JP4915718B2 - Damping material and its manufacturing method - Google Patents

Damping material and its manufacturing method Download PDF

Info

Publication number
JP4915718B2
JP4915718B2 JP2005010890A JP2005010890A JP4915718B2 JP 4915718 B2 JP4915718 B2 JP 4915718B2 JP 2005010890 A JP2005010890 A JP 2005010890A JP 2005010890 A JP2005010890 A JP 2005010890A JP 4915718 B2 JP4915718 B2 JP 4915718B2
Authority
JP
Japan
Prior art keywords
resin
particles
ratio
damping material
tan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005010890A
Other languages
Japanese (ja)
Other versions
JP2006199759A (en
Inventor
栄敏 荒木
明男 杉本
裕信 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Kobe Steel Ltd
Original Assignee
Kyoto Institute of Technology NUC
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Kobe Steel Ltd filed Critical Kyoto Institute of Technology NUC
Priority to JP2005010890A priority Critical patent/JP4915718B2/en
Priority to PCT/JP2006/300227 priority patent/WO2006077757A1/en
Publication of JP2006199759A publication Critical patent/JP2006199759A/en
Application granted granted Critical
Publication of JP4915718B2 publication Critical patent/JP4915718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3737Planar, e.g. in sheet form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Vibration Prevention Devices (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

本発明は制振材料とその製法に関し、より詳細には、拘束型および非拘束型の制振材用として優れた性能を発揮する制振材料とその製法に関するものである。   The present invention relates to a vibration damping material and a method for manufacturing the same, and more particularly to a vibration damping material that exhibits excellent performance as a restraint type and a non-restraint type damping material and a method for producing the same.

鋼板やアルミニウム合金板などの金属板あるいはエンプラ(エンジニアリングプラスチック材)等からなる構造物の振動や騒音を低減するための素材として、高分子材料からなる制振材料が知られている。   As a material for reducing vibration and noise of a structure made of a metal plate such as a steel plate or an aluminum alloy plate or engineering plastic (engineering plastic material), a damping material made of a polymer material is known.

制振材料は、鋼板などからなる板材の表面に貼り付けて用いられるタイプの非拘束型と、鋼板など2枚の板材間にサンドイッチ状に挟み込んで構造体の一部として用いられる拘束型に大別されるが、いずれも、高分子材料の制振性能を表わす損失係数(tanδ)が当該高分子材料のガラス転移温度(Tg)付近で最大となる特性を利用している。   Damping materials are largely divided into the non-restraining type that is used by sticking to the surface of a plate made of steel plate, etc., and the constraining type that is sandwiched between two plates such as a steel plate and used as part of the structure. In each case, the loss coefficient (tan δ) representing the vibration damping performance of the polymer material takes advantage of the characteristic that becomes maximum near the glass transition temperature (Tg) of the polymer material.

尚ガラス転移温度は、一般に秒または分の程度のタイムスケール(振動周波数で約1/60〜1Hzに相当)での実験によって測定されるが、実験が更に速くタイムスケールを短くして行われる場合(振動周波数で1Hz程度以上)には、見掛けのTgは高くなる。Tgの測定法の1つとして採用される振動法では、動的弾性率−温度曲線において動的弾性率が急激に低下する温度として測定されるが、この温度で振動減衰能の程度を表わす損失係数は極大値を取る。振動減衰ピークは、高分子の構造が部分的に緩められて原子団や小さい分子鎖セグメントが運動可能になることと関連していると思われ、こうした現象はTg付近で起こるが、高分子材料における損失係数(tanδ)のピーク温度は周波数によって変わってくる。   The glass transition temperature is generally measured by an experiment on a time scale of about seconds or minutes (corresponding to about 1/60 to 1 Hz in terms of vibration frequency), but the experiment is performed with a shorter time scale. The apparent Tg becomes high at a vibration frequency of about 1 Hz or more. In the vibration method adopted as one of the Tg measurement methods, the dynamic elastic modulus is measured as a temperature at which the dynamic elastic modulus rapidly decreases in the dynamic elastic modulus-temperature curve. The coefficient takes a maximum value. The vibration damping peak is thought to be related to the fact that the structure of the polymer is partially relaxed and the atomic groups and small molecular chain segments can move, and this phenomenon occurs near Tg. The peak temperature of the loss coefficient (tan δ) at 1 varies depending on the frequency.

すなわち通常のガラス転移温度(Tg)は、1/60〜1Hzの範囲の振動試験で損失係数(tanδ)が最大となる温度として測定されるが、1Hzを超える振動試験では損失係数(tanδ)がピークを示す温度は高温側へずれてくる。従って本発明では、該損失係数(tanδ)がピークを示す温度を、通常の「Tg」とは区別して以下「TS」と表す。 That is, the normal glass transition temperature (Tg) is measured as the temperature at which the loss factor (tan δ) is maximized in the vibration test in the range of 1/60 to 1 Hz, but the loss coefficient (tan δ) is measured in the vibration test exceeding 1 Hz. The temperature showing the peak shifts to the high temperature side. Therefore, in the present invention, the temperature at which the loss coefficient (tan δ) exhibits a peak is hereinafter referred to as “T S ” to distinguish it from normal “Tg”.

ちなみに、高分子材料の粘弾性特性に由来して発揮される制振性能は、高分子材料のTgによって一義的に決まる訳ではなく、周波数に応じて最大の損失係数(tanδ)を示す温度TSに依存すると考えられる。また、構造物が設置される環境温度が制振材料として使用される高分子材料のTSと常に一致するわけではなく、予定されたTSと実際の使用環境温度が異なる場合は満足のいく制振性能は発揮されない。 Incidentally, the damping performance that is exhibited due to the viscoelastic characteristics of the polymer material is not uniquely determined by the Tg of the polymer material, but the temperature T that exhibits the maximum loss coefficient (tan δ) according to the frequency. It depends on S. Also, the environmental temperature at which the structure is installed does not always coincide with the T S of the polymer material used as the damping material, and it is satisfactory if the planned T S and the actual operating environmental temperature are different. Damping performance is not demonstrated.

そこでこうした問題に対処するため、TSの異なる複数の高分子材をブレンドし、広い温度域で制振性能を発揮し得る様に調整したブレンド樹脂が提案されている。例えば特許文献1,2には、分子量で10,000以上、比重で0.06〜0.15の差がある2種以上のポリエステル系樹脂をブレンドし、ミクロな相分離構造を形成させると、広い温度範囲で損失係数(tanδ)が高められると共に接着性と成形加工性も向上すること、更には、これらに硬化剤を配合して熱硬化型のポリエステルとすれば、接着性が更に高められると共に耐熱性も向上することが明らかにされている。 Therefore, in order to cope with such problems, a blended resin prepared by blending a plurality of polymer materials having different T S so as to exhibit vibration damping performance in a wide temperature range has been proposed. For example, in Patent Documents 1 and 2, when blending two or more polyester resins having a molecular weight of 10,000 or more and a specific gravity of 0.06 to 0.15 to form a micro phase separation structure, The loss factor (tan δ) can be increased over a wide temperature range, and the adhesiveness and moldability can be improved. Furthermore, if a curing agent is added to these to form a thermosetting polyester, the adhesiveness can be further improved. At the same time, it has been clarified that the heat resistance is also improved.

また、制振鋼板に代表される上記拘束型制振材に適した制振材料の粘弾性特性については、例えば特許文献3によると、鋼板などの弾性板の弾性係数(ヤング率)をEとしたとき、弾性板に挟み込む制振材料のせん断弾性係数(この文献では、複素せん断弾性係数G=G1+jG2で表わされている。jは虚数単位である)は、「10-6E≦(G1,G2)≦10-4E」で、且つ「0.5≦(G2/G1=tanδ)≦3.0」という範囲が、全体の制振性能を高める適正範囲であると記載されている。 In addition, regarding the viscoelastic characteristics of the damping material suitable for the restraint type damping material represented by the damping steel plate, for example, according to Patent Document 3, the elastic modulus (Young's modulus) of an elastic plate such as a steel plate is E. Then, the shear elastic modulus of the damping material sandwiched between the elastic plates (in this document, represented by the complex shear elastic modulus G = G 1 + jG 2 , j is an imaginary unit) is “10 −6 E ≦ (G 1 , G 2 ) ≦ 10 −4 E ”and“ 0.5 ≦ (G 2 / G 1 = tan δ) ≦ 3.0 ”are appropriate ranges for improving the overall damping performance. It is described that there is.

実際、鋼板を弾性板として使用する場合は、上記弾性係数Eに「2×1011Pa」を代入して「2×105Pa≦(G1,G2)≦2×107Pa」の範囲が、またAl合金板の場合は、上記弾性係数Eに「7×1010Pa」を代入して「7×104Pa≦(G1,G2)≦2×106Pa」の範囲が、各制振材の弾性係数の適正範囲であると記載されている。 In fact, when a steel plate is used as an elastic plate, “2 × 10 11 Pa” is substituted for the elastic modulus E, and “2 × 10 5 Pa ≦ (G 1 , G 2 ) ≦ 2 × 10 7 Pa”. When the range is an Al alloy plate, “7 × 10 10 Pa” is substituted for the elastic modulus E, and the range of “7 × 10 4 Pa ≦ (G 1 , G 2 ) ≦ 2 × 10 6 Pa”. Is described as an appropriate range of the elastic modulus of each damping material.

上記特許文献1,2では、組み合わせるポリエステル系樹脂の構造や分子量などを調整し、或いは更に硬化剤を併用して熱硬化型とすることで、広い温度範囲で制振性能を示し且つ接着性や耐熱性を高め得ることが明らかにされている。しかし、例示された樹脂以外の系では、どの様な高分子材料をどの様な組み合わせと比率で混合すればよいかといった観点からの設計指針については、具体的な高分子材料の選定基準を含めて明らかにされていない。   In the above Patent Documents 1 and 2, by adjusting the structure and molecular weight of the polyester resin to be combined, or by further using a curing agent in combination with a thermosetting type, it exhibits vibration damping performance in a wide temperature range and has adhesiveness and It has been shown that heat resistance can be increased. However, in the system other than the exemplified resin, the design guidelines from the viewpoint of what kind of polymer materials should be mixed and in what ratio, including the selection criteria for specific polymer materials. It has not been revealed.

また特許文献3に開示された技術を活用すべく、市販接着剤のせん断弾性係数G1(以下、剛性率:μで表わす)と損失係数(tanδ)(=G2/G1)を周波数10Hz〜10KHz、温度20〜80℃の範囲で実際に調べたところ、接着剤の多くは該特許文献3に記載された適正範囲を外れることが分かった。 Further, in order to utilize the technique disclosed in Patent Document 3, the shear elastic modulus G 1 (hereinafter referred to as rigidity: μ) and loss factor (tan δ) (= G 2 / G 1 ) of a commercially available adhesive are set to a frequency of 10 Hz. When actually examined in the range of 10 to 10 KHz and the temperature of 20 to 80 ° C., it was found that many of the adhesives deviated from the appropriate range described in Patent Document 3.

従って、拘束型にしろ、非拘束型にしろ、制振材料として優れた振動減衰性能を発揮させるには、制振性能を与えるための樹脂材料としての選定基準を明確にする必要がある。
特許第2613502号 特開2003−221496号 特開平4−160249号
Therefore, in order to exhibit excellent vibration damping performance as a damping material, whether it is a restraining type or an unconstraining type, it is necessary to clarify the selection criteria as a resin material for giving damping performance.
Japanese Patent No. 2613502 JP 2003-221696 JP-A-4-160249

本発明は上記の様な事情に着目してなされたものであって、その目的は、拘束型および非拘束型の制振材料として、広い温度範囲で優れた振動減衰能を発揮し得る様な樹脂材料の選定基準を明確にし、もって様々の使用環境下で安定して優れた制振性能を発揮し得る様な制振材料を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is to exhibit excellent vibration damping capability in a wide temperature range as a restraining type and non-constraining type damping material. It is an object of the present invention to provide a damping material capable of exhibiting a stable and excellent damping performance under various usage environments by clarifying selection criteria for resin materials.

上記課題を解決することのできた本発明に係る制振材料とは、拘束型または非拘束型制振材として使用される制振材料において、高分子材からなる母材中に、該母材とは異なる素材からなる楕円体状粒子であって、拘束型の場合は、該粒子の形状を回転楕円体と仮定した時の回転半径方向長さに対する回転軸方向長さの比率(アスペクト比;ω)が0.01〜0.1の範囲内である楕円体状粒子が島状に分散しており、また非拘束型の場合は、上記アスペクト比(ω)が1以下である楕円体状粒子が島状に分散しているところに特徴を有している。   The vibration damping material according to the present invention that has solved the above problems is a vibration damping material used as a constraining or non-constraining vibration damping material. Is an ellipsoidal particle made of different materials, and in the case of a constrained type, the ratio of the length in the rotational axis direction to the length in the rotational axis direction when the shape of the particle is assumed to be a spheroid (aspect ratio; ω ) In the range of 0.01 to 0.1 is dispersed in an island shape, and in the case of an unconstrained type, an elliptical particle having an aspect ratio (ω) of 1 or less Is characterized by being dispersed in islands.

本発明に係る上記制振材料は、前記母材のせん断弾性係数(以下、剛性率μMと記す)に対する前記楕円体状粒子のせん断弾性係数(以下、剛性率μIと記す)の比(以下、剛性率比μI/μMと記す)が、拘束型の場合は0.02〜0.3の範囲内であることが好ましく、非拘束型の場合は1以下であることが好ましい。また何れの場合も、島状に分散している前記楕円体状粒子の損失係数が最大となる温度TSが、母材の損失係数が最大となる温度TSよりも低いものであることが好ましく、また、該楕円体状粒子として、TSの異なる複数種類の粒子が分散している制振材料は、広い温度範囲で安定して高い損失係数を示すので好ましい。 The ratio of the damping material according to the present invention, the shear modulus of the base material (hereinafter, referred to as the shear modulus mu M) shear modulus of the ellipsoidal particles to (hereinafter, referred to as the modulus of rigidity mu I) ( Hereinafter, the stiffness ratio μ I / μ M ) is preferably in the range of 0.02 to 0.3 for the constrained type, and preferably 1 or less for the unconstrained type. In any case, the temperature T S at which the loss coefficient of the ellipsoidal particles dispersed in the island shape becomes maximum is lower than the temperature T S at which the loss coefficient of the base material becomes maximum. Moreover, as the ellipsoidal particles, a vibration damping material in which a plurality of types of particles having different T S are dispersed is preferable because it exhibits a high loss factor stably over a wide temperature range.

本発明の制振材料を拘束型制振材用の制振材料として使用する場合は、前記母材および楕円体状粒子の素材としてポリウレタン系の形状記憶高分子材が好ましく使用され、一方、非拘束型制振材用の制振材料として使用する場合は、前記母材としてポリオレフィン、前記楕円体状粒子の素材としてポリエステルを使用し、或いは母材としてポリプロピレン、前記楕円体状粒子の素材としてポリイソブチレンを使用することが好ましい。   When the damping material of the present invention is used as a damping material for a constrained damping material, a polyurethane-based shape memory polymer material is preferably used as the base material and the material of the ellipsoidal particles. When used as a damping material for a constrained damping material, polyolefin is used as the base material, polyester is used as the material for the ellipsoidal particles, or polypropylene is used as the base material, and polythene is used as the material for the ellipsoidal particles. It is preferred to use isobutylene.

また、非拘束型制振材用の制振材料として使用する場合は、上記母材中に更に他の成分として、該母材の剛性率μMに対する剛性率μHの比(剛性率比:μH/μM)が7以上であり、且つアスペクト比が1.0以下である硬質粒子を分散させると、制振材料としての損失係数を高めつつ、複合樹脂全体の剛性率を高めることができ、非拘束型制振材用としての制振性能を一段と高めることができるので好ましい。 Further, when used as a damping material for an unconstrained damping material, as a further component in the base material, a ratio of the rigidity μ H to the rigidity μ M of the base material (stiffness ratio: (μ H / μ M ) is 7 or more and the hard particles having an aspect ratio of 1.0 or less are dispersed, the loss factor as a damping material is increased and the rigidity of the composite resin as a whole is increased. This is preferable because the damping performance for the non-constrained damping material can be further enhanced.

本発明の更に他の構成は、上記特性を備えた拘束型制振材用のシート状制振材料を製造する方法であって、母材中に、該母材とは異なる素材からなる略球形の樹脂粒子が分散した複合樹脂を使用し、該複合樹脂をシート状に加工して制振材料とする際に、目標肉厚のシート状制振材料とするまでの過程で肉厚低減率を0.01〜1.0の範囲に制御するところに特徴を有している。   Still another configuration of the present invention is a method for manufacturing a sheet-shaped damping material for a constrained damping material having the above-described characteristics, and a substantially spherical shape made of a material different from the matrix in the matrix. When a composite resin in which resin particles are dispersed is processed into a sheet-like vibration-damping material, the thickness reduction rate is reduced in the process until the sheet-like vibration-damping material with the target thickness is obtained. It is characterized in that it is controlled within the range of 0.01 to 1.0.

また、上記特性を備えた非拘束型制振材用のシート状制振材料を製造する方法としては、母材中に、該母材とは異なる素材からなる略球形の樹脂粒子が分散した複合樹脂を使用し、該複合樹脂をシート状に加工して制振材料とする際に、目標肉厚のシート状制振材料とするまでの過程で肉厚低減率を0.01〜1.0の範囲に制御するところに特徴を有している。   In addition, as a method of manufacturing a sheet-shaped damping material for an unconstrained damping material having the above characteristics, a composite in which substantially spherical resin particles made of a material different from the matrix are dispersed in the matrix. When a resin is used and the composite resin is processed into a sheet shape to obtain a damping material, the thickness reduction rate is 0.01 to 1.0 in the process until the sheet-like damping material having the target thickness is obtained. It has the feature in controlling to the range.

また、海成分(マトリックス)に島状粒子が分散した海・島構造とするには、前記母材と島状粒子の溶解度パラメータの差を1[MPa]0.5以上とするのがよい。 In order to obtain a sea / island structure in which island-like particles are dispersed in a sea component (matrix), the difference in solubility parameter between the base material and the island-like particles is preferably 1 [MPa] 0.5 or more.

上記非拘束型制振材用のシート状制振材料を製造する際には、同時、もしくは逐次2軸延伸法を採用し、縦方向、横方向に母材樹脂が引き伸ばされるのに追従して、前記樹脂粒子を平板状に引き伸ばす方法を採用することが好ましい。   When manufacturing the sheet-like damping material for the unconstrained damping material, the biaxial stretching method is used simultaneously or sequentially to follow the stretching of the base resin in the longitudinal and lateral directions. It is preferable to employ a method of stretching the resin particles into a flat plate shape.

本発明によれば、特定範囲のアスペクト比を有する樹脂粒子を島成分としてマトリクスを構成する海成分中に分散させることにより、海成分のTSおよび島成分のTSのいずれの温度においても高い損失係数を有し、広い温度域で優れた振動減衰能を発揮する拘束型または非拘束型制振材用の制振材料を安価に提供できる。 According to the present invention, resin particles having an aspect ratio in a specific range are dispersed as island components in the sea component constituting the matrix, so that the temperature is high at any of the sea component T S and the island component T S. It is possible to provide a damping material for a constrained or unconstrained damping material that has a loss coefficient and exhibits excellent vibration damping capability in a wide temperature range at low cost.

前述した如く特許文献1,2には、ポリエステル樹脂など特定の樹脂について、併用される樹脂の構造や分子量を調整することで、広い温度域での制振性能を高め得ると共に接着性や成形加工性も高めることができる旨の記載が見られる。   As described above, Patent Documents 1 and 2 disclose that a specific resin such as a polyester resin can improve the vibration damping performance in a wide temperature range by adjusting the structure and molecular weight of the resin used in combination, and can also improve adhesion and molding processing. There is a statement that the property can be improved.

しかし、具体的に使用されている樹脂材料を含めて、当該樹脂を構成する高分子材料の弾性率や、これと組み合わせて使用される高分子材料の弾性率などについての具体的な選定基準は明らかにされていない。そのため、具体的に示された樹脂以外の系では、どの様な高分子材料をどの様な基準で選択し、どの様な比率で配合するのがよいかといったことについては、その都度、実験によって試行錯誤的に求めざるを得ない。   However, the specific selection criteria for the elastic modulus of the polymer material constituting the resin, including the resin material specifically used, and the elastic modulus of the polymer material used in combination therewith are It has not been revealed. Therefore, in systems other than those specifically shown, what kind of polymer material should be selected based on what criteria, and what ratio should be blended is determined by experiment each time. It must be determined by trial and error.

また、先に開示した特許文献3に記載されている如く、優れた接着性を有する市販接着剤の剛性率μと損失係数(tanδ)を、実際に遭遇する可能性の高い周波数領域(10Hz〜10kHz程度)と温度域(20〜80℃程度)について調べたところ、例えば下記の通りであり、特許文献3に記載された弾性板として鋼板を用いた場合の適正なせん断弾性係数範囲と思われる「2×105Pa≦(μ)≦2×107Pa」で、且つ「0.5≦tanδ≦3.0」の範囲、或いは、Al合金板を用いた場合の適正なせん断弾性係数範囲と思われる「7×104Pa≦(μ)≦7×106Pa」で、且つ「0.5≦tanδ≦3.0」の範囲に較べると、殆どの接着剤は上記適正範囲を外れる。 In addition, as described in Patent Document 3 disclosed above, the rigidity modulus μ and the loss factor (tan δ) of a commercially available adhesive having excellent adhesiveness are in a frequency range (10 Hz to 10 kHz) and a temperature range (about 20 to 80 ° C.), for example, are as follows, and are considered to be an appropriate shear elastic modulus range when a steel plate is used as the elastic plate described in Patent Document 3. “2 × 10 5 Pa ≦ (μ) ≦ 2 × 10 7 Pa” and a range of “0.5 ≦ tan δ ≦ 3.0” or an appropriate shear elastic modulus range when an Al alloy plate is used. It is considered that “7 × 10 4 Pa ≦ (μ) ≦ 7 × 10 6 Pa” and compared with the range of “0.5 ≦ tan δ ≦ 3.0”, most of the adhesives are out of the appropriate range. .

1)主剤がエポキシ樹脂で、硬化剤がポリアミドの場合:
タイプA:μ=4×108〜2×109Pa、 tanδ=0.04〜0.4
タイプB;μ=1×108〜2×108Pa、 tanδ=0.1〜0.8
2)主剤がエポキシ樹脂で、硬化剤が変性シリコーンの場合:
μ=2×107〜3×108Pa、 tanδ=0.1〜0.3
3)主剤がエポキシ樹脂48%+炭酸カルシウム45%で、硬化剤が変性シリコーン 55%+炭酸カルシウム40%の場合:
μ=1×107〜2×108Pa、 tanδ=0.1〜0.3
4)主剤および硬化剤が変性アクリレートの場合:
μ=1×108〜8×108Pa、 tanδ=0.1〜0.3
5)ポリウレタン系樹脂(1液型)の場合:
タイプA:μ=1×106〜1×107Pa、 tanδ=0.3〜0.6
タイプB;μ=9×105〜1×107Pa、 tanδ=0.3〜0.5
6)ポリオレフィン系樹脂の場合:
μ=1×107〜2×108Pa、 tanδ=0.3〜0.5
7)クロロプレン系ゴムの場合:
μ=5×105〜1×106Pa、 tanδ=0.1〜0.2
そこで本発明者らは、「振動減衰能の高い制振樹脂をベースとしてその接着性を強化する」という従来の改善方向を見直し、接着性には優れているが制振性の乏しい接着剤をベース樹脂(マトリクスまたは母材と言うことがある)として選択し、これに優れた制振性能を有する樹脂を複合することで接着性と制振性を両立させることはできないかと考え、その線に沿って研究を進めてきた。
1) When the main agent is an epoxy resin and the curing agent is polyamide:
Type A: μ = 4 × 10 8 to 2 × 10 9 Pa, tan δ = 0.04 to 0.4
Type B; μ = 1 × 10 8 to 2 × 10 8 Pa, tan δ = 0.1 to 0.8
2) When the main agent is an epoxy resin and the curing agent is a modified silicone:
μ = 2 × 10 7 to 3 × 10 8 Pa, tan δ = 0.1 to 0.3
3) When the main agent is 48% epoxy resin + 45% calcium carbonate and the curing agent is 55% modified silicone + 40% calcium carbonate:
μ = 1 × 10 7 to 2 × 10 8 Pa, tan δ = 0.1 to 0.3
4) When the main agent and curing agent are modified acrylates:
μ = 1 × 10 8 to 8 × 10 8 Pa, tan δ = 0.1 to 0.3
5) In case of polyurethane resin (1 liquid type):
Type A: μ = 1 × 10 6 to 1 × 10 7 Pa, tan δ = 0.3 to 0.6
Type B; μ = 9 × 10 5 to 1 × 10 7 Pa, tan δ = 0.3 to 0.5
6) For polyolefin resins:
μ = 1 × 10 7 to 2 × 10 8 Pa, tan δ = 0.3 to 0.5
7) For chloroprene rubber:
μ = 5 × 10 5 to 1 × 10 6 Pa, tan δ = 0.1 to 0.2
Therefore, the present inventors reviewed the conventional improvement direction of “strengthening the adhesiveness based on a vibration damping resin having a high vibration damping ability”, and used an adhesive having excellent adhesion but poor vibration damping. We selected it as a base resin (sometimes called a matrix or base material) and thought that it would be possible to achieve both adhesiveness and vibration control by combining a resin with excellent vibration control performance. I have been researching along the way.

その結果、接着剤を海(マトリクス)とし、その中に制振性能を有する樹脂材が島状に分散したいわゆる海・島構造の複合樹脂を創生することにより、優れた接着性を確保しつつ制振性能も高めることができるのではないかと考えた。そしてこうした着想を基に検討を進めた結果、海を構成する樹脂(以下、海状樹脂または海成分ということがある)の剛性率(μM)と島を構成する樹脂(以下、島状樹脂または島成分ということがある)の剛性率(μI)の比(μI/μM:以下、剛性率比と言う)が0.1〜2、より好ましくは0.1〜0.6、更に好ましくは0.1〜0.4の範囲となる様に海・島構成樹脂を選択して複合すれば、複合樹脂系の制振材料として高い損失係数が得られることを見出し、既に特許出願を行っている。 As a result, the seawater (matrix) is used as the adhesive, and a composite resin with a so-called sea / island structure in which resin materials with vibration-damping performance are dispersed in islands ensures excellent adhesion. However, I thought that the damping performance could be improved. As a result of investigations based on these ideas, the rigidity (μ M ) of the resin that constitutes the sea (hereinafter sometimes referred to as sea-like resin or sea component) and the resin that constitutes the island (hereinafter referred to as island-like resin) Or a ratio of rigidity (μ I ) of the island component) (μ I / μ M : hereinafter referred to as rigidity ratio) is 0.1 to 2, more preferably 0.1 to 0.6, It has been found that a high loss factor can be obtained as a composite resin-based vibration damping material by selecting and compounding the sea / island constituent resin so that it is more preferably in the range of 0.1 to 0.4. It is carried out.

ところで、弾性板として鋼板を使用する場合の拘束型制振材料に求められる上記剛性率比の好ましい値を求めると、複合樹脂を構成する海状樹脂として例えば上記ポリオレフィン系樹脂を選択した場合の1kHzの代表的な値である40MPaとしたとき、海状樹脂を構成するポリオレフィン系樹脂の剛性率(μM)に対する複合樹脂全体としての巨視的な剛性率(μAll)の比、即ち剛性率比は「0.05≦(μAll/μM)≦0.5」となり、複合樹脂全体としての巨視的な損失係数は、上記の通り「0.5≦(tanδAll)≦3.0」と好ましい値になる。ところが、たとえば図1(島状粒子の形状は球状、島状粒子の体積含有率(f)は30%、海状樹脂の損失係数tanδMは0.5の場合)に示す如く、このままでは、複合樹脂としての巨視的な損失係数(tanδAll)を例えば0.9以上に高めることができるものの、複合樹脂系制振材料としての好ましい剛性率比である「0.05≦μAll/μM≦0.5」を満足するものとはならない。 By the way, when a preferable value of the rigidity ratio required for the constrained vibration damping material when using a steel plate as the elastic plate is obtained, for example, 1 kHz when the polyolefin resin is selected as the sea-like resin constituting the composite resin. The ratio of the macroscopic rigidity (μ All ) of the composite resin as a whole to the rigidity (μ M ) of the polyolefin resin constituting the sea-like resin, ie, the rigidity ratio “0.05 ≦ (μ All / μ M ) ≦ 0.5”, and the macroscopic loss factor of the entire composite resin is “0.5 ≦ (tan δ All ) ≦ 3.0” as described above. A preferred value. However, as shown in FIG. 1 (in the case where the shape of the island-shaped particles is spherical, the volume content (f) of the island-shaped particles is 30%, and the loss factor tan δ M of the sea-shaped resin is 0.5), as it is, Although the macroscopic loss factor (tan δ All ) as the composite resin can be increased to, for example, 0.9 or more, “0.05 ≦ μ All / μ M ” which is a preferable rigidity ratio ratio as the composite resin vibration damping material ≦ 0.5 ”is not satisfied.

そこで、更なる改善策として、海状樹脂中に島状樹脂の他、球状の気泡を体積含有率で30%分散させることにより、複合樹脂系制振材料としての巨視的な剛性率を調整したところ、図2(島状粒子の形状は球状、島状粒子の体積含有率fは30%、海状樹脂の損失係数tanδMは0.5、空孔は球状で体積含有率が30%の場合)に示す如く、空孔を含めた複合樹脂全体としての巨視的な損失係数(tanδAll)が更に高められると共に、剛性率比も好適範囲である「0.05≦(μAll/μM)≦0.5」の範囲にほぼ収まることを確認した。 Therefore, as a further improvement measure, the macroscopic rigidity as a composite resin-based vibration damping material was adjusted by dispersing spherical bubbles in a volume content of 30% in addition to the island-shaped resin in the sea-shaped resin. However, FIG. 2 (the shape of the island-shaped particles is spherical, the volume content f of the island-shaped particles is 30%, the loss factor tanδ M of the sea-like resin is 0.5, the pores are spherical and the volume content is 30%. As shown in FIG. 5), the macroscopic loss coefficient (tan δ All ) of the composite resin as a whole including pores is further increased, and the rigidity ratio is also in a preferable range “0.05 ≦ (μ All / μ M ) ≦ 0.5 ”.

しかし、こうした改質効果を得るには、熱分解型発泡剤などを追加配合し均一分散させてから加熱発泡させる等の操作が必要となり、コストアップの原因となる。   However, in order to obtain such a modification effect, an operation such as additional blending of a pyrolytic foaming agent and uniform dispersion and then heat foaming is required, which causes an increase in cost.

また、ポリウレタン樹脂系の形状記憶ポリマー(Shape Memory Polymer:以下、SMPと略す)を例にとって、前記TSを70℃に調整したSMPからなる母材(海状樹脂)中に、TSを30℃に調整した球状のSMP粒子を体積含有率で50%分散させることによって高分子系複合材料とし、巨視的な損失係数(tanδAll)を求めたところ、先に本発明者らの一人が非特許文献(「日本機械学会」No.03−11、材料力学部門講演会講演論文集、130−132頁、2003年、9月24〜26日)として開示した様に、母材のTSである70℃付近に加えて、島状樹脂として分散させたSMP粒子のTSである30℃付近においても損失係数(tanδAll)が極大値を取り得ることを知った[図3参照]。 Further, taking a polyurethane memory-based shape memory polymer (hereinafter abbreviated as SMP) as an example, 30 T S is contained in a base material (sea resin) made of SMP with T S adjusted to 70 ° C. Spherical SMP particles adjusted to 50 ° C. were dispersed at a volume content of 50% to obtain a polymer composite material, and a macroscopic loss factor (tan δ All ) was obtained. patent literature ( "Japan Society of mechanical Engineers" No.03-11, material mechanics division Annual conference Proceedings, pp. 130-132, 2003, September 24-26, 2009) as disclosed as the, of the base material T S It was found that the loss coefficient (tan δ All ) can take a maximum value in the vicinity of 30 ° C., which is the T S of the SMP particles dispersed as island-shaped resin, in addition to around 70 ° C. [see FIG. 3].

ところが、島成分として配合されるSMP粒子のTSである30℃における巨視的な損失係数(tanδAll)の値は、海成分となる母材のTSである70℃における巨視的な損失係数(tanδAll)の値に較べて大幅に低下するばかりでなく、35〜60℃の温度域の巨視的な損失係数(tanδAll)も劣悪である。そこで、1種類のSMP粒子を分散させるのではなく、TSが30℃、40℃、50℃、60℃の付近にある4種類のSMP粒子を母材中に均一に分散させたところ、35〜60℃の温度領域での巨視的な損失係数(tanδAll)の値をある程度平滑化することができた[図3参照]。しかし平均化されたその値は、母材のTSである70℃および、複合されるSMP粒子のTSの1つである30℃の値に較べると明らかに低く、このままでは広い温度領域で優れた制振性能を示す制振材を得ることはできない。 However, the value of the macroscopic loss coefficient (tan δ All ) at 30 ° C., which is the T S of the SMP particles blended as the island component, is the macroscopic loss coefficient at 70 ° C., which is the T S of the base material that is the sea component. Not only does it significantly decrease compared to the value of (tan δ All ), but the macroscopic loss factor (tan δ All ) in the temperature range of 35-60 ° C is also poor. Therefore, instead of dispersing one kind of SMP particles, when four kinds of SMP particles having T S in the vicinity of 30 ° C., 40 ° C., 50 ° C., and 60 ° C. are uniformly dispersed in the base material, 35 is obtained. The value of the macroscopic loss factor (tan δ All ) in the temperature range of ˜60 ° C. could be smoothed to some extent [see FIG. 3]. However, the averaged value is clearly lower than the value of 70 ° C., which is the T S of the base material, and 30 ° C., which is one of the T S of the composite SMP particles. It is not possible to obtain a damping material that exhibits excellent damping performance.

以上説明した様に本発明者らはこれまでの研究で、海・島構造に相分離した複合樹脂系制振材料の海成分を構成する樹脂と、島成分を構成する樹脂の剛性率の比(剛性率比)を最適化すれば、例えば制振鋼板などの制振材として用いる制振材料に必要な接着強度や適度の剛性と損失係数を確保することができ、しかも、損失係数を広い温度領域である程度高めることができること、更には、複合樹脂内に適度の気泡を共存させれば、剛性が更に向上して損失係数を更に高め得ることを明らかにした。しかし、複合樹脂として満足のいくレベルの損失係数を得るには、前述した如く気泡の混入による剛性改善策を必要とし、製造工程が煩雑でコスト高になること、しかも、広い温度領域で達成することのできる損失係数自体が必ずしも満足し得る値ではなく、こうした技術を実用化していくためには更なる改善が求められる。   As described above, the present inventors have investigated the ratio of the rigidity of the resin constituting the sea component of the composite resin damping material phase-separated into the sea / island structure and the resin constituting the island component in the previous research. By optimizing (rigidity ratio), for example, it is possible to secure the adhesive strength and appropriate rigidity and loss factor necessary for damping materials used as damping materials such as damping steel plates, and wide loss factors It has been clarified that it can be increased to some extent in the temperature region, and further, if appropriate bubbles coexist in the composite resin, the rigidity can be further improved and the loss factor can be further increased. However, in order to obtain a satisfactory level of loss factor as a composite resin, it is necessary to take measures for improving rigidity by mixing bubbles as described above, and the manufacturing process is complicated and expensive, and is achieved in a wide temperature range. The loss factor that can be obtained is not always a satisfactory value, and further improvement is required to put this technology into practical use.

本発明者らはこうした技術的背景の下で、前述した様な改良技術の更なる改善と実用化を目的としてなされたものである。   Under these technical backgrounds, the present inventors have been made for the purpose of further improvement and practical application of the improved technique as described above.

ところで、これまでの研究において本発明者らは、母材(海成分)中に島成分として分散させる樹脂粒子の形状が略球状と仮定して検討を進めてきた。しかし、島成分として分散させる樹脂粒子の形状を変化させることで、複合樹脂全体としての巨視的な損失係数(tanδAll)を高めることができるのではないかと考え、その線に沿って検討を重ねてきた。 By the way, in the previous researches, the present inventors have made investigations on the assumption that the shape of the resin particles dispersed as island components in the base material (sea component) is substantially spherical. However, it is thought that the macroscopic loss factor (tan δ All ) of the composite resin as a whole can be increased by changing the shape of the resin particles dispersed as island components. I came.

そして、まず拘束型制振材を対象として、ポリウレタン樹脂系のSMPからなる母材中に該母材とは異なるTSを有し、その形状を回転楕円体と仮定した時の回転半径方向長さに対する回転軸方向長さの比率(アスペクト比;ω)が異なるポリウレタン樹脂系のSMP粒子を体積含有率で50%分散させた複合樹脂について、複合樹脂全体としての巨視的な損失係数(tanδAll)に与える影響を調べた。結果を図4に示す。 Then, the first target constrained damping material, the rotational radial length when in a matrix having a different T S is the base material, was assumed its shape spheroid comprising a SMP polyurethane resin Of a composite resin in which 50% by volume of polyurethane resin-based SMP particles having different ratios of the length in the rotation axis direction to the thickness (aspect ratio; ω) are dispersed by volume content (tan δ All) ). The results are shown in FIG.

図4において、縦軸は複合樹脂全体としての巨視的な損失係数(tanδAll)、横軸は温度(T;℃)を示し、母材(海成分)のTSを70℃、島成分として分散させるSMP粒子のTSを30℃に設定し、該SMP粒子のアスペクト比(ω)を0.001から1.0の範囲で変化させた。図4において、破線はTSが70℃の母材単独でSMP粒子が分散されていないものの損失係数を示している。 4, the vertical axis represents macroscopic loss factor of the whole composite resin (tan [delta All), the abscissa temperature; indicates (T ° C.), 70 ° C. The T S of the base material (sea component), as the island component The T S of the SMP particles to be dispersed was set to 30 ° C., and the aspect ratio (ω) of the SMP particles was changed in the range of 0.001 to 1.0. 4, the broken line matrix alone SMP particles T S is 70 ° C. indicates a loss factor which is not distributed.

尚、本発明においてアスペクト比とは、図5[なお図5では、説明の便宜上アスペクト比(ω)の値が1以上であるものを示している]に示す如く、該粒子の形状を回転楕円体と仮定した時の回転半径方向長さ[即ち楕円体の直径(a)]に対する回転軸方向長さ[即ち回転軸長](a×ω)の比率、即ち(a×ω/a=ω)の値を言い、アスペクト比(ω)の値が小さいものほど、楕円体直径(a)に対して回転軸長(a×ω)が相対的に短く、例えばヘモグロビンやコインの如く極めて扁平な円盤状粒子であることを意味し、アスペクト比(ω)の値が大きいものほど、(a)に対して(a×ω)が相対的に長く、例えば繊維状であることを意味している。   In the present invention, the aspect ratio means that the shape of the particle is a spheroid, as shown in FIG. 5 (in FIG. 5, the aspect ratio (ω) is 1 or more for convenience of explanation). The ratio of the length in the rotational axis [ie, the length of the rotational axis] (a × ω) to the length in the radial direction [ie, the diameter of the ellipsoid (a)] (a × ω), that is, (a × ω / a = ω ), And the smaller the aspect ratio (ω), the shorter the rotation axis length (a × ω) with respect to the ellipsoid diameter (a), for example, extremely flat like hemoglobin or coin. It means that it is a disk-like particle, and the larger the aspect ratio (ω), the longer (a × ω) relative to (a), for example, it means fibrous. .

図4から明らかな様に、島成分として分散させるSMP粒子のアスペクト比(ω)が1.0(すなわち、球形)である場合、SMP粒子と複合した複合樹脂全体として70℃での巨視的な損失係数(tanδAll)は殆ど低下しない。ところが、SMP粒子のアスペクト比が小さくなるにつれて、70℃での巨視的な損失係数(tanδAll)は低下するものの、30℃での巨視的な損失係数(tanδAll)は急増することが分かる。更に、SMP粒子のアスペクト比(ω)が0.01〜0.1の範囲で、測定温度30℃と70℃における巨視的な損失係数(tanδAll)の値はほぼ等しくなることが分かる。 As is clear from FIG. 4, when the aspect ratio (ω) of the SMP particles dispersed as the island component is 1.0 (that is, spherical), the entire composite resin combined with the SMP particles is macroscopic at 70 ° C. The loss factor (tan δ All ) hardly decreases. However, as the aspect ratio of the SMP particles is reduced, although the macroscopic loss factor at 70 ℃ (tanδ All) decreases, it is understood that the macroscopic loss factor at 30 ℃ (tanδ All) increases rapidly. Furthermore, it can be seen that when the aspect ratio (ω) of the SMP particles is in the range of 0.01 to 0.1, the macroscopic loss coefficient (tan δ All ) values at the measurement temperatures of 30 ° C. and 70 ° C. are substantially equal.

図6は、実験に使用したポリウレタン系形状記憶ポリマー(SMP)の粘弾性特性を示しており、該SMPのTSにおける剛性率(μ)は234(MPa)、損失係数(tanδ)は0.892、ポアソン比(ν)は0.46である。また、該SMPのTSよりも40℃低い温度では、剛性率(μ)は717(MPa)、損失係数(tanδ)は0.028、ポアソン比(ν)は0.38、TSよりも40℃高い温度における剛性率(μ)は5.5(MPa)、損失係数(tanδ)は0.123、ポアソン比(ν)は0.5である。従って、30℃における該SMP粒子の母材に対する剛性率比(μI/μM)は0.326(=234/717)、母材の損失係数(tanδM)は0.028、SMP粒子の損失係数(tanδI)は0.892となる。一方、70℃におけるSMP粒子の母材に対する剛性率比(μI/μM)は0.0235(=5.5/234)、母材の損失係数(tanδM)は0.892、SMP粒子の損失係数(tanδI)は0.123となる。 Figure 6 shows the viscoelastic properties of the experimental polyurethane shape memory polymer used in (SMP), rigidity in the T S of the SMP (mu) is 234 (MPa), loss factor (tan [delta) is zero. 892, Poisson's ratio (ν) is 0.46. Further, at a temperature 40 ° C. lower than T S of the SMP, the rigidity (μ) is 717 (MPa), the loss factor (tan δ) is 0.028, the Poisson's ratio (ν) is 0.38, and is lower than T S. The rigidity (μ) at a temperature higher by 40 ° C. is 5.5 (MPa), the loss factor (tan δ) is 0.123, and the Poisson's ratio (ν) is 0.5. Therefore, the rigidity ratio (μ I / μ M ) of the SMP particles to the base material at 30 ° C. is 0.326 (= 234/717), the loss factor (tan δ M ) of the base material is 0.028, The loss factor (tan δ I ) is 0.892. On the other hand, the rigidity ratio (μ I / μ M ) of SMP particles to the base material at 70 ° C. is 0.0235 (= 5.5 / 234), the loss factor (tan δ M ) of the base material is 0.892, and SMP particles The loss coefficient (tan δ I ) is 0.123.

そこで、SMP粒子のTSである30℃と母材のTSである70℃における母材とSMP粒子の損失係数を採用し、SMP粒子のアスペクト比(ω)と、該粒子の母材に対する剛性率比(μI/μM)を種々変化させたときの、高分子系複合材料としての巨視的な損失係数(tanδAll)と、母材に対する複合材料の剛性率比(μAll/μM)に与える影響を調べた。結果を図7〜9に示す。 Therefore, the loss coefficient of the base material and the SMP particles employed in the 70 ° C. is T S of 30 ° C. and the base material is a T S of SMP particles, the aspect ratio of the SMP particles (omega), for the particles of the base material Macroscopic loss factor (tan δ All ) as a polymer composite material when the rigidity ratio (μ I / μ M ) is changed variously, and the rigidity ratio of the composite material to the base material (μ All / μ The effect on M ) was investigated. The results are shown in FIGS.

これらの図において、SMP粒子のTSである30℃における母材の損失係数(tanδM)は0.01、ポアソン比(νM)は0.4、SMP粒子の損失係数(tanδI)は1.0、ポアソン比(νI)は0.45;母材のTsである70℃における母材の損失係数(tanδM)は1.0、ポアソン比(νM)は0.45、SMP粒子の損失係数(tanδI)は0.1、ポアソン比(νI)は0.50;SMP粒子の配合量(f)は50体積%である。また図7は、測定温度をSMP粒子のTSである30℃とした場合、図8,9は測定温度を母材のTSである70℃とした場合で、図9は図8のμI/μMが0〜0.1の範囲を拡大した図である。 In these figures, the loss factor (tan δ M ) of the base material at 30 ° C., which is T S of the SMP particles, is 0.01, the Poisson's ratio (ν M ) is 0.4, and the loss factor (tan δ I ) of the SMP particles is 1.0, Poisson's ratio (ν I ) is 0.45; loss factor (tan δ M ) of the base material at 70 ° C. which is Ts of the base material is 1.0, Poisson's ratio (ν M ) is 0.45, SMP The particle loss coefficient (tan δ I ) is 0.1, the Poisson's ratio (ν I ) is 0.50; the SMP particle content (f) is 50% by volume. FIG. 7 shows the case where the measurement temperature is 30 ° C. which is T S of the SMP particles, FIGS. 8 and 9 show the case where the measurement temperature is 70 ° C. which is T S of the base material, and FIG. It is the figure which expanded the range whose I / micro M is 0-0.1.

図7から、SMP粒子のTSである30℃では、該粒子のアスペクト比(ω)が0.1以下(即ち、logω≦−1)で、該粒子の母材に対する剛性率比(μI/μM)が0.3以下のとき、複合材料としての巨視的な損失係数(tanδAll)は0.5以上で、母材に対する複合材料の剛性率比(μAll/μM)は0.5以下となる。 From FIG. 7, at 30 ° C., which is the T S of the SMP particle, the aspect ratio (ω) of the particle is 0.1 or less (that is, log ω ≦ −1), and the rigidity ratio of the particle to the base material (μ I / Μ M ) is 0.3 or less, the macroscopic loss factor (tan δ All ) of the composite material is 0.5 or more, and the rigidity ratio (μ All / μ M ) of the composite material to the base material is 0. .5 or less.

また図8,9から、母材のTSである70℃では、SMP粒子のアスペクト比(ω)が0.01以上(即ち、logω≧−2)で、該SMP粒子の母材に対する剛性率比(μI/μM)が0.02以上のとき、複合材料としての巨視的な損失係数(tanδAll)は0.5以上で、母材に対する複合材料の剛性率比(μAll/μM)は0.05以上となる。 Also from Figure 8 and 9, at the 70 ° C. is T S of the base material, the aspect ratio of the SMP particles (omega) is 0.01 or more (i.e., log .OMEGA ≧ -2), modulus of rigidity against the base material of the SMP particles When the ratio (μ I / μ M ) is 0.02 or more, the macroscopic loss factor (tan δ All ) as the composite material is 0.5 or more, and the rigidity ratio of the composite material to the base material (μ All / μ M ) is 0.05 or more.

これらの結果からも、母材に対する島状樹脂粒子の剛性率比(μI/μM)を0.02から0.3の範囲に設定し、島状樹脂粒子のアスペクト比(ω)を0.01から0.1の範囲内の値に設定すれば、制振材料として使用する場合の複合樹脂として制振材料に求められる粘弾性特性の適正範囲を確保できることが分かる。 Also from these results, the rigidity ratio (μ I / μ M ) of the island-shaped resin particles relative to the base material is set in the range of 0.02 to 0.3, and the aspect ratio (ω) of the island-shaped resin particles is 0. It can be seen that by setting the value within the range of .01 to 0.1, an appropriate range of viscoelastic properties required for the damping material can be secured as a composite resin when used as a damping material.

更に図10は、上述した実験結果を生かし、前記図4によって確認された実験結果から導いた更なる改良として、広い温度域で安定して優れた損失係数を示す複合樹脂とした例を示す。すなわち図10の例は、TSが異なるSMP粒子でアスペクト比(ω)はいずれも0.01である5種類の樹脂粒子を併用し、それらをTSが70℃であるSMPからなる海状樹脂中に総含有量(f)で50体積%配合したもので、本例によれば、35℃から70℃の広い温度域に渡って損失係数(tanδAll)を平均的に高めることができる。 Further, FIG. 10 shows an example of a composite resin that exhibits the above-described experimental results and is a further improvement derived from the experimental results confirmed in FIG. That is, in the example of FIG. 10, five types of resin particles having an aspect ratio (ω) of 0.01 are used together with SMP particles having different T S , and these are used as a sea state composed of SMP having T S of 70 ° C. In the resin, 50% by volume of the total content (f) is blended. According to this example, the loss factor (tan δ All ) can be increased on the average over a wide temperature range from 35 ° C. to 70 ° C. .

上記図10の如く適正範囲のアスペクト比を有するものでTSの異なる複数種類の島状樹脂粒子を併用すれば、広い温度範囲で安定して優れた制振性能を示す制振材料が得られることを確認できる。 When combined different plural kinds of island-shaped resin particles T S in having an aspect ratio of the proper range as described above Figure 10, the damping material is obtained which exhibits stable and excellent damping performance over a wide temperature range I can confirm that.

なお以上は、拘束型制振材として用いる複合樹脂に求められる粘弾性特性についての検討結果について説明した。この場合、拘束型制振材として用いられる複合樹脂の厚さは非常に薄く、高々100μm程度である。即ち、複合樹脂のせん断弾性係数(剛性率)を(μ)、せん断変位を(d)、樹脂層厚さを(t)、複合樹脂と拘束金属板との接着面積を(A)とすると、樹脂層に作用するせん断力(F)とせん断変位(d)の関係は「F=μAd/t」で表わすことができ、複合樹脂厚さ(t)が小さくなるほど、せん断剛性を表わす「μA/t」は大きくなる。そのため、複合樹脂層は薄くてもよい反面、複合樹脂層に較べて相対的に厚肉である金属板の振動減衰を薄い樹脂層で賄わねばならないため、複合樹脂層には高い損失係数が求められる。   In the above, the examination result about the viscoelastic property calculated | required by the composite resin used as a restraint type damping material was demonstrated. In this case, the thickness of the composite resin used as the constrained vibration damping material is very thin, about 100 μm at most. That is, when the shear modulus (rigidity) of the composite resin is (μ), the shear displacement is (d), the resin layer thickness is (t), and the adhesion area between the composite resin and the constraining metal plate is (A), The relationship between the shear force (F) acting on the resin layer and the shear displacement (d) can be expressed by “F = μAd / t”. As the composite resin thickness (t) decreases, “μA / “t” increases. For this reason, the composite resin layer may be thin, but the thin resin layer must provide vibration attenuation for the metal plate that is relatively thick compared to the composite resin layer, so a high loss factor is required for the composite resin layer. It is done.

また複合樹脂層のせん断剛性が大き過ぎると、複合樹脂層はせん断変形せずに3層積層体が1枚板の様に変形するため、振動エネルギーの熱エネルギーへの変換がなされず、拘束型制振材全体としての損失係数は小さくなる。逆に複合樹脂層の剛性が小さ過ぎると、複合樹脂層の歪みよるエネルギー分担率が低下するため、やはり制振材全体としての損失係数は低下する。この様に、複合樹脂層のせん断弾性係数(剛性率)には最適範囲が存在する。即ち、拘束型制振材用として使用される複合樹脂の剛性率(μ)や損失係数(tanδ)には、拘束型制振材全体としての損失係数をより効果的に高めるための好適範囲があり、拘束金属板が鉄鋼やアルミニウム合金である場合の複合樹脂の好ましい剛性率(μ)は0.07〜20MPaで、好ましい損失係数(tanδ)は0.5〜3であることが判っており、こうした好適範囲に適合する複合樹脂のイメージは固形物と液状物の境界領域にある所謂「ネバネバ」状態の粘性物質を想定すればよい。   If the composite resin layer has too high shear rigidity, the composite resin layer does not undergo shear deformation, and the three-layer laminate is deformed like a single plate. The loss factor of the damping material as a whole is small. Conversely, if the rigidity of the composite resin layer is too small, the energy sharing ratio due to the distortion of the composite resin layer is lowered, so that the loss coefficient of the entire damping material is also lowered. Thus, there exists an optimum range for the shear elastic modulus (rigidity) of the composite resin layer. In other words, the rigidity (μ) and loss factor (tan δ) of the composite resin used for the constraining type damping material have a suitable range for more effectively increasing the loss factor of the constraining type damping material as a whole. It is known that the preferable rigidity (μ) of the composite resin when the constrained metal plate is steel or aluminum alloy is 0.07 to 20 MPa, and the preferable loss factor (tan δ) is 0.5 to 3. The image of the composite resin conforming to such a preferable range may be a so-called “sticky” viscous substance in the boundary region between the solid and the liquid.

次に、非拘束型制振材として用いる複合樹脂についての検討結果を述べる。   Next, the examination result about the composite resin used as an unrestrained type damping material is described.

非拘束型制振材とは、基材となる鋼板やアルミニウム合金板などの剛性板の片面もしくは両面に、制振樹脂などを接着(積層)した構造の制振材であり、代表例として片面のみに複合樹脂層を形成した2層型のものについて説明すると、次の通りとなる。   Unconstrained damping material is a damping material with a structure in which damping resin or the like is bonded (laminated) to one or both sides of a rigid plate such as a steel plate or aluminum alloy plate as a base material. The two-layer type in which the composite resin layer is formed only will be described as follows.

2層型複合制振材全体としての損失係数を複合損失係数と呼ぶこととし、この複合損失係数(tanδ)の制振樹脂単独の損失係数(tanδR)に対する比(tanδ/tanδR)と、基材に対する制振樹脂層の厚さ比(d2/d1)およびヤング率比(a=E2/E1)の間には図11に示す様な関係があり、基材に対する制振樹脂層の厚さ比(d2/d1)が40以下の領域では、ヤング率比(a)が大きいほど複合損失係数(tanδ)は大きくなる。従って、なるべく薄い制振樹脂層で2層型複合制振材としての複合損失係数を高めるには、ヤング率比(a)を大きく、即ち制振樹脂のヤング率(E2)を大きくすべきである。しかし一般的な高分子材料は、TS以上の温度域で剛性が急激に低下するので、これを考慮すると、複合樹脂系制振材料を構成する母材(マトリクス)のTSは使用温度範囲よりも高めに設定する必要がある。 The loss coefficient of the entire two-layer composite vibration damping material is referred to as a composite loss coefficient, and the ratio (tan δ / tan δ R ) of this composite loss coefficient (tan δ) to the loss coefficient (tan δ R ) of the damping resin alone, There is a relationship as shown in FIG. 11 between the thickness ratio (d 2 / d 1 ) and the Young's modulus ratio (a = E 2 / E 1 ) of the vibration-damping resin layer to the base material. In the region where the thickness ratio (d 2 / d 1 ) of the resin layer is 40 or less, the composite loss coefficient (tan δ) increases as the Young's modulus ratio (a) increases. Therefore, in order to increase the composite loss factor as a two-layer composite damping material with the thinest damping resin layer as much as possible, the Young's modulus ratio (a) should be increased, that is, the Young's modulus (E 2 ) of the damping resin should be increased. It is. However, since the rigidity of general polymer materials suddenly decreases in the temperature range above T S , considering this, T S of the base material (matrix) constituting the composite resin-based vibration damping material is the operating temperature range. It is necessary to set higher.

非拘束型制振材料として使用される制振樹脂材料の一般的な厚さは、基材厚さの1倍〜数倍程度であり、基材厚さを1mmとすると、制振樹脂層の厚さは1mm〜数mmとなる。   The general thickness of the damping resin material used as the unconstrained damping material is about 1 to several times the base material thickness. When the base material thickness is 1 mm, the damping resin layer The thickness is 1 mm to several mm.

例えば、非拘束型制振材料の基材に対する制振樹脂層の厚さ比(d2/d1)を1、基材をアルミニウム合金板(ヤング率E1=7×1010Pa)、制振樹脂をポリプロピレン(ヤング率E2=1×109Pa)とすると、図11より、ヤング率比(a=E2/E1)は約0.01(=10-2)となるので、制振樹脂単独の損失係数(tanδR)に対する非拘束型制振材料全体としての複合損失係数(tanδ)の比は約0.1となる。仮に使用温度を20℃と設定し、母材としてTSが20℃よりも十分に高いポリプロピレンを選択したとすると、その損失係数(tanδR)は約0.1であるから、複合損失係数は約0.01となり、一般に制振材として評価される最低限の損失係数である0.05以上の値を満たすものとはならない。しかし、基材に対する制振樹脂層の厚さ比(d2/d1)を3まで高めると、同図11に示す如く複合損失係数比は0.6に増加して複合損失係数は0.06まで高まり、実用レベルの制振性能を示すものとなる。 For example, the thickness ratio (d 2 / d 1 ) of the damping resin layer to the base material of the unconstrained damping material is 1, and the base material is an aluminum alloy plate (Young's modulus E 1 = 7 × 10 10 Pa). If the vibration resin is polypropylene (Young's modulus E 2 = 1 × 10 9 Pa), the Young's modulus ratio (a = E 2 / E 1 ) is about 0.01 (= 10 −2 ) from FIG. The ratio of the composite loss factor (tan δ) of the entire unconstrained damping material to the loss factor (tan δ R ) of the damping resin alone is about 0.1. If the operating temperature is set to 20 ° C. and a polypropylene whose T S is sufficiently higher than 20 ° C. is selected as the base material, its loss factor (tan δ R ) is about 0.1, so the composite loss factor is It is about 0.01 and does not satisfy the value of 0.05 or more which is the minimum loss coefficient generally evaluated as a vibration damping material. However, when the thickness ratio (d 2 / d 1 ) of the damping resin layer to the base material is increased to 3, the composite loss coefficient ratio increases to 0.6 as shown in FIG. It will increase to 06, and will show a vibration damping performance at a practical level.

こうした傾向の下に本発明では、非拘束型制振材料の制振樹脂設計において、マトリクスを構成する樹脂として相対的にTSの高い樹脂を選択し、該マトリクス樹脂中に、前述した拘束型制振材用の樹脂の場合と同様に、損失係数を高めるための手段としてTSの異なる樹脂粒子を島成分として分散させることにより、複合損失係数で0.1以上を示す優れた制振性能を発揮する制振用複合樹脂の開発をも意図する。 In the present invention under these trends, the damping resin design unconstrained vibration damping material, select the relatively high T S resin as the resin constituting the matrix, while the matrix resin, constrained described above as with the resin for damping material, by dispersing the island component a different resin particles T S as a means for increasing the loss factor, excellent damping performance shows 0.1 or more in the composite loss factor It is also intended to develop a composite resin for vibration control that exhibits

いま、使用温度を20℃と想定し、母材中に分散させる樹脂粒子のTsを20℃に設定すると共に、母材としてTsが20℃よりも十分に高いポリプロピレン(図21参照)を使用する場合を考える。樹脂粒子の分散により巨視的ヤング率は低下しないと仮定し、基材を鋼板またはアルミニウム板とすると、ヤング率比(E2/E1)は約5×10-3(=1×109/20×1011)〜1.4×10-2(=1×109/7×1010)となるから、基材に対する制振樹脂の厚さ比(d2/d1)が「1.0」であるとき、複合損失係数は制振樹脂の約0.05〜0.1倍となり、厚さ比(d2/d1)が「2.0」であるときには、複合損失係数は制振樹脂の約0.2〜0.4倍となる。従って、板厚比が「1.0」のときに複合損失係数を「0.1以上」とするには、制振用複合樹脂全体としての巨視的な損失係数(tanδAll)を約1〜2に設定し、板厚比が「2」のときには、制振用複合樹脂全体としての巨視的な損失係数(tanδAll)を約0.25〜0.5に設定する必要があることが分かる。 Now, assuming that the use temperature is 20 ° C., the Ts of the resin particles dispersed in the base material is set to 20 ° C., and polypropylene (see FIG. 21) whose Ts is sufficiently higher than 20 ° C. is used as the base material. Think about the case. Assuming that the macroscopic Young's modulus does not decrease due to the dispersion of the resin particles, and the base material is a steel plate or an aluminum plate, the Young's modulus ratio (E 2 / E 1 ) is about 5 × 10 −3 (= 1 × 10 9 / since the 20 × 10 11) ~1.4 × 10 -2 (= 1 × 10 9/7 × 10 10), the thickness ratio of damping resin to the base material (d 2 / d 1) is "1. When the thickness ratio (d 2 / d 1 ) is “2.0”, the composite loss factor is the damping factor. It is about 0.2 to 0.4 times that of the vibration resin. Therefore, in order to set the composite loss coefficient to “0.1 or more” when the plate thickness ratio is “1.0”, the macroscopic loss coefficient (tan δ All ) of the entire vibration-damping composite resin is about 1 to 1. When the thickness ratio is set to 2 and the plate thickness ratio is “2”, it is understood that the macroscopic loss coefficient (tan δ All ) of the entire vibration-damping composite resin needs to be set to about 0.25 to 0.5. .

そこで、アスペクト比(ω)が「0.01」,「0.1」,「1.0」である樹脂粒子を使用した場合について、樹脂粒子の損失係数(tanδI)を0〜5.0、該樹脂粒子の母材に対する剛性率比(μI/μM)を0.001から1000の範囲で変化させて、複合樹脂全体としての巨視的な損失係数(tanδAll)と母材に対する複合樹脂のヤング率比(EAll/EM)を求め、巨視的な損失係数(tanδAll)が0.25以上となる条件を検討した。 Therefore, when resin particles having an aspect ratio (ω) of “0.01”, “0.1”, “1.0” are used, the loss coefficient (tan δ I ) of the resin particles is set to 0 to 5.0. The rigidity ratio (μ I / μ M ) of the resin particles to the base material is changed in the range of 0.001 to 1000, and the macroscopic loss factor (tan δ All ) of the composite resin as a whole and the composite to the base material The Young's modulus ratio (E All / E M ) of the resin was obtained, and the conditions under which the macroscopic loss factor (tan δ All ) was 0.25 or more were examined.

制振用複合樹脂全体としての巨視的な損失係数(tanδAll)とヤング率比(EAll/EM)の関係を、島状粒子の体積含有率(fI)を0.3(30%)として求めた結果を図12(島状粒子のアスペクト比ωが0.01の場合)、図13(島状粒子のアスペクト比(ω)が0.1の場合)、図14(樹脂粒子のアスペクト比(ω)が1.0の場合)に示す。 The relationship between the macroscopic loss factor (tan δ All ) and the Young's modulus ratio (E All / E M ) of the vibration-damping composite resin as a whole, and the volume content (f I ) of the island-shaped particles being 0.3 (30% 12) (when the aspect ratio ω of the island-shaped particles is 0.01), FIG. 13 (when the aspect ratio (ω) of the island-shaped particles is 0.1), and FIG. 14 (of the resin particles). (When the aspect ratio (ω) is 1.0).

これらの図からも明らかな様に、樹脂粒子のアスペクト比(ω)が小さくなるにつれて複合樹脂全体としての巨視的な損失係数(tanδAll)の値は大きくなり、ω=0.01のときは樹脂粒子の損失係数(tanδI)が0.3以上、ω=0.1のときは樹脂粒子の損失係数(tanδI)が0.5以上、ω=1.0のときは樹脂粒子の損失係数(tanδI)が0.7以上で、それぞれ複合樹脂全体としての巨視的な損失係数(tanδAll)は0.25以上になることが分かる。 As is clear from these figures, as the aspect ratio (ω) of the resin particles decreases, the value of the macroscopic loss factor (tan δ All ) of the composite resin as a whole increases. When ω = 0.01, When the loss coefficient (tan δ I ) of the resin particles is 0.3 or more and ω = 0.1, the loss coefficient (tan δ I ) of the resin particles is 0.5 or more, and when ω = 1.0, the loss of the resin particles It can be seen that the coefficient (tan δ I ) is 0.7 or more, and the macroscopic loss coefficient (tan δ All ) of the composite resin as a whole is 0.25 or more.

この結果を受けて、樹脂粒子の損失係数(tanδI)を0.3または0.7に固定し、該樹脂粒子のアスペクト比(ω)を0.001〜1000(logω=−3〜3)の範囲で変化させ、同様に複合樹脂全体としての巨視的な損失係数(tanδAll)とヤング率比(EAll/EM)を求めた。 Based on this result, the loss coefficient (tan δ I ) of the resin particles is fixed to 0.3 or 0.7, and the aspect ratio (ω) of the resin particles is 0.001 to 1000 (log ω = −3 to 3). Similarly, the macroscopic loss coefficient (tan δ All ) and Young's modulus ratio (E All / E M ) of the composite resin as a whole were determined.

結果は図15,16に示す通りであり、樹脂粒子の損失係数(tanδI)が0.3の場合(図15)には、ωが0.01(logω=−2)以下で、剛性率比(μI/μM)が0.04以下のとき、また、樹脂粒子の損失係数(tanδI)が0.7の場合(図16)には、ωが1.0(logω=0)以下で剛性率比(μI/μM)が10以下のときに、複合樹脂全体としての巨視的な損失係数は0.25以上となるので、非拘束型制振材料全体としては、0.1以上の巨視的損失係数を板厚比(d2/d1)1〜2で達成できることが分かる(図11参照)。 The results are as shown in FIGS. 15 and 16, and when the loss coefficient (tan δ I ) of the resin particles is 0.3 (FIG. 15), ω is 0.01 (log ω = −2) or less, and the rigidity is When the ratio (μ I / μ M ) is 0.04 or less, and when the loss factor (tan δ I ) of the resin particles is 0.7 (FIG. 16), ω is 1.0 (log ω = 0) In the following, when the rigidity ratio (μ I / μ M ) is 10 or less, the macroscopic loss coefficient of the composite resin as a whole is 0.25 or more. It can be seen that a macroscopic loss factor of 1 or more can be achieved with a sheet thickness ratio (d 2 / d 1 ) of 1-2 (see FIG. 11).

但し、図15,16より、樹脂粒子の損失係数(tanδI)が0.3でも0.7の場合でも、剛性率比(μl/μM)が1以下でアスペクト比(ω)が1以下の樹脂粒子を分散させた場合は、母材に対する複合樹脂のヤング率比(EAll/EM)は1以下となるので、最初に設定した『樹脂粒子の分散により巨視的ヤング率が低下しないと仮定し、基材を鋼板またはアルミニウム板として、ヤング率比は5×10-3〜1.4×10-2』としたことが成立不能となる。 However, from FIGS. 15 and 16, even when the loss factor (tan δ I ) of the resin particles is 0.3 or 0.7, the rigidity ratio (μ l / μ M ) is 1 or less and the aspect ratio (ω) is 1. When the following resin particles are dispersed, the Young's modulus ratio (E All / E M ) of the composite resin with respect to the base material is 1 or less. It is assumed that the base material is a steel plate or an aluminum plate, and the Young's modulus ratio is 5 × 10 −3 to 1.4 × 10 −2 ”.

そこで、上記樹脂粒子を分散させた状態で、更に樹脂母材に対して10倍の剛性率を有する硬質粒子(例えば、ガラス、マイカ、水酸化アルミニウム、水酸化マグネシウム、シラスバルーン、カーボンブラック、フラーレン、カーボンナノチューブ、酸化チタン等のフィラー)を追加分散させた場合の、複合樹脂全体としての損失係数(tanδAll)と母材に対する複合樹脂全体としてのヤング率比(EAll/EM)を、硬質粒子のアスペクト比(ωII)を0.1、1.0および10.0に変えた場合について求めた。尚、上記フィラーは、複合樹脂を難燃化するための充填物を兼ねたものであってもよい。 Therefore, in the state where the resin particles are dispersed, hard particles (for example, glass, mica, aluminum hydroxide, magnesium hydroxide, shirasu balloon, carbon black, fullerene) having a tenfold rigidity relative to the resin base material. , Carbon nanotube, titanium oxide filler, etc.), the loss factor (tan δ All ) of the composite resin as a whole and the Young's modulus ratio (E All / E M ) of the composite resin as a whole to the base material It was determined when the aspect ratio (ω II ) of the hard particles was changed to 0.1, 1.0 and 10.0. The filler may also serve as a filler for making the composite resin flame-retardant.

結果は図17,18,19に示す通りであり、ωIIが1以下のときには、樹脂粒子の母材に対する剛性率比(μI/μM)が1以下でアスペクト比(ωI)が1.0以下の樹脂粒子を分散させた場合でも、複合樹脂全体としての損失係数(tanδAll)を損なうことなく母材に対する複合樹脂全体としてのヤング率比(EAll/EM)を1以上に設定できることが分かる。但し、硬質粒子のアスペクト比(ωII)が10まで上がると、上記ヤング率比(EAll/EM)は高まるものの、巨視的な損失係数(tanδAll)の値は最悪で約1/2程度まで低下する。 The results are as shown in FIGS. 17, 18, and 19. When ω II is 1 or less, the rigidity ratio (μ I / μ M ) of the resin particles to the base material is 1 or less and the aspect ratio (ω I ) is 1. Even when resin particles of 0.0 or less are dispersed, the Young's modulus ratio (E All / E M ) of the entire composite resin to the base material is set to 1 or more without losing the loss coefficient (tan δ All ) of the entire composite resin. You can see that it can be set. However, when the aspect ratio (ω II ) of the hard particles increases to 10, the Young's modulus ratio (E All / E M ) increases, but the macroscopic loss factor (tan δ All ) has a worst value of about 1/2. Decrease to a degree.

そこで、樹脂粒子のアスペクト比(ωI)を0.1、剛性率比(μI/μM)を0.2、損失係数(tanδI)を0.7に固定し、硬質粒子のアスペクト比(ωII)と、母材に対する剛性率比(μII/μM)を連続的に変化させて、複合樹脂全体としての損失係数(tanδAll)とヤング率比(EAll/EM)を求めたところ、図20の結果を得た。この図より、20℃で剛性率比(μII/μM)が7以上、硬質粒子のアスペクト比(ωII)を1以下とすれば、複合樹脂全体としての損失係数(tanδAll)を維持しつつ若しくは高めつつ、ヤング率比(EAll/EM)を1.0以上、すなわち巨視的ヤング率を母材と同等以上にまで増大できることが分かる。 Therefore, the aspect ratio (ω I ) of the resin particles is fixed to 0.1, the rigidity ratio (μ I / μ M ) is fixed to 0.2, and the loss factor (tan δ I ) is fixed to 0.7, and the aspect ratio of the hard particles is fixed. (Ω II ) and the rigidity ratio (μ II / μ M ) with respect to the base material are continuously changed, and the loss factor (tan δ All ) and Young's modulus ratio (E All / E M ) of the composite resin as a whole As a result, the result of FIG. 20 was obtained. From this figure, if the rigidity ratio (μ II / μ M ) is 7 or more and the aspect ratio (ω II ) of hard particles is 1 or less at 20 ° C., the loss factor (tan δ All ) of the composite resin as a whole is maintained. It can be seen that the Young's modulus ratio (E All / E M ) can be increased to 1.0 or more, that is, the macroscopic Young's modulus can be increased to be equal to or higher than that of the base material while increasing or decreasing.

次に、使用温度範囲を20〜80℃の範囲とする非拘束型制振材用の複合樹脂系制振材料の製造を考えた場合、例えば図21に示す如く、20〜80℃の温度域、100Hz〜5kHz[図中の右縦軸のlog(f)で2〜3.7]の周波数領域で、ヤング率が1GPaを超える比較的ヤング率の大きなポリプロピレンを母材として使用し、また図22,23に示す如く、この周波数領域におけるTsが20℃のポリエステル粒子(1)と同Tsが80℃のポリエステル粒子(2)の2種類を分散させて複合する場合を例にとって説明する。   Next, when considering the production of a composite resin damping material for an unconstrained damping material with a working temperature range of 20 to 80 ° C., for example, as shown in FIG. 21, a temperature range of 20 to 80 ° C. In the frequency range of 100 Hz to 5 kHz [log (f) of the right vertical axis in the figure is 2 to 3.7], a polypropylene having a relatively high Young's modulus exceeding 1 GPa is used as a base material. As shown in FIGS. 22 and 23, an example will be described in which two types of polyester particles (1) having a Ts of 20 ° C. in the frequency region and polyester particles (2) having a Ts of 80 ° C. are dispersed and combined.

図21〜23において、右側の縦軸は振動周波数(f)のlog値、左側の縦軸はヤング率Eと損失係数(tanδ)のlog値である。●点の連続によって現われる線は、各樹脂の温度による損失係数(tanδ)の変化を、また■点の連続によって現われる線は、各樹脂の温度によるヤング率(E)の変化を夫々示している。   21 to 23, the vertical axis on the right side is the log value of the vibration frequency (f), and the vertical axis on the left side is the log value of the Young's modulus E and the loss coefficient (tan δ). ● The line that appears due to the continuation of dots indicates the change in loss factor (tan δ) due to the temperature of each resin, and the line that appears due to the continuation of ■ points indicates the change in Young's modulus (E) due to the temperature of each resin. .

海成分(母材;マトリクス)として使用するポリプロピレンは、図21に示す如く20〜80℃の温度域、100Hz〜5kHz[図中の縦軸log(f)で2〜3.7]でヤング率(E)が1GPaを超える高い値を示すものであり、また島成分として用いるポリエステル粒子(1),(2)は、図22,23に示す如く、上記と同じ周波数域における中間的周波数である1000Hz[1kHz:縦軸のlog(f)=3]において、20℃または80℃で最大の損失係数を示す樹脂(すなわち、TSが20℃または80℃)である。 As shown in FIG. 21, the polypropylene used as the sea component (base material; matrix) has a temperature range of 20 to 80 ° C., 100 Hz to 5 kHz [2-3.7 on the vertical axis log (f) in the figure], and Young's modulus. (E) shows a high value exceeding 1 GPa, and the polyester particles (1) and (2) used as island components have intermediate frequencies in the same frequency range as described above, as shown in FIGS. Resin that exhibits the maximum loss factor at 20 ° C. or 80 ° C. at 1000 Hz [1 kHz: log (f) = 3 on the vertical axis] (ie, T S is 20 ° C. or 80 ° C.).

これら図21〜23の粘弾性曲線から、周波数が1kHz[1000Hz、即ちlog(f)値で3]の場合について、各樹脂の20℃および80℃におけるヤング率(E)、剛性率(μ)、損失係数(tanδ)を求めると、表1に示す通りとなる。なお、同表中に示したポアソン比(ν)は別の方法で求めた値である。なお剛性率は、ヤング率とポアソン比より[μ=E/{2(1+ν)}の関係から求めた。   From these viscoelastic curves of FIGS. 21 to 23, when the frequency is 1 kHz [1000 Hz, that is, the log (f) value is 3], Young's modulus (E) and rigidity modulus (μ) of each resin at 20 ° C. and 80 ° C. Then, the loss coefficient (tan δ) is obtained as shown in Table 1. The Poisson's ratio (ν) shown in the table is a value obtained by another method. The rigidity was determined from the relationship [μ = E / {2 (1 + ν)} from Young's modulus and Poisson's ratio.

Figure 0004915718
Figure 0004915718

そして、母材(マトリクス)を構成するポリプロピレン中に、樹脂粒子を構成するTSの異なる上記2種類のポリエステル粒子(1),(2)を各々30体積%分散させることとし、樹脂粒子のアスペクト比(ω)を変えた場合について、島成分として配合するポリエステル粒子(1),(2)のアスペクト比(ωI)、(ωII)が複合樹脂全体としての巨視的な損失係数(tanδAll)とヤング率比(EAll/EM)に与える影響を調べた。 Then, in the polypropylene constituting the base material (matrix), different T S above two polyester particles constituting the resin particles (1), and be dispersed respectively 30% by volume (2), the aspect of the resin particles When the ratio (ω) is changed, the aspect ratios (ω I ) and (ω II ) of the polyester particles (1) and (2) blended as island components are the macroscopic loss factor (tan δ All ) And Young's modulus ratio (E All / E M ).

表1より、温度が20℃のときの樹脂粒子(ポリエステル粒子)(1)、(2)の母材(ポリプロピレン)に対する剛性率比(μI/μM),(μII/μM)は0.1,1.0となり、また、温度が80℃であるときの同剛性率比(μI/μM),(μII/μM)は0.03,0.16となる。そこで、表1に示す剛性率比と損失係数の値に固定し、ポリエステル粒子(1),(2)のアスペクト比(ωI)、(ωII)を変えたときの、複合樹脂全体としての巨視的な損失係数(tanδAll)とヤング率比(EAll/EM)を求めたところ、図24,25に示す結果を得た。 From Table 1, the rigidity ratio (μ I / μ M ) and (μ II / μ M ) of the resin particles (polyester particles) (1) and (2) with respect to the base material (polypropylene) when the temperature is 20 ° C. The rigidity ratios (μ I / μ M ) and (μ II / μ M ) when the temperature is 80 ° C. are 0.03 and 0.16. Therefore, the composite resin as a whole when the aspect ratios (ω I ) and (ω II ) of the polyester particles (1) and (2) are changed are fixed to the values of the rigidity ratio and loss coefficient shown in Table 1. When the macroscopic loss coefficient (tan δ All ) and Young's modulus ratio (E All / E M ) were obtained, the results shown in FIGS. 24 and 25 were obtained.

図24からも明らかな様に、20℃ではポリエステル粒子(2)の剛性率と損失係数は母材とほぼ同じであるため、該粒子(2)のアスペクト比(ωII)の影響はなく、粒子(1)のアスペクト比(ωI)が0.6以下で損失係数(tanδAll)は0.25以上となる。また図25からも明らかな様に、80℃ではポリエステル粒子(2)のアスペクト比(ωII)が約1以下のとき、損失係数(tanδAll)は0.25以上となる。即ち、ポリエステル粒子(1),(2)のアスペクト比(ωI)、(ωII)を各々1以下とすれば、損失係数(tanδAll)は0.25以上となり、非拘束型制振材料全体としては0.1以上の損失係数を板厚比(d2/d1)1〜2で達成できることが分かる。 As is clear from FIG. 24, at 20 ° C., the rigidity and loss factor of the polyester particles (2) are almost the same as those of the base material, so there is no influence of the aspect ratio (ω II ) of the particles (2). When the aspect ratio (ω I ) of the particles (1) is 0.6 or less, the loss factor (tan δ All ) is 0.25 or more. As is clear from FIG. 25, when the aspect ratio (ω II ) of the polyester particles (2) is about 1 or less at 80 ° C., the loss coefficient (tan δ All ) is 0.25 or more. That is, if the aspect ratios (ω I ) and (ω II ) of the polyester particles (1) and (2) are each 1 or less, the loss coefficient (tan δ All ) is 0.25 or more, and the unconstrained vibration damping material As a whole, it can be seen that a loss factor of 0.1 or more can be achieved with a plate thickness ratio (d 2 / d 1 ) of 1-2.

ところが、ヤング率比(EAll/EM)は最低で0.35まで低下する。すなわち巨視的ヤング率が母材の35%に低下してしまうので、前記図15,16の場合と同様、最初に設定した『樹脂粒子の分散により巨視的ヤング率が低下しないと仮定し、基材を鋼板またはアルミニウム板として、ヤング率比は5×10-3〜1.4×10-2』としたことが成立不能となる。 However, the Young's modulus ratio (E All / E M ) decreases to a minimum of 0.35. That is, since the macroscopic Young's modulus is reduced to 35% of the base material, it is assumed that the macroscopic Young's modulus does not decrease due to the dispersion of the resin particles. If the material is a steel plate or an aluminum plate, the Young's modulus ratio is 5 × 10 −3 to 1.4 × 10 −2 ”.

そこで、ポリエステル粒子(1),(2)を分散させた状態で、更に母材の10倍の剛性率を有する前述した様な硬質粒子(3)を追加分散させた場合の、複合樹脂全体としての損失係数(tanδAll)とヤング率比(EAll/EM)を、硬質粒子(3)のアスペクト比(ωIII)を0.1,1.0および10.0に変えた場合について夫々求めたところ、図26〜31の結果を得た。 Therefore, in the state where the polyester particles (1) and (2) are dispersed, the hard resin (3) as described above, which has a ten times higher rigidity than the base material, is additionally dispersed as a whole composite resin. Loss coefficient (tan δ All ) and Young's modulus ratio (E All / E M ), and the aspect ratio (ω III ) of the hard particles (3) were changed to 0.1, 1.0 and 10.0, respectively. As a result, the results of FIGS. 26 to 31 were obtained.

これらの図からも明らかな様に、硬質粒子(3)のアスペクト比(ωIII)が「0.1」のときは、硬質粒子(3)を分散させない場合に較べて、複合樹脂全体の損失係数(tanδAll)は2倍程度に増大すると共に、ヤング率比(EAll/EM)も約0.85まで増大し、また硬質粒子(3)のアスペクト比(ωIII)が「1.0」のときは、硬質粒子(3)を分散させない場合の複合樹脂全体の損失係数(tanδAll)を維持しつつ、ヤング率比(EAll/EM)は約0.75まで増大することが分かる。但し、該硬質粒子(3)のアスペクト比(ωIII)が「10.0」になると、硬質粒子(3)を分散させない場合のヤング率比(EAll/EM)は約1.2以上に増大するが、複合樹脂全体の損失係数(tanδAll)は最悪で1/2程度まで低下する。 As is apparent from these figures, when the aspect ratio (ω III ) of the hard particles (3) is “0.1”, the loss of the entire composite resin is less than when the hard particles (3) are not dispersed. The coefficient (tan δ All ) increases about twice, the Young's modulus ratio (E All / E M ) also increases to about 0.85, and the aspect ratio (ω III ) of the hard particles (3) is “1. When “0”, the Young's modulus ratio (E All / E M ) increases to about 0.75 while maintaining the loss factor (tan δ All ) of the entire composite resin when the hard particles (3) are not dispersed. I understand. However, when the aspect ratio (ω III ) of the hard particles (3) is “10.0”, the Young's modulus ratio (E All / E M ) when the hard particles (3) are not dispersed is about 1.2 or more. However, the loss factor (tan δ All ) of the composite resin as a whole decreases to about ½ at worst.

そこで、樹脂粒子(1),(2)のアスペクト比(ωI),(ωII)をそれぞれ「0.1」に固定し、硬質粒子(3)のアスペクト比(ωIII)と母材に対する剛性率比(μIII/μM)を変化させて、複合樹脂全体としての損失係数(tanδAll)とヤング率比(EAll/EM)を調べたところ、図32,33に示す結果となった。この図からも明らかな様に、20℃および80℃で剛性率比(μIII/μM)が7以上で、アスペクト比(ωIII)が1以下の硬質粒子を複合すると、複合樹脂全体としての損失係数(tanδAll)を維持または増大しつつ、ヤング率比(EAll/EM)を1.0以上とし、巨視的ヤング率を母材と同等以上にまで高めることができることが分かる。 Therefore, the aspect ratios (ω I ) and (ω II ) of the resin particles (1) and (2) are fixed to “0.1”, respectively, and the aspect ratio (ω III ) of the hard particles (3) and the base material When the rigidity ratio (μ III / μ M ) was changed and the loss factor (tan δ All ) and Young's modulus ratio (E All / E M ) of the composite resin as a whole were examined, the results shown in FIGS. became. As is apparent from this figure, when hard particles having a rigidity ratio (μ III / μ M ) of 7 or more and an aspect ratio (ω III ) of 1 or less at 20 ° C. and 80 ° C. are combined, the composite resin as a whole It can be seen that the Young's modulus ratio (E All / E M ) can be set to 1.0 or more and the macroscopic Young's modulus can be increased to be equal to or higher than that of the base material while maintaining or increasing the loss coefficient (tan δ All ).

以上の結果から、本発明を非拘束型制振材用の複合樹脂として実用化する際には、島成分としてアスペクト比(ω)が1以下である樹脂粒子の2種以上を併用し、好ましくは更に、母材に対する剛性率比が7以上で且つアスペクト比が1.0以下である硬質粒子を好ましくは30体積%程度以上併用することによって、複合樹脂全体として十分なヤング率を確保しつつ高い損失係数(tanδAll)を有する複合樹脂制振材料を得ることができる。 From the above results, when the present invention is put into practical use as a composite resin for an unconstrained damping material, two or more kinds of resin particles having an aspect ratio (ω) of 1 or less are used in combination as an island component. Furthermore, by using hard particles having a rigidity ratio to the base material of 7 or more and an aspect ratio of 1.0 or less, preferably about 30% by volume or more, while ensuring a sufficient Young's modulus as a whole composite resin A composite resin damping material having a high loss factor (tan δ All ) can be obtained.

なお上記では、非拘束型制振材用としてTSの異なる2種のポリエステル粒子を樹脂粒子として併用した場合を説明したが、前記図10で拘束型制振材用の例として説明したのと同様に非拘束型の場合でも、TSの異なる3種以上の樹脂粒子を併用することで、非拘束型としても一層安定した損失係数を示す複合樹脂を得ることができる。 Note in the above, and to it the unconstrained damping material two polyesters particles having different T S as a has been described when used in combination as the resin particles has been described as an example for the constrained damping material in FIG. 10 Similarly, even if the unconstrained, by a combination of three or more kinds of resin particles having different T S, it is possible to obtain a composite resin exhibiting a more stable loss factor as unconstrained.

また上記説明では、制振樹脂材料と組み合わせる金属板として鋼板またはアルミニウム合金板を使用したが、金属板の種類はもとよりこれらに限定される訳ではなく、例えばステンレス鋼など他の鉄基合金板やTi合金板など他の非鉄金属板、或いはそれらに各種の表面被覆処理やめっき処理等を施した種々の表面処理金属板、更にはエンジニアリングプラスチック等の様な硬質樹脂板などを使用することができる。   In the above description, a steel plate or an aluminum alloy plate is used as the metal plate to be combined with the vibration-damping resin material. However, the type of the metal plate is not limited to these, and other iron-based alloy plates such as stainless steel, Other non-ferrous metal plates such as Ti alloy plates, various surface-treated metal plates obtained by applying various surface coating treatments and plating treatments to them, and hard resin plates such as engineering plastics can be used. .

また制振樹脂材料としては、拘束型制振材として使用する場合は、相対的に剛性が低くて粘弾性に優れたポリウレタン系樹脂が最適であり、また非拘束型制振材用として使用する場合は、相対的に剛性の高いポリオレフィン系樹脂、より具体的には海成分を構成する母材樹脂としてはポリプロピレンが、また島成分を構成する楕円体状粒子としてはポリエステルやポリイソブチレンが好ましい代表例であるが、勿論これに制限される理由はなく、前述した好適粘弾性特性を有するものであれば、ポリオレフィン系樹脂、シリコーン系樹脂、ポリアミド系樹脂、アクリレート系樹脂、クロロプレンやブタジエンなどの合成ゴム等、或いは更にそれらをエポキシ樹脂などで変性を加えた各種変性樹脂やブレンド樹脂などが任意に選択して使用できる。   In addition, as a damping resin material, when used as a restraint type damping material, a polyurethane resin having relatively low rigidity and excellent viscoelasticity is optimal, and it is also used for an unconstrained damping material. In this case, a polyolefin resin having a relatively high rigidity, more specifically, polypropylene is preferable as the base material resin constituting the sea component, and polyester or polyisobutylene is preferable as the ellipsoidal particles constituting the island component. This is an example, but of course there is no reason to limit this, and if it has the above-mentioned suitable viscoelastic properties, synthesis of polyolefin resin, silicone resin, polyamide resin, acrylate resin, chloroprene, butadiene, etc. Rubber, etc., or various modified resins and blended resins that are modified with epoxy resin, etc., can be arbitrarily selected and used. .

また、海状樹脂と島状樹脂の組み合わせも自由であり、前記図示例で示した様に、同種でTsの異なる樹脂の組合せは勿論のこと、異なる2種以上の樹脂を任意に組み合わせて海状樹脂および/または島状樹脂として併用することができる。   In addition, the combination of the sea-like resin and the island-like resin is also free, and as shown in the above-described example of the drawing, not only the combination of the same type and different Ts but also the combination of two or more different types of resins can be used. It can be used in combination as a resin and / or an island resin.

また、島状樹脂粒子としてのアスペクト比の調整は、制振樹脂材料として複合化する際に混入する樹脂粒子としてアスペクト比を予め調整した楕円体状粒子を使用してもよいが、実用化する上でより好ましいのは、海状樹脂中に略球状の島状樹脂粒子を配合した複合樹脂を使用し、これを押出・延伸機などに通して金属板間にサンドイッチ状に挟み込み、或いはその片面もしくは両面に貼り合せるのに先立って、押出機の出口に設けられたダイの寸法や、延伸装置の送り速度、延伸もしくは圧下倍率などを調整し、或いは押出・成形機に付設された予熱ロールの表面温度などを調整することにより、ダイ出口から押出機出口までの厚み減少率を、拘束型の場合は0.01〜1.0、より好ましくは0.01〜0.1の範囲内に制御し、非拘束型の場合は1.0以下、より好ましくは0.01〜0.1の範囲内に制御し、それにより複合樹脂層内の島状樹脂粒子を圧下方向に押し潰すことによって、島成分を構成する樹脂粒子を適正範囲のアスペクト比を有する楕円体状粒子に調整する方法である。   In addition, the adjustment of the aspect ratio as the island-shaped resin particles may be performed by using ellipsoidal particles whose aspect ratio has been adjusted in advance as the resin particles to be mixed when composited as the damping resin material. More preferably, a composite resin in which substantially spherical island-shaped resin particles are blended in a sea-like resin is used, and this is sandwiched between metal plates through an extrusion / stretching machine, or one side thereof. Or, before bonding to both sides, adjust the dimensions of the die provided at the exit of the extruder, the feeding speed of the stretching device, the stretching or reduction ratio, etc., or the preheating roll attached to the extruder / molding machine. By adjusting the surface temperature and the like, the thickness reduction rate from the die outlet to the extruder outlet is controlled within the range of 0.01 to 1.0, more preferably 0.01 to 0.1 in the case of the restraint type. And unconstrained In the case of 1.0, more preferably in the range of 0.01 to 0.1, thereby forming the island component by crushing the island-shaped resin particles in the composite resin layer in the rolling direction. In this method, resin particles are adjusted to ellipsoidal particles having an aspect ratio in an appropriate range.

このとき、複合樹脂中の前記母材の剛性率(μM)に対する島状樹脂粒子の剛性率(μI)の比(μI/μM)を、拘束型の場合は「0.02〜0.3」の範囲に、また非拘束型の場合は「1以下」、より好ましくは「0.01〜1.0」の範囲にしておけば、複合樹脂シートを圧下する際の圧下力を島状樹脂粒子に集中させることができ、元々の島状樹脂粒子が略球形のものであっても圧下率を調整することで好適アスペクト比を有する楕円体状粒子に簡単に変えることができるので好ましい。 At this time, the ratio (μ I / μ M ) of the rigidity (μ I ) of the island-shaped resin particles to the rigidity (μ M ) of the base material in the composite resin, In the range of 0.3, and in the case of the unconstrained type, it is “1 or less”, more preferably in the range of “0.01 to 1.0”. It can be concentrated on the island-shaped resin particles, and even if the original island-shaped resin particles are substantially spherical, it can be easily changed to ellipsoidal particles having a suitable aspect ratio by adjusting the rolling reduction ratio. preferable.

このとき、好ましくは2軸延伸法を採用し、母材(マトリクス樹脂)が縦方向および横方向に引き伸ばされるのに追従して、島状成分が平板状に引き伸ばされる様にするのがよい。なお2軸延伸法としては、同時2軸延伸、逐次2軸延伸のどちらを採用しても構わない。勿論、金属板間にサンドイッチ状に挟み込み、或いはその片面もしくは両面に貼り合わせた後で、加熱、圧延などの方法で樹脂粒子のアスペクト比を低下させてもよい。   At this time, it is preferable to employ a biaxial stretching method so that the island-shaped component is stretched in a flat plate shape following the stretching of the base material (matrix resin) in the longitudinal direction and the lateral direction. As the biaxial stretching method, either simultaneous biaxial stretching or sequential biaxial stretching may be employed. Of course, the aspect ratio of the resin particles may be lowered by a method such as heating or rolling after sandwiching the metal plates in a sandwich shape or bonding them to one or both surfaces thereof.

また母材を構成する海状樹脂と島成分を構成する樹脂粒子の海・島構造相分離の形成を促進する上では、海状樹脂と島状粒子の溶解度パラメータ(SP値)の差を1[MPa]0.5以上とするのがよい。 Further, in order to promote the formation of sea / island structure phase separation between the sea-like resin constituting the base material and the resin particles constituting the island component, the difference in solubility parameter (SP value) between the sea-like resin and the island-like particles is 1 [MPa] It is good to set it as 0.5 or more.

樹脂母材中に球状の樹脂粒子を30体積%配合した複合樹脂を用いた拘束型制振材において、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子の損失係数が複合樹脂全体としての巨視的な損失係数および剛性率比に与える影響を示すグラフである。In a constrained vibration damping material using a composite resin in which spherical resin particles are blended in 30% by volume in a resin base material, the rigidity ratio of the island resin particles to the sea resin and the loss factor of the island resin particles are composite resin. It is a graph which shows the influence which acts on the macroscopic loss factor and rigidity ratio as a whole. 樹脂母材中に球状の樹脂粒子30体積%と球状の気泡30体積%を含有させた複合樹脂を用いた拘束型制振材において、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子の損失係数が複合樹脂全体としての巨視的な損失係数および剛性率比に与える影響を示すグラフである。In a constrained vibration damping material using a composite resin in which 30% by volume of spherical resin particles and 30% by volume of spherical bubbles are contained in a resin base material, the rigidity ratio of island-shaped resin particles to island-shaped resin and the island shape It is a graph which shows the influence which the loss coefficient of a resin particle has on the macroscopic loss coefficient and rigidity ratio as the whole composite resin. 海状樹脂を単独で使用した場合と、これに1種およびTSの異なる4種の球状の島状樹脂粒子を併用した複合樹脂の温度と巨視的な損失係数の関係を示すグラフである。In the case of using the Umijo resin alone is a graph showing one and T S of four different spherical island composite resin of the resin particles in combination of temperature and the relationship between macroscopic loss factor thereto. アスペクト比の異なる数種類の島状樹脂50体積%を海状樹脂と併用した複合樹脂の温度と巨視的な損失係数の関係を示すグラフである。It is a graph which shows the relationship between the temperature and macroscopic loss factor of the composite resin which used 50 volume% of several island-like resin from which an aspect ratio differs together with sea-like resin. 本発明で規定する楕円体状粒子のアスペクト比の算出法を示す説明図である。It is explanatory drawing which shows the calculation method of the aspect-ratio of the ellipsoidal particle | grains prescribed | regulated by this invention. ポリウレタン系形状記憶ポリマーの粘弾性特性を示す図である。It is a figure which shows the viscoelastic characteristic of a polyurethane-type shape memory polymer. 拘束型制振材料の複合樹脂において、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子のアスペクト比が、複合樹脂全体としての温度30℃での巨視的な損失係数および剛性率比に与える影響を示す図である。In the composite resin of the constrained vibration damping material, the ratio of the rigidity of the island-shaped resin particles to the sea-shaped resin and the aspect ratio of the island-shaped resin particles are the macroscopic loss factor and rigidity at the temperature of 30 ° C. It is a figure which shows the influence which acts on ratio. 拘束型制振材料の複合樹脂において、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子のアスペクト比が、複合樹脂全体としての温度70℃での巨視的な損失係数および剛性率比に与える影響を示す図である。In the composite resin of the constrained vibration damping material, the ratio of the rigidity of the island-shaped resin particles to the sea-state resin and the aspect ratio of the island-shaped resin particles are the macroscopic loss factor and rigidity at the temperature of 70 ° C. It is a figure which shows the influence which acts on ratio. 図8における剛性率比が0〜0.1の範囲を拡大して示す図である。It is a figure which expands and shows the range whose rigidity ratio in FIG. 8 is 0-0.1. 海状樹脂を単独で使用した場合と、これにアスペクト比が0.01でTSの異なる5種の島状樹脂粒子を併用した複合樹脂の温度と巨視的な損失係数の関係を示すグラフである。A graph showing the relationship between the macroscopic loss factor and the temperature of a composite resin in which five kinds of island-shaped resin particles having an aspect ratio of 0.01 and different T S are used in combination with a sea-state resin alone. is there. 非拘束型制振材について、基材板に対する制振樹脂のヤング率比をパラメータとし、制振樹脂/基材板厚比と、巨視的損失係数/制振樹脂損失係数比の関係を示すグラフである。Graph showing the relationship between damping resin / base plate thickness ratio and macroscopic loss coefficient / damping resin loss coefficient ratio, using the Young's modulus ratio of the damping resin relative to the base plate as a parameter for the unconstrained damping material It is. 非拘束型制振材料として用いる複合樹脂において、粒子のアスペクト比が0.01の島状樹脂を使用した場合の、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子の損失係数が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as an unconstrained damping material, when the island-shaped resin having an aspect ratio of 0.01 is used, the rigidity ratio of the island-shaped resin particles to the sea-shaped resin and the loss factor of the island-shaped resin particles These are figures which show the influence which it has on the macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 非拘束型制振材料として用いる複合樹脂において、アスペクト比が0.1の島状樹脂を使用した場合の、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子の損失係数が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the island resin having an aspect ratio of 0.1 is used, the rigidity ratio of the island resin particles to the sea resin and the loss coefficient of the island resin particles are It is a figure which shows the influence which it has on the macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 非拘束型制振材料として用いる複合樹脂において、アスペクト比が1.0の島状樹脂を使用した場合の、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子の損失係数が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the island resin having an aspect ratio of 1.0 is used, the rigidity ratio of the island resin particles to the sea resin and the loss coefficient of the island resin particles are as follows: It is a figure which shows the influence which it has on the macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 非拘束型制振材料として用いる複合樹脂において、損失係数(tanδI)が0.3の島状樹脂を使用した場合の、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子のアスペクト比(ω)が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the island-shaped resin having a loss factor (tan δ I ) of 0.3 is used, the ratio of the rigidity of the island-shaped resin particles to the sea-shaped resin and the ratio of the island-shaped resin particles It is a figure which shows the influence which aspect-ratio ((omega)) has on the macroscopic loss factor and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 非拘束型制振材料として用いる複合樹脂において、損失係数(tanδI)が0.7の島状樹脂を使用した場合の、海状樹脂に対する島状樹脂粒子の剛性率比と島状樹脂粒子のアスペクト比(ω)が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the island-shaped resin having a loss factor (tan δ I ) of 0.7 is used, the rigidity ratio of the island-shaped resin particles to the sea-shaped resin and the island-shaped resin particles It is a figure which shows the influence which aspect-ratio ((omega)) has on the macroscopic loss factor and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 非拘束型制振材料として用いる複合樹脂において、損失係数が0.7の樹脂粒子と同損失係数が0.0で、アスペクト比(ωII)が0.1である硬質粒子を母材樹脂と複合した場合の、母材樹脂に対する樹脂粒子の剛性率比と該樹脂粒子のアスペクト比(ωI)が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In a composite resin used as an unconstrained vibration damping material, hard particles having a loss factor of 0.0 and an aspect ratio (ω II ) of 0.1 are used as a base resin. Effect of the rigidity ratio of the resin particles to the base resin and the aspect ratio (ω I ) of the resin particles on the macroscopic loss coefficient and Young's modulus ratio at a temperature of 20 ° C. as a whole of the composite resin when combined. FIG. 非拘束型制振材料として用いる複合樹脂において、損失係数が0.7の樹脂粒子と同損失係数が0.0で、アスペクト比(ωII)が1.0である硬質粒子を母材樹脂と複合した場合の、母材樹脂に対する樹脂粒子の剛性率比と該樹脂粒子のアスペクト比(ωI)が、複合樹脂全体としての温度20℃での損失係数およびヤング率比に与える影響を示す図である。In a composite resin used as an unconstrained vibration damping material, hard particles having a loss factor of 0.0 and an aspect ratio (ω II ) of 1.0 are used as a base resin. The figure which shows the influence which the rigidity modulus ratio of the resin particle with respect to base material resin and the aspect ratio ((omega) I ) of this resin particle have on the loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin at the time of compounding It is. 非拘束型制振材料として用いる複合樹脂において、損失係数が0.7の樹脂粒子と同損失係数が0.0で、アスペクト比(ωII)が10.0である硬質粒子を母材樹脂と複合した場合の、母材樹脂に対する樹脂粒子の剛性率比と該樹脂粒子のアスペクト比(ωI)が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In a composite resin used as an unconstrained damping material, hard particles having a loss factor of 0.0 and an aspect ratio (ω II ) of 0.0 are the same as resin particles having a loss factor of 0.7 and a base resin. Effect of the rigidity ratio of the resin particles to the base resin and the aspect ratio (ω I ) of the resin particles on the macroscopic loss coefficient and Young's modulus ratio at a temperature of 20 ° C. as a whole of the composite resin when combined. FIG. 非拘束型制振材料として用いる複合樹脂において、損失係数が0.7の樹脂粒子と同損失係数が0.0である硬質粒子を母材樹脂と複合した場合の、母材樹脂に対する硬質粒子の剛性率比と該硬質粒子のアスペクト比(ωII)が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, the hard particles with respect to the base resin when the hard particles having the loss coefficient of 0.0 and the hard particles having the loss coefficient of 0.0 are combined with the base resin It is a figure which shows the influence which rigidity ratio and the aspect ratio ((omega) II ) of this hard particle have on the macroscopic loss factor and Young's modulus ratio in the temperature of 20 degreeC as the whole composite resin. 母材として使用するポリプロピレンの温度と周波数による粘弾性特性を示す図である。It is a figure which shows the viscoelastic property by the temperature and frequency of the polypropylene used as a base material. 島成分として用いるポリエステル粒子(1)の温度と周波数による粘弾性特性を示す図である。It is a figure which shows the viscoelastic characteristic by the temperature and frequency of the polyester particle (1) used as an island component. 島成分として用いるポリエステル粒子(2)の温度と周波数による粘弾性特性を示す図である。It is a figure which shows the viscoelastic characteristic by the temperature and frequency of the polyester particle (2) used as an island component. 非拘束型制振材料として用いる複合樹脂において、島状樹脂として2種類の樹脂粒子を複合添加した場合に、夫々の樹脂粒子のアスペクト比が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In a composite resin used as an unconstrained damping material, when two types of resin particles are added in combination as an island-shaped resin, the aspect ratio of each resin particle is macroscopic at a temperature of 20 ° C. as a whole composite resin. It is a figure which shows the influence which it has on a loss coefficient and a Young's modulus ratio. 非拘束型制振材料として用いる複合樹脂において、島状樹脂として2種類の樹脂粒子を複合添加した場合に、夫々の樹脂粒子のアスペクト比が、複合樹脂全体としての温度80℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In a composite resin used as an unconstrained damping material, when two types of resin particles are added in combination as an island-shaped resin, the aspect ratio of each resin particle is macroscopic at a temperature of 80 ° C. for the entire composite resin. It is a figure which shows the influence which it has on a loss coefficient and a Young's modulus ratio. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が0.1の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 0.1 are additionally dispersed in addition to the two types of resin particles, the aspect ratio of the two types of resin particles is It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が0.1の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度80℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 0.1 are additionally dispersed in addition to the two types of resin particles, the aspect ratio of the two types of resin particles is It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 80 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が0.1の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 0.1 are additionally dispersed in addition to the two types of resin particles, the aspect ratio of the two types of resin particles is It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が1.0の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度80℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 1.0 are additionally dispersed in addition to the two types of resin particles, the aspect ratio of the two types of resin particles is It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 80 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が1.0の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 1.0 are additionally dispersed in addition to the two types of resin particles, the aspect ratio of the two types of resin particles is It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が10.0の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度80℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 10.0 are additionally dispersed in addition to the two types of resin particles, the aspect ratios of the two types of resin particles are It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 80 degreeC as. 非拘束型制振材料として用いる複合樹脂において、2種の樹脂粒子に加えてアスペクト比が10.0の硬質粒子を追加分散したときに、2種の樹脂粒子の各アスペクト比が、複合樹脂全体としての温度20℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as the unconstrained vibration damping material, when the hard particles having an aspect ratio of 10.0 are additionally dispersed in addition to the two types of resin particles, the aspect ratios of the two types of resin particles are It is a figure which shows the influence which it has on macroscopic loss coefficient and Young's modulus ratio in the temperature of 20 degreeC as. 非拘束型制振材料として用いる複合樹脂において、アスペクト比が何れも0.1である2種の樹脂粒子に加えて、アスペクト比の異なる硬質粒子を追加分散したときに、母材に対する硬質粒子の剛性率比と該硬質粒子のアスペクト比が、複合樹脂全体としての温度80℃での巨視的な損失係数およびヤング率比に与える影響を示す図である。In the composite resin used as an unconstrained vibration damping material, when hard particles having different aspect ratios are additionally dispersed in addition to two types of resin particles each having an aspect ratio of 0.1, It is a figure which shows the influence which a rigidity factor ratio and the aspect ratio of this hard particle have on the macroscopic loss coefficient and Young's modulus ratio in the temperature of 80 degreeC as the whole composite resin.

Claims (7)

高分子材からなる母材中に、該母材の1000Hzでの損失係数が最大となる温度よりも低い温度で1000Hzでの損失係数が最大となる高分子材からなる楕円体状粒子であって、該粒子の形状を回転楕円体と仮定した時の回転半径方向長さに対する回転軸方向長さの比率(アスペクト比;ω)が0.01〜0.1の範囲内である楕円体状粒子が島状に分散しており、かつ、前記母材のせん断弾性係数(剛性率)(μ M )に対する前記楕円体状粒子のせん断弾性係数(剛性率)(μ I )の比(μ I /μ M )が0.02〜0.3の範囲内であることを特徴とする拘束型制振材用の制振材料。 In a base material made of a polymer material , an ellipsoidal particle made of a polymer material having a maximum loss coefficient at 1000 Hz at a temperature lower than the temperature at which the loss coefficient at 1000 Hz of the base material is maximum. The ratio of the length in the rotation axis direction to the length in the rotation axis direction when the particle shape is assumed to be a spheroid (aspect ratio; ω) is in the range of 0.01 to 0.1. Are dispersed in islands , and the ratio of the shear elastic modulus (rigidity) (μ I ) of the ellipsoidal particles to the shear elastic modulus (rigidity ) (μ M ) of the base material I / μ M ) is in the range of 0.02 to 0.3, a damping material for a constrained damping material. 前記楕円体状粒子として、1000Hzでの損失係数が最大となる温度の異なる複数の粒子が分散している請求項記載の拘束型制振材用の制振材料。 Examples ellipsoidal particles, damping material for constraining vibration damping material according to claim 1, wherein the plurality of different particle-temperature loss factor at 1000Hz is maximized are dispersed. 記母材と前記楕円体状粒子の素材が、ポリウレタン系の形状記憶高分子材である請求項1または2に記載の拘束型制振材用の制振材料。 Material before Symbol preform and the ellipsoidal particles, damping material for constraining vibration damping material according to claim 1 or 2 is a shape memory polymer material polyurethane. 前記請求項1〜3のいずれかに記載された制振材料を製造する方法であって、母材中に、該母材の1000Hzでの損失係数が最大となる温度よりも低い温度で1000Hzでの損失係数が最大となる高分子材からなり、前記母材のせん断弾性係数(剛性率)(μ M )に対する前記高分子材のせん断弾性係数(剛性率)(μ I )の比(μ I /μ M )が0.02〜0.3の範囲内である略球形の粒子が分散した複合樹脂を使用し、該複合樹脂をシート状に加工して制振材料とする際に、目標肉厚のシート状制振材料とするまでの過程で肉厚低減率を0.01〜0.1の範囲に制御して、前記粒子を押し潰すことを特徴とする、拘束型制振材用シート状制振材料の製法。 A method for manufacturing the vibration damping material according to any one of claims 1 to 3 , wherein the base material includes a base material at 1000 Hz at a temperature lower than a temperature at which the loss factor at 1000 Hz is maximum. the loss factor Ri polymeric material Tona that maximizes the ratio of the shear modulus of the base material shear modulus of the polymer material for (modulus) (mu M) (modulus) (mu I) (mu when I / mu M) is using the composite resin particles child substantially spherical dispersed is in the range of 0.02 to 0.3, and processed to give damping material the composite resin into a sheet, A constrained vibration damping material , wherein the particles are crushed by controlling the thickness reduction rate in a range of 0.01 to 0.1 in the process until a sheet-shaped vibration damping material having a target thickness is obtained. For manufacturing sheet-like damping materials. シート状制振材料の製造に2軸延伸法を採用し、縦方向、横方向に母材樹脂が引き伸ばされるのに追従して、前記粒子を平板状に引き伸ばす請求項に記載の製法。 The biaxial stretching method employed for the preparation of a sheet-like damping material, longitudinally, laterally to follow in the matrix resin is stretched A process according to claim 4, extending the previous SL particles children tabular . 同時2軸延伸法を採用する請求項に記載の製法。 The manufacturing method of Claim 5 which employ | adopts a simultaneous biaxial stretching method. 逐次2軸延伸法を採用する請求項に記載の製法。 The manufacturing method of Claim 5 which employ | adopts a sequential biaxial stretching method.
JP2005010890A 2005-01-18 2005-01-18 Damping material and its manufacturing method Active JP4915718B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005010890A JP4915718B2 (en) 2005-01-18 2005-01-18 Damping material and its manufacturing method
PCT/JP2006/300227 WO2006077757A1 (en) 2005-01-18 2006-01-11 Damping material and process for producing sheet-shaped damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010890A JP4915718B2 (en) 2005-01-18 2005-01-18 Damping material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006199759A JP2006199759A (en) 2006-08-03
JP4915718B2 true JP4915718B2 (en) 2012-04-11

Family

ID=36692147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010890A Active JP4915718B2 (en) 2005-01-18 2005-01-18 Damping material and its manufacturing method

Country Status (2)

Country Link
JP (1) JP4915718B2 (en)
WO (1) WO2006077757A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159628B2 (en) * 2006-08-30 2013-03-06 高圧ガス工業株式会社 Resin composition for damping material and damping material
US20090202770A1 (en) * 2008-02-08 2009-08-13 Fengkui Li Polypropylene/polyisobutylene blends and films prepared from same
JP5438930B2 (en) * 2008-08-04 2014-03-12 本田技研工業株式会社 Water-based vibration-damping coating composition
JP5116629B2 (en) * 2008-10-20 2013-01-09 リケンテクノス株式会社 Sound absorber
DK3670622T3 (en) * 2016-09-20 2022-07-04 Avery Dennison Corp Multilayer tape

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532845A (en) * 1991-07-29 1993-02-09 Asahi Chem Ind Co Ltd Vibration-damping resin composition
JP2869957B2 (en) * 1994-02-25 1999-03-10 大日精化工業株式会社 Thermoplastic low hardness polyurethane resin and method for producing the same
JP2000198974A (en) * 1998-12-28 2000-07-18 Yokohama Rubber Co Ltd:The Vibration-damping or vibrationproof material
JP2001002903A (en) * 1999-06-17 2001-01-09 Kuraray Co Ltd Thermoplastic polyester-based resin composition and molding use thereof
JP2001261922A (en) * 2000-03-14 2001-09-26 Tokai Rubber Ind Ltd Elastomer composition having high attenuation
JP3702417B2 (en) * 2000-12-05 2005-10-05 独立行政法人科学技術振興機構 A novel damping material using selective compatibility
JP4460426B2 (en) * 2004-11-25 2010-05-12 新日本製鐵株式会社 Resin composition, resin sheet and laminated material

Also Published As

Publication number Publication date
JP2006199759A (en) 2006-08-03
WO2006077757A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4915718B2 (en) Damping material and its manufacturing method
Liu et al. Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy
JPS5970559A (en) Flake filled high molecular group vibration damping material, orientation thereof is controlled
CN105637007A (en) Thermosetting adhesive films including a fibrous carrier
TW201114816A (en) Expanded polypropylene resin beads and expanded bead molding
JP2001527656A (en) Porous metal / organic polymer composite
Udaya Kumar et al. Effect of treated coir fiber/coconut shell powder and aramid fiber on mechanical properties of vinyl ester
US9435367B2 (en) Screw
Wang et al. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process
Khan et al. Experimental investigation of mechanical and modal properties of Al2O3 nanoparticle reinforced polyurethane core sandwich structures
Shettar et al. Study on mechanical properties and water uptake of polyester-nanoclay nanocomposite and analysis of wear property using RSM
WO2021221038A1 (en) Method for producing dispersion, paste, and kneaded powder
JP3457514B2 (en) Laminated plate and method of manufacturing the same
JP2008305917A (en) Method of manufacturing heat dissipating sheet
JP2007217665A (en) Prepreg and carbon fiber reinforced composite material
JP2006082456A (en) Laminated member for car trim ceiling material
JPS60258262A (en) Vibration-damping polymer composition
JP7377977B2 (en) Surface treatment composition for damping steel plate and damping steel plate
EP3345756B1 (en) Lightweight composite metal sheet having excellent vibration damping characteristics, and manufacturing method therefor
Huang et al. Influence of DCP content on the toughness and morphology of fully biobased ternary PLA/NR-PMMA/NR TPVs with co-continuous phase structure
CN113438586A (en) Vibrating diaphragm and loudspeaker
JP6706869B2 (en) Polypropylene resin foam sheet and laminate using the same
WO2022019252A1 (en) Powder composition and composite particles
KR100834593B1 (en) Damping material and damping metal sheet
WO2019208825A1 (en) Composite prepreg and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250