JP4911112B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP4911112B2
JP4911112B2 JP2008125116A JP2008125116A JP4911112B2 JP 4911112 B2 JP4911112 B2 JP 4911112B2 JP 2008125116 A JP2008125116 A JP 2008125116A JP 2008125116 A JP2008125116 A JP 2008125116A JP 4911112 B2 JP4911112 B2 JP 4911112B2
Authority
JP
Japan
Prior art keywords
engine
instantaneous
target value
value
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008125116A
Other languages
English (en)
Other versions
JP2009275529A (ja
Inventor
利元 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008125116A priority Critical patent/JP4911112B2/ja
Publication of JP2009275529A publication Critical patent/JP2009275529A/ja
Application granted granted Critical
Publication of JP4911112B2 publication Critical patent/JP4911112B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

この発明は、エンジンの制御装置に関し、より特定的には、車両に搭載された複数の制御システムからの要求値に応じてエンジンを制御する技術に関する。
車両には、自動変速機およびクルーズコントロールなどの制御システムが複数搭載されている。エンジンは、各制御システムから出力される要求値に応じて制御される。たとえば、アクセル開度に応じた駆動力を実現するために、エンジンはトルクの要求値を実現するように制御される。また、変速ショックなどを低減するために、自動変速機の変速中において、エンジンは点火時期の遅角量の要求値を実現するように制御される。さらに、車速を一定に保つために、エンジンはスロットル開度の要求値を実現するように制御される。エンジンの制御システムは、他の制御システムから要求された要求値を調停し、調停された結果選択された要求値に応じてエンジンを制御する。
しかしながら、各制御システムから要求される要求値が統一されていないと、要求値を正しく調停することができない。たとえば、スロットル開度と点火時期とは次元が異なるため、どちらの要求値を優先して実現すべきかを判断することができない。そこで、各制御システムからの要求値をトルクに統一する技術が提案されている。
たとえば特開2007−198157号公報(特許文献1)には、トルクベース(トルクディマンド)型エンジン制御を行なうエンジン制御装置が開示される。これによれば、トルクベース型エンジン制御におけるトルク制御には、電制スロットル操作に代表される吸入空気量操作による低応答トルク制御と、点火リタードや燃料カットに代表される吸入空気量操作を介さないで行なう高応答トルク制御との2種類があることに応じて、それぞれのトルク制御方法に対し低応答目標トルク、高応答目標トルクの2種類の目標トルクが設定される。そして、エンジン制御装置は、低応答トルク制御実施時における実発生のエンジントルクを推定する推定トルク演算手段を備え、推定されたエンジントルク推定値と目標トルクとの差分をなくすように、高応答トルク制御が実施される。
特開2007−198157号公報
ここで、上記特許文献1のエンジン制御装置において、実発生のエンジントルクを推定する推定トルク演算手段は、エンジンの吸排気系部品に関する過渡応答物理モデルを有しており、過渡応答物理モデルによって演算された吸気管圧情報を基にエンジントルク推定値への変換を実施する。そして、推定トルク演算手段は、このエンジントルク推定値が定常時に1となるように正規化処理を行ない、正規化されたエンジントルク推定値と目標エンジントルクとの積算を行なって最終的なエンジントルク推定値を算出する。これにより、特許文献1のエンジン制御装置によれば、高い精度でエンジントルクを推定できる。しかしながら、その反面、エンジントルク推定値の算出に複雑な演算処理が求められるため、エンジン制御装置に大きな演算負荷が掛かるという課題がある。そのため、特許文献1のエンジン制御装置では、高速な演算処理を実現しようとすれば、コストおよび体格の増加を招いてしまう。
それゆえ、この発明は、かかる課題を解決するためになされたものであり、その目的は、簡易な制御構造でエンジンに対する要求を好適に実現することができるエンジンの制御装置を提供することである。
この発明のある局面によれば、エンジンの制御装置は、複数の制御システムから要求される要求値に応じて制御される。エンジンには、作動量に応じてエンジンの出力を調整する複数のアクチュエータが設けられる。複数の制御システムは、車両の運転状態に基づいて、エンジンに対して、収束すべき収束先要求値を要求する第1の制御システムと、車両の運転状態に基づいて、エンジンに対して、単位時間ごとに満たすべき瞬時要求値を要求する第2の制御システムとを含む。制御装置は、収束先要求値を、エンジンの運転状態を表わす複数のパラメータの中から予め選択された、複数のアクチュエータが共通して制御の対象とする第1のパラメータに変換する第1の変換手段と、第1のパラメータの応答時定数に基づいて、第1のパラメータの収束先目標値に収束するために単位時間ごとに満たすべき第1のパラメータの瞬時目標値を推定する推定手段と、第2の制御システムからの瞬時要求値を第1のパラメータの瞬時目標値に変換する第2の変換手段と、第1の変換手段によって変換された第1のパラメータの瞬時目標値に、第2の変換手段によって変換された第1のパラメータの瞬時目標値を反映させる目標値反映手段と、目標値反映手段によって反映された瞬時目標値に従って、複数のアクチュエータの作動量を制御する駆動制御手段とを備える。
好ましくは、目標値反映手段は、第1の変換手段によって変換された第1のパラメータの瞬時目標値と、第2の変換手段によって変換された第1のパラメータの瞬時目標値とを調停させた結果に基づいて、第1のパラメータの瞬時目標値を算出する。
好ましくは、目標値反映手段は、第1の変換手段によって変換された第1のパラメータの瞬時目標値と、第2の変換手段によって変換された第1のパラメータの瞬時目標値とを加算する。
好ましくは、複数のアクチュエータは、スロットルバルブを含む吸気機構を構成する。第1の変換手段は、収束先要求値をエンジンの充填効率に変換する。
好ましくは、複数のアクチュエータは、スロットルバルブ、点火プラグおよびインジェクタを含む。第1の変換手段は、収束先要求値をエンジンのパワーまたはトルクに変換する。
好ましくは、第1の制御システムは、運転者によるアクセルペダル操作量に基づいて収束先要求値を算出するための手段を含む。第2の制御システムは、運転者により指示された車速を一定に保持するクルーズコントロール機能に基づいて瞬時要求値を算出するための手段を含む。
この発明によれば、簡易な制御構造でエンジンに対する要求を好適に実現することができる。
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
図1は、この発明の実施の形態に係るエンジンの制御装置を搭載した車両のパワートレーンを示す概略ブロック図である。本実施の形態では、自動変速機が流体継手としてトルクコンバータを備えた、歯車式変速機構を有するように構成されているものとして説明する。なお、本発明は、歯車式変速機構を有する自動変速機に限定されるものではなく、たとえばベルト式などの無段変速機であってもよい。また、歯車式変速機構は、遊星歯車から構成されるものであってもよく、常時噛み合い式の歯車から構成されるものであってもよい。
図1を参照して、車両のパワートレーンは、エンジン100と、トルクコンバータ200と、自動変速機300と、ECU(Electronic Control Unit)1000とを備える。
エンジン100に吸入される空気量は、スロットルバルブ102により調整される。また、吸気内に生じる圧力脈動による脈動効果を有効に利用し、エンジン100のトルクアップを図るため、可変吸気システムが設けられる。
可変吸気システムにおいては、ACIS(Acoustic Control Induction System)バルブ104により、脈動流の周期に合わせて有効吸気管長が2段階に切替えられる。ACISバルブ104の開閉は、スロットル開度や目標トルクに応じて制御される。
たとえばスロットル開度または目標トルクが大きい高負荷時においては、有効吸気管長が長くなるようにACISバルブ104が制御される。一方、スロットル開度または目標トルクが小さい低負荷時においては、有効吸気管長が短くなるようにACISバルブ104が制御される。
さらに、エンジン100の気筒に充填される空気量、すなわちエンジン100の出力トルクは、可変バルブタイミング機構106により、吸気バルブ108および排気バルブ110の開閉タイミングを変更することにより調整される。吸気バルブ108および排気バルブ110の開閉タイミングは、スロットル開度に応じて制御される。
たとえばスロットル開度に応じて、すなわち負荷に応じて吸気バルブ108と排気バルブ110とのオーバーラップ量を調整したり、吸気バルブ108の閉じタイミングを調整したりすることにより、気筒内に充填される空気量や内部EGR(Engine Gas Recirculation)量などが調整され、エンジン100の出力トルクがきめ細かく制御される。
エンジン100の出力軸は、トルクコンバータ200の入力軸に接続される。エンジン100とトルクコンバータ200とは回転軸により連結されている。したがって、エンジン回転数センサにより検知されるエンジン100の出力軸回転数NE(エンジン回転数NE)とトルクコンバータ200の入力軸回転数(ポンプ回転数)とは同じである。
トルクコンバータ200は、入力軸と出力軸とを直結するロックアップクラッチと、入力軸側のポンプ羽根車と、出力軸側のタービン羽根車と、ワンウェイクラッチを有しトルク増幅機能を発現するステータとから構成される。トルクコンバータ200と自動変速機300とは、回転軸により接続される。トルクコンバータ200の出力軸回転数NT(タービン回転数NT)は、タービン回転数センサにより検知される。自動変速機300の出力軸回転数NOUTは、出力軸回転数センサにより検知される。
このような自動変速機300は、その内部に複数の摩擦要素であるクラッチやブレーキを備える。予め定められた作動表に基づいて、摩擦要素であるクラッチ要素や、ブレーキ要素、ワンウェイクラッチ要素が、要求された各ギヤ段に対応して係合および解放されるように油圧回路が制御される。自動変速機300の変速ポジション(シフトポジション)には、パーキング(P)ポジション、後進走行(R)ポジション、ニュートラル(N)ポジション、前進走行(D)ポジションがある。
これらのパワートレーンを制御するECU1000は、エンジン100を制御するエンジンECU1010と、自動変速機300を制御するECT(Electronic Controlled Transmission)_ECU1020とを含む。
本実施の形態において、ECU1000は、エンジン回転数やアクセル開度などに基づいて、エンジン100の目標トルクとしての要求トルクを算出し、その算出した要求トルクを実現するようにエンジン100のスロットルバルブ102を制御する。
ECU1000が算出した要求トルクに基づいて、ECU1000のエンジンECU1010がスロットルバルブ102の目標開度としての要求スロットル開度を算出し、スロットル開度が要求スロットル開度となるようにスロットルバルブ102を制御する。
ここで、車両には、アクセル開度に応じた要求トルクを実現するようにエンジン100を制御する制御システムの他にも、様々な制御システムが搭載されており、エンジン100は、これら複数の制御システムの各々から出力される要求値に応じて制御される。複数の制御システムには、たとえば、自動変速機300、クルーズコントロール、VSC(Vehicle Stability Control)、TRC(TRaction Control)などの制御システムが含まれている。
クルーズコントロールは、車速を一定に維持する制御である。VSCは、前後輪が横滑りしそうな状態をセンサが検出した場合において、各輪のブレーキ油圧および車両の目標駆動力などを自動的に設定し、車両の安全性を確保する制御である。TRCは、滑りやすい路面での発進時および加速時に、駆動輪の空転をセンサが感知すると、各輪のブレーキ油圧および車両の目標駆動力などを自動的に設定し、最適な駆動力を確保する制御である。
ここで、これら複数の制御システムからエンジン100に対して出力される要求値には、トルク、スロットル開度、点火時期およびパワーなどが含まれており、その種類が統一されていない。各制御システムから要求される要求値の種類が統一されていないと、要求値を正しく調停することができないことから、本実施の形態では、エンジンECU1010が、各制御システムからエンジン100に対して要求される要求値をトルクの要求値に変換する。
そして、エンジンECU1010は、トルクに変換された各制御システムからの要求値に基づいて要求スロットル開度を算出する。このとき、要求スロットル開度は、後述する方法によって、アクセル開度に応じた要求トルクに対して他の制御システムからの要求値を反映させた要求トルクに基づいて算出される。
ECT_ECU1020には、出力軸回転数センサにて検知された出力軸回転数NOUTを表わす信号が入力される。また、ECT_ECU1020には、エンジンECU1010から、エンジン回転数センサにて検知されたエンジン回転数NEを表わすエンジン回転数信号が入力される。
これらの回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸および自動変速機300の出力軸に取り付けられた回転検出用のギヤの歯に対向して設けられている。これらの回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸よび自動変速機300の出力軸に僅かな回転の検出も可能なセンサであり、たとえば一般的に半導体式センサと称される磁気抵抗素子を使用したセンサである。
ECT_ECU1020は、トルクコンバータ200のロックアップクラッチ制御信号を出力する。このロックアップクラッチ制御信号に基づいて、ロックアップクラッチの係合圧が制御される。また、ECT_ECU1020は、自動変速機300にソレノイド制御信号を出力する。このソレノイド制御信号に基づいて、自動変速機300の油圧回路のリニアソレノイドバルブやオンオフソレノイドバルブなどが制御され、所定の変速ギヤ段(たとえば第1速〜第5速)を構成するように、摩擦係合要素が係合および解放されるように制御される。
また、ECT_ECU1020には、アクセル開度センサ2100から運転者により操作されたアクセルペダル2102の開度(アクセル開度)を表わす信号が、車速センサ2200から車速を表わす信号が、それぞれ入力される。ECT_ECU1020は、アクセル開度センサ2100から送信された信号に基づいて、アクセル開度の変化率を検出する。また、ECU1000は、各種データやプログラムが記憶されたメモリを有する。なお、アクセル開度の代わりに、その他、アクセルペダル2102の踏力を検出してもよい。同様に、アクセル開度の変化率の代わりに、その他、アクセルペダル2102の踏力の変化率を検出してもよい。なお、アクセル開度を表わす信号は、エンジンECU1010にも入力される。
エンジンECU1010とECT_ECU1020とは、相互に信号を送受信する。本実施の形態において、エンジンECU1010は、自動変速機300を制御するために用いられる実エンジン正味トルクを算出し、ECT_ECU1020に送信する。ECT_ECU1020は、エンジンECU1010から送信された実エンジン正味トルクを用いて、自動変速機300を制御する。
図2は、本実施の形態に係るエンジンの制御装置の制御構造を示すブロック図である。図2に示す各機能ブロックは、代表的にエンジンECU1010が予め格納されたプログラムを実行することで実現されるが、その機能の一部または全部を専用のハードウェアとして実装してもよい。
図2を参照して、エンジンECU1010は、要求トルク算出部1110と、要求値変換部1120と、瞬時要求値推定部1130と、瞬時要求トルク算出部1140と、瞬時要求値変換部1150と、加算部1160と、瞬時要求スロットル開度算出部1170とを含む。
スロットルバルブ102は、モータにより駆動される電機制御式スロットルバルブであり、開度制御部120によりその開度が制御される。開度制御部120は、上記モータを駆動する駆動部122と、開度検出部(図示せず)とを含む。
駆動部122は、瞬時要求スロットル開度算出部1170から瞬時要求スロットル開度TA(t)を示す信号を受けると、開度検出部によって検出された実スロットル開度が要求スロットル開度TA(t)に一致するようにスロットルバルブ102を制御する。
要求トルク算出部1110は、アクセル開度センサ2100からアクセル開度ACCを示す信号を受け、エンジン回転数センサ130からエンジン回転数NEを示す信号を受ける。アクセル開度ACCおよびエンジン回転数NEは、車両の運転状態に関する情報に含まれる。要求トルク算出部1110は、これらの信号に基づいてエンジン100の要求トルク(エンジン100の目標トルク)TRを算出する。なお、エンジン100の要求トルクTRは、たとえば実験等により予め求められたマップに基づいて算出される。
要求値変換部1120は、要求トルク算出部1110によって算出された要求トルクTRを、制御の対象となるパラメータに変換する。制御の対象となるパラメータとは、要求トルクTRを実現するために制御されるパラメータであり、エンジン100の運転状態を表わす複数のパラメータの中から、エンジン100の出力を調整する複数のアクチュエータに共通するパラメータが選択される。
具体的には、エンジン100の気筒に充填される空気量(空気充填量)は、エンジン100の出力トルクと高い相関を有している。そして、空気充填量は、上述したように、スロットルバルブ102、ACISバルブ104、および可変バルブタイミング機構106(吸気バルブ108、排気バルブ110)などの複数のアクチュエータを制御することによって調整される。すなわち、これら複数のアクチュエータは、エンジン100に吸入される空気量を調整するための吸気機構を構成する。なお、該複数のアクチュエータには、上述したバルブの他にも、過給器などが含まれる。
要求値変換部1120は、エンジン100の吸気機構を構成するこれら複数のアクチュエータに共通するパラメータとして、充填効率KLを選択する。充填効率KLとは、気筒に実際に吸入された空気量と理論上吸入されるべき空気量との比であり、エンジン回転数NEおよび吸入空気量から算出することができる。そして、要求値変換部1120は、エンジン100の要求トルクTRを、エンジン100の充填効率KLの目標値である要求充填効率KLに変換する。なお、要求トルクTRから要求充填効率KLへの変換は、たとえば実験等により予め定められたマップに基づいて行なわれる。
瞬時要求値推定部1130は、要求値変換部1120から要求充填効率KLを受けると、実際の充填効率KLが要求充填効率KLに収束するまでに、所定の単位時間Tごとに満たすべき瞬時要求充填効率kl_t(t)を推定する。この単位時間Tは、たとえばエンジンECU1010の制御周期に対応するように予め設定されている。
なお、本実施の形態では、車両の運転者からの要求(アクセルペダル2102の操作量)が発せられた時点以降において、エンジン100が収束すべき要求値(要求トルク)を「収束先要求値」と称する。一方、この収束先要求値に対して、瞬時に(単位時間Tごとに)エンジン100が満たすべき要求値を「瞬時要求値」と称する。すなわち、収束先要求値と瞬時要求値とでは、要求される応答性が異なっており、瞬時要求値の方が収束先要求値よりも高い応答性が求められる。本実施の形態では、運転者の要求に応じて算出される要求値(要求トルク)が主として収束先要求値に対応し、自動変速機300、クルーズコントロール、VSC、TRCなどの制御システムにおいて、車両の挙動に応じて自動的に設定される要求値が主として瞬時要求値に対応する。
ここで、瞬時要求充填効率kl_t(t)の推定は、エンジン100の吸気機構を構成する複数のアクチュエータによって実際の気筒内に吸入される空気の充填効率(実充填効率)KLの応答時定数に基づいて行なわれる。
具体的には、アクセル開度ACCに基づいて要求トルクTRが算出されると、エンジンECU1010は、要求トルクTRに応じたアクチュエータの指令値(たとえば、要求スロットル開度)を演算して開度制御部120に出力する。ところが、要求トルクTRの変化が実際に出力トルクの変化として現れるまでには応答遅れがあり、その応答時間は、エンジン回転数NEや負荷等のエンジン運転領域が変化することによって、吸気管圧力や吸気流速等の影響を受けて変化する。なお、この応答遅れは、エンジン回転数NEが低くなるほど大きくなるという特性を有している。そのため、低回転数域では、要求トルクTRと実トルクとのずれが大きくなるため、エンジン回転数NEが一時的に落ち込む現象が生じる場合がある。
そのため、瞬時要求値推定部1130は、充填効率KLの応答時定数に基づいて、単位時間Tごとに満たすべき瞬時要求充填効率kl_t(t)を推定する。具体的には、瞬時要求値推定部1130は、現時点から単位時間Tが経過した時点の充填効率kl(t+T)とエンジン回転数NEとの関係を予め実験等により取得している。図3には、現時点の充填効率kl(t)が所定値(x%)であるときに、現時点から単位時間Tが経過した時点の充填効率kl(t+T)とエンジン回転数NEとの関係が示される。瞬時要求値推定部1130は、図3に示す関係を予めマップとして所有しており、エンジン回転数センサ130からエンジン回転数NEを受けると、現時点の充填効率kl(t)を取得するとともに、当該マップを参照して、エンジン回転数NEに基づいて、現時点から単位時間Tが経過した時点の充填効率kl(t+T)を推定する。そして、瞬時要求値推定部1130は、その推定した充填効率kl(t+T)を、現時点から単位時間Tが経過した時点でエンジン100が満たすべき瞬時要求充填効率kl_t(t)に設定する。
このように本実施の形態によれば、収束先要求値を複数のアクチュエータの応答特性に基づいた瞬時要求値に変換することによって、エンジン回転数NEに拘らず、常に要求トルクと同じ応答性でトルクが出力されるようになる。その結果、低回転数域においても、要求トルクと実トルクとのずれが小さくなって、エンジン回転数NEの落ち込みを抑えることができる。
さらに、以下に述べるように、要求トルクTRに対して他の制御システムからエンジン100に対して要求される要求値を容易に反映させることが可能となる。この結果、簡易な制御構造で、エンジン100に対する要求をより好適に実現することができる。
詳細には、図2を参照して、瞬時要求トルク算出部1140は、制御システム1030からの要求値を受ける。制御システム1030は、自動変速機300、クルーズコントロール、VSC、TRC(TRaction Control)などの制御システムを含んでいる。瞬時要求トルク算出部1140は、たとえばクルーズコントロールからスロットル開度TAの要求値を受ける。瞬時要求トルク算出部1140は、その受けたスロットル開度TAの要求値をトルクに変換する。このとき、瞬時要求トルク算出部1140は、予め定められたマップに従って、スロットル開度TAの要求値を瞬時要求トルクtr(t)に変換する。
瞬時要求値変換部1150は、瞬時要求トルクtr(t)をさらに、エンジン100の充填効率KLの瞬時の目標値である瞬時要求充填効率kl_c(t)に変換する。なお、瞬時要求トルクtr(t)から瞬時要求充填効率kl_c(t)への変換は、たとえば実験等により予め定められたマップに基づいて行なわれる。
加算部1160は、瞬時要求値推定部1130から瞬時要求充填効率kl_t(t)を受け、瞬時要求値変換部1150から瞬時要求充填効率kl_c(t)を受けると、これらを加算することにより、最終的な目標値である瞬時要求充填効率kl(t)を算出する。
瞬時要求スロットル開度算出部1170は、算出された瞬時要求充填効率kl(t)に基づいて、瞬時の目標開度としての瞬時要求スロットル開度TA(t)を算出する。なお、瞬時要求スロットル開度TA(t)は、実験等により予め求められたマップを用いて算出される。
駆動部122は、瞬時要求スロットル開度TA(t)を受けると、開度検出部によって検出される実スロットル開度TA(t)が要求スロットル開度TA(t)に一致するようにスロットルバルブ102を制御する。
図2に示すエンジンECU1010の制御構造と本願発明との対応関係については、要求トルク算出部1110が「第1の制御システム」に相当し、制御システム1030が「第2の制御システム」に相当する。また、要求値変換部1120および瞬時要求値推定部1130がそれぞれ、「第1の変換手段」および「推定手段」に相当する。さらに、瞬時要求トルク算出部1140および瞬時要求値変換部1150が「第2の変換手段」に相当し、加算部1160が「目標値反映手段」に相当する。
なお、図2に示す制御構造においては、要求トルクTRに対して他の制御システムからの要求値を反映させるための手段として、要求トルクTRおよび他の制御システムからの要求値をそれぞれ瞬時要求充填効率kl_t(t),kl_c(t)に変換して加算する構成としたが、制御システム間で予め定められた優先順位に従って、いずれか一方の瞬時要求充填効率を選択する構成としてもよい。また、2つの瞬時要求充填効率の中間値を算出する構成としてもよい。すなわち、瞬時要求充填効率kl_t(t)と瞬時要求充填効率kl_c(t)とを調停させる構成とすればよい。
また、要求値変換部1120において、要求トルクTRおよび制御システム1030からの要求値を、スロットルバルブ102を含む吸気機構に共通するパラメータである充填効率KLに変換する構成としたが、これらの要求値を、スロットルバルブ102、インジェクタおよび点火プラグ(ともに図示せず)を含む複数のアクチュエータに共通するパラメータであるパワー(またはトルク)に変換することも可能である。
なお、エンジン100のパワーとは、トルクとエンジン回転数との積として算出される物理量である。この場合、要求トルクTRおよび制御システム1030からの要求値は、それぞれ瞬時要求パワーに変換された後に互いに調停されることによって、最終的な目標値である瞬時要求パワーに変換される。そして、変換された瞬時要求パワーに従って、インジェクタからの燃焼噴射量、点火プラグによる点火時期およびスロットル開度が制御されることになる。
図4は、本実施の形態に係るエンジンの制御装置が実行するプログラムの制御構造を説明するためのフローチャートである。なお、図4に示すプログラムは、所定の制御周期(単位時間Tに相当)で繰り返し実行される。
図4を参照して、処理が開始されると、エンジンECU1010は、エンジン回転数NEおよびアクセル開度ACCを取得する。そして、エンジンECU1010は、取得したエンジン回転数NEおよびアクセル開度ACCに基づいて要求トルクTRを算出する(ステップS01)。
次に、エンジンECU1010は、算出した要求トルクTRを、エンジン100の吸気機構を構成する複数のアクチュエータに共通するパラメータである充填効率KLの目標値(要求充填効率KL)に変換する(ステップS02)。
さらに、エンジンECU1010は、スロットルバルブ102を含む吸気機構が作動したときの充填効率KLの応答時定数に基づいて、単位時間Tごとの瞬時要求充填効率kl_t(t)を推定する(ステップS03)。
次に、エンジンECU1010は、自動変速機300およびクルーズコントロールなどの制御システムからの要求値を瞬時要求トルクtr(t)に変換する。そして、その変換した瞬時要求トルクtr(t)を、単位時間Tごとの瞬時要求充填効率kl_c(t)にさらに変換する(ステップS04)。
最後に、エンジンECU1010は、ステップS03,S04でそれぞれ取得された瞬時要求充填効率kl_t(t),kl_c(t)を加算することにより、最終的にエンジン100が満たすべき瞬時要求充填効率kl(t)を算出する(ステップS05)。そして、エンジンECU1010は、その算出した瞬時要求充填効率kl(t)に基づいて瞬時要求スロットル開度TA(t)を算出する(ステップS06)。駆動部122は、エンジンECU1010から瞬時要求スロットル開度TA(t)を受けると、実スロットル開度TA(t)がその要求スロットル開度TA(t)になるようにスロットルバルブ102を制御する。
最後に、図5および図6を用いて、本発明の実施の形態に係るエンジンの制御装置が奏する作用効果について詳細に説明する。なお、図5には、比較のために、アクセル開度に基づいて算出された要求トルクTR(すなわち、収束先要求値)のみに従ってエンジン100を制御した場合のエンジン出力(トルク)が示される。一方、図6には、本実施の形態に従うエンジンの制御装置によって制御されるエンジン出力(トルク)が示される。
図5を参照して、従来の制御構造では、時刻t1において運転者からの要求(アクセルペダル2102の操作量)に応じて要求トルクTRが算出されると、その算出された要求トルクTRに基づいて、収束先要求値である要求スロットル開度TAが算出される。そして、駆動部122は、算出された要求スロットル開度TAを受けると、実スロットル開度が要求スロットル開度TAに一致するようにスロットルバルブ102を制御する。これにより、スロットル開度TAは、図5に示すように、時刻t1よりも後の時刻t2において要求スロットル開度TAに収束する。このとき、エンジン出力も時刻t2において要求出力(要求トルクTR)に収束している。
しかしながら、図5に示す制御構造では、時刻t1から時刻t2までの期間においては、エンジン100の吸気機構を構成する複数のアクチュエータの応答時間がエンジンの回転数NEや負荷等のエンジン運転領域に応じて変化することに起因して、エンジン出力もエンジン運転領域の変化に伴なって成り行きで変化する。すなわち、当該期間において、自動変速機300およびクルーズコントロールなどの制御システムから要求される瞬時要求トルクtrを満たすことができないために、車両の安定性を確保できないという問題が生じるおそれがある。
これに対して、本実施の形態では、図6に示すように、時刻t1において運転者からの要求に応じて要求トルクTRが算出されると、その算出された要求トルクTRが吸気機構を構成する複数のアクチュエータの応答特性を考慮した、単位時間Tごとの瞬時要求値に変換される。そして、この変換された瞬時要求値に対して、自動変速機300およびクルーズコントロールなどの制御システムから要求される瞬時要求トルクtrが加算される。
これにより、スロットル開度TAは、単位時間Tごとに設定された瞬時要求スロットル開度TA(t)に従って制御される。この結果、エンジン出力は、単位時間Tごとの瞬時要求トルクを満たしながら、時刻t2において要求出力(要求トルク)に収束する。
このように本実施の形態に係るエンジンの制御装置は、収束先要求値を複数のアクチュエータの応答性を考慮した瞬時の要求値に変換することにより、収束先要求値に対して、車両の挙動に応じて自動的に設定される瞬時の要求値を容易に反映させることができる。この結果、互いに応答性が異なる複数の制御システムからの要求に好適に対応することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態に係るエンジンの制御装置を搭載した車両のパワートレーンを示す概略ブロック図である。 この発明の実施の形態に係るエンジンの制御装置の制御構造を示すブロック図である。 エンジンの充填効率の応答時定数とエンジン回転数との関係を示す図である。 この発明の実施の形態に係るエンジンの制御装置が実行するプログラムの制御構造を説明するためのフローチャートである。 従来のエンジン制御装置によって制御されたエンジン出力特性を説明するための図である。 この発明の実施の形態に係るエンジンの制御装置よって制御されたエンジン出力特性を説明するための図である。
符号の説明
100 エンジン、102 スロットルバルブ、104 ACISバルブ、106 可変バルブタイミング機構、108 吸気バルブ、110 排気バルブ、120 開度制御部、122 駆動部、130 エンジン回転数センサ、200 トルクコンバータ、300 自動変速機、1010 エンジンECU、1030 制御システム、1110 要求トルク算出部、1120 要求値変換部、1130 瞬時要求値推定部、1140 瞬時要求トルク算出部、1150 瞬時要求値変換部、1160 加算部、1170 瞬時要求スロットル開度算出部、2100 アクセル開度センサ、2102 アクセルペダル、2200 車速センサ。

Claims (6)

  1. 複数の制御システムから要求される要求値に応じて制御されるエンジンの制御装置であって、
    前記エンジンには、作動量に応じて前記エンジンの出力を調整する複数のアクチュエータが設けられ、
    前記複数の制御システムは、
    前記車両の運転状態に基づいて、前記エンジンに対して、収束すべき収束先要求値を要求する第1の制御システムと、
    前記車両の運転状態に基づいて、前記エンジンに対して、単位時間ごとに満たすべき瞬時要求値を要求する第2の制御システムとを含み、
    前記制御装置は、
    前記収束先要求値を、前記エンジンの運転状態を表わす複数のパラメータの中から予め選択された、前記複数のアクチュエータが共通して制御の対象とする第1のパラメータに変換する第1の変換手段と、
    前記第1のパラメータの応答時定数に基づいて、前記第1のパラメータの収束先目標値に収束するために前記単位時間ごとに満たすべき前記第1のパラメータの瞬時目標値を推定する推定手段と、
    前記第2の制御システムからの前記瞬時要求値を前記第1のパラメータの瞬時目標値に変換する第2の変換手段と、
    前記第1の変換手段によって変換された前記第1のパラメータの瞬時目標値に、前記第2の変換手段によって変換された前記第1のパラメータの瞬時目標値を反映させる目標値反映手段と、
    前記目標値反映手段によって反映された前記瞬時目標値に従って、前記複数のアクチュエータの作動量を制御する駆動制御手段とを備える、エンジンの制御装置。
  2. 前記目標値反映手段は、前記第1の変換手段によって変換された前記第1のパラメータの瞬時目標値と、前記第2の変換手段によって変換された前記第1のパラメータの瞬時目標値とを調停させた結果に基づいて、前記第1のパラメータの瞬時目標値を算出する、請求項1に記載のエンジンの制御装置。
  3. 前記目標値反映手段は、前記第1の変換手段によって変換された前記第1のパラメータの瞬時目標値と、前記第2の変換手段によって変換された前記第1のパラメータの瞬時目標値とを加算する、請求項2に記載のエンジンの制御装置。
  4. 前記複数のアクチュエータは、スロットルバルブを含む吸気機構を構成し、
    前記第1の変換手段は、前記収束先要求値を前記エンジンの充填効率に変換する、請求項1〜3のいずれかに記載のエンジンの制御装置。
  5. 前記複数のアクチュエータは、スロットルバルブ、点火プラグおよびインジェクタを含み、
    前記第1の変換手段は、前記収束先要求値を前記エンジンのパワーまたはトルクに変換する、請求項1〜3のいずれかに記載のエンジンの制御装置。
  6. 前記第1の制御システムは、運転者によるアクセルペダル操作量に基づいて前記収束先要求値を算出するための手段を含み、
    前記第2の制御システムは、前記運転者により指示された車速を一定に保持するクルーズコントロール機能に基づいて前記瞬時要求値を算出するための手段を含む、請求項1〜5のいずれかに記載のエンジンの制御装置。
JP2008125116A 2008-05-12 2008-05-12 エンジンの制御装置 Expired - Fee Related JP4911112B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125116A JP4911112B2 (ja) 2008-05-12 2008-05-12 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125116A JP4911112B2 (ja) 2008-05-12 2008-05-12 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2009275529A JP2009275529A (ja) 2009-11-26
JP4911112B2 true JP4911112B2 (ja) 2012-04-04

Family

ID=41441208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125116A Expired - Fee Related JP4911112B2 (ja) 2008-05-12 2008-05-12 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP4911112B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5257624B2 (ja) * 2010-06-07 2013-08-07 三菱自動車工業株式会社 車両の出力制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464932B2 (ja) * 2006-04-27 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP2009275529A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
US8437938B2 (en) Axle torque based cruise control
US8195370B2 (en) Association of torque requesting modules in a coordinated torque architecture
EP1186462A2 (en) Engine output and gear transmission ratio controller
US7856309B2 (en) Cold start emission reduction strategy for coordinated torque control systems
JP4450027B2 (ja) 車両の制御装置および制御方法
US7797992B2 (en) Control apparatus for a source of rotational drive force
JP4702563B2 (ja) パワートレインの制御装置
JP2010038300A (ja) 車両の制御装置および制御方法
US8498789B2 (en) Control apparatus and control method for drive source
US20100274460A1 (en) Control apparatus and control method for power source
US20180266547A1 (en) Automatic transmission controller
JP4911112B2 (ja) エンジンの制御装置
JP4600540B2 (ja) 駆動源の制御装置
JP2009041525A (ja) 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
US8019524B2 (en) Control apparatus for driving source
JP5231948B2 (ja) エンジンの制御装置および制御方法
JP4872985B2 (ja) 駆動源の制御装置
JP4442427B2 (ja) 内燃機関の制御装置
JP5136653B2 (ja) パワートレーンの制御装置および制御方法
JP4957566B2 (ja) パワートレーンの制御装置
JP2021109463A (ja) ハイブリッド車両の制御装置
JP5082883B2 (ja) パワートレーンの制御装置
JP2009243284A (ja) 駆動源の制御装置
JP2009250085A (ja) 駆動源の制御装置
JP2010210064A (ja) 車両の制御装置および制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4911112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees