipped with an indoor heat exchanger, an indoor blower and the like, a compressor, an outdoor heat exchanger, an outdoor unit equipped with an expansion valve in a connection path between the outdoor blower and the indoor unit, In an air conditioner provided with means for detecting the inlet temperature and outlet temperature, during cooling operation, the expansion valve is controlled so that there is a difference between the outlet temperature of each indoor unit and the inlet temperature, and even one of them is controlled. An air conditioner characterized by prohibiting control of an expansion valve in another chamber in the opening direction when the expansion valve is fully opened. 室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると各室の目標値との差が一定になるように各室の膨張弁を制御することを特徴とする空気調和機。   A plurality of indoor units equipped with an indoor heat exchanger, an indoor blower and the like, a compressor, an outdoor heat exchanger, an outdoor unit equipped with an expansion valve in a connection path between the outdoor blower and the indoor unit, In an air conditioner provided with means for detecting the inlet temperature and outlet temperature, during cooling operation, the expansion valve is controlled so that there is a difference between the outlet temperature of each indoor unit and the inlet temperature, and even one of them is controlled. An air conditioner that controls an expansion valve of each chamber so that a difference from a target value of each chamber becomes constant when the expansion valve is fully opened. 室内熱交換器、室内送風機等を具備した複数の室内ユニットと圧縮機、室外熱交換器、室外送風機等と室内ユニットとの接続路に膨張弁を具備した室外ユニットを備え、室内熱交換器の入口温度、出口温度を検出する手段を設けた空気調和機おいて、冷房運転時、各室内ユニットの出口温度と入口温度の差がある目標値になるように膨張弁を制御し、1つでも膨張弁が全開状態になると各室の目標値との差が各室の能力により決定される値になるように各室の膨張弁を制御することを特徴とする空気調和機。   A plurality of indoor units equipped with an indoor heat exchanger, an indoor blower and the like, a compressor, an outdoor heat exchanger, an outdoor unit equipped with an expansion valve in a connection path between the outdoor blower and the indoor unit, In an air conditioner provided with means for detecting the inlet temperature and outlet temperature, during cooling operation, the expansion valve is controlled so that there is a difference between the outlet temperature of each indoor unit and the inlet temperature, and even one of them is controlled. An air conditioner that controls an expansion valve in each chamber so that a difference from a target value in each chamber becomes a value determined by the capacity of each chamber when the expansion valve is fully opened.
JP2008096877A 2008-04-03 2008-04-03 Air conditioner Active JP4920624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096877A JP4920624B2 (en) 2008-04-03 2008-04-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096877A JP4920624B2 (en) 2008-04-03 2008-04-03 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009250479A JP2009250479A (en) 2009-10-29
JP4920624B2 true JP4920624B2 (en) 2012-04-18

Family

ID=41311379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096877A Active JP4920624B2 (en) 2008-04-03 2008-04-03 Air conditioner

Country Status (1)

Country Link
JP (1) JP4920624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649365B2 (en) * 2010-08-11 2015-01-07 三菱電機株式会社 Air conditioner
JP7495625B2 (en) * 2021-10-26 2024-06-05 ダイキン工業株式会社 Air Conditioning Equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153356A (en) * 1984-12-26 1986-07-12 三菱電機株式会社 Controller for air-cooling operation of multi-chamber type air conditioner
JPS62129660A (en) * 1985-11-27 1987-06-11 ダイキン工業株式会社 Method of controlling refrigerant in refrigerator
JP2703381B2 (en) * 1990-01-12 1998-01-26 株式会社日立製作所 Multi air conditioner
JP2637304B2 (en) * 1991-04-04 1997-08-06 三菱電機株式会社 Multi-room air conditioner
JP3056554B2 (en) * 1991-09-18 2000-06-26 松下精工株式会社 Air conditioner
JP3284578B2 (en) * 1992-04-01 2002-05-20 松下電器産業株式会社 Operation control device for multi-room air conditioner
JP3179180B2 (en) * 1992-05-11 2001-06-25 松下精工株式会社 Air conditioner
JPH07120091A (en) * 1993-10-26 1995-05-12 Toshiba Ave Corp Air conditioner
JPH08178448A (en) * 1994-12-21 1996-07-12 Matsushita Electric Ind Co Ltd Multi-room type air conditioner
JP3299415B2 (en) * 1995-07-14 2002-07-08 大阪瓦斯株式会社 Refrigerant circulation type air conditioning system
JP4151523B2 (en) * 2003-08-28 2008-09-17 松下電器産業株式会社 Multi-type air conditioner
JP2005291553A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Multiple air conditioner
JP5210510B2 (en) * 2006-10-13 2013-06-12 三菱重工業株式会社 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system

Also Published As

Publication number Publication date
JP2009250479A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5533926B2 (en) Air conditioner
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
JP4520370B2 (en) Water heat source heat pump type radiation panel air conditioner
WO2015056780A1 (en) Air conditioner
JP6401015B2 (en) Air conditioner
WO2013157406A1 (en) Air conditioner
JP2019082308A (en) Ventilator
WO2019116599A1 (en) Air-conditioning device and air-conditioning system
WO2013157402A1 (en) Air conditioner
JPWO2019003306A1 (en) Air conditioner
CN108332449B (en) Heat pump dehumidification unit and control method thereof
JP6672619B2 (en) Air conditioning system
JP4920624B2 (en) Air conditioner
JP2017215116A (en) Air conditioning device
JP5868552B1 (en) External air conditioner
JP2017089950A (en) Air Conditioning System
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2005291553A (en) Multiple air conditioner
KR20170138703A (en) Air conditioner system and its control method
JP5310904B1 (en) Air conditioner
JP4039100B2 (en) Air conditioner
JP6070624B2 (en) Air conditioner
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP6660873B2 (en) Heat pump type temperature controller
JP2014159954A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03