JP2008142756A - Method for controlling thickness/shape in cold rolling - Google Patents

Method for controlling thickness/shape in cold rolling Download PDF

Info

Publication number
JP2008142756A
JP2008142756A JP2006334598A JP2006334598A JP2008142756A JP 2008142756 A JP2008142756 A JP 2008142756A JP 2006334598 A JP2006334598 A JP 2006334598A JP 2006334598 A JP2006334598 A JP 2006334598A JP 2008142756 A JP2008142756 A JP 2008142756A
Authority
JP
Japan
Prior art keywords
rolling
stand
thickness
rolling mill
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334598A
Other languages
Japanese (ja)
Other versions
JP4796483B2 (en
Inventor
Yasuyuki Fujii
康之 藤井
Yasushi Maeda
恭志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006334598A priority Critical patent/JP4796483B2/en
Publication of JP2008142756A publication Critical patent/JP2008142756A/en
Application granted granted Critical
Publication of JP4796483B2 publication Critical patent/JP4796483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the thickness/shape in cold rolling for maintaining the thickness accuracy by constantly controlling the rolling load, and enhancing the flatness of a rolled material in its longitudinal direction in order to solve problems of defective shape and defective thickness of a material to be rolled in a low-speed rolling range when the rolling is started and immediately before the rolling is completed. <P>SOLUTION: A rolling load P in a final n-th rolling stand of a single stand rolling mill or a continuous stand rolling mill and a thickness (h) on the outlet side are measured by a rolling load measuring means 2 and a thickness measuring instrument 1 to calculate rolling load deviation ΔP and thickness deviation Δh from a target rolling load Pa and a target thickness ha, respectively. In order to control the rolling load P and the thickness h to predetermined values (preset values), a rolling-reduction control amount ΔS and a tension control amount Δσ are obtained. The rolling-reduction control and the tension control of the final stand of the single stand rolling mill or the continuous stand (tandem) rolling mill are performed at the same timing so as to satisfy the control amounts ΔS and Δσ. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、板材の冷間圧延時に、張力と圧下量の両方を制御することによって、板厚精度を確保しつつ、板材長手方向の平坦度を改善する板厚・形状制御方法に関する。   The present invention relates to a plate thickness / shape control method that improves the flatness in the longitudinal direction of a plate material while ensuring the plate thickness accuracy by controlling both the tension and the amount of reduction during cold rolling of the plate material.

単スタンド圧延機または連続スタンド(タンデム)圧延機を使用した冷間圧延では、走間時等の圧延速度の加速または減速時には、ワークロールと被圧延材間の潤滑油膜厚の変化等によって摩擦係数が変化しやすく、定常圧延速度域と比較して圧延荷重の変動が生じ、この荷重変動によってミル伸び量が変化することにより、形状(平坦度)不良や板厚変動が発生することが知られている。単スタンド圧延機、連続スタンド(タンデム)圧延機のいずれの場合でも、圧延速度は圧延開始時には低く、その後所定の高速の定常圧延速度まで上昇し、圧延終了直前に低下する。この冷間圧延中(冷間圧延過程)のワークロールと被圧延材間の摩擦係数は圧延速度と反比例し、圧延速度の低い圧延開始時には高く、その後の高速圧延中は低く、圧延終了直前にまた高くなる。このように、圧延開始時および圧延終了時に摩擦係数が高くなって被圧延材のこれらの非定常域では圧延荷重が上昇するため、通常、定常圧延速度域に比べて、張力を上昇させることによって、圧延荷重の上昇を抑制するように制御される。   In cold rolling using a single stand rolling mill or continuous stand (tandem) rolling mill, when the rolling speed is accelerated or decelerated during running, the friction coefficient depends on the change in the lubricant film thickness between the work roll and the material to be rolled. It is known that the rolling load fluctuates in comparison with the steady rolling speed range, and the mill elongation changes due to this load fluctuation, resulting in poor shape (flatness) and fluctuations in sheet thickness. ing. In both cases of a single stand rolling mill and a continuous stand (tandem) rolling mill, the rolling speed is low at the start of rolling, then increases to a predetermined high-speed steady rolling speed, and decreases immediately before the end of rolling. The coefficient of friction between the work roll and the material to be rolled during this cold rolling (cold rolling process) is inversely proportional to the rolling speed, high at the start of rolling at a low rolling speed, low during the subsequent high speed rolling, and immediately before the end of rolling. It gets higher again. Thus, at the start of rolling and at the end of rolling, the friction coefficient becomes high and the rolling load increases in these unsteady regions of the material to be rolled, so usually by increasing the tension compared to the steady rolling speed region. Control is performed so as to suppress an increase in rolling load.

一方、圧延開始時および圧延終了時直前の低速圧延域で、圧下量を変更することにより板厚を所定の寸法に制御する方法が知られているが、この制御方法では、圧延荷重が変化し、それによってミル伸び量が変化するため、圧延材の長手方向の平坦度不良という問題が発生する。前記圧延速度の加速および減速に伴う圧延材の形状(平坦度)不良および、板厚不良の問題に対して、板厚精度を保ち、かつ圧延材長手方向の平坦度を精度よく制御するためには、圧延荷重を一定にしてミル伸び量が変化しないように制御する必要がある。   On the other hand, a method is known in which the sheet thickness is controlled to a predetermined dimension by changing the amount of reduction in the low-speed rolling region immediately before the start of rolling and immediately before the end of rolling. In this control method, the rolling load changes. As a result, the amount of mill elongation changes, which causes a problem of poor flatness in the longitudinal direction of the rolled material. In order to maintain the thickness accuracy and accurately control the flatness in the longitudinal direction of the rolled material against the problems of the shape (flatness) of the rolled material and the defective thickness due to the acceleration and deceleration of the rolling speed. Needs to be controlled so that the rolling load is constant and the mill elongation does not change.

従来、例えば、特許文献1では、単スタンド圧延機または連続スタンド圧延機を用いた圧延で、圧延荷重が所定の範囲内に収まるような機能を有する自動板厚制御装置が開示されている。この自動板厚制御装置では、圧延力検出手段により検出された圧延荷重が設定した判定値(P0)よりも大きい場合には圧下量(ロールギャップ)を調整する制御を停止して張力制御を行ない、前記圧延荷重が判定値(P0)よりも小さくなったときに張力制御を停止して圧下量を調整する制御を行なう制御手段を備えている。
特開平6−304633号公報
Conventionally, for example, Patent Document 1 discloses an automatic plate thickness control apparatus having a function of keeping a rolling load within a predetermined range by rolling using a single stand rolling mill or a continuous stand rolling mill. In this automatic sheet thickness control device, when the rolling load detected by the rolling force detecting means is larger than the set determination value (P0), the control for adjusting the reduction amount (roll gap) is stopped and the tension control is performed. And a control means for performing control to stop the tension control and adjust the reduction amount when the rolling load becomes smaller than the determination value (P0).
JP-A-6-304633

しかし、特許文献1に開示された自動板厚制御装置では、圧下量制御と張力制御のいずれか一方を用いて圧延荷重が圧延機の許容値を超えないようにして板厚精度を確保する制御方法を用いており、圧延荷重を一定に制御するものではなく、また、圧延材の長手方向の形状制御については何も記載されていない。   However, the automatic sheet thickness control device disclosed in Patent Document 1 uses either one of the rolling amount control or the tension control to control the sheet thickness accuracy so that the rolling load does not exceed the allowable value of the rolling mill. The method is used, and the rolling load is not controlled to be constant, and nothing is described about shape control in the longitudinal direction of the rolled material.

そこで、この発明の課題は、圧延開始時および圧延終了時直前の低速圧延域での圧延材の形状(平坦度)不良および、板厚不良の問題を解消するために、圧延荷重を一定に制御して、板厚精度を保ち、かつ圧延材長手方向の平坦度を改善する冷間圧延における板厚・形状制御方法を提供することである。   Accordingly, the object of the present invention is to control the rolling load to be constant in order to eliminate the problems of the shape (flatness) of the rolled material in the low-speed rolling zone immediately before the start of rolling and immediately before the end of rolling, and the plate thickness. Then, it is providing the plate | board thickness and shape control method in cold rolling which keeps plate | board thickness precision and improves the flatness of a rolling material longitudinal direction.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

すなわち、請求項1に係る冷間圧延における板厚・形状制御方法は、単スタンド圧延機または連続スタンド(タンデム)圧延機を使用した板材の冷間圧延における板厚・形状制御方法であって、前記単スタンド圧延機または連続スタンド圧延機の最終圧延スタンドでの圧延荷重Pおよびこの圧延スタンド出側の板厚hを計測して目標圧延荷重Paおよび目標板厚haからの荷重偏差ΔPおよび板厚偏差Δhを算出し、圧延荷重Pおよび板厚hを一定に制御するために、以下の(1)式および(2)式を用いて、前記単独または連続スタンド圧延機の最終圧延スタンドでの圧下制御量ΔSおよび張力制御量Δσを求め、前記制御量ΔSおよびΔσを満足するように、前記単スタンド圧延機または連続スタンド圧延機の最終スタンドの圧下制御およびロール周速制御を同時に行なうようにしたことを特徴とする。
ΔS=Δh−ΔP/M------------------------------------------(1)
Δσ=(ΔP+K1×Δh)/(−K2)------------------------(2)
ここで、K1、K2:塑性定数、M:ミル剛性係数、である。
That is, the sheet thickness / shape control method in cold rolling according to claim 1 is a sheet thickness / shape control method in cold rolling of a sheet material using a single stand rolling mill or a continuous stand (tandem) rolling mill, The rolling load P at the final rolling stand of the single stand rolling mill or the continuous stand rolling mill and the thickness h on the outlet side of the rolling stand are measured to obtain the target rolling load Pa and the load deviation ΔP and the thickness from the target thickness ha. In order to calculate the deviation Δh and to control the rolling load P and the plate thickness h to be constant, the following (1) and (2) are used to reduce the rolling at the final rolling stand of the single stand or continuous stand rolling mill. The control amount ΔS and the tension control amount Δσ are obtained, and the rolling control and the rolling control of the final stand of the single stand rolling mill or the continuous stand rolling mill are performed so as to satisfy the control amounts ΔS and Δσ. The peripheral speed control is performed at the same time.
ΔS = Δh-ΔP / M ----------------------------------------- ( 1)
Δσ = (ΔP + K1 × Δh) / (− K2) ----------------------- (2)
Here, K1, K2: Plastic constant, M: Mill rigidity coefficient.

板圧延における圧延機出側での板厚偏差Δhは、一般に、下記のゲージメータ式(3)で表される。
Δh=ΔP/M+ΔS ----------------(3)
また、上記圧延荷重偏差ΔPは、圧延機の入側と出側の板厚および張力、すなわち板厚変動量Δhおよび張力変動量Δσによって決まるため、これらの変動量ΔhおよびΔσを用いて以下の(4)式で与えられる。
ΔP=-K1×Δh-K2×Δσ --------(4)
ここで、塑性定数K1は、板厚hが変化したときの圧延荷重Pと圧延後の板厚hとの関係を示す影響係数に相当し、塑性定数K2は、張力が変更され(変動した)たときの圧延荷重の変化を示す影響係数に相当する。これらの塑性定数K1、K2は被圧延材固有の値となり、被圧延材の特性と圧延荷重Pとの関係を示すものである。上記(4)式に(3)式のΔhを代入することにより、(5)式のように、圧延荷重偏差ΔPは、張力変動量Δσと圧下制御量ΔS(圧下位置)によって制御できることがわかる。
ΔP=P-Pa=-(K1×M)/(K1+M)×ΔS-
(K2×M/(K1+M))×Δσ----------(5)
また、上記(3)式の荷重偏差ΔPに、(4)式を代入することにより、(6)式のように、板厚偏差Δhも張力変動量Δσと圧下制御量ΔS(圧下位置)によって制御できることがわかる。
Δh=(M/(K1+M))×ΔS−(K2/(K1+M))×Δσ --------(6)
The sheet thickness deviation Δh on the rolling mill delivery side in sheet rolling is generally represented by the following gauge meter formula (3).
Δh = ΔP / M + ΔS ---------------- (3)
Further, since the rolling load deviation ΔP is determined by the sheet thickness and tension on the entry side and the exit side of the rolling mill, that is, the sheet thickness variation amount Δh and the tension variation amount Δσ, the following amounts of variation Δh and Δσ are used. It is given by equation (4).
ΔP = −K1 × Δh-K2 × Δσ -------- (4)
Here, the plastic constant K1 corresponds to an influence coefficient indicating the relationship between the rolling load P when the sheet thickness h changes and the sheet thickness h after rolling, and the plastic constant K2 is changed (fluctuated) in tension. This corresponds to an influence coefficient indicating a change in rolling load at the time. These plastic constants K1 and K2 are values specific to the material to be rolled, and indicate the relationship between the properties of the material to be rolled and the rolling load P. By substituting Δh in Equation (3) into Equation (4) above, it can be seen that the rolling load deviation ΔP can be controlled by the tension fluctuation amount Δσ and the reduction control amount ΔS (the reduction position) as in Equation (5). .
ΔP = P−Pa = − (K1 × M) / (K1 + M) × ΔS−
(K2 × M / (K1 + M)) × Δσ ---------- (5)
Further, by substituting the equation (4) into the load deviation ΔP in the above equation (3), the plate thickness deviation Δh is also determined by the tension fluctuation amount Δσ and the reduction control amount ΔS (the reduction position) as in the equation (6). It can be seen that it can be controlled.
Δh = (M / (K1 + M)) × ΔS− (K2 / (K1 + M)) × Δσ (6)

このように、単スタンド圧延機の出側または連続スタンド圧延機の最終圧延スタンド出側の圧延荷重および板厚を同じタイミングで計測して圧延荷重偏差ΔPおよび板厚偏差Δhを算出し、上記の(1)式および(2)式にこれらの圧延荷重偏差ΔPおよび板厚偏差Δhをそれぞれ代入して圧下制御量(ロール隙制御量)ΔS(圧下位置)および張力制御量(張力変動量)Δσを求め、圧下制御ΔSと張力制御Δσとを同時に行なうようにすれば、前記単スタンド圧延機または前記最終圧延スタンドでの圧延荷重を一定の値(プリセット値)にしてミル伸び量も一定にすることができ、板厚精度を保ちつつ、圧延材の長手方向の板厚変動を抑制して平坦度を精度よく制御することが可能となる。   In this way, the rolling load deviation ΔP and the thickness deviation Δh are calculated by measuring the rolling load and the thickness on the exit side of the single stand rolling mill or the final rolling stand exit side of the continuous stand rolling mill at the same timing, By substituting the rolling load deviation ΔP and the sheet thickness deviation Δh into the equations (1) and (2), respectively, the reduction control amount (roll gap control amount) ΔS (reduction position) and the tension control amount (tensile fluctuation amount) Δσ If the reduction control ΔS and the tension control Δσ are performed simultaneously, the rolling load in the single stand rolling mill or the final rolling stand is set to a constant value (preset value), and the mill elongation is also made constant. It is possible to control the flatness with high accuracy by suppressing the plate thickness variation in the longitudinal direction of the rolled material while maintaining the plate thickness accuracy.

この発明では、汎用の圧延式から、圧延荷重偏差ΔPおよび板厚偏差Δhを用いて、単スタンド圧延機または連続スタンド圧延機の最終圧延スタンドでの圧下制御量ΔSおよび張力制御量Δσを用いて算出する式を導き、圧延荷重偏差および出側板厚偏差の実測値に基づいて、前記の算出式を用いて圧下制御量ΔSおよび張力制御量Δσのバランスを保つようにこれらの制御量ΔSおよびΔσを算出し、圧下制御および張力制御を同時に行なうようにしたので、上述のように、板厚精度を保ちつつ、圧延材の長手方向の板厚変動を抑制して平坦度を精度よく制御することが可能となる。   In the present invention, from a general-purpose rolling type, using a rolling load deviation ΔP and a sheet thickness deviation Δh, using a reduction control amount ΔS and a tension control amount Δσ at the final rolling stand of a single stand rolling mill or a continuous stand rolling mill. Based on the actual values of the rolling load deviation and the outgoing side plate thickness deviation, the control amounts ΔS and Δσ are controlled so as to maintain the balance between the reduction control amount ΔS and the tension control amount Δσ using the above-described calculation formulas. Since the reduction control and the tension control are performed at the same time, as described above, the flatness can be accurately controlled while suppressing the plate thickness variation in the longitudinal direction of the rolled material while maintaining the plate thickness accuracy. Is possible.

以下に、この発明の実施形態を、添付の図1および図2に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、通常5台(n=5)程度の圧延機をタンデム配置した連続スタンド圧延機の中の2台の圧延機、すなわち最終1台前の第(n―1)圧延機、最終の第n圧延機(n:圧延機台数)について示したものである。連続スタンド圧延機の入側および出側には、後述の単スタンド圧延機の場合と同様に、テンションリール(図示省略)が配置され、入側のテンションリールから被圧延材(板材)4を巻き解し、出側のテンションリールで被圧延材4を巻き取りながら、被圧延材4が連続スタンド圧延機で順次圧延される。最終の第n圧延機の出側には、板厚偏差検出用の板厚計測器1が設置されている。また、第n圧延機にはロードセルなどの圧延荷重計測手段2が取り付けられ、上下のワークロール3a、3bに作用する圧延荷重を計測できるようになっている。前記圧下制御および張力制御を行なう対象となる最終の第n圧延機では、被圧延材4が第n圧延機により圧延されて、その出側に設置された板厚計測器1により出側板厚h1が、また、圧延荷重計測手段2により、圧延荷重Pがそれぞれ同じタイミングで計測される。次に、圧延パススケジュール、被圧延材4の変形抵抗、ワークロール3a、3bと被圧延材4間の摩擦係数、圧延荷重式(例えば、Hillの式など)等に基づいて予め算出した第n圧延機における目標出側板厚haおよび目標圧延荷重Paからの圧延荷重偏差ΔP(=P−Pa)、出側板厚偏差Δh(=h1−ha)を求め、このΔPおよびΔhを、前記の(1)式および(2)式に代入して、圧下(ロール隙)制御量ΔS(n)および張力制御量Δσ(n)を算出する。そして、この圧下制御量ΔS(n)に基づいた第n圧延機の圧下制御と、張力制御量Δσ(n)に基づいた第n圧延機のロール回転数の制御を同時に行なう。   FIG. 1 shows two rolling mills in a continuous stand rolling mill in which about five (n = 5) rolling mills are arranged in tandem, that is, the last (n-1) rolling mill before the final one. This shows the n-th rolling mill (n: the number of rolling mills). A tension reel (not shown) is arranged on the entry side and the exit side of the continuous stand rolling mill, as in the case of a single stand rolling mill described later, and a material to be rolled (plate material) 4 is wound from the tension reel on the entry side. In other words, the material to be rolled 4 is sequentially rolled by a continuous stand rolling mill while the material to be rolled 4 is wound up by the tension reel on the exit side. On the exit side of the final n-th rolling mill, a plate thickness measuring instrument 1 for detecting a plate thickness deviation is installed. Further, the n-th rolling mill is provided with a rolling load measuring means 2 such as a load cell so that the rolling load acting on the upper and lower work rolls 3a and 3b can be measured. In the final n-th rolling mill to be subjected to the reduction control and the tension control, the material to be rolled 4 is rolled by the n-th rolling mill, and the outgoing side thickness h1 is measured by the thickness measuring instrument 1 installed on the outgoing side. However, the rolling load P is measured by the rolling load measuring means 2 at the same timing. Next, the nth previously calculated based on the rolling pass schedule, the deformation resistance of the material 4 to be rolled, the friction coefficient between the work rolls 3a and 3b and the material 4 to be rolled, the rolling load formula (for example, Hill's formula, etc.), etc. A rolling load deviation ΔP (= P−Pa) and an outlet side thickness deviation Δh (= h1−ha) from the target delivery side thickness ha and the target rolling load Pa in the rolling mill are obtained, and this ΔP and Δh are determined as (1 ) And (2) are substituted to calculate a reduction (roll gap) control amount ΔS (n) and a tension control amount Δσ (n). Then, the rolling control of the n-th rolling mill based on the rolling control amount ΔS (n) and the roll rotation speed of the n-th rolling mill based on the tension control amount Δσ (n) are simultaneously performed.

前記張力制御量Δσに基づいた第n圧延機のロール回転数の調整は以下のように行なうことができる。一般に、圧延機出側の張力とロール周速との関係は、以下の(5)式で表される。
Δσf=(E/L)×∫(ΔVin(i+1)-ΔVout(i))dt ------------(5)
ここで、Δσf:圧延機出側張力、ΔVin(i+1):第(i+1)圧延機のロール周速、
ΔVout(i):第i圧延機のロール周速、E:ヤング率、L:圧延機間の距離、であり、積分記号∫は、ロール間隙通過時間における定積分を表す。圧延機出側張力Δσfは、前記の第n圧延機の張力制御量Δσ(n)に相当し、ΔVin(i+1)は第n圧延機出側のテンションリールの巻取り速度変動に、ΔVout(i)は第n圧延機のロール周速変動にそれぞれ相当する。テンションリールの巻取り速度を一定に保つと、ΔVin(i+1)=0であるので、(5)式は、
Δσf=(E/L)×∫-ΔVout(i)dt ----------------------(5a)
となる。(5a)式から、張力制御量Δσ(n)に対応する第n圧延機のロール周速(ロール回転数)制御量を求めることができる。
Adjustment of the roll rotation speed of the n-th rolling mill based on the tension control amount Δσ can be performed as follows. Generally, the relationship between the tension on the outlet side of the rolling mill and the circumferential speed of the roll is expressed by the following equation (5).
Δσf = (E / L) × ∫ (ΔVin (i + 1) −ΔVout (i)) dt ------------ (5)
Where Δσf: rolling mill exit tension, ΔVin (i + 1): roll peripheral speed of the (i + 1) th rolling mill,
ΔVout (i): roll peripheral speed of the i-th rolling mill, E: Young's modulus, L: distance between rolling mills, and an integral symbol ∫ represents a constant integral in the roll gap passage time. The rolling mill exit-side tension Δσf corresponds to the tension control amount Δσ (n) of the n-th rolling mill, and ΔVin (i + 1) represents the variation in the winding speed of the tension reel on the exit side of the n-th rolling mill, and ΔVout. (i) corresponds to the roll peripheral speed fluctuation of the n-th rolling mill. If the winding speed of the tension reel is kept constant, ΔVin (i + 1) = 0, so equation (5) is
Δσf = (E / L) × ∫−ΔVout (i) dt ---------------------- (5a)
It becomes. From the equation (5a), the roll peripheral speed (roll rotation speed) control amount of the n-th rolling mill corresponding to the tension control amount Δσ (n) can be obtained.

このようにして、圧下制御とロール回転数制御を同時に行なうことにより、第n圧延機での圧延荷重Pを一定にしてミル伸び量も一定にすることができ、最終の第n圧延機出側の板厚精度を保ちつつ、第n圧延機出側の被圧延材4の長手方向の板厚変動を抑制することができる。前記圧下制御量ΔS(n)および張力制御量Δσ(n)は、被圧延材4が第n圧延機で圧延されている間に逐次算出され、その算出結果に基づいて、前記第n圧延機の圧下制御およびロール回転数制御が逐次行なわれる。   Thus, by simultaneously performing the reduction control and the roll rotation speed control, the rolling load P in the n-th rolling mill can be made constant and the mill elongation amount can be made constant. While maintaining the plate thickness accuracy, variation in the plate thickness in the longitudinal direction of the material 4 to be rolled on the delivery side of the n-th rolling mill can be suppressed. The reduction control amount ΔS (n) and the tension control amount Δσ (n) are sequentially calculated while the material to be rolled 4 is rolled by the n-th rolling mill, and based on the calculation result, the n-th rolling mill The rolling reduction control and the roll rotation speed control are sequentially performed.

図2は、単スタンド圧延機であるリバース圧延機の一例を示したものである。
単スタンドの、一例として6段の圧延機5の両側にテンションリールAおよびテンションリールBが配置され、一方のテンションリールAから被圧延材(板材)4を巻き解し、他方のテンションリールBで被圧延材4を巻き取りながら、被圧延材4が一方向に圧延される。被圧延材4をテンションリールBで巻き取り後、このテンションリールBから被圧延材4を巻き解して、テンションリールAで巻き取りながら圧延機5で板材を逆方向に圧延してテンションリールAに巻き取られ、これらの正逆方向の圧延工程が繰り返される。この実施形態では、圧延機5は、被圧延材4を直接圧下するワークロール3a、3bと、このワークロール3a、3bを支持する中間ロール3c、3dおよびバックアップロール3e、3fからなる6段式圧延機である。圧延機5のテンションリールA側およびテンションリールB側には、図2に示したように、前記正逆方向の圧延工程での、圧延機出側の板厚偏差検出用の板厚計測器1a、1bがそれぞれ設置されている。また、圧延機5にはロードセルなどの圧延荷重検出手段2が取り付けられ、上下のワークロール3a、3bに作用する圧延荷重Pを計測できるようになっている。
FIG. 2 shows an example of a reverse rolling mill which is a single stand rolling mill.
As an example, a tension reel A and a tension reel B are arranged on both sides of a six-stage rolling mill 5 of a single stand, and a material to be rolled (plate material) 4 is unwound from one tension reel A, and the other tension reel B While winding the material to be rolled 4, the material to be rolled 4 is rolled in one direction. After the material to be rolled 4 is taken up by the tension reel B, the material to be rolled 4 is unwound from the tension reel B, and the plate material is rolled in the reverse direction by the rolling mill 5 while being taken up by the tension reel A. These rolling processes in the forward and reverse directions are repeated. In this embodiment, the rolling mill 5 is a six-stage type comprising work rolls 3a and 3b for directly rolling the material to be rolled 4, intermediate rolls 3c and 3d and backup rolls 3e and 3f for supporting the work rolls 3a and 3b. It is a rolling mill. As shown in FIG. 2, on the tension reel A side and the tension reel B side of the rolling mill 5, a thickness measuring instrument 1a for detecting a thickness deviation on the rolling mill exit side in the forward and reverse rolling processes. 1b are installed. Further, a rolling load detecting means 2 such as a load cell is attached to the rolling mill 5 so that the rolling load P acting on the upper and lower work rolls 3a and 3b can be measured.

前記テンションリールAからテンションリールBへの順方向の圧延の場合について、圧延機5の出側の板厚計測器1bにより、出側板厚h1が、また、圧延荷重計測手段2により、圧延荷重Pがそれぞれ計測される。次に、前記の連続スタンド(タンデム)圧延機の場合と同様に、リバース圧延工程での圧延パススケジュール、被圧延材4の変形抵抗、ワークロール3a、3bと被圧延材4間の摩擦係数等に基づいて予め算出した(リバース圧延での)目標出側板厚haと目標圧延荷重Paからの圧延荷重偏差ΔP(=P−Pa)、出側板厚偏差Δh(=h1−ha)を求め、このΔPおよびΔhを、前記の(1)式および(2)式に代入して、圧下(ロール隙)制御量ΔSおよび張力制御量Δσを算出する。そして、上述の連続スタンド圧延機の場合と同様に、この圧下制御量ΔSに基づいた圧下制御と、張力制御量Δσに基づいた圧延機5のロール回転数の制御を同時に行なう。このようにして、単スタンド圧延機の場合でも圧延荷重Pを一定にしてミル伸び量も一定にすることができ、板厚精度を保ちつつ、被圧延材4の長手方向の板厚変動を抑制することができる。前記圧下制御量ΔSおよび張力制御量Δσは、被圧延材4が圧延機5で圧延されている間に逐次算出され、その算出結果に基づいて、前記圧下制御および張力制御が逐次行なわれる。テンションリールBからテンションリールAへの逆方向の圧延の場合についても、圧延機5の出側の板厚計測器1aにより、出側板厚h1が、また、圧延荷重計測手段2により、圧延荷重Pがそれぞれ同じタミングで計測されて、上記順方向圧延の場合と同様に、圧下制御量ΔSおよび張力制御量Δσを逐次算出して、圧下制御および張力制御を同時に行なうことができる。   In the case of rolling in the forward direction from the tension reel A to the tension reel B, the exit side plate thickness h 1 is obtained by the exit side plate thickness measuring instrument 1 b of the rolling mill 5, and the rolling load measuring means 2 is used for rolling force P Are measured respectively. Next, as in the case of the continuous stand (tandem) rolling mill, the rolling pass schedule in the reverse rolling process, the deformation resistance of the material 4 to be rolled, the coefficient of friction between the work rolls 3a and 3b and the material 4 to be rolled, etc. Based on the above, a target delivery side thickness ha (in reverse rolling) and a rolling load deviation ΔP (= P−Pa) from the target rolling load Pa and an exit side thickness deviation Δh (= h1−ha) are obtained, By substituting ΔP and Δh into the equations (1) and (2), the reduction (roll gap) control amount ΔS and the tension control amount Δσ are calculated. Then, as in the case of the above-mentioned continuous stand rolling mill, the reduction control based on the reduction control amount ΔS and the control of the roll speed of the rolling mill 5 based on the tension control amount Δσ are simultaneously performed. In this way, even in the case of a single stand rolling mill, the rolling load P can be made constant and the mill elongation amount can be made constant, and the thickness variation in the longitudinal direction of the material to be rolled 4 can be suppressed while maintaining the plate thickness accuracy. can do. The reduction control amount ΔS and the tension control amount Δσ are sequentially calculated while the material to be rolled 4 is being rolled by the rolling mill 5, and the reduction control and the tension control are sequentially performed based on the calculation result. Also in the case of rolling in the reverse direction from the tension reel B to the tension reel A, the exit side plate thickness h1 is obtained by the exit side plate thickness measuring instrument 1a of the rolling mill 5, and the rolling load measuring means 2 is used for the rolling load P1. Are measured at the same timing, and the reduction control amount ΔS and the tension control amount Δσ can be sequentially calculated as in the case of the forward rolling, so that the reduction control and the tension control can be performed simultaneously.

実施形態の連続スタンド(タンデム)圧延機での板厚・形状制御を概念的に示す説明図である。It is explanatory drawing which shows notionally plate | board thickness and shape control in the continuous stand (tandem) rolling mill of embodiment. 実施形態の単スタンド圧延機での板厚・形状制御を概念的に示す説明図である。It is explanatory drawing which shows notionally plate | board thickness and shape control with the single stand rolling mill of embodiment.

符号の説明Explanation of symbols

1、1a、1b:板厚計測器 2:圧延荷重計測手段
3a、3b:ワークロール 3c、3d:中間ロール
3e、3f:バックアップロール 4:被圧延材 5:圧延機
6:支持ロール A、B:テンションリール
DESCRIPTION OF SYMBOLS 1, 1a, 1b: Sheet thickness measuring device 2: Rolling load measuring means 3a, 3b: Work roll 3c, 3d: Intermediate roll 3e, 3f: Backup roll 4: Rolled material 5: Rolling mill 6: Support roll A, B : Tension reel

Claims (1)

単スタンド圧延機または連続スタンド(タンデム)圧延機を使用した板材の冷間圧延における板厚・形状制御方法であって、前記単スタンド圧延機または連続スタンド圧延機の最終圧延スタンドでの圧延荷重Pおよびこの圧延スタンド出側の板厚hを計測して目標圧延荷重Paおよび目標板厚haからの荷重偏差ΔPおよび板厚偏差Δhを算出し、圧延荷重Pおよび板厚hを一定に制御するために、以下の(1)式および(2)式を用いて、前記単独または連続スタンド圧延機の最終圧延スタンドでの圧下制御量ΔSおよび張力制御量Δσを求め、前記制御量ΔSおよびΔσを満足するように、前記単スタンド圧延機または連続スタンド圧延機の最終スタンドの圧下制御およびロール周速制御を同時に行なうようにしたことを特徴とする冷間圧延における板厚・形状制御方法。
ΔS=Δh−ΔP/M------------------------------------------(1)
Δσ=(ΔP+K1×Δh)/(−K2)------------------------(2)
A plate thickness / shape control method in cold rolling of a plate material using a single stand rolling mill or a continuous stand (tandem) rolling mill, wherein the rolling load P at the final rolling stand of the single stand rolling mill or the continuous stand rolling mill In order to control the rolling load P and the plate thickness h to be constant by measuring the plate thickness h on the exit side of the rolling stand and calculating the target rolling load Pa and the load deviation ΔP and the plate thickness deviation Δh from the target plate thickness ha. Then, using the following formulas (1) and (2), the reduction control amount ΔS and the tension control amount Δσ at the final rolling stand of the single or continuous stand rolling mill are obtained, and the control amounts ΔS and Δσ are satisfied. In cold rolling, characterized in that the rolling control and the roll peripheral speed control of the final stand of the single stand rolling mill or the continuous stand rolling mill are performed simultaneously. Plate thickness and shape control method.
ΔS = Δh-ΔP / M ----------------------------------------- ( 1)
Δσ = (ΔP + K1 × Δh) / (− K2) ----------------------- (2)
JP2006334598A 2006-12-12 2006-12-12 Thickness and flatness control method in cold rolling Expired - Fee Related JP4796483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334598A JP4796483B2 (en) 2006-12-12 2006-12-12 Thickness and flatness control method in cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334598A JP4796483B2 (en) 2006-12-12 2006-12-12 Thickness and flatness control method in cold rolling

Publications (2)

Publication Number Publication Date
JP2008142756A true JP2008142756A (en) 2008-06-26
JP4796483B2 JP4796483B2 (en) 2011-10-19

Family

ID=39603505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334598A Expired - Fee Related JP4796483B2 (en) 2006-12-12 2006-12-12 Thickness and flatness control method in cold rolling

Country Status (1)

Country Link
JP (1) JP4796483B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294362A (en) * 2010-06-25 2011-12-28 鞍钢股份有限公司 Thickness accuracy control method for medium-thickness plate
CN103008365A (en) * 2012-11-29 2013-04-03 天津市亿博制钢有限公司 Thickness measuring method for cold rolling strips
CN107774709A (en) * 2016-08-31 2018-03-09 鞍钢股份有限公司 A kind of smooth middle, high-carbon thin material method of hot rolling bundling line
CN111054762A (en) * 2019-12-09 2020-04-24 铜陵有色金属集团股份有限公司金威铜业分公司 Method for quickly controlling target thickness of plate and strip mill
CN112474819A (en) * 2020-11-05 2021-03-12 通用电气(武汉)自动化有限公司 Method and device for controlling shape of product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144356A (en) * 1976-05-28 1977-12-01 Nippon Steel Corp Thickness and form controlling in metal strip rolling
JPH07227609A (en) * 1994-02-22 1995-08-29 Nippon Steel Corp Board thickness control method
JPH08132114A (en) * 1994-11-11 1996-05-28 Nippon Steel Corp Rolling control method
JPH08141615A (en) * 1994-11-21 1996-06-04 Kawasaki Steel Corp Thickness controller for rolling mill
JPH1015607A (en) * 1996-07-02 1998-01-20 Toshiba Corp Controller for cold-rolling mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144356A (en) * 1976-05-28 1977-12-01 Nippon Steel Corp Thickness and form controlling in metal strip rolling
JPH07227609A (en) * 1994-02-22 1995-08-29 Nippon Steel Corp Board thickness control method
JPH08132114A (en) * 1994-11-11 1996-05-28 Nippon Steel Corp Rolling control method
JPH08141615A (en) * 1994-11-21 1996-06-04 Kawasaki Steel Corp Thickness controller for rolling mill
JPH1015607A (en) * 1996-07-02 1998-01-20 Toshiba Corp Controller for cold-rolling mill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294362A (en) * 2010-06-25 2011-12-28 鞍钢股份有限公司 Thickness accuracy control method for medium-thickness plate
CN103008365A (en) * 2012-11-29 2013-04-03 天津市亿博制钢有限公司 Thickness measuring method for cold rolling strips
CN107774709A (en) * 2016-08-31 2018-03-09 鞍钢股份有限公司 A kind of smooth middle, high-carbon thin material method of hot rolling bundling line
CN111054762A (en) * 2019-12-09 2020-04-24 铜陵有色金属集团股份有限公司金威铜业分公司 Method for quickly controlling target thickness of plate and strip mill
CN112474819A (en) * 2020-11-05 2021-03-12 通用电气(武汉)自动化有限公司 Method and device for controlling shape of product

Also Published As

Publication number Publication date
JP4796483B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4847940B2 (en) Thickness control method in cold rolling
JP4796483B2 (en) Thickness and flatness control method in cold rolling
JPWO2008129634A1 (en) Thickness control device for reverse rolling mill
JP2005095975A (en) Method and device for controlling thickness of rolled product
JPS641210B2 (en)
JP2006281262A (en) Method for coiling hot rolled steel strip
JP2008272783A (en) Shape control method in skin pass rolling
JP2010214453A (en) Method of deciding tuning rate in cold rolling process and cold rolling method
WO2010029624A1 (en) Rolling speed control method of cool tandem rolling machine
JP2011088172A (en) Device and method for controlling sheet thickness in cold rolling mill
JP5637906B2 (en) Thickness control method and thickness control device for cold rolling mill
JP2018122339A (en) Plate thickness control method, plate thickness control device, cold rolling equipment and manufacturing method of steel plate
JP2006055881A (en) Method for predicting rolling load, and method for controlling rolling operation using the same
JP5665328B2 (en) Sheet thickness control method and rolling apparatus
JP5385643B2 (en) Sheet thickness control method and sheet thickness control apparatus in multi-high rolling mill
JP4423821B2 (en) Steel plate rolling machine thickness control method and steel plate rolling machine
JPH0347613A (en) Thickness control device for cold tandem mill
JP6990116B2 (en) Roller plate thickness control device and method, and rolling mill
JP6020348B2 (en) Metal strip rolling method and rolling apparatus
JP2009045640A (en) Method of winding steel wire rod
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JPS5825808A (en) Controlling method of sheet thickness at pass-through and run-out in rolling mill
JPH1015607A (en) Controller for cold-rolling mill
JPH08150406A (en) Thickness controller for cold tandem mill
JP3218598B2 (en) Thickness control method for leading and trailing edges of material in tandem rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees