JP4915827B1 - Ground strengthening system and ground strengthening method - Google Patents

Ground strengthening system and ground strengthening method Download PDF

Info

Publication number
JP4915827B1
JP4915827B1 JP2011147744A JP2011147744A JP4915827B1 JP 4915827 B1 JP4915827 B1 JP 4915827B1 JP 2011147744 A JP2011147744 A JP 2011147744A JP 2011147744 A JP2011147744 A JP 2011147744A JP 4915827 B1 JP4915827 B1 JP 4915827B1
Authority
JP
Japan
Prior art keywords
ground
crushed stone
columnar body
building
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011147744A
Other languages
Japanese (ja)
Other versions
JP2013014920A (en
Inventor
富幸 鴨川
隆志 永島
Original Assignee
グラウンドシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グラウンドシステム株式会社 filed Critical グラウンドシステム株式会社
Priority to JP2011147744A priority Critical patent/JP4915827B1/en
Application granted granted Critical
Publication of JP4915827B1 publication Critical patent/JP4915827B1/en
Publication of JP2013014920A publication Critical patent/JP2013014920A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】地盤への強固な支持と共に排水ドレーンの機能を併せ持つ地盤強化システム及び地盤強化方法を提供する。
【解決手段】砕石6を、高分子繊維材により構成された網目を有する通水シート4にて拘束して成る細長形状の柱状体3を、建築物が建築される地盤1の内部に鉛直に配設する。柱状体3は、下端に柱部分よりも大きく球状に張り出した球状部3Aを備えて、砕石6が上からの荷重と下からの球状部3Aの先端支持力とから上下方向に圧縮力を受けて横に張り出そうとするのを、通水シート4の耐引張力にて抑制することで内部圧力を高めてその強度を維持する。よって、柱状体3は、建築物の荷重から地盤1を確実に支持する一方、その柔構造から地盤1の横からの変形に対し追随する柔軟性を有し、その力にて座屈することがない。また、柱状体3は、砕石ドレーンとして雨水や地下水圧が上昇した場合は速やかに地盤1の外へ排水する。
【選択図】図1
A ground strengthening system and a ground strengthening method having a function of a drainage drain together with strong support to the ground.
SOLUTION: An elongated columnar body 3 formed by restraining a crushed stone 6 with a water-permeable sheet 4 having a mesh made of a polymer fiber material is vertically disposed inside a ground 1 on which the building is built. Arrange. The columnar body 3 includes a spherical portion 3A that protrudes in a spherical shape larger than the column portion at the lower end, and the crushed stone 6 receives a compressive force in the vertical direction from the load from above and the tip support force of the spherical portion 3A from below. The internal pressure is increased and the strength is maintained by suppressing the bulging to the side by the tensile strength of the water-permeable sheet 4. Therefore, the columnar body 3 reliably supports the ground 1 from the load of the building, and has flexibility to follow deformation from the side of the ground 1 from its flexible structure, and can be buckled by the force. Absent. Moreover, the columnar body 3 drains out of the ground 1 promptly when rainwater or groundwater pressure rises as a crushed stone drain.
[Selection] Figure 1

Description

本発明は、建築物が立つ土地の地盤強化を図るための軟弱地盤の強化技術及び地盤の液状化に対応する液状化防止技術に関し、特に、戸建住宅の土地地盤強化を低コストで実現すると共に地盤の液状化を低減化するための地盤強化システム及び地盤強化方法に関する。   The present invention relates to a soft ground strengthening technique for strengthening the ground where a building stands and a liquefaction prevention technique corresponding to the liquefaction of the ground, and in particular, to realize the ground ground strengthening of a detached house at a low cost. The present invention also relates to a ground strengthening system and a ground strengthening method for reducing ground liquefaction.

ビルディングやマンション等の比較的大規模な鉄筋コンクリート建築物や鉄骨建築物は、立脚する土地の地中深くの強固な地盤基礎層に届く基礎杭構造物を埋設し、当該基礎杭構造物の上に構築される。これらの大規模建築物の基礎杭構造物の施工法としては、鋼管杭、PHC杭等の種々の基礎杭材を、土地を切削または打撃や油圧によって地中に埋め込む種々の埋設工法により構築する。   For relatively large-scale reinforced concrete buildings and steel buildings such as buildings and condominiums, a foundation pile structure that reaches a solid ground foundation layer deep in the ground of the erected land is buried, and the foundation pile structure is placed on the foundation pile structure. Built. As construction methods of foundation pile structures of these large-scale buildings, various foundation pile materials such as steel pipe piles and PHC piles are constructed by various embedment methods that embed the land into the ground by cutting or hammering or hydraulic pressure. .

一方、戸建住宅や比較的小規模のアパートメント用住宅等の建設においては、上記のような本格的な基礎杭工事の施工は、多くの場合コストの問題からも困難であり、土地の地盤調査によって一定の基準を満たしていないと判定された軟弱地盤の場合には、土地の表層改良工事(土の置換等)を行いその上に簡単な鉄筋コンクリートの住宅用基礎が施されて住宅建設が行われるのが通常である。   On the other hand, in the construction of detached houses and relatively small apartment houses, full-scale foundation pile construction as described above is often difficult due to cost problems. In the case of soft ground that is determined not to meet certain standards, the ground surface improvement work (soil replacement, etc.) is carried out, and then a simple reinforced concrete housing foundation is applied to build the house. It is normal.

一方、近年頻発する大きな地震や大雨による土砂災害等による家屋地盤の崩壊は、むかし田や河川又は海の埋立地であった軟弱な地盤上や傾斜地に建設された場所に多く発生している。   On the other hand, the collapse of house ground due to large earthquakes and landslides caused by heavy rains in recent years has frequently occurred on soft ground or sloped land that has been buried in fields, rivers or sea.

軟弱地盤の上に住宅を建設する場合、従来から行われてきた土地の表層改良工事による地盤強化策だけでは、一定規模以上の地震によって生じる地盤の陥没や隆起又は液状化に対応できないことが明らかになっている。   When building a house on soft ground, it is clear that conventional ground reinforcement measures by surface improvement of land cannot cope with ground depression, uplift or liquefaction caused by earthquakes of a certain scale or larger. It has become.

傾斜地における地震や大雨によって生じる崖崩れ等に対する補強土壁工法としては、従来から、多数アンカー式補強土壁、テールアルメ工法、ジオテキスタイル補強壁(例えば、特許文献1を参照)等が知られている。   As reinforced soil wall construction methods for landslides caused by earthquakes or heavy rains on slopes, a number of anchor type reinforced soil walls, tail armure construction methods, geotextile reinforcement walls (see, for example, Patent Document 1), and the like are known.

そして、戸建住宅の土地が所定の基準を満たさない軟弱地盤である場合には、土地の表層改良工事(土の置換等)のみならず、低コストの補強土杭工事を施すことも行われるようになり、そのような簡易な補強土杭工法の一例として、切削土、ガラス廃材又は解体ガラス等にセメント系(カルシウム又は石灰系)の吸水によって膨張材を混ぜた中詰材をジオテキスタイル(高分子化学繊維材により構成された通水性シート)で円筒状に密に巻きつけてこれを補強杭とする技術が知られている(例えば、特許文献2を参照)。   And when the land of a detached house is soft ground that does not meet the prescribed criteria, not only surface improvement work (such as soil replacement) of the land, but also low-cost reinforced soil pile construction is performed As an example of such a simple reinforced soil pile method, geotextile (high-textured) is obtained by mixing expansive material with cement-based (calcium or lime-based) water absorption into cutting soil, waste glass or demolition glass, etc. There is known a technique in which a water-permeable sheet made of molecular chemical fiber material) is tightly wound in a cylindrical shape and used as a reinforcing pile (for example, see Patent Document 2).

特開2010−90592号公報JP 2010-90592 A 特開平7−305334号公報JP-A-7-305334

しかし、N値(標準貫入試験で求められる地盤の強さを示す値であり、ボーリング孔を利用し、ロッドrod(鋼製の棒)の先に直径5.1センチメートル、長さ81センチメートルの中空円筒形試料採取器をつけたものを、重さ63.5キログラムのハンマーで75センチメートルの高さから自由落下させ、貫入深さ30センチメートル当りの貫入に要する打撃回数)で4以下の軟弱地盤の場合では、剛性の強い杭又は補強杭工法は、地震により地盤に与えられる変形歪力によって挫折してしまう可能性が高く危険である。特に、地盤の中間層がN値4以下の場合は、挫折の危険性が特に高くなる。従って、戸建住宅の地盤の場合は、ある程度までの変形歪に対しては柔構造を持つことにより地盤の変形に追従しつつ所定の程度を超える変形歪に対しては挫屈することなく持ちこたえるフレキシブルな構造を持たなければならない。   However, N value (value indicating the strength of the ground required in the standard penetration test, using a boring hole, the tip of the rod rod (steel rod) is 5.1 cm in diameter and 81 cm in length. A sample with a hollow cylindrical sampler was dropped freely from a height of 75 centimeters with a hammer weighing 63.5 kilograms and the number of impacts required for penetration per 30 centimeters of penetration depth was 4 or less. In the case of a soft ground, a highly rigid pile or reinforced pile construction method is dangerous because it is likely to break due to a deformation strain force applied to the ground by an earthquake. In particular, when the ground intermediate layer has an N value of 4 or less, the risk of failure is particularly high. Therefore, in the case of the ground of a detached house, it has a flexible structure with respect to deformation strains up to a certain degree, so that it can withstand deformation strains exceeding a predetermined level without being cramped while following the deformation of the ground. It must have a flexible structure.

また、戸建住宅の地盤の場合、地震動による地盤の液状化を防止又は低減化するためには、地下水位が上昇して地盤内に押し上げられてきた場合には、水を通過させる排水ドレーンの機能を持つ必要がある。   In addition, in the case of the ground of a detached house, in order to prevent or reduce the liquefaction of the ground due to earthquake motion, if the groundwater level rises and is pushed up into the ground, a drainage drain that allows water to pass through Must have function.

また、セメント系固化剤に含まれる六価クロムが地盤の土質によっては土地の中に溶出する危険性があり、地盤土壌を汚染させてしまう。   In addition, hexavalent chromium contained in the cement-based solidifying agent has a risk of leaching into the land depending on the soil quality, and contaminates the ground soil.

しかし、特許文献2に記載の補強土杭及び補強土杭の作製方法は、筒状のジオテキスタイルの中詰部材は、地盤の掘削土、ガラス廃材、又は解体ガラス等を用いて、膨張材にて体積を膨張させるために構成のため排水性が悪く排水ドレーンとしての機能を有していない。   However, in the method for producing the reinforced soil pile and the reinforced soil pile described in Patent Document 2, the tubular geotextile filling member is made of ground excavated soil, glass waste material, demolition glass, etc. Due to the construction to expand the volume, the drainage is poor and it does not have a function as a drainage drain.

上記点から本発明は、地盤への強固な支持と共に地盤の変形に追随し得る変形性を有して、排水ドレーンの機能をも併せ持つ地盤強化方法及び地盤強化システムを提供することを課題としている。   In view of the above, it is an object of the present invention to provide a ground strengthening method and a ground strengthening system which have a deformable structure capable of following the deformation of the ground as well as having a strong support to the ground and also have a function of a drainage drain. .

前記課題を解決するために、本発明による地盤強化システムは、建築物が建設される地盤を強化する地盤強化システムであって、砕石を高分子繊維材により構成された網目を有する通水性シートにより円柱状に拘束した柱状体と、前記柱状体の下端にあって、砕石を締め固めてその径が前記柱状体の柱状部の径よりも大きく球状に張り出した球状部と、を有し、前記建築物の荷重を前記柱状体の周面摩擦力と前記球状部の先端支持力にて支持することを特徴としている。 In order to solve the above-mentioned problems, a ground reinforcement system according to the present invention is a ground reinforcement system that reinforces a ground on which a building is constructed, and a water-permeable sheet having a mesh composed of crushed stone made of a polymer fiber material. A columnar body constrained in a columnar shape, and a spherical part at the lower end of the columnar body, the crushed stone being compacted and the diameter of which is larger than the diameter of the columnar part of the columnar body, The load of the building is supported by the peripheral frictional force of the columnar body and the tip support force of the spherical portion .

また、前記柱状体と前記建築物の基礎との間に浸透層が設けられることを特徴としている。   Further, a permeation layer is provided between the columnar body and the foundation of the building.

本発明による地盤強化方法は、建築物が建設される地盤を強化する地盤強化方法であって、地盤を掘削して水平方向に互いに間隔を置いて複数の堀削穴を形成する第1の工程と、前記堀削穴のそれぞれに高分子繊維材により構成された網目を有する筒状の通水シートを設置する第2の工程と、前記通水シートの下方に砕石を投入後、転圧機の転圧ロッドを前記通水シートの中空部に差し込み前記砕石を締め固めて球状部を形成する第3の工程と、前記通水シートの中空部に中詰めの砕石を投入し前記転圧ロッドにより締め固めて柱状体を作製する第の工程とを有し、前記球状部は前記柱状部の径よりも大きく球状に張り出して構成することを特徴としている。 A ground strengthening method according to the present invention is a ground strengthening method for strengthening a ground on which a building is constructed, and includes a first step of excavating the ground and forming a plurality of excavated holes at intervals in the horizontal direction. And a second step of installing a cylindrical water-permeable sheet having a mesh made of a polymer fiber material in each of the excavation holes, and after putting crushed stone under the water-permeable sheet, a third step of the compacting rod to form a spherical section compacting the crushed stone inserted into the hollow portion of the water flow sheet, the charged crushed stones of medium filling the hollow portion of the water flow sheet the compacting rod possess a fourth step of producing a columnar body compacted, and the spherical portion is characterized by configuring overhangs larger sphere than the diameter of the columnar portion.

そして、前記第1の工程は、前記通水シートを収納したケーシングを回転圧入機により回転させることで前記堀削穴を堀削することにより施工し、前記第2の工程は、前記堀削後に前記ケーシングを地盤から引き抜く際に、前記ケーシングの底部を開放して前記通水シートを残して引き抜くことで施工する、ことを特徴としている。更に、前記ケーシングの表面には、堀削土を堀削穴の壁面に圧密する突起を形成したことを特徴としている。   Then, the first step is performed by excavating the excavation hole by rotating the casing containing the water flow sheet by a rotary press-fitting machine, and the second step is performed after the excavation. When the casing is pulled out from the ground, it is constructed by opening the bottom of the casing and pulling out the water-permeable sheet. Furthermore, the surface of the casing is characterized in that a projection for compacting the excavated soil to the wall surface of the excavated hole is formed.

そして、前記第3の工程において、前記砕石が所定の高さに達する毎に前記転圧ロッドにて締め固めることを特徴としている。   And in the said 3rd process, whenever the said crushed stone reaches predetermined | prescribed height, it is characterized by compacting with the said rolling rod.

上記のように、本発明によれば、柱状体は砕石のせん断強度と高分子繊維材にて構成される通水性シートの耐引張力にて十分な強度が確保されて、建築物の荷重をこの柱状体の周面摩擦力と球状部の先端支持力にて支持するために、十分な強度を確保した地盤強化システム及び地盤強化方法が提供される。そして、砕石と通水性シートとの組み合わせにて成る柱状体は柔構造であるために、地盤の変形に追随する柔軟性をも併せ持つ。更に、柱状体も球状部も共に砕石にて構成されるため排水のドレーンとして機能でき、地盤の液状化を防止することもできる。 As described above , according to the present invention , the columnar body is secured with sufficient strength by the shear strength of the crushed stone and the tensile strength of the water-permeable sheet composed of the polymer fiber material, and thus the load of the building is increased. In order to support by the peripheral frictional force of the columnar body and the tip support force of the spherical portion, a ground strengthening system and a ground strengthening method ensuring sufficient strength are provided. And since the columnar body which consists of a combination of a crushed stone and a water-permeable sheet | seat has a soft structure, it also has the softness | flexibility which follows the deformation | transformation of a ground. Furthermore, since both the columnar body and the spherical portion are made of crushed stone, it can function as a drain for drainage and can prevent liquefaction of the ground.

本発明に係る地盤強化システムを説明する説明図を示す。The explanatory view explaining the ground reinforcement system concerning the present invention is shown. 本発明に係る地盤強化システムにおける柱状体の配置構成を説明する説明図を示す。The explanatory view explaining the arrangement composition of the columnar object in the ground reinforcement system concerning the present invention is shown. 柱状体の構成を説明する説明図を示す。Explanatory drawing explaining the structure of a columnar body is shown. 本発明に係る地盤強化方法の工程を説明する説明図を示す。Explanatory drawing explaining the process of the ground reinforcement method which concerns on this invention is shown. 回転圧入機のケーシングの構成を断面にて説明する説明図を示す。Explanatory drawing explaining the structure of the casing of a rotary press-fitting machine in a cross section is shown.

本発明に係る地盤強化システムの構造を図1に示す。地盤1は建築物(図示せず)とその基礎2を支えており、地盤1による支持力を強化するために、地盤1の内部には図2で示すごとく、鉛直に3.5m乃至5.5m程の細長形状をした柱状体3を、水平方向へ互いに間隔をおいて縦横方向に地盤1の軟弱度に応じた間隔を開けて複数体埋設している。柱状体3は、砕石6を高分子繊維材により構成された網目を有する通水性シート4にて拘束して構成され、通水性シート4は砕石6の一部分が突出する網目5を有している。砕石6の粒径は20mmから60mm程度が好ましい。基礎2と柱状体3の上端面との間には浸透層8が設けられる。尚、柱状体3は、地盤1の強度に応じて球状部3Aを有するが後に明らかとなる。   The structure of the ground reinforcement system according to the present invention is shown in FIG. The ground 1 supports a building (not shown) and its foundation 2, and in order to strengthen the supporting force by the ground 1, the ground 1 has a vertical height of 3.5 m to 5.m as shown in FIG. 2. A plurality of columnar bodies 3 having an elongated shape of about 5 m are embedded at intervals in the horizontal and vertical directions and at intervals according to the softness of the ground 1. The columnar body 3 is configured by constraining the crushed stone 6 with a water-permeable sheet 4 having a mesh made of a polymer fiber material, and the water-permeable sheet 4 has a mesh 5 from which a part of the crushed stone 6 protrudes. . The particle size of the crushed stone 6 is preferably about 20 mm to 60 mm. A permeation layer 8 is provided between the foundation 2 and the upper end surface of the columnar body 3. The columnar body 3 has a spherical portion 3A according to the strength of the ground 1 but will be apparent later.

通水性シート4は、土木用に使用される引張強度が大きい高分子材料の繊維により構成されており、その素材としては、例えばジオテキスタイルがある。ジオテキスタイルは、狭義の意味のジオテキスタイルと、ジオグリッドと、ジオネット及びその他があり、更に、この狭義のジオテキスタイルには織布(ジオウォーブン)と、不織布(ジオノンウォーブン)と、編物(ジオニット)とがあり、その中でも、地盤補強の分野では耐引張り特性や耐クリープ特性に特に優れたジオグリッドが好ましい。   The water-permeable sheet 4 is composed of fibers of a polymer material having a high tensile strength used for civil engineering. Examples of the material include a geotextile. Geotextiles include geotextiles in a narrow sense, geogrids, geonets, and others. In addition, geotextiles in this narrow sense include woven fabrics (geo-wovens), non-woven fabrics (geonon-wovens), and knitted fabrics (geo-nits). Among these, in the field of ground reinforcement, a geogrid having particularly excellent tensile resistance and creep resistance is preferable.

図3にて詳細に示すように、砕石6を拘束する通水シート4は筒状をしており、地盤1のN値が4以下の軟弱地盤で用いる柱状体3にあっては球状部3Aを形成する。柱状体3の下端には、その柱状部よりも大きく球状に張り出したこのような球状部3Aを形成することで、柱状体3の先端支持力を大きくすることができる。   As shown in detail in FIG. 3, the water-permeable sheet 4 that restrains the crushed stone 6 has a cylindrical shape, and in the columnar body 3 that is used in the soft ground whose N value of the ground 1 is 4 or less, the spherical portion 3A. Form. By forming such a spherical portion 3 </ b> A projecting in a spherical shape larger than the columnar portion at the lower end of the columnar body 3, the tip support force of the columnar body 3 can be increased.

また、地盤1の性状に応じて球状部3Aは、固化材を用いて根固めが必要なこともある。この場合、柱状体3の全体の中で限られた球状部3Aの部位のみではあるが、六価クロムを配慮して固化材を選択するのが好ましい。   Further, depending on the properties of the ground 1, the spherical portion 3 </ b> A may need to be solidified using a solidifying material. In this case, it is preferable to select a solidifying material in consideration of hexavalent chromium, although it is only the portion of the spherical portion 3A limited in the entire columnar body 3.

また、砕石6を拘束するとき、球状部3Aの砕石6は、約500kN/mの圧力にて転圧されて締め固められ、また通水シート4に中詰めされる砕石は長手方向で0.5mの高さで充填するごとに同じ圧力で転圧されて締め固められる。砕石6はせん断強度が大きい砕石であるが、更に締め固められることでせん断強度をより高めることができる。このようにせん断強度が大きい砕石6と、引張強度が大きい通水シート4の拘束力とが相俟って、上方からの建築物からの荷重に対して柱状体3は大きな強度を有する。 Further, when the crushed stone 6 is restrained, the crushed stone 6 of the spherical portion 3A is compacted by being compacted by a pressure of about 500 kN / m 3 , and the crushed stone packed in the water flow sheet 4 is 0 in the longitudinal direction. Each time it is filled at a height of 0.5 m, it is rolled at the same pressure and compacted. Although the crushed stone 6 is a crushed stone with a large shear strength, the shear strength can be further increased by further compaction. Thus, the crushed stone 6 with high shear strength and the binding force of the water-permeable sheet 4 with high tensile strength combine, and the columnar body 3 has high strength against the load from the building from above.

更に、柱状体3には、外部から側面に加わる水圧・土圧による孔壁破壊を防ぐため一部事前にセメントミルクを注入しておくことがある。   Further, the columnar body 3 may be partially injected with cement milk in advance in order to prevent pore wall destruction due to water pressure and earth pressure applied to the side surface from the outside.

このような構成の柱状体3は、地盤1の上に構築された基礎2及び建築物の荷重が伝達されると球状部3Aと周面摩擦で支持することになる。そのため、中詰めの砕石6はせん断強度が大きいために、柱状体3としては、通水シート4で外側から外部拘束補強することにより、砕石6が有するせん断力によりこの荷重に対抗しようとする。つまり、砕石6は上からの荷重と下からの球状部3Aの先端支持力とから上下方向に圧縮力を受けて横に張り出そうとする。しかしながら、このとき中詰めの砕石6を拘束している通水シート4の耐引張力にて砕石6の張り出しが抑制され、柱状体3はその形状変化を抑えることで内部圧力を高めてせん断強度を維持し、上方からの荷重に対して地盤1を確実に支持することができる。   When the load of the foundation 2 and the building constructed on the ground 1 is transmitted, the columnar body 3 having such a structure is supported by the spherical portion 3A and peripheral surface friction. For this reason, since the crushed stone 6 packed in the middle has a high shear strength, the columnar body 3 tries to counter this load by the shear force of the crushed stone 6 by externally restraining and reinforcing the columnar body 3 from the outside with the water-permeable sheet 4. That is, the crushed stone 6 tends to protrude laterally by receiving a compressive force in the vertical direction from the load from above and the tip supporting force of the spherical portion 3A from below. However, at this time, the extension of the crushed stone 6 is suppressed by the tensile strength of the water-permeable sheet 4 that restrains the crushed stone 6 packed in the middle, and the columnar body 3 increases the internal pressure by suppressing its shape change, thereby increasing the shear strength. The ground 1 can be reliably supported against the load from above.

N値が4を十分上回るような比較的固い地盤の場合は、柱状体3に球状部3Aを特に形成しなくても良く、その場合、柱状体3は、地盤が強固のために下端部で建築物の荷重を受け止めることができ、荷重による砕石6の膨張力と通水シート4の耐引張力にて柱状体3として十分な剛性が確保できる。   In the case of a relatively hard ground whose N value is sufficiently higher than 4, the spherical portion 3A does not have to be particularly formed on the columnar body 3, and in this case, the columnar body 3 is formed at the lower end portion because the ground is strong. The load of the building can be received, and sufficient rigidity as the columnar body 3 can be secured by the expansion force of the crushed stone 6 due to the load and the tensile strength of the water-permeable sheet 4.

また、柱状体3の通水シート4による表面の網目5からは、砕石6の一部が突出しているために柱状体3と地盤1との摩擦力が大きくなり、柱状体3の沈下も防止されている。   Further, since a part of the crushed stone 6 protrudes from the mesh 5 on the surface of the columnar body 3 by the water flow sheet 4, the frictional force between the columnar body 3 and the ground 1 is increased, and the settlement of the columnar body 3 is also prevented. Has been.

そして、柱状体3は、個々に独立した砕石6を通水シート4にて拘束する構成の柔構造なことから、地盤1の変形に対して追随し得る柔軟性を有しており、柱状体3の一ヶ所に強い力を受けても、この力を全体に拡散するために中折れすることがなく、優れた耐衝撃性を有する。よって、地震動の力を受けたときは、地盤1と一体となって変形するために破壊されることが無く、上からの荷重に対する支持を維持することができる。   And since the columnar body 3 is a flexible structure of the structure which restrains the individual crushed stone 6 with the water sheet 4, it has the flexibility which can follow the deformation | transformation of the ground 1, and the columnar body Even if a strong force is applied to one of the three places, the force does not break in order to spread this force throughout, and it has excellent impact resistance. Therefore, when receiving the force of seismic motion, it is deformed integrally with the ground 1 so that it is not broken, and support for the load from above can be maintained.

しかしながら、例えば、通水シート4の中身部材を膨張材や固化材にて固めて構成した場合には柔構造を有しないために、地震動の強さによっては破壊されて建築物の荷重に対する地盤1の支持力を一挙に喪失し建築物の倒壊や地滑りを引き起こす恐れがある。尚、先に述べたように、柱状体3の球状部3Aが地盤1の性状によっては固化材にて固めることもあるが、略球形状であるため破壊されるまでには至らない。   However, for example, when the content member of the water-permeable sheet 4 is configured by being hardened with an expansion material or a solidifying material, since it does not have a flexible structure, the ground 1 against the load of the building is destroyed depending on the strength of the earthquake motion. There is a risk that it will lose the supporting ability of the building at once, causing collapse of the building and landslide. As described above, the spherical portion 3A of the columnar body 3 may be hardened with a solidifying material depending on the properties of the ground 1, but since it is substantially spherical, it is not broken.

同様に、地震動等で地下水圧が上昇したときも、柱状体3の側面方向からの地下水(図1の矢印a方向)の流れに対し砕石ドレーンとなって地盤1中の透水層へ排水、若しくは地下水を流れの方向に透過させて補強する地盤1の外に排水するために地盤1の液状化が防止される。   Similarly, when the groundwater pressure increases due to seismic motion or the like, the groundwater from the side surface direction of the columnar body 3 (in the direction of arrow a in FIG. 1) becomes a crushed drain and drains to the permeable layer in the ground 1 or Since groundwater is drained out of the ground 1 that is reinforced by permeating the groundwater in the flow direction, liquefaction of the ground 1 is prevented.

次に、このような砕石と通水シートとを組み合わせた地盤強化方法について説明する。   Next, the ground reinforcement method combining such a crushed stone and a water flow sheet will be described.

図4の(A)部に示すように、先ず、上に建てられる建築物の基礎2の直下に位置する地盤1に回転圧入機10によりケーシング11を高トルクで回転させて圧入しながら掘削する。   As shown in part (A) of FIG. 4, first, excavation is performed while rotating the casing 11 with high torque into the ground 1 located directly below the foundation 2 of the building to be built by rotating the casing 11 with high torque. .

図5の断面図で示すように、ケーシング11は、円周方向にテーパを有する3通りの突起12をその表面上に長手方向に沿って設けている。従って、ケーシング11が回転して堀削をおこなうとき、突起12は回転により廃土を堀削穴15の壁面に押圧し圧接して掘削穴15の壁面を固める。これにより堀削穴15の壁面の強度を高めて壁面の崩壊を防止できる。また、ケーシング11の回転により廃土は下方にも押圧されて圧接される。従って、掘削による廃土は地表に排出されることがない。   As shown in the sectional view of FIG. 5, the casing 11 is provided with three protrusions 12 having a taper in the circumferential direction on the surface thereof along the longitudinal direction. Accordingly, when the casing 11 rotates to perform excavation, the protrusion 12 presses and presses the waste soil against the wall surface of the excavation hole 15 by the rotation, thereby solidifying the wall surface of the excavation hole 15. Thereby, the strength of the wall surface of the excavation hole 15 can be increased to prevent the wall surface from collapsing. Further, the waste soil is pressed downward and pressed by the rotation of the casing 11. Therefore, waste soil from excavation is not discharged to the ground surface.

柱状体3を地盤1に埋め込むための堀削穴15は、例えば、300φの径のケーシング11を用いて3.5m乃至5.5mまで掘削して形成する。堀削穴15の径Dと深さHは、建てられる建築物の重量や地盤1の性状により決定される。   The excavation hole 15 for embedding the columnar body 3 in the ground 1 is formed by excavating from 3.5 m to 5.5 m using a casing 11 having a diameter of 300φ, for example. The diameter D and the depth H of the excavation hole 15 are determined by the weight of the building to be built and the properties of the ground 1.

また、ケーシング11には先端に開閉機構12が設けられ、回転圧入機10は開閉機構12を閉じた状態でケーシング11内に筒状の通水シート4を収納した状態にて掘削する。   The casing 11 is provided with an opening / closing mechanism 12 at the tip, and the rotary presser 10 excavates with the cylindrical water-permeable sheet 4 stored in the casing 11 with the opening / closing mechanism 12 closed.

次に、図4の(B)部に示すように、ケーシング11の開閉機構12を開放して通水シート4を残してケーシング11を地盤1から引き抜く。又は使い捨てにすることもある。   Next, as shown in part (B) of FIG. 4, the opening / closing mechanism 12 of the casing 11 is opened to leave the water-permeable sheet 4 and the casing 11 is pulled out from the ground 1. Or it may be disposable.

そして、筒状の通水シート4に砕石6を投入して柱状体3を作製するが、球状部3Aを有する柱状体3を作製する前に、図4の(C)部(側断面)に示すように、先ず球状部3Aを形成するための量の砕石6を堀削穴15の底に投入する。そして、転圧機にて投入した砕石6を転圧して締め固めるが、転圧機は267.4φの転圧ロッド13を堀削穴15に差し込み500kN/mから1000kN/mまでの範囲で転圧力を印加し締め固めて球状部3Aを作製する。 And although the crushed stone 6 is thrown into the cylindrical water-permeable sheet 4 and the columnar body 3 is produced, before producing the columnar body 3 which has the spherical part 3A, it is to (C) part (side cross section) of FIG. As shown, first, an amount of crushed stone 6 for forming the spherical portion 3 </ b> A is introduced into the bottom of the excavation hole 15. The rolling pressure rolling the crushed stone 6 which supplied with intensifier by compaction, but rolling intensifier is rolling in the range from 500 kN / m 3 Insert the compacting rod 13 of 267.4φ the drilling hole 15 to 1000 kN / m 3 A spherical portion 3A is produced by applying pressure and compacting.

次に、図4の(D)部(側断面)に示すように、通水シート4に中詰めされる砕石6を堀削穴15に投入し、球状部3Aから約0.5m積上げた段階で、再び転圧ロッド13を差し込み上記したのと同じ転圧力を印加して締め固める。   Next, as shown in FIG. 4D (side cross section), the crushed stone 6 packed in the water-permeable sheet 4 is put into the excavation hole 15, and is stacked about 0.5 m from the spherical portion 3A. Then, the rolling rod 13 is inserted again, and the same rolling force as described above is applied and tightened.

そして、図4の(E)部(側断面)に示すように、0.5mの間隔毎に中詰め砕石の投入と転圧ロッド13による締め固めを繰り返すことで柱状体3が地盤1の内部に形成されて地盤強化作業が終了する。   And as shown to the (E) part (side cross section) of FIG. 4, the columnar body 3 becomes the inside of the ground 1 by repeating the injection | throwing-in of the stuffed crushed stone, and the compaction by the rolling rod 13 for every 0.5 m interval. The ground strengthening work is completed.

上記した本発明に係る地盤補強システム及び地盤強化方法は、砕石6と通水シート4との組み合わせにより建築物の荷重に対して地盤1を支える強度を確保する一方で、柔構造なことから地震動による力を受けて地盤1に追随して変形するために中折れすることがなく、地盤1と一体となって強度を保つ。そして、雨水は砕石ドレーンとして地盤1から排水することで、地盤支持の面と排水性の面の両方から地盤1を強化するものである。   The above ground reinforcement system and ground reinforcement method according to the present invention ensure the strength to support the ground 1 against the load of the building by the combination of the crushed stone 6 and the water flow sheet 4, while seismic motion from the flexible structure. In order to follow the ground 1 and be deformed by receiving the force of the above, it will not break, and the strength is integrated with the ground 1. And rainwater drains from the ground 1 as a crushed stone drain, and strengthens the ground 1 from both a ground support surface and a drainage surface.

このように砕石を利用して地盤強化を図ることの有効性は、例えば、鉄道の線路の枕木の下に砕石を敷き詰めたときの効果にて証明される。すなわち、列車が通過するレールを固定する枕木を砕石にて支持することで、一ヶ所に集中する列車の荷重を砕石により分散して受け止めることで強固な保持を可能にし、且つ雨水を砕石により速やかに排水して線路の冠水を防止することが実証されている。   The effectiveness of strengthening the ground using crushed stone in this way is proved by, for example, the effect when crushed stone is laid under sleepers on railroad tracks. In other words, by supporting the sleepers that fix the rails through which the train passes with crushed stone, the load of the train concentrated in one place can be dispersed and received by crushed stone, and the rainwater can be quickly retained by crushed stone. It has been demonstrated that it can be drained to prevent flooding of the track.

これと同じ原理で、本発明に係る地盤補強システム及び地盤強化方法は、通水シート4により拘束した砕石6にて、建築物の荷重や地盤1の側方からの力を分散して受け止めて、地盤1への滞留水は砕石6を通して排水するために地盤沈下や地滑りも抑制できる有効な地盤強化となる。   Based on the same principle, the ground reinforcement system and the ground reinforcement method according to the present invention receive the load of the building and the force from the side of the ground 1 with the crushed stone 6 restrained by the water flow sheet 4. Since the accumulated water in the ground 1 is drained through the crushed stone 6, the ground subsidence and landslide can be suppressed effectively.

本発明は、建築物が立つ土地の地盤を強化する地盤補強システム及び地盤強化方法を提供するものであり、産業上の利用可能性を有する。   The present invention provides a ground reinforcement system and a ground strengthening method for strengthening a ground on which a building stands, and has industrial applicability.

1 地盤
2 基礎
3 柱状体
3A 球状部
4 通水シート
5 網目
6 砕石
8 浸透層
10 回転圧入機
11 ケーシング
12 突起
13 転圧ロッド
15 堀削穴
DESCRIPTION OF SYMBOLS 1 Ground 2 Foundation 3 Columnar 3A Spherical part 4 Water flow sheet 5 Mesh 6 Crushed stone 10 Penetration layer 10 Rotary press-fit machine 11 Casing 12 Protrusion 13 Rolling rod 15 Excavation hole

Claims (6)

建築物が建設される地盤を強化する地盤強化システムであって、
砕石を高分子繊維材により構成された網目を有する通水性シートにより円柱状に所定以上の圧力で締め固めて拘束して成る柱状体
前記柱状体の下端にあって、砕石を締め固めてその径が前記柱状体の柱状部の径よりも大きく球状に張り出した球状部と、
を有し、前記建築物の荷重を前記柱状体の周面摩擦力と前記球状部の先端支持力にて支持することを特徴とする地盤強化システム。
A ground strengthening system that strengthens the ground on which a building is built,
A columnar body formed by restrained compacted at a predetermined pressure above the cylindrical shape by water-permeable sheet having a crushed stone constituted by polymeric fibrous material networks,
A spherical portion at the lower end of the columnar body, the crushed stone being compacted and the diameter of which is larger than the diameter of the columnar portion of the columnar body;
The ground strengthening system is characterized in that the load of the building is supported by the peripheral frictional force of the columnar body and the tip support force of the spherical portion .
前記柱状体と前記建築物の基礎との間に浸透層が設けられることを特徴とする請求項に記載の地盤強化システム。 The ground reinforcement system according to claim 1 , wherein a permeation layer is provided between the columnar body and the foundation of the building. 建築物が建設される地盤を強化する地盤強化方法であって、
地盤を掘削して水平方向に互いに間隔を置いて複数の堀削穴を形成する第1の工程と、
前記堀削穴のそれぞれに高分子繊維材により構成された網目を有する筒状の通水シートを設置する第2の工程と、
前記通水シートの下方に砕石を投入後、転圧機の転圧ロッドを前記通水シートの中空部に差し込み前記砕石を締め固めて球状部を形成する第3の工程と、
前記通水シートの中空部に中詰めの砕石を投入し前記転圧ロッドにより締め固めて柱状体を作製する第の工程と、
を有し、前記球状部は前記柱状部の径よりも大きく球状に張り出して構成することを特徴とする地盤強化方法。
A ground strengthening method for strengthening a ground on which a building is constructed,
A first step of excavating the ground to form a plurality of excavated holes spaced horizontally from each other;
A second step of installing a cylindrical water-permeable sheet having a mesh composed of a polymer fiber material in each of the excavation holes;
After throwing crushed stone below the water flow sheet, a third step of forming a spherical portion by inserting a rolling rod of a compactor into the hollow portion of the water flow sheet and compacting the crushed stone;
A fourth step in which a crushed stone filled in the hollow portion of the water flow sheet is charged and compacted by the rolling rod to produce a columnar body;
It has a, ground reinforcement wherein said spherical portion is characterized in that it constitutes overhangs larger sphere than the diameter of the columnar portion.
前記第1の工程は、前記通水シートを収納したケーシングを回転圧入機により回転させることで前記堀削穴を堀削することにより施工し、
前記第2の工程は、前記堀削後に前記ケーシングを地盤から引き抜く際に、前記ケーシングの底部を開放して前記通水シートを残して引き抜くことで施工する、
ことを特徴とする請求項に記載の地盤強化方法。
The first step is performed by excavating the excavation hole by rotating the casing containing the water flow sheet with a rotary press-fitting machine,
In the second step, when the casing is pulled out from the ground after the excavation, it is constructed by opening the bottom of the casing and pulling out the water-permeable sheet.
The ground strengthening method according to claim 3 , wherein:
前記ケーシングの表面には、堀削土を堀削穴の壁面に圧密する突起を形成したことを特徴とする請求項に記載の地盤強化方法。 4. The ground strengthening method according to claim 3 , wherein a projection for compacting the excavated soil on the wall surface of the excavated hole is formed on the surface of the casing. 前記第の工程において、前記砕石が所定の高さに達する毎に前記転圧ロッドにて締め固めることを特徴とする請求項に記載の地盤強化方法。 The ground strengthening method according to claim 3 , wherein, in the fourth step, the crushed stone is compacted by the rolling rod every time the crushed stone reaches a predetermined height.
JP2011147744A 2011-07-01 2011-07-01 Ground strengthening system and ground strengthening method Expired - Fee Related JP4915827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147744A JP4915827B1 (en) 2011-07-01 2011-07-01 Ground strengthening system and ground strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147744A JP4915827B1 (en) 2011-07-01 2011-07-01 Ground strengthening system and ground strengthening method

Publications (2)

Publication Number Publication Date
JP4915827B1 true JP4915827B1 (en) 2012-04-11
JP2013014920A JP2013014920A (en) 2013-01-24

Family

ID=46171006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147744A Expired - Fee Related JP4915827B1 (en) 2011-07-01 2011-07-01 Ground strengthening system and ground strengthening method

Country Status (1)

Country Link
JP (1) JP4915827B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure
CN113914290A (en) * 2021-11-26 2022-01-11 李庆洋 Quick reinforcing apparatus of engineering geology

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104215A (en) * 2011-11-14 2013-05-30 Fujitec Co Ltd Liquefaction prevention method
JP6119039B2 (en) * 2013-02-04 2017-04-26 株式会社グレイプ Foundation structure
EP3329053A4 (en) * 2015-07-27 2019-03-27 Geopier Foundation Company, Inc. Open-bottom extensible shells and related methods for constructing a support pier
JP6212147B2 (en) * 2016-02-26 2017-10-11 サムシングホールディングス株式会社 Crushed stone pile
JP6125701B1 (en) * 2016-07-08 2017-05-10 朝日エンヂニヤリング株式会社 Non-uniform settlement prevention structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178413A (en) * 1988-12-28 1990-07-11 Shimizu Corp Packed gravel drain method
JPH06101390A (en) * 1991-12-24 1994-04-12 Teruo Koi Method and device for boring foundation ground
JPH06128933A (en) * 1992-05-13 1994-05-10 Akira Kobayashi Improvement method of liquefied subsoil and formation device of non-liquefied subsoil column
JPH06294136A (en) * 1993-04-08 1994-10-21 Fujita Corp Soil improvement pile
JPH11247573A (en) * 1998-03-03 1999-09-14 Teruo Koi Boring construction method and device of foundation ground

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178413A (en) * 1988-12-28 1990-07-11 Shimizu Corp Packed gravel drain method
JPH06101390A (en) * 1991-12-24 1994-04-12 Teruo Koi Method and device for boring foundation ground
JPH06128933A (en) * 1992-05-13 1994-05-10 Akira Kobayashi Improvement method of liquefied subsoil and formation device of non-liquefied subsoil column
JPH06294136A (en) * 1993-04-08 1994-10-21 Fujita Corp Soil improvement pile
JPH11247573A (en) * 1998-03-03 1999-09-14 Teruo Koi Boring construction method and device of foundation ground

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure
JP7265451B2 (en) 2019-08-22 2023-04-26 株式会社日水コン Floating prevention method for underground buried objects
CN113914290A (en) * 2021-11-26 2022-01-11 李庆洋 Quick reinforcing apparatus of engineering geology

Also Published As

Publication number Publication date
JP2013014920A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP4915827B1 (en) Ground strengthening system and ground strengthening method
Mokhtari et al. Soft Soil Stabilization using Stone Column--A Review
JP6166264B2 (en) How to build a retaining wall
WO2011105703A2 (en) Method for constructing a steel pipe/concrete composite pile in which the steel pipe is buried integrally with bedrock, and pile construction
JP2006225926A (en) Banking construction method utilizing backfilling material such as fluidized soil, pit sand, local soil and crushed stone
CN104612143A (en) Bored composite pile structure under karst cave/soil cave geological condition
KR100762991B1 (en) Precast piling method injected with high-strength mortar
Broms Lime and lime/cement columns
Holtz et al. Stabilization of soil slopes
JP5427285B1 (en) Ground strengthening system and ground strengthening method
CN105735232A (en) Collapsible loess wellpoint presoaking dynamic compaction replacement method
JP2010090592A (en) Reinforced soil pile, method for manufacturing the same, and method for computing strength of spread foundation
Hirkane et al. Ground improvement techniques
Prasad et al. Improvement of soft soil performance using stone columns improved with circular geogrid discs
Tandel et al. Reinforced granular column for deep soil stabilization: A review
JP5011456B1 (en) Ground liquefaction prevention and strengthening method
KR100603140B1 (en) The structure construction method of having used geogrid reinforced stone column and this
JPH09137444A (en) Preventive method of disaster caused by liquefaction phenomena generating in loose sand or sandy ground in earthquake, and restoration work of damaged ground
Brandl et al. Special applications of geosynthetics in geotechnical engineering
Hodgkinson Foundation design
JP2012047031A (en) Ground stabilization method
Sobhee-Beetul Ground improvement using PET bottle waste as a potential reinforcement material for granular columns: an experimental approach
Pearlman et al. Design and monitoring of an embankment on controlled modulus columns
Durgadevi et al. A Review on Recent Experimental Research on Soil Stabilization
Frankovská et al. Efficiency of improvement methods in compressible soil based on the results of geotechnical monitoring

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees