JP4919857B2 - Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction - Google Patents
Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction Download PDFInfo
- Publication number
- JP4919857B2 JP4919857B2 JP2007089148A JP2007089148A JP4919857B2 JP 4919857 B2 JP4919857 B2 JP 4919857B2 JP 2007089148 A JP2007089148 A JP 2007089148A JP 2007089148 A JP2007089148 A JP 2007089148A JP 4919857 B2 JP4919857 B2 JP 4919857B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- plate
- taper
- steel plate
- rolling load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Metal Rolling (AREA)
- Control Of Metal Rolling (AREA)
Description
本発明は、圧延方向に板厚がテーパ状に変化する片面テーパ鋼板の製造方法に関する。 The present invention relates to a method for producing a single-sided tapered steel plate whose thickness changes in a taper shape in the rolling direction.
構造物の軽量化,材料費の低減,溶接工程の省略等の観点から、圧延方向で板厚がテーパ状に変化するように圧延された鋼板が要求されている。この種の鋼板の製造方法としては、例えば特許文献1において、平板圧延時のロールギャップと圧延荷重との関係及び予測圧延荷重に基づいて圧延方向に出側板厚をテーパ状に変化させるテーパ鋼板の板厚制御方法が提案されている。圧延においては鋼板の上下面に作用する圧延荷重が等しくなるため、この方法によって製造されるものは図1に示すような両面にほぼ等しいテーパ量を有するテーパ鋼板であり、図2に示すような片面がフラットなテーパ鋼板を製造することは困難である。しかし、テーパ鋼板として、他の部材との接合性の点等から片面がフラットなテーパ鋼板が要求される場合がある。 From the viewpoint of reducing the weight of the structure, reducing the material cost, omitting the welding process, and the like, there is a demand for a steel plate that is rolled so that the plate thickness changes in a taper shape in the rolling direction. As a manufacturing method of this type of steel plate, for example, in Patent Document 1, a taper steel plate that changes the outlet side plate thickness in a taper shape in the rolling direction based on the relationship between the roll gap and the rolling load during flat plate rolling and the predicted rolling load. A plate thickness control method has been proposed. In rolling, since the rolling loads acting on the upper and lower surfaces of the steel plate are equal, what is manufactured by this method is a tapered steel plate having a taper amount substantially equal to both sides as shown in FIG. 1, as shown in FIG. It is difficult to produce a tapered steel plate having a flat single side. However, as a tapered steel plate, a tapered steel plate having a flat one side may be required from the viewpoint of jointability with other members.
そこで、特許文献2では、同一寸法の両面テーパ鋼板を2枚重ね合わせて、ローラレベラを用いて矯正した後、剥離することにより片面がフラットで片面のみにテーパ部を有するテーパ鋼板の製造方法が提案されている。
特許文献2で提案されている方法により、座屈等の形状不良を生じにくい厚板の場合には片面テーパ鋼板の製造が可能である。しかし、冷延材等のように板厚が4mm以下と薄い場合には、両面テーパ鋼板の片側のテーパ部をローラレベラにより押しつぶす際に座屈等の形状不良を生じ易い。薄板の場合において、特に、段差が大きいほど座屈等の形状不良を生じ易くなり、段差量0.1mm以上のテーパ部を有する場合には、当該方法による片面テーパ鋼板の製造は困難である。また、当該方法では強力な圧下機構を有するローラレベラが必要となり、圧延工程のみによる片面テーパ鋼板の製造が望まれている。 With the method proposed in Patent Document 2, a single-sided tapered steel plate can be manufactured in the case of a thick plate that is unlikely to cause shape defects such as buckling. However, when the plate thickness is as thin as 4 mm or less, such as a cold-rolled material, a shape defect such as buckling is likely to occur when a tapered portion on one side of a double-sided tapered steel plate is crushed by a roller leveler. In the case of a thin plate, in particular, the larger the step, the easier it is to cause shape defects such as buckling, and when it has a tapered portion with a step amount of 0.1 mm or more, it is difficult to produce a single-sided tapered steel plate by this method. In addition, this method requires a roller leveler having a powerful reduction mechanism, and it is desired to produce a single-sided tapered steel plate only by a rolling process.
一方、近年において、耐食性の観点から、亜鉛めっき鋼板やアルミめっき鋼板等のめっき鋼板の需要が増加している。テーパ鋼板においても、素材としてめっき鋼板が望まれる場合もある。しかし、前記特許文献1や特許文献2で提案されている方法により、めっき鋼板を圧延してテーパ鋼板を製造すると、鋼板の両面ともめっき層が損傷するため、健全なめっき層で覆われたテーパ鋼板を製造することは困難である。 On the other hand, in recent years, demand for plated steel sheets such as galvanized steel sheets and aluminum plated steel sheets has increased from the viewpoint of corrosion resistance. Even in a tapered steel plate, a plated steel plate may be desired as a material. However, when a plated steel sheet is rolled by the method proposed in Patent Document 1 or Patent Document 2 to produce a tapered steel sheet, the plated layer is damaged on both surfaces of the steel sheet, so the taper covered with a healthy plated layer is used. It is difficult to manufacture a steel plate.
また、通常の平板と異なりテーパ鋼板の場合は、連続成形後に溶融めっきライン等のめっきラインを通板することは、長手方向で板厚の異なる鋼板が通板ロールで繰り返し曲げを受けることになり、通板性や形状制御性の観点から困難である。更に、テーパ鋼板を切り板にしてめっき浴に浸すことにより健全なめっき層で覆われたテーパ鋼板を製造することは可能であるが、製造コストが高くなるという問題があり、営業生産においては困難である。従って、テーパ状めっき鋼板を高生産性で製造するため、めっき鋼板の圧延によるテーパ状めっき鋼板の製造が望まれている。 Also, in the case of a tapered steel plate, unlike a normal flat plate, passing a plating line such as a hot dipping line after continuous forming means that the steel plate having a different thickness in the longitudinal direction is repeatedly bent by a passing plate roll. However, it is difficult from the viewpoints of sheet passing and shape controllability. Furthermore, it is possible to produce a tapered steel plate covered with a sound plating layer by immersing it in a plating bath using a tapered steel plate as a cutting plate, but there is a problem that the production cost is high, which is difficult in commercial production. It is. Therefore, in order to produce a tapered plated steel sheet with high productivity, it is desired to produce a tapered plated steel sheet by rolling the plated steel sheet.
本発明は、このような問題を解消すべく案出されたものであり、ローラレベラを必要とせずに、圧延工程のみで薄板かつ高段差の片面テーパ鋼板を板厚精度よく製造する方法を提供することを目的とする。
また、被圧延材がめっき鋼板であっても、片面が健全なめっき層で覆われているテーパ鋼板を圧延により板厚精度よく製造する方法を提供することを目的とする。
The present invention has been devised to solve such a problem, and provides a method for producing a single-side tapered steel plate having a high thickness and a thin plate only by a rolling process without requiring a roller leveler. For the purpose.
Moreover, even if a material to be rolled is a plated steel plate, it aims at providing the method of manufacturing with high plate | board thickness precision the taper steel plate by which one side is covered with the healthy plating layer.
本発明の片面テーパ鋼板の製造方法は、その目的を達成するため、必要に応じてめっき層を設けた2枚の同一寸法の板材を重ねて同時に圧延した後2枚の板材を分離する重ね板圧延を行う際、ロールギャップを圧延方向に連続的に変化させることにより重ね面がフラットとなるテーパ鋼板を製造するにおいて、重ね板圧延時に板幅,接触弧長,材料の変形抵抗,圧延機入出側のユニット張力及び圧下力関数からなる圧延荷重式から隣接する制御のサンプリング点間の圧延荷重差を予測するとともに、出側板厚が圧延長に従ってテーパ状に変化するように隣接する制御のサンプリング点間の圧延荷重差を変数とし、圧延荷重,ロールギャップ及び鋼板の板厚の間に成り立つ関係式に基づいてロールギャップを制御することを特徴とする。
重ね圧延は、圧延機とその前後に設置された2組のリールより構成される圧延設備を用いて連続的に行うことが好ましい。
In order to achieve the object of the method for producing a single-sided tapered steel plate of the present invention, two plates of the same size provided with a plating layer as needed are stacked and rolled at the same time, and then the two plates are separated. When producing rolled taper steel sheets with a flat laminating surface by continuously changing the roll gap in the rolling direction during rolling, the sheet width, contact arc length, material deformation resistance, and rolling mill entry / exit during laminating rolling The rolling load difference between adjacent control sampling points is predicted from the rolling load formula consisting of the unit tension and the rolling force function on the side, and the adjacent control sampling points so that the exit side plate thickness changes in a tapered shape according to the rolling length The roll gap is controlled on the basis of a relational expression established between the rolling load, the roll gap, and the plate thickness of the steel sheet .
It is preferable that the lap rolling is continuously performed using a rolling facility composed of a rolling mill and two sets of reels installed before and after the rolling mill.
圧延荷重,ロールギャップ及び鋼板の板厚の間に成り立つ関係式として、下記(1)式及び(2)式を用いる。
S0=h0−P0 c/M (1)
Si=S0−1/M・(Pi-1−P0 c)−1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 c+Δhi (2)
ただし、S0:基準位置におけるロールギャップ
h0:基準位置の目標板厚
P0 c:基準位置の圧延荷重予測値
M:ミル剛性係数
Si:サンプリング点のロールギャップ
Pi c,Pi-1 c:サンプリング点と1つ前のサンプリング点の圧延荷重予測値
Pi-1:サンプリング点の1つ前のサンプリング点の圧延荷重測定値
Δhi:サンプリング点の基準位置に対する目標出側板厚差
The following formulas (1) and (2) are used as relational expressions that hold between the rolling load, the roll gap, and the plate thickness of the steel plate.
S 0 = h 0 −P 0 c / M (1)
S i = S 0 -1 / M · (P i-1 -P 0 c ) -1 / M · (P i c -P i-1 c ) · P i-1 / P i-1 c + Δh i ( 2)
However, S 0 : Roll gap at the reference position h 0 : Target plate thickness at the reference position P 0 c : Predicted rolling load at the reference position M: Mill stiffness coefficient S i : Roll gap at the sampling point P i c , P i− 1 c: rolling load prediction value of the sampling point and the previous sampling point P i-1: rolling load measurement of the previous sampling point of the sampling points Delta] h i: target delivery side thickness difference with respect to the reference position of the sampling point
本発明においては、2枚の同一寸法の板材を重ねて同時に圧延する重ね板圧延において、ロールギャップを圧延方向に連続的に変化させている。そのため、鋼板の重ね面がフラットとなり、圧延工程のみで薄板かつ高段差の場合にも片面テーパ鋼板の製造が可能となる。
重ね板圧延の際、圧延荷重式から隣接する制御のサンプリング点間の圧延荷重差を予測することにより圧延中の板厚制御を行っているのでロールギャップの変更精度を向上させることができ、従来技術と比較して高精度なテーパ部板厚精度を有する片面テーパ鋼板の製造が可能となる。
被圧延材としてめっき鋼板を用いれば、片面が健全なめっき層で覆われているテーパ鋼板を優れたテーパ部板厚精度で製造することができる。
In the present invention, the roll gap is continuously changed in the rolling direction in the rolled sheet rolling in which two sheets of the same size are stacked and rolled at the same time. Therefore, the overlapping surface of the steel plates becomes flat, and a single-sided taper steel plate can be manufactured even in the case of a thin plate and a high step only by a rolling process.
Roll roll gap change accuracy can be improved by predicting the rolling load difference between adjacent control sampling points from the rolling load equation during roll sheet rolling. It becomes possible to manufacture a single-sided tapered steel plate having a highly accurate taper thickness accuracy compared to the technology.
If a plated steel plate is used as the material to be rolled, a tapered steel plate whose one surface is covered with a healthy plating layer can be manufactured with excellent taper thickness accuracy.
以下に、本発明の実施の形態について、図面を参照して詳しく説明する。
本発明は、重ね板圧延の応用であり、図3に示すように、2枚の同一寸法の鋼板1,2を重ね合わせて圧延する際にロールギャップを圧延方向に連続的に変更・制御することにより鋼板1,2の重ね面3がフラットとなる片面テーパ鋼板を製造するものである。
すなわち、2枚の鋼板1,2が同一寸法であれば、基本的に圧延構成が上下対称となるため、その重ね面はフラットとなる。本方法によれば、特許文献2で提案されている方法のように、両面テーパ鋼板の片側のテーパ部をローラレベラにより押しつぶす必要がないため、薄板かつ高段差の場合にも座屈等の形状不良を生じずに片面テーパ鋼板の製造が可能となる。
Embodiments of the present invention will be described in detail below with reference to the drawings.
The present invention is an application of roll sheet rolling, and as shown in FIG. 3, when two steel sheets 1 and 2 having the same size are stacked and rolled, the roll gap is continuously changed and controlled in the rolling direction. Thus, a single-sided tapered steel plate in which the overlapping surface 3 of the steel plates 1 and 2 is flat is manufactured.
That is, if the two steel plates 1 and 2 have the same dimensions, the rolling configuration is basically vertically symmetric, so that the overlapping surface is flat. According to this method, unlike the method proposed in Patent Document 2, it is not necessary to crush the tapered portion on one side of the double-sided tapered steel plate with a roller leveler. This makes it possible to manufacture a single-sided tapered steel sheet without causing any problems.
テーパ鋼板を連続成形する際には、図4に示すように、圧延機4とその前後に設置された2組のリール5,6,7,8より構成される重ね板圧延設備9を用い、圧延機4の前に設置されたリール5,6からコイル状の鋼板1,2を払い出し、圧延機4による重ね板圧延後に圧延機4の後に設置されたリール7,8で巻き取る。 When continuously forming the tapered steel plate, as shown in FIG. 4, a laminating machine 9 composed of a rolling mill 4 and two sets of reels 5, 6, 7, 8 installed before and after the rolling mill 4 is used. The coiled steel plates 1 and 2 are paid out from the reels 5 and 6 installed in front of the rolling mill 4, and are wound around the reels 7 and 8 installed after the rolling mill 4 after rolling by the rolling mill 4.
次に、本発明者らは、テーパ鋼板の圧延において、圧延荷重の予測誤差量が小さくなり、薄板かつ高段差で高精度なテーパ部板厚精度を有するテーパ鋼板の製造が可能な方法を種々調査検討した。その結果、圧延荷重式から隣接する制御のサンプリング点間の圧延荷重差を予測することにより、高段差のテーパ鋼板の圧延におけるテーパ部板厚精度が向上し、厳しい板厚精度が要求される薄板かつ高段差のテーパ鋼板の製造が可能となることを見出した。そして、その手法を重ね板圧延に適用することにより、薄板かつ高段差の片面テーパ鋼板を製造することができたものである。 Next, the inventors of the present invention have various methods capable of producing a tapered steel sheet having a high precision taper thickness accuracy with a thin plate, a high step and a small step height in rolling of the tapered steel sheet. I examined it. As a result, by predicting the rolling load difference between adjacent control sampling points from the rolling load formula, the taper thickness accuracy in rolling high-level tapered steel plates is improved, and thin plates that require strict plate thickness accuracy are required. And it discovered that manufacture of a taper steel plate of a high level | step difference was attained. And the thin plate and the high level | step difference single-sided taper steel plate were able to be manufactured by applying the method to overlap sheet rolling.
また、本発明者らは、めっき鋼板を圧延してテーパ鋼板を製造する際にめっき層が損傷せずに健全なめっき層で覆われたテーパ鋼板が得られるような圧延方法について種々調査検討した。その結果、めっき層の損傷が圧延により引き伸ばされることよりも、むしろ圧延ロールとの摩擦によるせん断変形によって生じていることが判明した。そして、2枚のめっき鋼板を重ね合わせて圧延すれば、圧延ロールと接触する面はめっき層が大きく損傷するが、重ね面は圧延ロールとの摩擦によるせん断変形を受けないため、めっき層の損傷が少なくなることを見出した。さらに、重ね板圧延において同一寸法のめっき鋼板を用いれば、圧延構成が上下対称となり、板間のすべりが抑制されるため、重ね面におけるめっき層の損傷が最も少なくなり、片面が健全なめっき層で覆われた鋼板が得られることを見出した。 In addition, the present inventors have investigated and studied various rolling methods that can produce a tapered steel plate covered with a healthy plating layer without damaging the plating layer when rolling the plated steel plate to produce a tapered steel plate. . As a result, it has been found that damage to the plating layer is caused by shear deformation due to friction with the rolling roll, rather than being stretched by rolling. If the two plated steel sheets are overlapped and rolled, the plating layer is greatly damaged on the surface in contact with the rolling roll, but the overlapping surface is not subjected to shear deformation due to friction with the rolling roll, so the plating layer is damaged. Found that there is less. Furthermore, if plated steel sheets with the same dimensions are used in the roll-plate rolling, the rolling configuration becomes vertically symmetric, and slippage between the plates is suppressed, so that the plating layer damage on the overlap surface is minimized, and the plating layer on which one side is healthy It has been found that a steel plate covered with can be obtained.
したがって、図3に示すように、2枚の同一寸法のめっき鋼板1,2を重ね合わせて圧延する際にロールギャップを圧延方向に連続的に制御することにより、めっき鋼板1,2の重ね面3がフラットとなるとともに健全なめっき層で覆われているテーパ状めっき鋼板が得られる。本テーパ状めっき鋼板は両面とも耐食性が要求される用途には使用できないが、片面だけ耐食性が要求される用途には有効である。 Therefore, as shown in FIG. 3, when the two steel sheets 1 and 2 having the same dimensions are overlapped and rolled, the roll gap is continuously controlled in the rolling direction, whereby the overlapping surfaces of the steel sheets 1 and 2 are overlapped. A taper-like plated steel sheet is obtained in which 3 is flat and covered with a healthy plating layer. This tapered plated steel sheet cannot be used for applications that require corrosion resistance on both sides, but is effective for applications that require corrosion resistance on only one side.
以下に、本発明の実施の形態について、テーパ鋼板を製造する際の圧延における制御式に基づいて詳しく説明する。なお、板厚制御に関しては、重ね面がフラットで他面にテーパが付された2枚の鋼板を重ねると1枚のテーパ鋼板の板厚制御と同じと考えられるので、以下は1枚のテーパ鋼板と考えたときの制御方法を説明する。
また、前記したとおり、重ね板圧延の際の被圧延材として同一寸法のめっき鋼板を用いれば、圧延構成が上下対称となり、板間のすべりが抑制されるため重ね面におけるめっき層の圧延荷重に及ぼす影響が小さくなるので、めっき層を有する板材を重ね板圧延するときも同様に板厚制御を行うことができる。
Hereinafter, an embodiment of the present invention will be described in detail based on a control expression in rolling when manufacturing a tapered steel plate. Regarding the plate thickness control, if two steel plates with a flat overlapping surface and a taper on the other surface are stacked, it is considered to be the same as the plate thickness control of one taper steel plate. A control method when considered as a steel plate will be described.
In addition, as described above, if plated steel sheets having the same dimensions are used as the material to be rolled during the rolling of rolled plates, the rolling configuration becomes vertically symmetric and the slip between the plates is suppressed, so the rolling load of the plating layer on the stacked surface is reduced. Since the influence exerted becomes small, the plate thickness can be controlled in the same manner when the plate material having the plating layer is rolled.
基準位置である先端の目標板厚をh0、基準位置の圧延荷重予測値をP0 C、ミル剛性係数をMとして、基準位置におけるロールギャップS0を(1)式で設定する。
S0=h0−P0 c/M (1)
そして、制御の各サンプリング点のロールギャップSiを(2)式で補正する。
Si=S0−1/M・(Pi-1−P0 c)−1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 c+Δhi (2)
ここで、Pi c,Pi-1 cはそれぞれ制御しようとしているサンプリング点と1つ前のサンプリング点の圧延荷重予測値、Pi-1は制御しようとしているサンプリング点の1つ前のサンプリング点の圧延荷重測定値、Δhiは制御しようとしているサンプリング点の基準位置に対する目標出側板厚差である。
The roll gap S 0 at the reference position is set by equation (1), where h 0 is the target plate thickness at the tip that is the reference position, P 0 C is the predicted rolling load at the reference position, and M is the mill stiffness coefficient.
S 0 = h 0 −P 0 c / M (1)
Then, the roll gap S i at each sampling point of control is corrected by the equation (2).
S i = S 0 -1 / M · (P i-1 -P 0 c ) -1 / M · (P i c -P i-1 c ) · P i-1 / P i-1 c + Δh i ( 2)
Here, P i c and P i-1 c are the sampling point to be controlled and the rolling load prediction value at the previous sampling point, and P i-1 is the sampling at the previous sampling point to be controlled. rolling load measurement value of the point, Delta] h i is the target delivery side thickness difference with respect to a reference position of the sampling points are trying to control.
なお、従来行われている板厚制御方法はいずれも(2)式における第3項である1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 cが考慮されておらず、本発明を構成する(2)式はこの第3項により隣接する制御のサンプリング点であるi点とi−1点との圧延荷重差予測値に基づいてロールギャップ設定値を補正しているところに特徴がある。すなわち、従来技術の方法では、制御しようとしているサンプリング点の1つ前のサンプリング点の圧延荷重予測値に基づいて板厚制御することになり、制御しようとしているサンプリング点とその1つ前のサンプリング点の圧延荷重差分が板厚制御において誤差要因になりうるのに対して、本発明ではこの圧延荷重差分が板厚制御式の中で考慮されている。 Note that any conventional plate thickness control method is 1 / M · (P i c −P i-1 c ) · P i-1 / P i-1 c, which is the third term in equation (2). The formula (2) constituting the present invention is based on the rolling load difference prediction value between the points i and i-1 which are adjacent sampling points of control according to the third term. The feature is that the value is corrected. That is, in the method of the prior art, the plate thickness is controlled based on the rolling load prediction value of the sampling point immediately before the sampling point to be controlled, and the sampling point to be controlled and the sampling immediately before that are controlled. While the rolling load difference at a point can be an error factor in the plate thickness control, in the present invention, this rolling load difference is considered in the plate thickness control equation.
また、(1)式及び(2)式中の各圧延荷重P0 c,Pi-1 c,Pi cの計算においては、Bland & Fordの式,Hillの式等の圧延荷重式を用いる。例えば、Hillの圧延荷重式を用いて圧延荷重を計算する場合には、(3)〜(8)式で表される。
P=b・L・(k−(σb+σf)/2)・fp (3)
L=√(R’・(H−h)) (4)
fp=1.08+1.79・μ・r・√(1-r)・√(R’/h)−1.02・r (5)
r=(H−h)/H (6)
R’=R・(1+C・P/(H-h)) (7)
C=16・(1−ν2)/(π・E) (8)
ここで、Pは圧延荷重、bは板幅、H,hは圧延機入側及び出側板厚、rは圧下率、R,R’はロール半径及び扁平ロール半径、kは材料の変形抵抗、σb,σfは圧延機入側及び出側のユニット張力、μは摩擦係数、Eはヤング率、νはポアソン比、Lは接触弧長、fpは圧下力関数である。
Further, (1) In the formula and (2) computation of the rolling load P 0 c, P i-1 c, P i c in the formula, using the formula of Bland & Ford, a rolling load equation of formula such as the Hill . For example, when calculating the rolling load using Hill's rolling load equation, it is expressed by equations (3) to (8).
P = b · L · (k− (σb + σf) / 2) · fp (3)
L = √ (R ′ · (H−h)) (4)
fp = 1.08 + 1.79 · μ · r · √ (1-r) · √ (R ′ / h) −1.02 · r (5)
r = (H−h) / H (6)
R ′ = R · (1 + C · P / (H−h)) (7)
C = 16 · (1−ν 2 ) / (π · E) (8)
Here, P is the rolling load, b is the sheet width, H and h are the sheet thickness on the entry side and the exit side of the rolling mill, r is the rolling reduction, R and R ′ are the roll radius and the flat roll radius, k is the deformation resistance of the material, σb and σf are unit tensions on the entry and exit sides of the rolling mill, μ is a friction coefficient, E is a Young's modulus, ν is a Poisson's ratio, L is a contact arc length, and fp is a rolling force function.
なお、従来行われている板厚制御方法はいずれも、圧延荷重式から得られる圧延荷重予測値を直接用いるのではなく、圧延荷重を板厚で線形近似した塑性係数Qiを用いているため、圧延荷重と板厚の関係における線形からのずれ分が板厚制御において誤差要因になりうるが、本発明では直接圧延荷重式により圧延荷重を算出しているので、圧延荷重の予測誤差量が小さくなる。 In addition, since the plate thickness control method currently performed does not directly use the rolling load prediction value obtained from the rolling load formula, it uses a plastic coefficient Q i that linearly approximates the rolling load with the plate thickness. The deviation from linearity in the relationship between the rolling load and the plate thickness can be an error factor in the plate thickness control, but since the rolling load is calculated by the direct rolling load formula in the present invention, the predicted error amount of the rolling load is Get smaller.
図5はテーパ鋼板を製造する際に、(1)〜(8)式に基づいてテーパ鋼板の板厚制御方法を実施するための制御系を示すブロック図である。図中11は圧延機、12はワークロール、13は圧下装置、14は圧下位置検出器、15は圧延荷重計、16はワークロール12の回転数に応じてパルスを出力するパルス発生器、17は板厚計、18は被圧延材を示している。圧延中に圧下位置検出器14により圧下位置を、圧延荷重計15により圧延荷重を、さらにパルス発生器16によりロール周速を検出し、これらの検出結果に基づいて圧下装置13によりロールギャップを調節する。 FIG. 5 is a block diagram showing a control system for carrying out the method of controlling the thickness of the tapered steel plate based on the equations (1) to (8) when manufacturing the tapered steel plate. In the figure, 11 is a rolling mill, 12 is a work roll, 13 is a reduction device, 14 is a reduction position detector, 15 is a rolling load meter, 16 is a pulse generator that outputs a pulse according to the number of rotations of the work roll 12, and 17. Indicates a thickness gauge, and 18 indicates a material to be rolled. During rolling, the rolling position detector 14 detects the rolling position, the rolling load meter 15 detects the rolling load, and the pulse generator 16 detects the roll peripheral speed, and the rolling gap is adjusted by the rolling reduction device 13 based on these detection results. To do.
19は圧延条件入力器、20は目標板厚差設定器、21は圧延荷重予測器、22はロールギャップ設定器、23はロールギャップ位置制御系を示す。目標板厚差設定器20は、パルス発生器16から取り込んだパルス数より得られる被圧延材18の圧延長に基づき、制御しようとしているサンプリング点の基準位置に対する目標出側板厚差Δhiを算出し、これを圧延荷重予測器21及びロールギャップ設定器22へ入力する。なお、被圧延材18の圧延長はパルス数から得られるロール周速に基づき、先進率予測式を用いて板速度を算出することにより得られる。
圧延荷重予測器21は、目標板厚差設定器20から入力された被圧延材18の目標出側板厚差Δhiと圧延条件入力器9に入力された圧延条件に基づき、Bland & Fordの式,Hillの式等の圧延荷重式により制御しようとしているサンプリング点と1つ前のサンプリング点の圧延荷重予測値Pi c,Pi-1 cを算出し、これをロールギャップ設定器22へ入力する。
19 is a rolling condition input device, 20 is a target plate thickness difference setting device, 21 is a rolling load predictor, 22 is a roll gap setting device, and 23 is a roll gap position control system. Target thickness difference setter 20, based on the rolling length of the rolled material 18 obtained from the number of pulses taken from the pulse generator 16, calculates the target delivery side thickness difference Delta] h i with respect to a reference position of the sampling points are trying to control This is input to the rolling load predictor 21 and the roll gap setter 22. The rolling length of the material to be rolled 18 is obtained by calculating the plate speed using an advanced rate prediction formula based on the roll peripheral speed obtained from the number of pulses.
Rolling load prediction unit 21, based on the rolling conditions input is input from the target plate thickness difference setter 20 and the target delivery side thickness difference Delta] h i of the rolled material 18 in the rolling condition input unit 9, Bland & Ford of formula The rolling load prediction values P i c and P i-1 c of the sampling point to be controlled by the rolling load equation such as the Hill equation and the previous sampling point are calculated and input to the roll gap setting device 22. To do.
ロールギャップ設定器22は、基準位置である先端の目標板厚h0、圧延荷重予測器21から入力された基準位置の圧延荷重予測値P0 cに基づき、前述の(1)式を用いて基準位置におけるロールギャップS0を算出し、これをロールギャップ位置制御系23に入力する。
また、ロールギャップ設定器22では、基準位置におけるロールギャップS0、基準位置の圧延荷重予測値P0 c、目標板厚差設定器20から入力された被圧延材18の目標出側板厚差Δhi、圧延荷重予測器21から入力された圧延荷重予測値Pi c,Pi-1 c及び制御しようとしているサンプリング点の1つ前のサンプリング点の圧延荷重測定値Pi-1に基づき、前述の(2)式を用いて各サンプリング点のロールギャップSiを算出し、これをロールギャップ位置制御系23に入力する。
The roll gap setting device 22 uses the above-described equation (1) based on the target plate thickness h 0 at the tip as the reference position and the rolling load predicted value P 0 c at the reference position input from the rolling load predictor 21. A roll gap S 0 at the reference position is calculated and input to the roll gap position control system 23.
Further, in the roll gap setting device 22, the roll gap S 0 at the reference position, the rolling load prediction value P 0 c at the reference position, and the target exit side plate thickness difference Δh of the material to be rolled 18 input from the target plate thickness difference setting device 20. i , based on the rolling load prediction values P i c and P i-1 c inputted from the rolling load predictor 21 and the rolling load measurement value P i-1 at the sampling point immediately before the sampling point to be controlled, The roll gap S i at each sampling point is calculated using the above equation (2), and this is input to the roll gap position control system 23.
実施例1:
以下、本発明をその実施例を示す図面に基づき具体的に説明する。
図4に示すような重ね板圧延設備9において、図5に示した制御系を用いて、重ね圧延した。板厚1.8mm,板幅250mmのコイル状の普通鋼鋼板1,2をそれぞれリール5,6から払い出し、圧延機4により重ね板圧延を行った。目標とする片面テーパ形状は図6に示す薄肉部板厚1.0mm,厚肉部板厚1.5mm,薄肉部長さ100mm,テーパ部長さ300mm,厚肉部長さ200mmの形状とし、全長1000mmの片面テーパ形状に繰り返し圧延し、片面テーパ鋼板1,2を連続成形した。そして、圧延後の片面テーパ鋼板1,2をリール7,8で巻き取った。
なお、重ね板圧延においては、圧延荷重Pを2枚の鋼板の板厚合計値に等しい板厚を有する単板の圧延荷重に置き換え、Hillの式により算出した。また、板厚制御におけるサンプリングタイムについては、圧延長20mm間隔で制御を行うようにした。
Example 1:
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
In the overlapping plate rolling equipment 9 as shown in FIG. 4, the rolling was performed using the control system shown in FIG. The coiled plain steel plates 1 and 2 having a plate thickness of 1.8 mm and a plate width of 250 mm were discharged from the reels 5 and 6, respectively, and rolled by the rolling machine 4. The target single-sided taper shape is a thin part plate thickness of 1.0 mm, a thick part plate thickness of 1.5 mm, a thin part length of 100 mm, a taper part length of 300 mm, and a thick part length of 200 mm as shown in FIG. Rolling was repeated into a single-sided tapered shape, and single-sided tapered steel plates 1 and 2 were continuously formed. The rolled single-side tapered steel plates 1 and 2 were wound up by reels 7 and 8.
In the roll rolling, the rolling load P was replaced with the rolling load of a single plate having a thickness equal to the total thickness of the two steel plates, and calculated by Hill's formula. Further, the sampling time in the plate thickness control is controlled at intervals of 20 mm in rolling length.
圧延後の片面テーパ鋼板1,2の板厚を測定した結果、目標に対する平均偏差が20μm、最大偏差が40μmとほぼ目標通りの片面テーパ鋼板を連続成形することができた。 As a result of measuring the thickness of the single-sided tapered steel plates 1 and 2 after rolling, it was possible to continuously form a single-sided tapered steel plate almost as intended with an average deviation of 20 μm and a maximum deviation of 40 μm.
実施例2:
被圧延材として層厚約25μmのめっき層を有する板厚2.0mm,板幅250mmのコイル状の普通鋼亜鉛めっき鋼板を用い、目標とする片面テーパ形状を図6に示す薄肉部板厚1.2mm,厚肉部板厚1.7mm,薄肉部長さ100mm,テーパ部長さ300mm,厚肉部長さ200mmの形状とし、全長1000mmの片面テーパ形状に、実施例1と同様の方法で繰り返し圧延し、テーパ状亜鉛めっき鋼板1,2を製造した。
圧延後のテーパ状亜鉛めっき鋼板1,2の板厚を測定した結果、目標値に対する平均偏差が25μm,最大偏差が45μmとほぼ目標通りの片面テーパ形状が得られた。そして、めっき層を調査した結果、圧延ロールと接触していた面はめっき層が大きく損傷していたが、重ね面はめっき層の損傷が少なく、厚みが約15μmの健全なめっき層で覆われていた。
Example 2:
A coiled plain steel galvanized steel sheet with a plate thickness of 2.0 mm and a plate width of 250 mm having a plating layer with a layer thickness of about 25 μm is used as the material to be rolled, and the target single-sided taper shape shown in FIG. .2 mm, thick part plate thickness 1.7 mm, thin part length 100 mm, taper part length 300 mm, thick part length 200 mm, rolled into a single-sided taper shape with a total length of 1000 mm in the same manner as in Example 1. Tapered galvanized steel sheets 1 and 2 were manufactured.
As a result of measuring the thickness of the tapered galvanized steel sheets 1 and 2 after rolling, an average deviation with respect to the target value was 25 μm and the maximum deviation was 45 μm, and a substantially single-sided tapered shape as obtained was obtained. As a result of investigating the plating layer, the plating layer was greatly damaged on the surface that was in contact with the rolling roll, but the overlapping surface was less damaged by the plating layer and covered with a healthy plating layer having a thickness of about 15 μm. It was.
1,2:鋼板 3:2枚の鋼板の重ね面 4:圧延機
5,6:圧延機の前に設置されたリール
7,8:圧延機の後に設置されたリール
9:重ね板圧延設備 10:パルス発生器
11:圧延機 12:ワークロール
13:圧下装置 14:圧下位置検出器
15:圧延荷重計 16:パルス発生器
17:板厚計 18:被圧延材
19:圧延条件入力器 20:目標板厚差設定器
21:圧延荷重予測器 22:ロールギャップ設定器
23:ロールギャップ位置制御系
1, 2: Steel plate 3: Stacked surface of two steel plates 4: Rolling mill
5, 6: Reel installed in front of the rolling mill
7, 8: Reel installed after the rolling mill 9: Laminate rolling equipment 10: Pulse generator 11: Rolling mill 12: Work roll 13: Reduction device 14: Reduction position detector 15: Rolling load meter 16: Pulse generation Device 17: Plate thickness meter 18: Material to be rolled 19: Rolling condition input device 20: Target plate thickness difference setting device 21: Rolling load predictor 22: Roll gap setting device 23: Roll gap position control system
Claims (4)
S0=h0−P0 c/M (1)
Si=S0−1/M・(Pi-1−P0 c)−1/M・(Pi c−Pi-1 c)・Pi-1/Pi-1 c+Δhi (2)
ただし、S0:基準位置におけるロールギャップ
h0:基準位置の目標板厚
P0 c:基準位置の圧延荷重予測値
M:ミル剛性係数
Si:サンプリング点のロールギャップ
Pi c,Pi-1 c:サンプリング点と1つ前のサンプリング点の圧延荷重予測値
Pi-1:サンプリング点の1つ前のサンプリング点の圧延荷重測定値
Δhi:サンプリング点の基準位置に対する目標出側板厚差 The following formulas (1) and (2) are used as a relational expression established between the rolling load, the roll gap, and the thickness of the steel plate. The single-side tapered steel plate having a thickness that changes in a taper shape in the rolling direction according to claim 1 . Production method.
S 0 = h 0 −P 0 c / M (1)
S i = S 0 -1 / M · (P i-1 -P 0 c ) -1 / M · (P i c -P i-1 c ) · P i-1 / P i-1 c + Δh i ( 2)
However, S 0 : Roll gap at the reference position h 0 : Target plate thickness at the reference position P 0 c : Predicted rolling load at the reference position M: Mill stiffness coefficient S i : Roll gap at the sampling point P i c , P i− 1 c : Predicted rolling load value at the sampling point and the sampling point immediately before the sampling point P i-1 : Measured rolling load value at the sampling point immediately before the sampling point Δh i : Difference of the target delivery side plate thickness relative to the reference position of the sampling point
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007089148A JP4919857B2 (en) | 2007-03-29 | 2007-03-29 | Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007089148A JP4919857B2 (en) | 2007-03-29 | 2007-03-29 | Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008246513A JP2008246513A (en) | 2008-10-16 |
JP4919857B2 true JP4919857B2 (en) | 2012-04-18 |
Family
ID=39972085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007089148A Active JP4919857B2 (en) | 2007-03-29 | 2007-03-29 | Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4919857B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5612354B2 (en) * | 2010-05-17 | 2014-10-22 | 株式会社神戸製鋼所 | Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method |
CN102397875B (en) * | 2010-09-16 | 2014-01-01 | 鞍钢股份有限公司 | Production method of longitudinal variable-thickness steel plate |
JP5691644B2 (en) * | 2011-02-28 | 2015-04-01 | Jfeスチール株式会社 | Cold-rolled steel sheet for automobile outer plates and automotive outer panel components |
CN105438677B (en) * | 2014-09-29 | 2018-04-27 | 宝山钢铁股份有限公司 | A kind of large and medium-sized storage tank shell steel plate and its manufacture method and tank skin structure |
JP2016155165A (en) * | 2015-02-26 | 2016-09-01 | 株式会社神戸製鋼所 | Clad plate material |
CN106513436B (en) * | 2016-12-02 | 2018-02-16 | 东北大学 | A kind of milling method of one side periodic variable-thickness Strip |
CN107716550B (en) * | 2017-09-09 | 2019-03-29 | 首钢集团有限公司 | A kind of production method of low-alloy longitudinal thickness-variable steel plate |
CN109759449A (en) * | 2018-02-26 | 2019-05-17 | 中南大学 | A kind of single chassis continuously prepares multistage segment difference slab roll and double-roll rolling mill and technique |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340181B2 (en) * | 1974-07-02 | 1978-10-25 | ||
JPS5197565A (en) * | 1975-02-24 | 1976-08-27 | ||
JPS5973107A (en) * | 1982-10-18 | 1984-04-25 | Kobe Steel Ltd | Manufacture of metallic plate having different thickness |
JPS59166303A (en) * | 1983-03-14 | 1984-09-19 | Kawasaki Steel Corp | Manufacture of sheet with stepped one side |
JPS63130205A (en) * | 1986-11-19 | 1988-06-02 | Sumitomo Metal Ind Ltd | Method for controlling thickness of tapered metal plate |
JP2678503B2 (en) * | 1989-09-04 | 1997-11-17 | 日新製鋼株式会社 | Method for manufacturing strip with irregular cross section |
JPH0569021A (en) * | 1991-09-09 | 1993-03-23 | Toshiba Corp | Method and device for controlling rolling mill |
JP3016119B2 (en) * | 1995-06-08 | 2000-03-06 | 住友金属工業株式会社 | Thickness control method of taper plate |
JPH11169950A (en) * | 1997-12-04 | 1999-06-29 | Kawasaki Steel Corp | Manufacture of tapered plate |
JP2002346616A (en) * | 2001-05-17 | 2002-12-03 | Kobe Steel Ltd | Method for controlling sheet thickness |
-
2007
- 2007-03-29 JP JP2007089148A patent/JP4919857B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008246513A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4919857B2 (en) | Manufacturing method of single-sided taper steel plate whose thickness changes in a taper shape in the rolling direction | |
JPWO2009113719A1 (en) | Learning method of rolling load prediction in hot plate rolling. | |
JP4685777B2 (en) | Wedge setting and control method in sheet metal rolling | |
KR101782281B1 (en) | Energy consumption predicting device for rolling line | |
JP4808670B2 (en) | Skin pass rolling shape control method | |
JP4869126B2 (en) | Tapered steel sheet manufacturing method in which the sheet thickness changes in a taper shape in the rolling direction | |
JP4796483B2 (en) | Thickness and flatness control method in cold rolling | |
JP4927008B2 (en) | Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill | |
JP5626172B2 (en) | Steel strip manufacturing equipment | |
JP2001269706A (en) | Method for controlling shape at continuous cold rolling | |
JP6777051B2 (en) | Plate crown control method, plate crown control device, and steel plate manufacturing method | |
JP2000167604A (en) | Plate rolling mill and plate rolling method | |
JP3636151B2 (en) | Metal strip manufacturing method | |
JP2006122980A (en) | Method for predicting deformation resistance of rolling material and frictional coefficient between roll and rolling material in tandem cold rolling mill, and tandem cold rolling method | |
JP2002282918A (en) | Shape control method for continuous cold rolling | |
JP5612354B2 (en) | Foil rolling rolling load prediction method, foil rolling shape prediction method, and foil rolling pass schedule determination method | |
JP4813014B2 (en) | Shape control method for cold tandem rolling mill | |
JP6287911B2 (en) | Cold rolling equipment and manufacturing method for steel strip | |
JP2020157318A (en) | Winder tail edge stop position control method, winder tail edge stop position control device and winder | |
Hinton | A Study on the Effects of Coil Wedge During Rewinding of Thin Gauge Metals | |
WO2024042936A1 (en) | Cold-rolling method and cold-rolling equipment | |
JP5617307B2 (en) | Steel plate rolling method and pass schedule calculation method | |
JP7147423B2 (en) | Method and device for setting pass schedule for manufacturing cold-rolled metal strip | |
JP2012183578A (en) | Method of controlling plate thickness and plate thickness controller in cold rolling mill | |
JP6020348B2 (en) | Metal strip rolling method and rolling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4919857 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150210 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |