JP4916548B2 - 画像のドミナントライン(dominantline)の確定及び使用 - Google Patents
画像のドミナントライン(dominantline)の確定及び使用 Download PDFInfo
- Publication number
- JP4916548B2 JP4916548B2 JP2009522799A JP2009522799A JP4916548B2 JP 4916548 B2 JP4916548 B2 JP 4916548B2 JP 2009522799 A JP2009522799 A JP 2009522799A JP 2009522799 A JP2009522799 A JP 2009522799A JP 4916548 B2 JP4916548 B2 JP 4916548B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- dominant
- displacement
- mesh
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006073 displacement reaction Methods 0.000 claims description 67
- 230000033001 locomotion Effects 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 46
- 238000011156 evaluation Methods 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 6
- 230000000007 visual effect Effects 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 description 97
- 238000004091 panning Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 11
- 239000013598 vector Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008451 emotion Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 238000007667 floating Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000007619 statistical method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
- G06T13/80—2D [Two Dimensional] animation, e.g. using sprites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/75—Determining position or orientation of objects or cameras using feature-based methods involving models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/77—Determining position or orientation of objects or cameras using statistical methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/242—Aligning, centring, orientation detection or correction of the image by image rotation, e.g. by 90 degrees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
- G06V10/507—Summing image-intensity values; Histogram projection analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
Description
これらのスライドショー型プレゼンテーションの表示に使用されるいくつかの方法は、プレゼンテーションに対してより興味を引こうとして、画像上でのパン(panning)又は表示領域内での画像の移動等の何らかの形態の動画を組み込む。
この種類の動画のいくつかの形態は「オートロストラム(auto-rostruming)」又は「ケンバーンズエフェクト」として一般に知られている。
時に、この移動及びパンのランダムな適用は、高い建物の画像がランダムに上下にパンされて、人間の目が通常、実際に高い建物を見渡すのと同じように建物の輪郭を示す場合のように、許容できるか又は興味を引く結果を生み出すことがある。
しかし、現在の自動動画方法は、同程度に(多くの場合より高い確率で)、許容できず、且つスライドショー型プレゼンテーションで表示されている1つ又は複数の画像を損なう動き又はパンの動画を生成する可能性がある。
本技術は各種実施形態と併せて説明されるが、本技術をこれらの実施形態に制限することが意図されないことが理解されよう。
逆に、提示される技術は、添付の特許請求の範囲によって規定される各種実施形態の精神及び範囲内に含むことができる代替形態、変更形態、及び均等物を包含するように意図される。
さらに、以下の詳細な説明では、本技術の完全な理解を提供するために、多くの特定の詳細が記される。
しかし、本技術はこれらの特定の詳細なしで実施することも可能である。場合によっては、本技術の諸態様を不必要に曖昧にしないように、既知の方法、手順、構成要素、及び回路については詳細に説明していない。
コンピュータシステム又は同様の電子計算装置は、コンピュータシステムのレジスタ及びメモリ内の物理(電子)量として表されるデータを処理し、コンピュータシステムメモリ、レジスタ、若しくは他のこのような情報記憶装置、伝送装置、又は表示装置内の物理量として同様に表される他のデータに変換する。
本技術は、他のコンピュータシステム、例えば光学コンピュータ、仮想コンピュータ、及び機械的なコンピュータ等の使用にもよく適する。
さらに、本技術の実施形態では、ステップのうちの1つ又は複数を手動で実行することができることを理解されたい。
画像のドミナントラインとは、Bruce Blockが彼の著作である「The Visual Story」(著作権2001)において考察した芸術的な概念である。
ドミナントラインの本質は、画像の視覚的な流れである。
すべての画像がドミナントライン又は強力なドミナントラインを有するとは限らない。
しかし、画像によっては、画像の内容により、画像に関して特定の軸内にある視覚的な流れ、すなわちドミナントラインが生み出される。
Bruch Blockは、画像の移動に対してドミナントラインを適切に使用することにより、閲覧者に感情を生み出すことができると主張している。
例えば、画像のX軸にわたる水平のドミナントラインを示す風景画像を考える。
Bruce Blockによれば、この水平線に沿ってパンすることにより、閲覧者に平和な感情がわき、一方で、このドミナントラインと逆に(上下に)パンすることにより、ユーザに不調和な感じを受ける。
同様に、Bruce Blockは、画像内のドミナントラインの軸が、画像を見るときにユーザが体験する潜在意識下の感情をいくらか制御することも示している。
例えば、水平のドミナントラインを有する画像はリラックスした感情を生み出し、斜めのドミナントラインを有する画像は情熱的又は強烈な感情を生み出し、垂直のドミナントラインはこれらの間のどこかの感情を生み出す。
本技術は、画像プレゼンテーションを作成するときにドミナントラインを自動的に検出し使用するための方法及びシステムを提供する。
この詳細な説明では、本技術の実施形態が動作できる例示的なコンピュータシステムを説明する。次に、本技術による画像パンシステムを説明する。
考察はこのシステムの概観から開始され、次にワープメッシュ生成器及びパン方向確定器等の画像パンシステムの個々の構成要素の構造及び動作の説明に続く。
様々な線画が本明細書に示される実施例と併せて使用されるが、これらの線画(すなわち、図5、図13、図14、及び図15)は、本明細書において説明する技術の動作対象として意図される例示的なデジタル画像及び/又は写真を表すことを理解されたい。
これより図1を参照すると、本技術の部分は、例えば、コンピュータシステムのコンピュータ使用可能媒体に存在するコンピュータ可読且つコンピュータ実行可能な命令で構成される。
すなわち、図1は、本技術の以下において考察する実施形態の実施に使用することができるコンピュータの種類の一例を示す。
図1は、本技術の実施形態により使用される例示的なコンピュータシステム100を示す。
図1のシステム100が単なる例示にすぎず、本発明が、汎用ネットワークコンピュータシステム、埋め込みコンピュータシステム、ルータ、スイッチ、サーバ装置、クライアント装置、各種中間装置/ノード、独立型コンピュータシステム、マルチメディア装置、画像表示装置、デジタルカメラ、手持ち式電子装置等を含む多くの異なるコンピュータシステム上又はそれらのコンピュータシステム内で動作可能なことが理解される。
図1に示すように、図1のコンピュータシステム100は、当該コンピュータシステムに結合されている周辺コンピュータ可読媒体102、例えば、フロッピー(登録商標)ディスク、コンパクトディスク、デジタル多用途ディスク等を有するように上手く適合される。
図1に示すように、システム100は、複数のプロセッサ106A、106B、及び106Cが存在するマルチプロセッサ環境にもよく適する。
逆に、システム100は、単一のプロセッサ、例えばプロセッサ106A等を有することにもよく適する。
プロセッサ106A、106B、及び106Cは、様々な種類のマイクロプロセッサのうちのいずれであってもよい。
システム100は、バス104に結合され、プロセッサ106A、106B、及び106Cの情報及び命令を記憶するコンピュータ使用可能揮発性メモリ108、例えばランダムアクセスメモリ(RAM)等のデータ記憶機能も含む。
システム100は、バス104に結合され、プロセッサ106A、106B、及び106Cの静的な情報及び命令を記憶するコンピュータ使用可能不揮発性メモリ110、例えば読み取り専用メモリ(ROM)も含む。
システム100内には、バス104に結合され、情報及び命令を記憶するデータ記憶ユニット112(例えば、磁気ディスク又は光ディスク及びディスクドライブ)も存在する。
システム100は、バス104に結合され、プロセッサ106A又はプロセッサ106A、106B、及び106Cに情報及びコマンド選択を伝えるための、英数字キー及び機能キーを含むオプションの英数字入力装置114も含む。
システム100は、バス104に結合され、プロセッサ106A又はプロセッサ106A、106B、及び106Cにユーザ入力情報及びコマンド選択を伝えるための、オプションのカーソル制御装置116も含む。
本実施形態のシステム100は、バス104に結合され、情報を表示するオプションの表示装置118も含む。
オプションのカーソル制御装置116は、コンピュータユーザが表示装置118の表示画面上での可視シンボル(カーソル)の移動を動的に信号で通知できるようにする。
所与の方向への移動又は変位様式を信号で通知することが可能なトラックボール、マウス、タッチパッド、ジョイスティック、又は英数字入力装置114上の特殊キーを含む、カーソル制御装置116の多くの実施態様が当該技術分野において既知である。
代替的に、特殊キー及びキーシーケンスコマンドを使用して英数字入力装置114からの入力を介して、カーソルを方向付け且つ/又はアクティブ化できることが理解されよう。
システム100は、他の手段、例えば音声コマンド等による入力(英数字入力等)の受信及び/又はカーソル方向付けにもよく適する。
さらに、いくつかの実施形態では、英数字入力114は、漢字等の非アルファベット言語文字を入力するように構成される。
システム100は、システム100を外部エンティティに結合するI/O装置120も含む。
例えば、一実施形態では、I/O装置120は、システム100とインターネット等であるがこれに制限されない外部ネットワークとの間で有線又は無線の通信を可能にするモデムである。
特に、オペレーティングシステム122、アプリケーション124、モジュール126、及びデータ128は、存在する場合、一般的なようにコンピュータ使用可能揮発性メモリ108、例えばランダムアクセスメモリ(RAM)、及びデータ記憶ユニット112の1つ又は複数の組み合わせ内に存在して示される。
一実施形態では、本技術は、例えば、RAM108のメモリロケーション及び/又はデータ記憶ユニット112のメモリエリアにアプリケーション124又はモジュール126として記憶される。
これより図2を参照して、本技術の一実施形態による画像パンシステム200のブロック図を示す。
以下の考察は、システム200の構造の概括的説明で開始される。
考察は、ワープメッシュ生成器220の構造及び動作の詳細な説明に続く。
考察は、パン方向確定器260の構造及び動作の説明で締めくくられる。
図2に示すように、画像パンシステム200はワープメッシュ生成器220及びパン方向確定器260で構成される。
ワープメッシュ生成器220は、画像の画像顕著性データの顕著性のワープメッシュ表現を生成する。
ワープメッシュ生成器220は、画像顕著性データを入力として受け取り、画像顕著性データから導出されるワープメッシュデータを出力する。
一実施形態では、このワープメッシュデータは、連結器225等を介してパン方向確定器260に結合される。
パン方向確定器260は、ワープメッシュ生成器220からの情報に基づいて画像の移動の方向及び/又は速度を確定する。
画像パンシステム200がワープメッシュ生成器を含まない一実施形態では、ワープメッシュ情報を画像パンシステム200内で生成するのではなく、入力として受け取る。
パン方向確定器260は、パン方向確定をプレゼンテーション生成器270等のより大きな画像処理システムの他の部分に出力する出力265も有する。
例えば、プレゼンテーション生成器270は、画像の画像データを受け取ると共に、パン方向確定器260からパン確定情報も受け取る。
これらの入力に基づいて、プレゼンテーション生成器270は、出力であるスライドショー型プレゼンテーション等のプレゼンテーションを自動的に構築する。
プレゼンテーション生成器270は、パン方向確定を使用して、画像パンシステム200によって実行される画像内容解析に基づいて、画像の移動/パンの方向及び/又は速度等のインテリジェントプレゼンテーション動画を自動的に組み込む。
一実施形態では、顕著性情報は顕著性マップの形態で受け取ることができる。
ワープメッシュ生成器220は、ワープメッシュを記述する位置データ等の画像顕著性についてのワープメッシュ情報を出力する出力225を有する。
ワープメッシュ生成器220はパン方向確定器260にも結合されて、ワープメッシュを記述する位置情報等の画像顕著性のワープメッシュ表現に関する情報を提供する。
パン方向確定器260は、プレゼンテーション生成器270等のより大きな画像処理システムの他の部分にパン方向確定を出力する出力265を有する。
パン方向確定器260に結合することにより、プレゼンテーション生成器270は、例えばスライドショー型プレゼンテーションで提示されている1つ又は複数の画像の内容を考慮した様式での画像のインテリジェントなパン及び移動を可能にする情報を受け取る。
これは、単に画像の移動及び/又はパン方向をランダムに、すなわち画像の内容を考慮せずに選択するだけのシステムに対する改良である。
図3は、本技術の一実施形態による例示的なワープメッシュ生成器220のブロック図である。
図3に示す実施形態では、ワープメッシュ生成器220は、顕著性合算器310、領域分割器320、メッシュ画定器330、及びオプションのメッシュ位置メモリ340で構成される。
ワープメッシュ生成器220の他の実施形態は、任意選択的に、複数の顕著性合算器及び複数の領域分割器で構成されて、タスクを並列に実行する。
本技術の一実施形態では、画像顕著性データは、画像の顕著性マップの形態で受け取られる。顕著性合算器310は、画像顕著性データの合算を実行する。
顕著性合算器310は領域分割器320にも結合され、領域分割器320から画像顕著性データに対して実行される合算の始点及び終点についての命令を受け取る。
顕著性合算器310は、この結合を介して顕著性データ合算の結果を領域分割器320に提供もする。
領域分割器320は、顕著性合算器310によって実行される合算に応答して、顕著性マップを複数の領域に分割するものである。
本技術の一実施形態では、領域分割器320には、画像の顕著性データが分割される領域の数及び種類を定義するプリセットデータがロードされる。
本技術の一実施形態では、領域分割器320には、領域のそれぞれに配置される画像の合計顕著性の割合を定義するプリセット情報もロードされる。
領域分割器320は、顕著性合算器310の動作を制御するため、且つ各領域が画像の予め規定された量の合計画像顕著性を含む状態で、各画像の画像顕著性データを適切な数及び種類の領域に分割するために、必要に応じてこの情報を提供する。
本技術の一実施形態では、領域分割器320は、領域の数、領域の種類、及び個々の各領域に含まれる合計顕著性の割合のプリセットを修正又は変更するユーザ定義の入力等の情報を提供する外部ソースにも結合される。
領域分割器320は、画像顕著性データが分割される領域のロケーションについての情報を提供するメッシュ画定器330にも結合される。
メッシュ画定器330は、領域に関する位置情報を利用して、画像顕著性マップの顕著性のワープメッシュ表現を画定する。
本技術の一実施形態では、メッシュ画定器330は、個々の各領域を領域セット内の別の領域から分離するエリアをマークする。
これらの分離エリアは特にボーダー線セパレータ又は境界線セパレータと呼ぶことができ、総称してセパレータと呼ぶことができる。
一実施形態では、次に、ワープメッシュ表現を画定する位置情報が記憶される。本技術の一実施形態では、画像顕著性のワープメッシュ表現を画定する位置情報が、出力225等のワープメッシュ生成器220の出力に提供される。
一実施形態では、例えば、画像顕著性のワープメッシュ表現を画定する位置情報は、連結部225を介してパン方向確定器260に提供される。
メッシュ位置メモリ340は、ワープメッシュの個々の領域間の、境界線セパレータ、ボーダー線セパレータ、又は領域セパレータについての位置情報等の、ワープメッシュを画定する位置情報の記憶を提供する。
以下の考察において、本技術と併せて利用されるワープメッシュ生成器の一実施形態の動作を詳細に記す。物体を認識し画像の顕著な(すなわち注意を引き付ける)部分を確定する技法が既知であり、Laurent Itti、Christof Koch、及びErnst Niebur著「A Model of Saliency-Based Visual Attention for Rapid Scene Analysis」(IEEE Transactions on Pattern Analysis and Machine Intelligence, November 1998)並びにPaul Viola及びMichael Jones著「Robust Real-Time Object Detection」(Second International Workshop on Statistical and Computational Theories of Vision - Modeling, Learning, Computing, and Sampling, July 13, 2001)等の研究に述べられていることが理解される。
さらに、「Robust Real-Time Object Detection」は、画像内の顕著性を水平又は垂直に合算する技法についても述べている。
画像の画像顕著性データは、顕著性マップ、顔認識情報、及び他の画像解析情報等の情報を含む。
画像顕著性合算器310は、顕著性を確定すると共に、顔等の物体を認識する技法等の既知で確立されている画像処理技法に基づいて生成される顕著性データを受け取る。
いくつかの実施形態では、受け取られる画像顕著性情報は、顕著性データの生成に組み込まれるユーザ指定のパラメータ又は制約に基づいて生成されもする。
画像の画像顕著性データは、画像の顕著エリアのランキング又はマッピング等の形態で受け取られる。
例えば、本技術のいくつかの実施形態では、画像顕著性データはグレースケール画像又はマッピングとして受け取られ、この場合、各ピクセルの値はそのピクセルの顕著性スコアである。
本技術の他の実施形態では、画像顕著性データは、自身の相対顕著性を示すスコアをそれぞれ含むサブセクションに分割されたマップの形態で渡される。
この考察の目的で、ピクセルで構成されるグレースケール画像の形態の顕著性マップを受け取るワープメッシュ生成器220の一実施形態の動作を説明する。
同じ動作方法が概して、受け取られる任意の形態の顕著性マップに適用されることを認識されたい。
画像は、静止画像であってもよく、又はいくつかの実施形態では動画像(例えば、映像)であってもよい。
特定のステップが流れ図400において開示されるが、このようなステップは例示的なものである。
すなわち、本技術の実施形態は、他の各種(追加の)ステップ又は流れ図400に示されるステップの変形形態の実行にもよく適する。
流れ図400内のステップは提示される順序と異なる順序で実行してもよく、流れ図400内のすべてのステップが実行されるわけではない場合があることが理解される。
本技術の一実施形態では、流れ図400は、コンピュータシステム(図1のコンピュータシステム100等)のメモリユニットに記憶されると共に、プロセッサ(図1のプロセッサ106A等)によって実行される、コンピュータ可読プログラムコードとして実施される。
画像500の最も顕著な部分は女性501、及び女性がその前に立っている木502である。
画像500の左側も、木の部分及び枝の形態のいくつかの顕著な特徴を含む。画像の右側1/4は顕著な特徴が実質的にない。
破線505は、画像500の視認可能なドミナントラインがy軸に沿って垂直な向きを有することを示す。
ドミナントライン505は、木502の幹及び女性501の垂直な輪郭に調和する。
分かるように、本技術では、ドミナントライン505等の画像のドミナントラインの方向及びいくつかの実施形態では強度を自動的に確定することができる。
画像500の最も顕著なエリア(女性501及び木502)は、画像顕著性マップ600内のより明るいエリアとして表されている。
グレースケール画像のより暗いエリアは、画像500の顕著性がより低いエリアを表している。
以下の考察では、例示的な画像顕著性マップ600をワープメッシュ生成器220への入力として利用する。
本技術の一実施形態では、顕著性合算器310は、画像500の顕著性マップ600の形態の顕著性データを受け取る。
顕著性マップに含まれている合計顕著性の値が提供されない場合、顕著性合算器310がそれを計算する。
次に、顕著性合算器310は領域分割器320と併せて動作して、顕著性マップ内のピクセルエリアの顕著性値を合算する。
ピクセルのエリア的合算は、顕著性マップ600に対して規定の水平、垂直、又は斜めの方向において実行される。
合算の始点、終点、及び方向は、プリセットによって制御されるか、又は領域分割器320との対話を介して制御される。
例えば、第1の合算は、画像顕著性マップ600の右上側から左下側に斜めに、画像顕著性マップ600の左下側から右上側に斜めに、画像顕著性マップ600の左側から右側に、画像顕著性マップ600の上から下へ等に行うことができる。
一例として、本技術の一実施形態では、水平合算は画像顕著性マップ600の右側から開始され、そしてピクセル列全体が合算される。
次に、顕著性合算器310は左側に向かって水平に次のピクセル列に移動してそれを合算し、第1のピクセル列の合算に加算する。
合算は左側に向かって画像顕著性マップ600を水平に横切ってこのようにして続けられる。
暫定合算合計が保持され、暫定合計が、プリセットで指定されるか、又は領域分割器320によって指定される画像顕著性マップの合計顕著性のうちの特定の割合等の所望のレベルに達したときに、合算は停止する。
次に、暫定合計はリセットされ、合算は、すべてのピクセル列が合算されるまで、画像顕著性マップ600を水平に横切って同様に続けられる。
次に、合算の結果は次の領域分割器320に渡される。
例えば、次に、第2の合算が画像顕著性マップ600の上から下に、又は下から上に垂直に行われる。
一例として、本技術の一実施形態では、垂直合算が画像顕著性マップ600の上から開始され、そしてピクセル行全体が合算される。
次に、顕著性合算器310は垂直に下にある次のピクセル行に移動してそれを合算し、第1のピクセル行の合算に加算する。
合算は、画像顕著性マップ600を垂直に下に向かってこのようにして続けられる。
暫定合算合計が保持され、暫定合計が、プリセットで指定されるか、又は領域分割器320によって指定される画像顕著性マップの合計顕著性のうちの特定の割合等の所望のレベルに達したときに、合算は停止する。
次に、暫定合計はリセットされ、合算は、すべてのピクセル行が合算されるまで、画像顕著性マップ600を垂直に下に向かって同様に続けられる。
次に、合算の結果は次の領域分割器320に渡される。
領域のサイズは、各領域に含まれる合計顕著性の割合に基づく。
本技術の一実施形態では、領域分割器320は顕著性合算器310の合算を制御して、この領域への分割を行う。この制御はプリセット値又はユーザ指定値に基づく。
例えば、本技術の一実施形態では、領域分割器320は、画像顕著性マップを割合の等しい100個の垂直領域から成るセットに分割するというプリセットを含む。
図7に示す本技術の別の実施形態では、領域分割器320は、顕著性マップを10個の水平領域から成るセット及び10個の垂直領域から成るセットに分割し、各水平領域及び各垂直領域が画像顕著性マップの合計顕著性の10%を含むというプリセットを含む。
同様に、図8に示す一実施形態では、領域分割器320は、顕著性マップを10個の左上から右下への斜めの領域から成るセットに分割し、各領域が画像顕著性マップの合計顕著性の10%を含み、且つ顕著性マップを10個の左下から右上への斜めの領域から成るセットに分割し、各領域が画像顕著性マップの合計顕著性の10%を含むというプリセットを含む。
このような多くのプリセットが存在することができ、画像顕著性マップをより多数又はより少数の領域に、且つ様々な向きの領域に分割することができる。
画像顕著性マップをより少数の領域に分割すると、必要となる時間及び処理はより少なくなるが、結果として生成される顕著性のワープメッシュ表現の精度はより低くなる。
画像顕著性マップをより多数の領域に分割すると、必要となる時間及び処理はより多くなるが、結果として生成される顕著性のワープメッシュ表現の精度はより高くなる。
図7では、水平合算が実行され、画像顕著性マップ600は、画像顕著性マップ600の合計顕著性の10%をそれぞれ含む、10個の垂直領域に分割された。
垂直領域のそれぞれの間の境界線セパレータは黒色の垂直線701、702、703、704、705、706、707、708、709として表され、画像顕著性マップ600の上に重ねられて、垂直領域を目に見えるように画定する。
境界線セパレータは説明のために目に見えるように表されるが、物理的な寸法を有せず、選択された原点からの座標距離によって表されることを理解されたい。
図7の各領域が占める実空間面積は均等ではない。
これは、顕著性エリアが画像500全体、ひいては画像顕著性マップ600全体にわたって変化するためである。
これにより、領域間の境界線セパレータは規則正しく離間されずに、個々の各領域が、合計画像顕著性の規定の割合を含みながら異なる物理的面積を含むワープメッシュを形成する。
上述した水平合算に加えて、垂直合算も実行されている。
垂直合算の結果として、画像顕著性マップ600は、画像顕著性マップ600の合計顕著性の10%をそれぞれ含む、10個の水平領域に分割される。
垂直合算から生じる垂直領域間のそれぞれのボーダー線セパレータは、黒色の水平線711、712、713、714、715、716、717、718、719として表され、画像顕著性マップ600の上に重ねられて、領域を目に見えるように画定する。
ボーダー線セパレータは説明のために目に見えるように表されるが、物理的な寸法を有せず、選択された原点からの座標距離によって表されることを理解されたい。
水平合算及び垂直合算の結果として、図7は、画像顕著性マップ600の合計顕著性の1%を必ずしもそれぞれ含む必要がない100個の下位領域で構成されるワープメッシュが重ねられた画像顕著性マップ600を示す。
しかし、図8では、画像顕著性マップ600のピクセルを水平方向及び垂直方向に合算するのではなく、ピクセルは直交する斜めの2方向で合算された。
領域セパレータ801、802、803、804、805、806、807、808、809は、水平に対して約45度の向きを有し、顕著性マップ600の左上から右下に進む。
領域セパレータ801〜809は、顕著性マップ600を顕著性がおおよそ等しい10個の斜め領域から成るセットに分割する。
領域セパレータ811、812、813、814、815、816、817、818、819は、領域セパレータ801〜809に対しておおよそ直交する向きを有し、顕著性マップ600の左下から右上に進む。
領域セパレータ811〜819は、顕著性マップ600を顕著性がおおよそ等しい10個の斜め領域から成る別のセットに分割する。
領域セパレータ801〜809及び領域セパレータ811〜819は一緒に顕著性マップ600を、それぞれ画像顕著性マップ600の合計顕著性の1%を必ずしも含む必要がない100個の下位領域で構成されるワープメッシュに分割する。
領域の1つ又は複数のセットについての位置情報は、領域分割器320からメッシュ画定器330に渡される。
次に、メッシュ画定器330はこの位置情報を使用して、画像顕著性マップの顕著性を表すワープメッシュを画定する。
本技術の一実施形態では、この位置情報を使用して、領域の1つ又は複数のセット内の領域間に、境界線セパレータ、ボーダー線セパレータ、及び領域セパレータをマークする。
本技術の一実施形態では、個々の各境界線セパレータのロケーションは、指定された原点からの画定距離としてマークされる。
例えば、本技術の一実施形態では、指定される原点は右上隅にあり、境界線セパレータ(701〜709)はそれぞれ、原点からのピクセル単位の距離によってマークされる。
このような方式に従い、10個の垂直領域を、定められた原点からの9個の境界線セパレータの距離を表す9個の別個の整数を使用して画定することができる。
同様に、次に個々の水平領域間のボーダー線セパレータも示されてマークされる。従っている例示的な実施形態では、10個の水平領域が、定められた原点からの9個のボーダー線セパレータ(711〜719)の距離を表す9個の別個の整数によって画定される。
本技術の上述した実施形態では、図8に示される、一緒に100個の下位領域を構成する、10個の垂直領域から成るセット及び10個の水平領域から成るセットが、18個の整数で表される。
これは、画像顕著性マップ600の実際の画像顕著性データを記憶するサイズに対する大幅なメモリ節減である。
図7に提示された画像顕著性マップ600は除去され、残っているのは、垂直境界線セパレータ701〜709及び水平ボーダー線セパレータ711〜719のみである。
垂直境界線セパレータ701〜709は例示的な一次元ワープメッシュを表す。
水平ボーダー線セパレータ711〜719も別の例示的な一次元ワープメッシュを表す。
セパレータ701〜709及びセパレータ711〜719は一緒に、例示的な二次元ワープメッシュ900を構成する。
同様に、二次元斜めワープメッシュを、図8の領域セパレータ801〜809及び領域セパレータ811〜819によって画定することができる。
セパレータ704及びセパレータ719の例示的な交点が、ノード交点903として示される。
上述したように、ワープメッシュ900等のワープメッシュの位置情報は18個の整数で表すことができる。
一実施形態では、これらの整数は定められた原点からのピクセル距離であることができる。
別の実施形態では、これらの整数は、定められた原点からの画像にわたる小数距離すなわち距離割合を表すことができ、これは整数として記憶され、例えば、小数距離0.102を整数102として記憶することができる。
ワープメッシュ位置情報の整数表現がここ(及び他の場所に)おいて例として利用されるが、このようなワープメッシュ位置情報を、実数、固定小数点数、浮動小数点数、小数の浮動小数点等価物、二進数等を含む数の任意のコンピュータ表現によって表現可能なことが理解される。
本技術の一実施形態では、ワープメッシュ900の位置情報は、図3のオプションのメッシュ位置メモリ340等のメモリに記憶することができる。
本技術の一実施形態では、ワープメッシュ900の位置情報は、出力としてワープメッシュ生成器220から供給される。
図2に示すようにワープメッシュ生成器220がシステム200内に含まれる一実施形態では、ワープメッシュ900を表す整数値等のワープメッシュの位置情報は、画像の移動をワープメッシュ情報に基づいて確定できるように、パン方向確定器260に供給される。
図10は、本技術の一実施形態によるパン方向確定器260の拡張ブロック図である。
図10に示す実施形態では、パン方向確定器260は、ワープメッシュ受信器1010、変位解析器1020、ドミナントライン確定器1030、オプションのユーザ制御装置1040、移動確定器1050、及び出力連結器265で構成される。
一実施形態では、変位解析器1020は、オプションのワープメッシュ受信器1010の機能も実行し、そのため、別個のワープメッシュ受信器を必要としなくなる。
受け取ったワープメッシュ構成要素の変位は、顕著性/面積の等しい領域を画定する領域セパレータが規則正しく離間された同様の向きの非ワープメッシュ内の対応する構成要素ロケーションに対して確定される。
次に、変位は統計的に解析される。
例えば、ワープメッシュでの垂直セパレータのロケーションが、非ワープメッシュでの垂直セパレータのロケーションと比較される。
変位解析器1020は、変位確定結果及び変位の統計解析をドミナントライン確定器1030に提供する。
ドミナントラインが存在する場合、ドミナントライン確定器1030は、その比較に基づいてドミナントラインの方向軸を確定する。
例えば、ドミナントライン確定器1030は、例えば比率(ratio)を介して、受け取った水平セパレータ統計変位情報を、受け取った垂直セパレータ統計変位情報と比較して、水平又は垂直のドミナントラインが存在するか否かを判断する。
同様に、ドミナントライン確定器は、左上から右下への斜めのセパレータの統計変位情報を左下から右上への斜めのセパレータの統計変位情報と比較して、斜め方向のドミナントラインが存在するか否かを判断し、存在する場合、方向軸がどれであるかを確定する。
したがって、一実施形態では、ドミナントライン確定器1030は、ワープメッシュデータが関連する画像内で実質的に水平、垂直、又は斜めの軸に方向付けられたドミナントラインを自動的に見つけるように構成される。
このような比較に基づいて、ドミナントライン確定器1030は、検出される任意のドミナントラインの強度も確定する。
次に、ドミナントライン情報は、ドミナントライン確定器1030から移動確定器1050に提供される。
ドミナントラインの方向に基づいて、移動確定器1050は、画像がプレゼンテーションにおいて表示されるときの閲覧領域内の関連画像の移動方向を確定する。
同様に、検出されたドミナントラインの強度に基づいて、移動確定器1050は、プレゼンテーションの一環として表示領域に表示される画像の移動速度を確定する。
一実施形態では、分類は、例えば、特定の数の画像が垂直にパン/移動し、特定の数の画像が水平にパン/移動し、特定の数の画像が垂直にパン/移動することを指示するプリセット又はユーザ入力に基づく。移動の確定は出力265に提供され、プレゼンテーション生成器270等のプレゼンテーション生成器への入力として使用される。
一実施形態では、オプションのユーザ制御装置1040は、ハードウェア又はソフトウェア等を通じて、プレゼンテーション内での画像の移動方向及び移動速度について判断される際に移動検出器1050が1つ又は複数のドミナントラインの方向及び/又は強度を判断又は分類するために利用する任意のプリセット又は所定の値をユーザが変更するための入力機構を提供する。
これより図11及び図16を参照して、流れ図1100及び1600を考察して、本技術の実施形態の要素の動作を説明する。
この考察の目的で、二次元水平/垂直ワープメッシュ900を入力として利用し、オプションとして二次元斜め/斜めワープメッシュ(図8に示す)を入力として使用することができる本技術の実施形態の詳細な動作の説明が提供される。
他の実施形態及び変形も本発明の精神及び範囲内で可能である。
すなわち、本技術の実施形態は、他(追加)の様々なステップ又は流れ図1100及び1600内に記されるステップの変形の実行にもよく適する。
流れ図1100及び1600内のステップは提示される順序と異なる順序で実行してもよいこと、及び流れ図1100及び1600内のすべてのステップが実行されるわけではない場合があることが理解される。
本技術の一実施形態では、流れ図1100及び/又は1600は、コンピュータシステム100(図1)と併せて使用され、プロセッサ106A並びに/又はプロセッサ106A、106B、及び106B(図1)によって実行されるメモリユニット又は周辺コンピュータ媒体等のコンピュータ使用可能媒体に記憶されるコンピュータ可読プログラムコードとして実装される。
ワープメッシュ受信器1010が画像のこのワープメッシュ表現を受け取る。ワープメッシュ表現は、メッシュ又は格子を記述するために使用される位置情報の形態で受け取られる。
一実施形態では、ワープメッシュ情報は、画像の二次元メッシュ表現を記述する位置情報として受け取られる。
水平/垂直ワープメッシュ900及び図8に示す斜め/斜めワープメッシュは、このような二次元ワープメッシュの例である。
二次元ワープメッシュについての情報は、メッシュのセパレータのロケーション情報の形態で受け取ってもよいか、又は二次元メッシュの交わる節のロケーションに関する情報として受け取ってもよい。
一実施形態では、ワープメッシュ情報は整数値として受け取られる。
一方他の実施形態では、ワープメッシュ情報は実数、固定小数点数、浮動小数点数、又は数の他の何らかのコンピュータ化された表現として受け取られる。
ワープメッシュ受信器1010は、ワープメッシュ情報をバッファリングし、必要なときに変位解析器1020に提供する。
一実施形態では、ワープメッシュ受信器1010は、セパレータ情報からノード交点情報への変換、整数情報から小数点情報への変換、又はそうでない場合、数値の或る種類のコンピュータ化表現から数値の別の種類のコンピュータ化表現への情報の変換(すなわち、二値情報から浮動小数点情報への変換)等の変換機能も実行する。説明を簡潔にし簡単にするために、本明細書において示される例の多くで、小数値及び/又は整数値が示され考察されるが、このような値は通常、コンピュータ内の他の何らかの数値形式で表されることが理解される。
このような一実施形態では、正規化された画像エリアは定められた原点においてゼロの値を有し、原点とは逆の直角を成す両画像エリアエッジにおいて1の値を有する。
例えば、位置902が原点として定められた例示的な二次元ワープメッシュ900を利用して、表1に、位置902の右側の各境界線セパレータ701〜709の距離割合の小数表現を示す。
表1には、位置902の下の各ボーダー線セパレータ711〜719の距離割合の小数表現も示される。
表1に示されるように、図9の境界線セパレータ709は、ワープメッシュ900によってモデリングされるエリアを横切る距離の約10%(0.102)だけ、位置902から右に向かって変位している。
同様に、ボーダー線セパレータ711は、ワープメッシュ900によってモデリングされるエリア内の上/下距離の約17%(0.166)だけ、位置902から下に向かって変位している。
表1では小数値として表されるが、変位解析器1020の別の実施形態は、同じ位置情報を整数値、固定小数点数、浮動小数点数、二進値、又は数値の他の何らかのコンピュータ化された表現の形態で処理し利用することができる。
ワープメッシュ900等の二次元ワープメッシュが、2つの一次元ワープメッシュについてのデータを本質的に含むことを理解されたい。
変換の別の例では、セパレータ位置情報として受け取られた二次元ワープメッシュ位置情報が、セパレータの交点のノード交点位置に変換される。
変位解析器1020がこの解析を実行する。
一実施形態では、この解析は、二次元ワープメッシュの両次元で実行される。
一方、一実施形態では、この解析は二次元ワープメッシュのノード交点、又はワープメッシュのデータの他の何らかの表現に対して実行される。
例えば、二次元水平/垂直ワープメッシュ900の各次元が、非ワープ二次元水平/垂直メッシュ内の対応する次元と比較される。
このような非ワープメッシュは、画像エリア全体にわたって顕著性が一様分布する、画像を表す9個の規則正しく離間された水平セパレータ及び9個の規則正しく離間された垂直セパレータを有する。
図12は、規則正しく離間された垂直境界線セパレータ1271〜1279及び規則正しく離間された水平ボーダー線セパレータ1281〜1289を有するこのような非ワープメッシュ1200を示す。
境界線セパレータ1271〜1279は図9内の境界線セパレータ701〜709に対応し、ボーダー線セパレータ1281〜1289は図9のボーダー線セパレータ711〜719に対応する。
図12の規則正しく離間された領域セパレータは、10個の等面積/等顕著性の水平領域及び10個の等面積/等顕著性の垂直領域を画定する。
表2内の変位は、原点1202からの右から左又は上から下への総距離の割合の小数点等価物として表される。
非ワープメッシュ1200は、ワープメッシュ900と同じように正規化されている。
表1と同様に、示される小数値は例示的なものであり、他の実数値、固定小数点数、浮動小数点数、二進数、又は数値の他の何らかのコンピュータ表現として表し処理されることが可能なことを理解されたい。
例えば、変位解析器1020は、受け取ったワープメッシュ900内の各境界線セパレータと、非ワープメッシュ1200内の対応する規則正しく離間された境界線セパレータとの差を見つける。
例えば、変位解析器1020は、境界線セパレータ701〜709によって表される一次元ワープメッシュ又はボーダー線セパレータ711〜719によって画定される一次元ワープメッシュから開始する。
例えば、境界線セパレータ701〜709で構成される一次元ワープメッシュが最初に処理されるものと仮定すると、境界線709の位置と、対応する規則正しく離間された境界線1279の位置との差が0.102−0.100として計算される。
したがって、非ワープ位置からの差は0.002である。この計算は、受け取られた残りの境界線セパレータ708〜701及びそれぞれの対応する非ワープ境界線セパレータ1278〜1271に対して繰り返される。
すべての差が見つかると、統計解析が実行されて、差の統計表現が求められる。
本技術の一実施形態では、非ワープメッシュの垂直境界線セパレータロケーションからの水平距離での標準偏差が求められる。
この例では、標準偏差は約0.125である。本技術の別の実施形態では、差の幾何学的平均、差の絶対値の和、又は他の何らかの統計表現が求められる。
先の例に従い、変位解析器1020は、水平ボーダー線セパレータ711〜719で構成される第2の一次元ワープメッシュの残りの位置情報に対して計算を繰り返す。
変位解析器1020は、受け取ったワープメッシュ900内の各ボーダー線セパレータと、非ワープメッシュ1200内の対応する規則正しく離間されたボーダー線セパレータとの差を見つける。
例えば、ボーダー線セパレータ711の位置と、対応する規則正しく離間されたボーダー線セパレータ1281の位置との差が、0.166−0.100として計算される。
したがって、非ワープ位置からの差は0.066である。
この計算は、受け取られた残りのボーダー線セパレータ712〜719及びそれぞれの対応する非ワープボーダー線セパレータ1282〜1289に対して繰り返される。
すべての差が見つけられると、統計解析が実行されて、差の統計表現が求められる。
一実施形態では、非ワープメッシュ水平ボーダー線セパレータのロケーションからの垂直距離での標準偏差が求められる。
この例では、標準偏差は約0.052である。本技術の別の実施形態では、差の幾何学的平均、差の絶対値の和、又は他の何らかの統計表現が差について求められる。
上記のように、各一次元ワープメッシュのそれぞれのセパレータ構成要素同士の差の統計表現が、等顕著性/等面積の斜め領域を画定する非ワープ斜め/斜めメッシュ内の同様の向きの構成要素に対して計算される。
水平/垂直ワープメッシュの場合と異なり、このような斜め/斜め非ワープメッシュ内のこのようなセパレータは、互いに均等に離間されない。
したがって、斜め/斜めワープメッシュの場合、変位解析器1020は、互いに平行する向きを有すると共に、画像の水平軸に対して約45度の向きも有する第1のセットのセパレータ構成要素の変位の、標準偏差等の第1の統計表現を求める。
次に、変位解析器は、互いに平行する向きを有すると共に、第1のセットのセパレータに実質的に直交する向きも有する第2の(残りの)セットのセパレータ構成要素の変位の、標準偏差等の第2の統計表現を求める。
ロケーションの差が計算され、統計解析が実行されて、差の統計表現が求められる。
ノード903(図9)及びノード1203(図12)は、受け取ったワープメッシュ900及び非ワープメッシュ1200内の対応するノードの例である。
本技術の一実施形態では、受け取ったノードの、それぞれの対応する非ワープノードのロケーションからの二次元変位が記され、受け取ったノードの変位の標準偏差が計算される。
別の実施形態では、ノード位置変位の差の幾何学的平均、ノード位置変位の絶対値の和、又は差の他の何らかの統計表現が求められる。
ドミナントライン確定器1030(図10)がこの評価を実行する。
例えば、一実施形態では、ドミナントライン確定器1030は、ワープメッシュの第1のセットのセパレータ構成要素の変位の標準偏差を、ワープメッシュの第2のセットのセパレータ構成要素の変位の標準偏差に対して評価する。
これは、例えば、第2の標準偏差に対する第1の標準偏差の比を評価することを含むことができる。
評価することの結果は、画像のドミナントラインの方向軸及び/又は強度を表す。
例えば、垂直境界線セパレータ701〜709の水平標準偏差は約0.125であり、水平ボーダー線セパレータ711〜719の垂直標準偏差は約0.052である。
垂直標準偏差に対する水平標準偏差の比を評価することにより、画像500(図5)のドミナントラインの尺度が与えられる。
例えば、比(R)が1よりも大きい場合、水平方向での偏差は垂直方向での偏差よりも顕著であり、画像は垂直ドミナントラインを有する。
同様に、Rの値が1を上回る幅が大きいほど、より強度の大きな(換言すれば、より顕著である)ドミナントラインに相関する。
逆に、Rの値が1未満の場合、垂直方向での偏差が水平方向での偏差よりも顕著であり、画像は水平ドミナントラインを有する。
同様に、Rの値が1を下回る幅が大きいほど、より強度の大きな(換言すれば、より顕著である)水平ドミナントラインに相関する。
一実施形態では、ウォッチドッグ機能がドミナントライン確定器1030内に構築され、ドミナントライン確定器1030にゼロに等しい標準偏差をいずれも0.001等の非常に小さな値で置き換えさせる。
これによりゼロによる除算及び結果として生じる可能性がある無限エラーが回避される。
したがって、現在の例では、0.052に対する0.125の比は2.4というR値になる。
これは、ライン505で示されるような、画像500のy軸方向に沿った中強度の垂直ドミナントラインを示す。
所与の例では、画像500は、水平又は垂直のドミナントラインの存在について評価された。
同様に、直交する斜め/斜めワープメッシュ(図8に示される)を利用して、右上から左下への斜めのドミナントライン又は右下から左上へのドミナントラインについて画像500を評価することができる。
このような斜め/斜めワープメッシュを利用する例では、第1のセットの平行セパレータ構成要素の変位の標準偏差が、第2のセットの直交セパレータ構成要素の変位の標準偏差と比較される。
次に、ドミナントライン確定器1030は、水平/垂直メッシュ900の例と併せて上述したように任意の検出された斜めのドミナントラインの斜軸及び強度を求める。
画像1300は、画像1300内の狭い幅にわたって実質的に水平方向に延びる山脈1301を有する風景を示す。
これは、画像1301のx軸に沿って方向1305において強力な水平ドミナントラインを生み出す。
一実施形態では、ドミナントライン確定器1030は、流れ図1100と併せて説明した方法を使用することにより、水平ドミナントライン1305の方向及び強度を検出する。
画像1400は、画像1400にわたって左上から右下に実質的に斜めに延びる野球のバット1401を示す。
これは、画像1401の左上から右下への斜めの軸に沿って方向1405において強力な斜めのドミナントラインを生み出す。
一実施形態では、ドミナントライン確定器1030は、流れ図1100と併せて説明した方法を使用することにより、斜めのドミナントライン1405の方向及び強度を検出する。
画像1500は、画像1500の中心付近に位置決めされた野球のボールを示す。
これによって、画像1500がドミナントラインについて評価される場合、ごくわずかな確定又は否定の確定が生じる。
一実施形態では、ドミナントライン確定器1030は、流れ図1100と併せて説明した方法を使用することにより、ドミナントラインがないこと(又は恐らく、非常に弱いドミナントラインの存在)を検出する。
例えば、一実施形態では、移動確定器1050がドミナントライン情報をドミナントライン確定器1030から受け取る(両方とも図10に示される)。
受け取ったドミナントライン情報は、画像に対してドミナントラインの軸又は方向を画定する。
受け取ったドミナントライン情報は、ドミナントラインの相対強度も一群(coveys)画定する。
一例として、一実施形態では、ドミナントライン情報は、画像のワープメッシュ表現の評価から求められる数値結果を含む。
したがって、上述した例では、画像500及びワープメッシュ900の評価と併せて、Rの値である2.4が移動確定器1050に渡される。
同様に、数値が使用されない場合、中強度の垂直ドミナントラインを示す情報が移動確定器1050に渡される。
一実施形態では、移動確定器1050が受け取ったドミナントライン情報の評価を実行する。
一実施形態では、移動確定器1050は単に、方向及び強度に基づいて独立して各画像のドミナントライン情報を評価する。
しかし、別の実施形態では、移動確定器1050はさらに、プレゼンテーション内で一緒に提示される複数の画像のドミナントライン情報と併せて、各画像のドミナントライン情報を評価する。
このような一実施形態では、複数の画像のそれぞれのドミナントライン情報はさらに、デフォルト設定、ユーザ入力(ユーザ制御装置1040等から)、又は両方に関して評価される。
このような評価を通じて、移動確定器1050は、ドミナントライン情報に基づいて、且つ/又はさらにデフォルト設定又はユーザ入力に関連して画像のドミナントラインの方向を特徴付ける。
このような評価を通じて、移動確定器1050は、ドミナントライン情報に基づいて画像のドミナントラインの強度も特徴付ける。
複数の画像のドミナントライン情報を評価する技法の一例は、複数の画像のドミナントラインの方向及び相対強度を表すグラフ点をプロットすることを含む。
図17は、X−Yグラフ上にプロットされたこのような複数のグラフ点を示す。
図17のグラフは、x軸1715、y軸1710、原点1705、並びに分割線1725及び1720で構成される。
点1730は、垂直ドミナントライン505(図5)等の中強度の垂直ドミナントラインを表す。
点1736は、水平ドミナントライン1305(図13)等の高強度の水平ドミナントラインを表す。
点1734は、斜めのドミナントライン1405(図14)等の高強度の斜めのドミナントラインを表す。
点1732は、図15に関連する、ごくわずかな殆ど存在しないドミナントラインを表す。
一実施形態では、分割線1720及び1725は、ユーザ制御装置1740等からのユーザ入力によって確定される。
別の実施形態では、分割線1720及び1725はデフォルト設定に従って確定される。
2つの分割線(1720又は1725)が示されるが、他の実施形態はより少数又は多数のこのような分割線を使用してよいことが理解される。
他の実施形態では、このような分割線はユーザ入力、デフォルト設定、又は両方に基づいて異なる位置又は異なる角度で位置決め可能なことがさらに理解される。
このような要件に基づいて、移動確定器は、分割線1720及び1725の配置を介して点1730、1732、1734、及び1736を3つの領域に分ける。分割線1725よりも上の点には垂直パン/移動が割り当てられ、分割線1720よりも下の点には水平パン/移動が割り当てられ、分割線1720と1725との間にある点には斜めのパン/移動が割り当てられる。
したがって、この技法では、画像をドミナントラインにわずかに矛盾する方向にパンすることが可能である。
例えば、水平ドミナントライン、垂直ドミナントライン、又はごくわずかなドミナントラインを有する画像に斜めのパン/移動を割り当てて、デフォルト又はユーザ提供の仕様を満たすことができる。
同様に、斜めのドミナントラインを有する画像に水平又は垂直のパン/移動を割り当てて、デフォルト又はユーザ提供の仕様を満たすことができる。
しかし、このような場合、これらの一貫しないパン画像に関連するデータ点は分割線付近にあり、したがって分割線から離れた画像よりも曖昧なドミナントラインを有することになる。
多くの場合、このような一貫しないパン画像は、わずかな斜めの成分を有する中強度の水平ドミナントライン等の2つ以上のドミナントラインの要素も有することになる。
移動方向は、ドミナントライン情報に対して前に実行された評価に基づく。
例えば、画像500(図5)は、表示領域内で、ドミナントライン505と一致した方向である上又は下にパン又は移動するように割り当てられる。
このようなパン/移動は、画像の内容を強調し補足する。別の同様の実施形態では、デフォルト設定又はユーザ入力に従って、移動確定器1050は、確定されたドミナントラインに実質的に直交する方向軸においてパン又は移動するように或る1つ又は複数の画像に割り当てる。
例えば、このような実施形態では、画像500は表示領域内で、ドミナントライン505に直交する方向である左又は右にパン/移動するように割り当てられる。
このようなパン/移動は意図的に画像のドミナントラインと対立するように割り当てられて、閲覧者に矛盾又は不調和の感覚を呼び起こす。
例えば、複数の画像の移動方向の確定は、図17に示されるデータ点(1730、1732、1734、及び1736)及び分割線1720、1725に合致する。
したがって、例えば、移動確定器1050は、データ点1736に関連する画像500を水平にパン/移動させるべきであり、データ点1732に関連する画像1500を斜めにパン/移動させるべきであると確定する。
このような画像のパン/移動方向の自動確定は、プレゼンテーションに使用されるパン/移動方向に関して多様性をもたらす一方で、同時に、画像に関連するドミナントラインに合致する方向に画像をパンしようと試みる。
繰り返しを避けるために、動きベクトルの符号はランダムに変更することができる。
したがって、例えば、水平動きベクトルへのランダムな符号割り当てに応じて、水平パンが割り当てられた或る画像を左から右にパンすることができ、一方で、水平パンが割り当てられた別の画像を右から左にパンすることができる。
ズームベクトルの符号は、二次元動きベクトルの符号を任意に変更するのと同様にして任意に変更することができる。
さらに、顕著性情報の使用を通じて、ズームベクトルは、画像の顕著な部分のみ又はその部分の周辺のみに向けることができ、それにより、画像の内容がさらに補足される。
このようなズームベクトルの割り当ては、二次元において特定の画像を単純にパンする繰り返しをなくすことを助けると共に、画像内容を損なうことなく画像のプレゼンテーションに興味深さを加える。
移動速度は、ドミナントライン情報に対して先に実行された評価に基づく。
例えば、一実施形態では、画像の移動/パンの速度は、ドミナントラインの強度に正比例する。
したがって、強度の高いドミナントラインほど、画像が表示領域を横切って移動又はパンする速度は速くなる。
同様に、強度の弱いドミナントラインほど、画像が表示領域を横切って移動又はパンする速度は遅くなる。
同様に、移動確定器1050がユーザ入力又はデフォルト設定に基づいて画像の移動をさらに確定する一実施形態では、画像速度はやはりドミナントラインの強度に比例する。
したがって、図17において、移動確定器1050は、画像の関連するデータ点の原点1705からの距離に基づいて画像の移動速度を確定する。
これは、強度の弱いドミナントラインは原点1705のより近くにプロットされるデータ点になり、強度の強いドミナントラインは原点1705のより遠くにプロットされるデータ点になるためである。
したがって、移動確定器1050は、データ点1734に関連する画像1400をかなり高速(毎秒50ピクセル等)で移動させるべきであり、データ点1732に関連する画像1500を低速(毎秒2ピクセル等)で移動させるべきであると確定することになる。
画像速度をドミナントラインの強度にリンクすることは、ドミナントラインの方向に関連する移動によって最も補足することができる画像内容に、より高速の移動を付与するという効果を有する。
同様に、弱い又はごくわずかなドミナントラインを有する画像は、画像がプレゼンテーション内で表示される時間期間中に殆ど感知されない可能性があるかなりの低速で移動することになる。
したがって、いくつかの画像は表示前にズームされてもよく、一方、他の画像は表示中に任意の速度でズームされてもよいか、又はそうでない場合ズーム中の画像の部分の顕著性に関連して異なる速度でズームされてもよい。
これは、画像の内容を損なうことなく表示画像に興味深さを加える。
むしろ、上述した特定の特徴又は動作は特許請求の範囲を実施する形態例として開示される。
102・・・周辺コンピュータ可読媒体
104・・・バス
106・・・プロセッサ
108・・・コンピュータ使用可能揮発性メモリ
110・・・コンピュータ使用可能メモリ
112・・・データ記憶ユニット
114・・・英数字入力
116・・・カーソル制御装置
118・・・表示装置
120・・・I/O装置
122・・・オペレーティングシステム
124・・・アプリケーション
126・・・モジュール
128・・・データ
200・・・画像パンシステム
220・・・ワープメッシュ生成器
225・・・連結器
260・・・パン方向確定器
265・・・出力
270・・・プレゼンテーション生成器
310・・・顕著性合算器
320・・・領域分割器
330・・・メッシュ画定器
340・・・メッシュ位置メモリ
600・・・顕著性マップ
701〜709・・・垂直線
711〜719・・・水平線
801〜809、811〜819・・・領域セパレータ
1010・・・ワープメッシュ受信器
1020・・・変位解析器
1030・・・ドミナントライン確定器
1040・・・ユーザ制御装置
1050・・・移動確定器
1200・・・非ワープメッシュ
1271〜1279・・・境界線セパレータ
1281〜1289・・・ボーダー線セパレータ
Claims (15)
- 画像内の注意をひきつける場所を示す顕著性マップに対して予め定められた少なくとも1つの方向における顕著性マップ内のピクセルエリアの顕著性値の合算に基づいて分割された前記画像の分割領域を示すワープメッシュの生成に用いられるワープメッシュ情報を受け取るステップ(1105)と、
前記受け取ったワープメッシュ情報の構成要素の、前記ワープメッシュを行っていない前記画像の分割領域を示す非ワープメッシュの生成に用いられる非ワープメッシュ情報の対応する構成要素に対する変位を求めるステップ(1115)と、
前記求めた変位の統計表現に基づいて、前記画像の視覚的な流れを示す前記画像内の支配的な直線を取得するステップ(1125)と
をコンピュータに実行させる方法。 - 前記ワープメッシュ情報を受け取るステップ(1105)は、
前記画像に垂直なセパレータのセットおよび前記画像に水平なセパレータのセットで構成される二次元ワープメッシュを受け取ること
を含む請求項1に記載の方法。 - 前記ワープメッシュ情報を受け取るステップ(1105)は、
前記画像の水平軸に対して45度の位置決めされる第1のセットの斜めセパレータおよび前記第1の斜めセパレータのセットに直交する向きを有する第2のセットの斜めセパレータで構成される二次元ワープメッシュを受け取ること
をさらに含む請求項2に記載の方法。 - 前記ワープメッシュ情報の構成要素の、前記非ワープメッシュ情報の対応する構成要素に対する変位を求めるステップ(1115)は、
互いに平行する向きを有する第1のセットのセパレータ構成要素の変位の第1の統計表現を求めることと、
互いに平行する向きを有すると共に、前記第1のセットのセパレータに直交する向きも有する第2のセットのセパレータ構成要素の変位の第2の統計表現を求めることと
を含む請求項1に記載の方法。 - 前記ワープメッシュ情報の構成要素の、前記非ワープメッシュ情報の対応する構成要素に対する変位を求めるステップ(1115)は、
互いに平行する向きを有すると共に、前記画像の水平軸に対して45度の角度の向きも有する第3のセットのセパレータ構成要素の変位の第3の統計表現を求めることと、
互いに平行する向きを有すると共に、前記第3のセットのセパレータに直交する向きも有する第4のセットのセパレータ構成要素の変位の第4の統計表現を求めることと
をさらに含む請求項4に記載の方法。 - 前記変位の統計表現に基づいて、前記画像内の支配的な直線を取得するステップ(1125)は、
前記第1の統計表現と前記第2の統計表現とに基づいて、前記画像内の支配的な直線を取得すること
を含む請求項4に記載の方法。 - 前記変位の統計表現に基づいて、前記画像内の支配的な直線を取得するステップ(1125)は、
前記第3の統計表現と前記第4の統計表現とに基づいて、前記画像内の支配的な直線を取得すること
を含む請求項5に記載の方法。 - 前記ワープメッシュ情報の構成要素の、前記非ワープメッシュ情報の対応する構成要素に対する変位を求めるステップ(1115)は、
互いに平行する向きを有する第1のセットのセパレータ構成要素の変位の標準偏差を求めることと、
互いに平行する向きを有すると共に、前記第1のセットのセパレータに直交する向きも有する第2のセットのセパレータ構成要素の変位の標準偏差を求めることと
を含み、
前記変位の統計表現に基づいて、前記画像内の支配的な直線を取得するステップ(1125)は、
前記第1のセットのセパレータ構成要素の変位の標準偏差と、前記第2のセットのセパレータ構成要素の変位の標準偏差とに基づいて、前記画像内の支配的な直線の方向および強度を取得すること
を含む
請求項1に記載の方法。 - 前記取得した画像内の支配的な直線を評価するステップと、
前記支配的な直線の評価に基づいて、プレゼンテーションにおける前記画像の移動方向および移動速度を求めるステップと
をコンピュータにさらに実行させる請求項1に記載の方法。 - 前記支配的な直線を評価するステップ(1620)は、
ユーザ入力に従って予め定められた複数の支配的な直線に基づいて、前記支配的な直線を評価すること
を含む請求項9に記載の方法。 - 前記支配的な直線を評価するステップ(1620)は、
デフォルト設定に従って予め定められた複数の支配的な直線に基づいて、前記支配的な直線を評価すること
を含む請求項9に記載の方法。 - 前記支配的な直線を評価するステップ(1620)は、
前記支配的な直線に基づいて前記支配的な直線の方向を特徴付けること
を含む請求項9に記載の方法。 - 前記支配的な直線を評価するステップ(1620)は、
前記支配的な直線に基づいて前記支配的な直線の強度を特徴付けること
を含む請求項9に記載の方法。 - 前記プレゼンテーションにおける画像の移動方向は、前記画像内の支配的な直線と同じ軸にある
請求項9に記載の方法。 - 前記プレゼンテーションにおける画像の移動方向は、前記画像の支配的な直線と直交する軸にある
請求項9に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/496,808 | 2006-07-31 | ||
US11/496,808 US7751627B2 (en) | 2006-07-31 | 2006-07-31 | Image dominant line determination and use |
PCT/US2007/016795 WO2008016532A2 (en) | 2006-07-31 | 2007-07-25 | Image dominant line determination and use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009545813A JP2009545813A (ja) | 2009-12-24 |
JP4916548B2 true JP4916548B2 (ja) | 2012-04-11 |
Family
ID=38704816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009522799A Expired - Fee Related JP4916548B2 (ja) | 2006-07-31 | 2007-07-25 | 画像のドミナントライン(dominantline)の確定及び使用 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7751627B2 (ja) |
JP (1) | JP4916548B2 (ja) |
KR (1) | KR100998428B1 (ja) |
CN (1) | CN101553845B (ja) |
BR (1) | BRPI0714106A2 (ja) |
DE (1) | DE112007001789B9 (ja) |
GB (1) | GB2454397B (ja) |
WO (1) | WO2008016532A2 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8271871B2 (en) * | 2009-04-30 | 2012-09-18 | Xerox Corporation | Automated method for alignment of document objects |
US8693780B2 (en) * | 2009-06-22 | 2014-04-08 | Technion Research & Development Foundation Limited | Automated collage formation from photographic images |
CN102271262B (zh) * | 2010-06-04 | 2015-05-13 | 三星电子株式会社 | 用于3d显示的基于多线索的视频处理方法 |
KR101883354B1 (ko) * | 2011-05-30 | 2018-07-30 | 삼성전자주식회사 | 터치 스크린을 구비한 기기에서 전자 지도의 브라우징을 위한 장치 및 방법 |
US9202258B2 (en) * | 2012-06-20 | 2015-12-01 | Disney Enterprises, Inc. | Video retargeting using content-dependent scaling vectors |
KR20140143623A (ko) * | 2013-06-07 | 2014-12-17 | 삼성전자주식회사 | 휴대 단말기에서 컨텐츠를 표시하는 장치 및 방법 |
JP6330385B2 (ja) * | 2014-03-13 | 2018-05-30 | オムロン株式会社 | 画像処理装置、画像処理方法およびプログラム |
EP2961183A1 (en) * | 2014-06-27 | 2015-12-30 | Alcatel Lucent | Method, system and related selection device for navigating in ultra high resolution video content |
US20160140748A1 (en) * | 2014-11-14 | 2016-05-19 | Lytro, Inc. | Automated animation for presentation of images |
US10296448B2 (en) * | 2014-11-19 | 2019-05-21 | International Business Machines Corporation | Correlating test results variations with business requirements |
US10394660B2 (en) * | 2015-07-31 | 2019-08-27 | Netapp, Inc. | Snapshot restore workflow |
CN105342769A (zh) * | 2015-11-20 | 2016-02-24 | 宁波大业产品造型艺术设计有限公司 | 智能电动轮椅 |
US11636572B2 (en) * | 2016-12-29 | 2023-04-25 | Nokia Technologies Oy | Method and apparatus for determining and varying the panning speed of an image based on saliency |
US10721578B2 (en) * | 2017-01-06 | 2020-07-21 | Microsoft Technology Licensing, Llc | Spatial audio warp compensator |
CN110766791B (zh) * | 2019-10-31 | 2021-04-02 | 吉林大学 | 一种粮仓信息的三维云图生成方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0981732A (ja) * | 1995-09-19 | 1997-03-28 | Sharp Corp | 領域抽出装置及びそれを用いた方向検出装置 |
JPH1196372A (ja) * | 1997-09-16 | 1999-04-09 | Omron Corp | 画像処理方法およびその装置、ならびに画像処理用の制御プログラムの記録媒体 |
US20030133589A1 (en) * | 2002-01-17 | 2003-07-17 | Frederic Deguillaume | Method for the estimation and recovering of general affine transform |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2311184A (en) * | 1996-03-13 | 1997-09-17 | Innovision Plc | Motion vector field error estimation |
JPH1138960A (ja) * | 1997-07-14 | 1999-02-12 | Nec Off Syst Ltd | パターン生成方法および装置ならびに記録媒体 |
US6201541B1 (en) * | 1997-12-11 | 2001-03-13 | Cognitens, Ltd. | System and method for “Stitching” a plurality of reconstructions of three-dimensional surface features of object(s) in a scene defined relative to respective coordinate systems to relate them to a common coordinate system |
US6597738B1 (en) * | 1999-02-01 | 2003-07-22 | Hyundai Curitel, Inc. | Motion descriptor generating apparatus by using accumulated motion histogram and a method therefor |
US6351494B1 (en) * | 1999-09-24 | 2002-02-26 | Sony Corporation | Classified adaptive error recovery method and apparatus |
GB2372658A (en) | 2001-02-23 | 2002-08-28 | Hewlett Packard Co | A method of creating moving video data from a static image |
GB2378338A (en) * | 2001-07-31 | 2003-02-05 | Hewlett Packard Co | Automatic identification of features of interest within a video signal |
US7302111B2 (en) * | 2001-09-12 | 2007-11-27 | Micronic Laser Systems A.B. | Graphics engine for high precision lithography |
US20040141555A1 (en) * | 2003-01-16 | 2004-07-22 | Rault Patrick M. | Method of motion vector prediction and system thereof |
JP4480488B2 (ja) * | 2003-08-28 | 2010-06-16 | 富士通株式会社 | 計測装置、コンピュータ数値制御装置及びプログラム |
US8175412B2 (en) * | 2004-02-17 | 2012-05-08 | Yeda Research & Development Co. Ltd. | Method and apparatus for matching portions of input images |
US20060115145A1 (en) * | 2004-11-30 | 2006-06-01 | Microsoft Corporation | Bayesian conditional random fields |
US20060182339A1 (en) * | 2005-02-17 | 2006-08-17 | Connell Jonathan H | Combining multiple cues in a visual object detection system |
US7760956B2 (en) * | 2005-05-12 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | System and method for producing a page using frames of a video stream |
EP1739594B1 (en) * | 2005-06-27 | 2009-10-28 | Honda Research Institute Europe GmbH | Peripersonal space and object recognition for humanoid robots |
TW200719281A (en) * | 2005-07-28 | 2007-05-16 | Thomson Licensing | Method and device for generating a sequence of images of reduced size |
US7848596B2 (en) * | 2006-05-24 | 2010-12-07 | Hewlett-Packard Development Company, L.P. | Templated collage generation with occlusion costing |
-
2006
- 2006-07-31 US US11/496,808 patent/US7751627B2/en not_active Expired - Fee Related
-
2007
- 2007-07-25 KR KR1020097002081A patent/KR100998428B1/ko active IP Right Grant
- 2007-07-25 WO PCT/US2007/016795 patent/WO2008016532A2/en active Application Filing
- 2007-07-25 BR BRPI0714106-8A patent/BRPI0714106A2/pt not_active IP Right Cessation
- 2007-07-25 CN CN2007800366590A patent/CN101553845B/zh not_active Expired - Fee Related
- 2007-07-25 DE DE112007001789T patent/DE112007001789B9/de not_active Expired - Fee Related
- 2007-07-25 GB GB0902261A patent/GB2454397B/en not_active Expired - Fee Related
- 2007-07-25 JP JP2009522799A patent/JP4916548B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0981732A (ja) * | 1995-09-19 | 1997-03-28 | Sharp Corp | 領域抽出装置及びそれを用いた方向検出装置 |
JPH1196372A (ja) * | 1997-09-16 | 1999-04-09 | Omron Corp | 画像処理方法およびその装置、ならびに画像処理用の制御プログラムの記録媒体 |
US20030133589A1 (en) * | 2002-01-17 | 2003-07-17 | Frederic Deguillaume | Method for the estimation and recovering of general affine transform |
Also Published As
Publication number | Publication date |
---|---|
CN101553845B (zh) | 2013-01-02 |
GB0902261D0 (en) | 2009-03-25 |
BRPI0714106A2 (pt) | 2013-01-01 |
DE112007001789B9 (de) | 2012-06-14 |
WO2008016532A2 (en) | 2008-02-07 |
US7751627B2 (en) | 2010-07-06 |
WO2008016532A3 (en) | 2008-08-07 |
GB2454397A (en) | 2009-05-06 |
US20080025639A1 (en) | 2008-01-31 |
JP2009545813A (ja) | 2009-12-24 |
CN101553845A (zh) | 2009-10-07 |
GB2454397B (en) | 2011-10-19 |
DE112007001789T5 (de) | 2009-08-20 |
KR100998428B1 (ko) | 2010-12-03 |
DE112007001789B4 (de) | 2012-03-08 |
KR20090026206A (ko) | 2009-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4916548B2 (ja) | 画像のドミナントライン(dominantline)の確定及び使用 | |
US10102679B2 (en) | Determining space to display content in augmented reality | |
CN110610453B (zh) | 一种图像处理方法、装置及计算机可读存储介质 | |
US11842514B1 (en) | Determining a pose of an object from rgb-d images | |
JP4696635B2 (ja) | 画像領域の高凝縮要約画像を生成する方法、装置およびプログラム | |
CN108292362A (zh) | 用于光标控制的手势识别 | |
US7931602B2 (en) | Gaze guidance degree calculation system, gaze guidance degree calculation program, storage medium, and gaze guidance degree calculation method | |
CN110400337B (zh) | 图像处理方法、装置、电子设备及存储介质 | |
JP5201096B2 (ja) | 対話操作装置 | |
US10467791B2 (en) | Motion edit method and apparatus for articulated object | |
EP2657882A1 (en) | Reference image slicing | |
Chen et al. | Improved seam carving combining with 3D saliency for image retargeting | |
CN107146197A (zh) | 一种缩略图生成方法及装置 | |
CN103914876A (zh) | 用于在3d地图上显示视频的方法和设备 | |
CN113989376B (zh) | 室内深度信息的获取方法、装置和可读存储介质 | |
CN116097316A (zh) | 用于非模态中心预测的对象识别神经网络 | |
Boulanger et al. | ATIP: A Tool for 3D Navigation inside a Single Image with Automatic Camera Calibration. | |
JP2010245983A (ja) | 映像構造化装置,映像構造化方法および映像構造化プログラム | |
CN107563958B (zh) | 全息图像转换方法和系统 | |
CN107480710B (zh) | 特征点匹配结果处理方法和装置 | |
Ha et al. | A method for image-based shadow interaction with virtual objects | |
CN111275610A (zh) | 一种人脸变老图像处理方法及系统 | |
KR101588409B1 (ko) | 마커를 이용하여 표출되는 증강 현실 객체에 대한 입체 사운드 제공 방법 | |
CN113610864A (zh) | 图像处理方法、装置、电子设备及计算机可读存储介质 | |
JP2018010359A (ja) | 情報処理装置、情報処理方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111227 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4916548 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |