JP4909466B2 - Polymer secondary battery - Google Patents

Polymer secondary battery Download PDF

Info

Publication number
JP4909466B2
JP4909466B2 JP2001114743A JP2001114743A JP4909466B2 JP 4909466 B2 JP4909466 B2 JP 4909466B2 JP 2001114743 A JP2001114743 A JP 2001114743A JP 2001114743 A JP2001114743 A JP 2001114743A JP 4909466 B2 JP4909466 B2 JP 4909466B2
Authority
JP
Japan
Prior art keywords
polymer
battery
electrolyte layer
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001114743A
Other languages
Japanese (ja)
Other versions
JP2002313426A (en
Inventor
直人 西村
幸一 宇井
武仁 見立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001114743A priority Critical patent/JP4909466B2/en
Priority to TW091107452A priority patent/TW543213B/en
Priority to PCT/JP2002/003708 priority patent/WO2002084776A1/en
Publication of JP2002313426A publication Critical patent/JP2002313426A/en
Application granted granted Critical
Publication of JP4909466B2 publication Critical patent/JP4909466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭素質材料を活物質とする負極と、リチウムイオン伝導性ポリマー電解質層と、リチウムを含有する金属酸化物を少なくとも活物質とする正極とからなるポリマー二次電池、更に詳しくは、リチウムイオン伝導性ポリマー電解質層が高分子鎖中にEO単位単独またはEO単位とPO単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを、少なくとも2種の熱重合開始剤で架橋したポリマー二次電池に関し、さらには電解質層に有機溶媒とリチウム塩とを含有するものである。
【0002】
【従来技術とその課題】
リチウム二次電池は、理論エネルギー密度が他の電池と比較して非常に高く、小型軽量化が可能であるため、ポータブル電子機器などの電源として盛んに研究開発されてきた。しかしながら、ポータブル電子機器の高性能化に伴い更なる軽量化、薄型化が求められてきている。また、携帯電話などの機器では非常に多くの繰り返し充電・放電サイクルに対する信頼性、安全性が求められてきている。
【0003】
これまでリチウム二次電池では、有機溶媒にリチウム塩を溶解させた電解液を正極と負極の間の電解質として用いているので、液漏れ等に対する信頼性を維持するために鉄やアルミニウムの缶を外装材として使用している。そのためリチウム二次電池の重量や厚みは、その外装材である金属缶の重量・厚みに制限されている。
【0004】
そこで現在、電解質に液体を用いないリチウムポリマー二次電池の開発が盛んに行われている。この電池は電解質が固体であるため電池の封止が容易となり、外装材にアルミラミネートフィルムなどの非常に軽くて薄い素材を使用することが可能となり、更なる電池の軽量化、薄型化が可能となってきている。リチウムポリマー二次電池は、電解質にリチウムイオン伝導性ポリマーあるいはリチウムイオン伝導性ゲルを用いた電池である。例えば特開平4−206156号公報では、熱重合開始剤と光重合開始剤とを併用し、まず光重合法により各電池要素表面上の表面皮膜を選択的に硬化し、その後熱重合法によりゲル全体を硬化させることにより、シート状電池の封止を容易にするという技術が開示されている。しかしながら、イオン伝導性ゲルを硬化するために光重合と熱重合との2段階の工程が必要となり、生産性には課題が残されている。また、熱重合法だけでイオン伝導性ゲルを作製するという技術は、例えば、特開平11−121035号公報、特開平11−265616号公報、特開2000−6740号公報および特開2000−100246号公報等で開示されているが、ポリマー電池の生産性を向上させるという観点で発明されたものであり、熱重合開始剤そのものによるポリマー二次電池のサイクル劣化の問題については課題が残されている。
【0005】
【課題を解決するための手段】
本発明のポリマー二次電池は、炭素質材料を活物質とする負極と、リチウムイオン伝導性ポリマー電解質層と、リチウムを含有する金属酸化物を少なくとも活物質とする正極とからなるポリマー二次電池において、高分子鎖中にEO単位単独またはEO単位とPO単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを、少なくとも2種の異なる半減期温度の熱重合開始剤で架橋したものを電解質層に用いることによって、上記課題を解決したものである。
【0006】
本発明によれば、高分子鎖中にEO単位単独またはEO単位とPO単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを少なくとも2種の異なる半減期温度の熱重合開始剤を用いて熱重合(熱架橋)させることにより、まずより半減期温度の低い開始剤により電解質層と正極活物質および負極活物質との界面とポリマー電解質層自体の骨格を形成させ、その後半減期温度の高い開始剤により電解質層/電極活物質界面とポリマー電解質層の骨格以外の未反応(メタ)アクリル酸エステルを熱重合(熱架橋)させることにより、電解質層/電極活物質界面の電解質の枯渇が著しく減少し、ポリマー二次電池の長期サイクル特性が改善されることを見出したものである。さらに本発明によれば、電解質層/電極活物質界面のポリマー電解質層自体の骨格が先に形成されるためポリマー二次電池の性能のばらつきも抑えられ、電池作製上の歩留まりが改善できるものである。
【0007】
本発明のポリマー二次電池で使用される熱重合開始剤は有機過酸化物であり、10時間半減期温度が30〜50℃程度の低いものとして例えば、イソブチリルパーオキサイド、α,α′−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、α−クミルパーオキシネオデカノエート、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ビス(4−T−ブチルシクロヘキシル)パーオキシジカーボネート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、t−ヘキシルパーオキシネオデカノエート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート、t−ブチルパーオキシネオデカノエート等が挙げられる。また、10時間半減期温度が50〜80℃の高いものとして例えば、3,5,5−トリメチルヘキサノイルパーオキシド、m−トルオキシル−ベンゾイルパーオキシド、t−ヘキシルパーオキシピバレート、ラウロイルパーオキシド、ステアロイルパーオキシド等が挙げられ、10時間半減期温度の低いものと高いものとの少なくとも2種をもちいることができる。その組み合わせについては、上記開始剤に限定されるものではない。
【0008】
本発明のポリマー二次電池で使用されるポリマー電解質は、高分子鎖中にEO単位単独またはEO単位とPO単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを上記熱重合開始剤を用いて架橋したものが広い温度範囲で高いイオン伝導度を示すため好ましい。
【0009】
また、本発明のポリマー二次電池で使用されるポリマー電解質のモノマー成分は、ポリエーテルセグメントを有することと、重合体が三次元架橋構造を形成するように重合部位に関して多官能である方が好ましい。その典型的なモノマーはポリエーテルポリオールの末端ヒドロキシル基をアクリル酸またはメタクリル酸(集合的に「(メタ)アクリル酸」という。)でエステル化したものである。よく知られているように、ポリエーテルポリオールはエチレングリコール、グリセリン、トリメチロールプロパン等の多価アルコールを出発物質として、これにエチレンオキシド単独またはプロピレンオキシドを付加重合させて得られる。多官能ポリエーテルポリオールポリ(メタ)アクリル酸エステルを単独または単官能ポリエーテルポリオールポリ(メタ)アクリレートと組合わせて共重合することもできる。特にポリマー電解質が有機電解液を含有するゲル電解質である場合、3官能ポリエーテルポリオールポリ(メタ)アクリル酸エステルは、3次元架橋構造がとりやすく、電解液の保液性に優れるため好ましい。
【0010】
また、本発明のポリマー二次電池においてゲル電解質に使用できる有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの環状炭酸エステル類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの鎖状炭酸エステル類;γ−ブチロラクトン(GBL)などのラクトン類;プロピオン酸メチル、プロピオン酸エチルなどのエステル類;テトラヒドロフランおよびその誘導体、1,4−ジメトキシブタン、1,3−ジメトキシブタン、1,3−ジオキサン、1,2−ジメトキシエタン、メチルジグライムなどのエーテル類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジオキソランおよびその誘導体;スルホランおよびその誘導体;それらの混合物が挙げられる。
【0011】
特に、炭素質材料を負極活物質に用いた場合、電解液の分解が少ないためECを少なくとも含有していることが好ましく、低温特性を向上させるためにはGBLを少なくとも含有していることが好ましい。また、ポリエーテルポリオール(メタ)アクリル酸エステルとの相溶性が良く均一なゲル電解質を作製でき、さらに多孔質電極の細孔内部までのゲル電解質の浸透性が向上することから1,4−ジメトキシブタンおよび/または1,3−ジメトキシブタンを有機溶媒全体に対して2〜5重量%添加するのが好ましい。
【0012】
本発明のポリマー二次電池で使用される溶質となるリチウム塩は、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiN(SO2CF32、LiN(COCF32、LiC(SO2CF33、およびそれらを組合わせたものを使用することができる。また、リチウム塩濃度は、有機溶媒全体に対して0.8〜2.5mol/lであるのが好ましい。0.8mol/lより塩濃度が低くなると電池の高負荷放電特性を得るのに十分なイオン伝導度が得られず、また、2.5mol/lより塩濃度が高くなるとリチウム塩のコストが高くなるだけでなく、それを溶解するのに非常に長い時間を必要とするので工業的に不適であるので好ましくない。
【0013】
【発明の実施の形態】
本発明のポリマー二次電池の実施の形態において、ポリエーテルポリオール(メタ)アクリル酸エステルと上記有機溶媒にリチウム塩を溶解した有機電解液との配合割合は、重合後混合物がイオン伝導性ゲル電解質層を形成し、かつその中で有機電解液が連続相を形成するには十分であるが、経時的に電解液が分離してしみ出すほど過剰であってはならない。これは一般にモノマー/電解液の重量比を20/80〜2/98の範囲とすることによって達成することができる。さらに十分なイオン伝導度を得るためには5/95〜2/98の範囲とすることが好ましい。
【0014】
本発明のポリマー電解質は、上記モノマー成分を有機溶媒にリチウム塩を溶解した有機電解液に溶解して得た前駆体溶液に、10時間半減期温度が低い熱重合開始剤を50〜1000ppm、10時間半減期温度が高い熱重合開始剤を50〜1000ppmの範囲で各々添加し、30〜80℃の温度にて2〜80時間重合(架橋)して得ることができる。この場合、10時間半減期温度の低い開始剤の半減期温度は30〜50℃、10時間半減期温度の高い開始剤の半減期温度は50〜80℃の範囲であり、その活性化エネルギーが30Kcal/mol以下であるのが好ましい。活性化エネルギーが30Kcal/molより高く、かつ10時間半減期温度が80℃より高くなると、その他の電池構成要素に与える熱の影響が大きくなり、電池そのものの信頼性を下げてしまうため好ましくない。また、10時間半減期温度が30℃より低くなると、熱重合開始剤の保存性が低くなるため好ましくない。活性化エネルギーが25Kcal/mol以下になると、保存性が低くなり、電池性能もばらつくため好ましくない。
【0015】
本発明の電池は、予め用意した負極および正極それぞれにイオン伝導性ゲル電解質層を形成し、両者を重ね合わせること、あるいは予め負極と正極の間にセパレータ基材を載置し、その後モノマーと有機溶媒とリチウム塩、熱重合開始剤とを混合した溶液を注入し、重合(架橋)させることによって作製することが可能であるが、これらに限定されるものではない。
【0016】
セパレータ基材を使用する場合、その基材にはポリプロピレン、ポリエチレン、ポリエステル等の有機電解液中で化学的に安定なポリマーの微多孔質膜か、これらポリマー繊維のシート(ペーパー、不織布等)が好ましい。これら基材は透気度が1〜500sec/cm3であることが、低い電池内部抵抗を維持しつつ電池内部短絡を防ぐだけの強度を有しているため好ましい。
【0017】
本発明で使用できる負極活物質である炭素質材料は、電気化学的にリチウムを挿入/脱離し得る材料が好ましい。リチウムの挿入/脱離する電位が金属リチウムの析出/溶解電位に近いため、高エネルギー密度電池を構成できるので特に好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状など)の天然もしくは人造黒鉛である。メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末などを黒鉛化して得られる人造黒鉛を使用してもよい。
【0018】
本発明の負極活物質に関しては、より好ましい炭素材料として、非晶質炭素を表面に付着させた黒鉛粒子が挙げられる。この付着方法としては、黒鉛粒子をタール、ピッチ等の石炭系重質油、または重油等の石油系重質油に浸漬して引き上げ、炭化温度以上へ加熱して重質油を分解し、必要に応じて同炭素材料を粉砕することによって得られる。このような処理により、充電時に負極で起こる有機溶媒、リチウム塩の分解反応が有意に抑制されるため、充放電サイクル寿命を改善し、また同分解反応によるガス発生を抑止することが可能となる。
【0019】
なお、本発明の炭素材料においては、BET法により測定される比表面積に関わる細孔が、非晶質炭素の付着によってある程度塞がれており、比表面積が1〜5m2/gの範囲が好ましい。比表面積がこの範囲より大きくなると、有機溶媒にリチウム塩を溶解した有機電解液との接触面積も大きくなり、それらの分解反応が起こりやすくなるため好ましくない。また、負極上にポリマー電解質層を形成するための熱重合開始剤の吸着量が増えるため、ポリマー電解質の架橋を阻害するため好ましくない。比表面積がこの範囲より小さくなると、電解質との接触面積も小さくなるため、電気化学的反応速度が遅くなり、電池の負荷特性が低くなるので好ましくない。
【0020】
本発明では、リチウムを含有する金属酸化物を正極活物質として使用することができる。特に、Lia(A)b(B)cO2(ここで、Aは遷移金属元素の1種または2種以上の元素である。Bは周期律表IIIB、IVBおよびVB族の非金属元素および半金属元素、アルカリ土類金属、Zn、Cu、Tiなどの金属元素の中から選ばれた1種または2種以上の元素である。a、b、cはそれぞれ0<a≦1.15、0.85≦b+c≦1.30、0<cである。)で示される層状構造の複合酸化物もしくはスピネル構造を含む複合酸化物の少なくとも1つから選ばれることが好ましい。また、これら金属酸化物は有機過酸化物の熱重合開始剤の反応を促進する効果もあるため好ましい。
【0021】
代表的なリチウムを含有する複合酸化物はLiCoO2、LiNiO2、LiMn2O、LiCoXNi1-x2(0<x<1)4およびLiNi1-xx2(ただしMは遷移金属元素)のいずれかなどが挙げられ、これらを用いて負極活物質に炭素質材料を用いた場合に炭素質材料自身の充電・放電に伴う電圧変化(約1V vs. Li/Li+)が起こっても十分に実用的な作動電圧を示すこと、さらに電池の充電・放電反応に必要なLiイオンが電池を組み立てる前から、例えばLiCoO2、LiNiO2等の形で既に電池内に含有されている利益を有する。
【0022】
正極、負極は基本的には正極、負極活物質をバインダーにて固定化したそれぞれの活物質層を集電体となる金属箔上に形成したものである。前記集電体となる金属箔の材料としては、アルミニウム、ステンレス、チタン、銅、ニッケルなどであるが、電気化学的安定性、延伸性および経済性を考慮すると、正極用にはアルミニウム箔、負極用には銅箔が好ましい。
【0023】
なお、本発明では正極、負極集電体の形態は金属箔を主に示すが、その他の形態としては、メッシュ、エキスパンドメタル、ラス体、多孔体あるいは樹脂フィルムに電子伝導材をコートしたもの等が挙げられるがこれに限定されるものではない。
【0024】
正極、負極の作製に当たって必要であれば黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、導電性金属酸化物等の化学的に安定な導電材を活物質と組み合わせて使用し、電子伝導を向上させることができる。
【0025】
また、正極、負極の作製に当たって、バインダーは化学的に安定で、適当な溶媒には溶けるが有機電解液には冒されない熱可塑性樹脂の中から選ばれる。多くの樹脂が知られているが、例えば有機溶媒であるN−メチル−2−ピロリドン(NMP)に選択的に溶けるが有機電解液には安定なポリフッ化ビニリデン(PVDF)が好んで使用される。
【0026】
他に使用され得る熱可塑性樹脂は、例えば、アクリロニトリル、メタクリロニトリル、フッ化ビニル、クロロプレン、ビニルピリジンおよびその誘導体、塩化ビニリデン、エチレン、プロピレン、環状ジエン(例えばシクロペンタジエン、1,3−シクロヘキサジエン等)などの重合体および共重合体である。溶液に代わってバインダー樹脂の分散液でもよい。
【0027】
電極は、活物質と必要であれば、導電材とをバインダー樹脂の溶液で混練してペーストをつくり、これを金属箔に適当なコーターを用いて均一な厚みで塗布し、乾燥後プレスすることによって作製される。活物質層のバインダーの割合は必要最低限とすべきであり、一般に1〜15重量部で十分である。導電材を使用する場合は、導電材の量は活物質層の2〜15重量部が一般的である。
【0028】
このようにして作製された電極は、イオン伝導性ゲル電解質層と電極活物質層とが一体に形成され、イオン伝導性ゲル層はイオン伝導性ポリマーマトリックス中にリチウム塩を含む有機電解液を含浸もしくは保持させたものである。このような層はマクロ的には固体状態であるが、ミクロ的にはリチウム塩溶液が連続相を形成し、溶媒を用いないイオン伝導性ポリマー電解質よりも高いイオン伝導度を示す。イオン伝導性ゲル電解質層はポリマーマトリックスのモノマーをリチウム塩含有有機電解液との混合物の形で、それぞれ熱重合や光重合等の方法により重合して作製される。
【0029】
作製した電池は、鉄にニッケルめっきを施したものやアルミニウム製の円筒缶、角型缶、または、アルミニウム箔に樹脂をラミネートしたフィルムを外装材として用いることができるがこれらに限定されるものではない。
【0030】
(実施例)
以下の実施例は例証目的であって本発明の限定を意図しない。
【0031】
(実施例1)
以下の工程にて実施例1の電池を作製した。
【0032】
a)負極の作製
黒鉛粒子の表面に非晶質炭素を付着させた炭素材料粉末(平均粒径12μm、比表面積2m2/g)100重量部とバインダーのPVDFとを重量比で100:9となるように混合し、溶剤としてNMPを適量加え混練して負極材ペーストを得た。これを18μmのCu箔上に塗布し乾燥後プレスして負極シートを得た。この負極を30×30mmに裁断しNi集電タブを溶接して負極を得た。
【0033】
b)正極の作製
平均粒径7μmのLiCoO2を100重量部と、導電材のアセチレンブラック5重量部とバインダーのPVDFを5重量部とを混合し、溶剤としてNMPを適量加え混練して正極材ペーストを得た。これを20μmのAl箔上に塗布し乾燥後プレスして正極シートを得た。この正極を30×30mmに裁断しAL集電タブを溶接して正極を得た。
【0034】
c)ポリマー電解質のプレカーサー溶液調製
ECとGBLとの50:50体積比混合溶媒にLiBF4を2mol/lの濃度になるように溶解して有機電解液を得た。
【0035】
この有機電解液95重量%に、分子量7500〜9000の3官能ポリエーテルポリオールアクリル酸エステル3.5重量%と分子量220〜300の単官能ポリエーテルポリオールアクリル酸エステル1.5重量%とを混合し、更に熱重合開始剤であるt−ブチルパーオキシネオデカノエート(10時間半減期温度47℃、活性化エネルギー29Kcal/mol)50ppmとt−ブチルパーオキシピバレート(10時間半減期温度53℃、活性化エネルギー28Kcal/mol)100ppmとを上記溶液に対して添加してプレカーサー溶液を得た。
【0036】
d)電池の組立て
上記で得られた負極と正極との間にセパレータ基材であるポリエステル不織布(厚み20μm、透気度180sec/cm3)を挟み、外装材であるAlラミネート樹脂フィルム製の袋にそれらを挿入し、c)で得られたプレカーサー溶液を注入しその袋を封止した。それを60℃で24時間加熱処理して電池を完成させた。
【0037】
(実施例2)
以下の工程にて実施例2の電池を作製した。
【0038】
a)負極の作製
人造黒鉛粉末(平均粒径12μm、比表面積8m2/g)100重量部とバインダーのPVDFとを重量比で100:9となるように混合し、溶剤としてNMPを適量加え混練して負極材ペーストを得た。これを18μmのCu箔上に塗布し乾燥後プレスして負極シートを得た。この負極を30×30mmに裁断しNi集電タブを溶接して負極を得た。
【0039】
b)正極の作製
平均粒径7μmのLiNi0.2Co0.82を100重量部と、導電材のアセチレンブラック5重量部とバインダーのPVDFを5重量部とを混合し、溶剤としてNMPを適量加え混練して正極材ペーストを得た。これを20μmのAl箔上に塗布し乾燥後プレスして正極シートを得た。この正極を30×30mmに裁断しAl集電タブを溶接して正極を得た。
【0040】
c)ポリマー電解質のプレカーサー溶液調製
ECとGBLとEMCとの20:60:20体積比混合溶媒にLiPF6を1.5mol/lの濃度になるように溶解して有機電解液を得た。
この有機電解液97重量%に、分子量7500〜9000の3官能ポリエーテルポリオールアクリル酸エステル2.5重量%と分子量2500〜3000の単官能ポリエーテルポリオールアクリル酸エステル0.5重量%とを混合し、更に熱重合開始剤であるα−クミルパーオキシネオデカノエート(10時間半減期温度38℃、活性化エネルギー27Kcal/mol)250ppmとm−トルオキシル−ベンゾイルパーオキシド(10時間半減期温度73℃、活性化エネルギー30Kcal/mol)500ppmとを上記溶液に対して添加してプレカーサー溶液を得た。
【0041】
d)電池の組立て
上記で得られた負極と正極との間にセパレータ基材であるポリエチレン微多孔膜(厚み25μm、透気度380sec/cm3)を挟み、外装材であるAlラミネート樹脂フィルム製の袋にそれらを挿入し、c)で得られたプレカーサー溶液を注入しその袋を封止した。それを40℃で80時間加熱処理して電池を完成させた。
【0042】
(実施例3)
以下の工程にて実施例3の電池を作製した。
【0043】
a)負極の作製
人造黒鉛粉末(平均粒径12μm、比表面積5m2/g)100重量部とバインダーのPVDFとを重量比で100:9となるように混合し、溶剤としてNMPを適量加え混練して負極材ペーストを得た。これを18μmのCu箔上に塗布し乾燥後プレスして負極シートを得た。この負極を30×30mmに裁断しNi集電タブを溶接して負極を得た。
【0044】
b)正極の作製
平均粒径9μmのLiMn24を100重量部と、導電材のアセチレンブラック7重量部とバインダーのPVDFを3重量部とを混合し、溶剤としてNMPを適量加え混練して正極材ペーストを得た。これを20μmのAl箔上に塗布し乾燥後プレスして正極シートを得た。この正極を30×30mmに裁断しAl集電タブを溶接して正極を得た。
【0045】
c)ポリマー電解質のプレカーサー溶液調製
ECとPCとDECとの50:30:20体積比混合溶媒にLiN(COCF32を1.0mol/lの濃度になるように溶解して有機電解液を得た。
【0046】
この有機電解液90重量%に、分子量7500〜9000の3官能ポリエーテルポリオールアクリル酸エステル7重量%と分子量7500〜9000の単官能ポリエーテルポリオールアクリル酸エステル3重量%とを混合し、更に熱重合開始剤であるα−クミルパーオキシネオデカノエート(10時間半減期温度38℃、活性化エネルギー27Kcal/mol)100ppmと3,5,5−トリメチルヘキサノイルパーオキシド(10時間半減期温度59℃、活性化エネルギー30Kcal/mol)1000ppmとを上記溶液に対して添加してプレカーサー溶液を得た。
【0047】
d)電池の組立て
上記で得られた負極と正極との間にセパレータ基材であるポリプロピレン微多孔膜(厚み25μm、透気度480sec/cm3)を挟み、外装材であるAlラミネート樹脂フィルム製の袋にそれらを挿入し、c)で得られたプレカーサー溶液を注入しその袋を封止した。それを80℃で2時間加熱処理して電池を完成させた。
【0048】
(比較例1)
以下の工程にて比較例1の電池を作製した。
【0049】
a)負極の作製
実施例1と同様の操作を繰り返して負極を得た。
【0050】
b)正極の作製
実施例1と同様の操作を繰り返して正極を得た。
【0051】
c)ポリマー電解質のプレカーサー溶液調製
熱重合開始剤がt−ブチルパーオキシネオデカノエート(10時間半減期温度47℃、活性化エネルギー29Kcal/mol)50ppmとベンゾイルパーオキシド(10時間半減期温度74℃、活性化エネルギー32Kcal/mol)100ppmとを添加すること以外は実施例1と同様の操作を繰り返してプレカーサー溶液を得た。
【0052】
d)電池の組立て
実施例1と同様の操作を繰り返して電池を完成させた。
【0053】
(比較例2)
以下の工程にて比較例2の電池を作製した。
【0054】
a)負極の作製
実施例2と同様の操作を繰り返して負極を得た。
【0055】
b)正極の作製
実施例2と同様の操作を繰り返して正極を得た。
【0056】
c)ポリマー電解質のプレカーサー溶液調製
熱重合開始剤がm−トルオキシル−ベンゾイルパーオキシド(10時間半減期温度73℃、活性化エネルギー30Kcal/mol)750ppmの1種のみを添加すること以外は実施例2と同様の操作を繰り返してプレカーサー溶液を得た。
【0057】
d)電池の組立て
実施例2と同様の操作を繰り返して電池を完成させた。
【0058】
(実施例4)参考例
以下の工程にて実施例4の電池を作製した。
【0059】
a)負極の作製
実施例3と同様の操作を繰り返して負極を得た。
【0060】
b)正極の作製
実施例3と同様の操作を繰り返して正極を得た。
【0061】
c)ポリマー電解質のプレカーサー溶液調製
モノマーが分子量7500〜9000の2官能ポリエーテルポリオールアクリル酸エステル8重量%と分子量7500〜9000の単官能ポリエーテルポリオールアクリル酸エステル2重量%とを使用すること以外は実施例3と同様の操作を繰り返してプレカーサー溶液を得た。
【0062】
d)電池の組立て
実施例3と同様の操作を繰り返して電池を完成させた。
【0063】
これら実施例1〜4および比較例1、2の電池は全て電池容量20mAhになるように正極活物質と負極活物質を仕込んだ。これら電池を2.5mAの一定電流値で電池電圧が4.1Vになるまで充電し、4.1Vに到達後は一定電圧で総充電時間が12時間になるまで充電した。放電は電池電圧が2.75Vになるまで5mAの一定電流値で行った。これを300サイクルまで繰り返し充放電を行った時の放電容量の推移を図1に示した。
【0064】
図1からもわかるように、実施例1に比べて比較例1の電池のサイクル特性は低いものとなった。これは、2種の熱重合開始剤を用いても活性化エネルギーが32Kcal/molという高いベンゾイルパーオキシドを一方の開始剤に用いたため、ポリマー電解質層内部の架橋反応が不十分となってしまったため、電解質層自体の強度も低く、また、未反応モノマーが電池内に残ってしまったため、ポリマー二次電池のサイクル特性が劣化したものである。
【0065】
また、実施例2に比べて比較例2の電池のサイクル特性も低いものとなった。これは、10時間半減期温度の低い熱重合開始剤を用いなかったため、電極活物質/ポリマー電解質層の界面とポリマー電解質層自体の骨格形成が不十分であり、ポリマー二次電池のサイクル特性が劣化したものである。
【0066】
次に、実施例1と実施例2とを比較すると実施例1のポリマー二次電池の方が優れたサイクル特性を示した。これは、負極活物質に黒鉛粒子の表面に非晶質炭素を付着させた炭素材料粉末を用いたため、これは比表面積が低いので熱重合開始剤の吸着量が少なくなり、電極活物質/ポリマー電解質層の界面とポリマー電解質層自体の骨格形成が十分であり、未反応モノマーも電池内に残らなかったからである。
【0067】
最後に、実施例3と実施例4の結果から3官能ポリエーテルポリオールアクリル酸エステルを用いた方がポリマー電解質層自体の三次元骨格が形成しやすくなり、電解質層自体の強度も高く、未反応モノマーも電池内に残らなかったため、サイクル劣化が少なくなったものである。
【0068】
【発明の効果】
本発明によれば、炭素質材料を活物質とする負極と、リチウムイオン伝導性ポリマー電解質層と、リチウムを含有する金属酸化物を少なくとも活物質とする正極とからなり、前記ポリマー電解質層が高分子鎖中にEO単位単独またはEO単位とPO単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを、少なくとも2種の10時間半減期温度で、かつ活性化エネルギーが30Kcal/mol以下の熱重合開始剤で架橋したものであることにより、サイクル特性が改善されたリチウムポリマー二次電池を提供できる。
【0069】
また、負極活物質が黒鉛粒子の表面に非晶質炭素を付着させた炭素材料を用いることにより、熱重合開始剤の吸着が抑えられ、サイクル特性、信頼性に優れるリチウムポリマー二次電池を提供できる。
【図面の簡単な説明】
【図1】実施例1〜4および比較例1,2の充放電サイクルと放電容量の推移を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer secondary battery comprising a negative electrode having a carbonaceous material as an active material, a lithium ion conductive polymer electrolyte layer, and a positive electrode having at least a metal oxide containing lithium as an active material. Lithium ion conductive polymer electrolyte layer was crosslinked with terminal polyol (meth) acrylate ester of polyether polyol containing EO unit alone or both EO unit and PO unit in at least two kinds of thermal polymerization initiators. Regarding the polymer secondary battery, the electrolyte layer further contains an organic solvent and a lithium salt.
[0002]
[Prior art and its problems]
Lithium secondary batteries have an extremely high theoretical energy density compared to other batteries, and can be reduced in size and weight. Therefore, lithium secondary batteries have been actively researched and developed as power sources for portable electronic devices and the like. However, with the improvement in performance of portable electronic devices, further reduction in weight and thickness has been demanded. In addition, devices such as mobile phones are required to have reliability and safety with respect to a large number of repeated charge / discharge cycles.
[0003]
Until now, in lithium secondary batteries, an electrolyte solution in which a lithium salt is dissolved in an organic solvent is used as the electrolyte between the positive electrode and the negative electrode. Therefore, in order to maintain reliability against liquid leakage, etc., an iron or aluminum can is used. Used as an exterior material. Therefore, the weight and thickness of the lithium secondary battery are limited to the weight and thickness of the metal can which is the exterior material.
[0004]
Therefore, development of lithium polymer secondary batteries that do not use a liquid as an electrolyte is being actively conducted. Since this battery has a solid electrolyte, it is easy to seal the battery, and it is possible to use a very light and thin material such as an aluminum laminate film for the exterior material, which can further reduce the weight and thickness of the battery. It has become. The lithium polymer secondary battery is a battery using a lithium ion conductive polymer or a lithium ion conductive gel as an electrolyte. For example, in Japanese Patent Application Laid-Open No. 4-206156, a thermal polymerization initiator and a photopolymerization initiator are used in combination. First, a surface film on the surface of each battery element is selectively cured by a photopolymerization method, and then a gel is formed by a thermal polymerization method. A technique of facilitating sealing of a sheet-like battery by curing the whole is disclosed. However, two steps of photopolymerization and thermal polymerization are required to cure the ion conductive gel, and there remains a problem in productivity. Moreover, the technique of producing an ion conductive gel only by thermal polymerization is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 11-121035, 11-265616, 2000-6740, and 2000-100246. Although disclosed in publications and the like, it was invented from the viewpoint of improving the productivity of polymer batteries, and there remains a problem with respect to the problem of cycle deterioration of polymer secondary batteries due to the thermal polymerization initiator itself. .
[0005]
[Means for Solving the Problems]
The polymer secondary battery of the present invention is a polymer secondary battery comprising a negative electrode using a carbonaceous material as an active material, a lithium ion conductive polymer electrolyte layer, and a positive electrode using at least a metal oxide containing lithium as an active material. In which a terminal polyol (meth) acrylate ester of a polyether polyol containing EO units alone or both EO units and PO units in the polymer chain is crosslinked with at least two different half-life temperature thermal polymerization initiators Is used for the electrolyte layer to solve the above problems.
[0006]
According to the present invention, at least two different half-life temperature thermal polymerization initiators are added to the terminal polyol (meth) acrylate ester of polyether polyol containing EO unit alone or both EO unit and PO unit in the polymer chain. By using it for thermal polymerization (thermal crosslinking), first, an interface between the electrolyte layer and the positive electrode active material and the negative electrode active material and the skeleton of the polymer electrolyte layer itself are formed by an initiator having a lower half-life temperature, and then the half-life temperature. Of the electrolyte layer / electrode active material interface by thermally polymerizing (thermal crosslinking) unreacted (meth) acrylate other than the skeleton of the electrolyte layer / electrode active material interface and polymer electrolyte layer with a high initiator Has been found to significantly reduce the long-term cycle characteristics of the polymer secondary battery. Furthermore, according to the present invention, since the skeleton of the polymer electrolyte layer itself at the electrolyte layer / electrode active material interface is formed first, variation in the performance of the polymer secondary battery can be suppressed, and the yield in battery production can be improved. is there.
[0007]
The thermal polymerization initiator used in the polymer secondary battery of the present invention is an organic peroxide, and has a 10-hour half-life temperature as low as about 30 to 50 ° C., for example, isobutyryl peroxide, α, α′- Bis (neodecanoylperoxy) diisopropylbenzene, α-cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxy Neodecanoate, bis (4-T-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, di-2-ethoxyethyl peroxydicarbonate, di (2-ethylhexyl) Peroxy) dicarbonate, t-hexylperoxyneodecanoate Dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutyl peroxy) dicarbonate, t- butyl peroxyneodecanoate, and the like. Further, as a high 10-hour half-life temperature of 50 to 80 ° C., for example, 3,5,5-trimethylhexanoyl peroxide, m-toluoxyl-benzoyl peroxide, t-hexyl peroxypivalate, lauroyl peroxide, Stearoyl peroxide and the like can be mentioned, and at least two types having a low 10-hour half-life temperature and a high one can be used. The combination is not limited to the above initiator.
[0008]
The polymer electrolyte used in the polymer secondary battery of the present invention is the above thermal polymerization initiator comprising a terminal polyol (meth) acrylate ester of a polyether polyol containing EO units alone or both EO units and PO units in a polymer chain. Crosslinks using bis are preferable because they exhibit high ionic conductivity over a wide temperature range.
[0009]
The monomer component of the polymer electrolyte used in the polymer secondary battery of the present invention preferably has a polyether segment and is polyfunctional with respect to the polymerization site so that the polymer forms a three-dimensional cross-linked structure. . The typical monomer is one obtained by esterifying the terminal hydroxyl group of a polyether polyol with acrylic acid or methacrylic acid (collectively referred to as “(meth) acrylic acid”). As is well known, a polyether polyol can be obtained by subjecting a polyhydric alcohol such as ethylene glycol, glycerin or trimethylolpropane as a starting material to addition polymerization of ethylene oxide alone or propylene oxide. Polyfunctional polyether polyol poly (meth) acrylic acid ester can be copolymerized alone or in combination with monofunctional polyether polyol poly (meth) acrylate. In particular, when the polymer electrolyte is a gel electrolyte containing an organic electrolytic solution, a trifunctional polyether polyol poly (meth) acrylic acid ester is preferable because it easily takes a three-dimensional cross-linked structure and is excellent in liquid retention of the electrolytic solution.
[0010]
Examples of the organic solvent that can be used for the gel electrolyte in the polymer secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC); dimethyl carbonate (DMC), diethyl carbonate (DEC), Chain carbonates such as ethyl methyl carbonate (EMC); Lactones such as γ-butyrolactone (GBL); Esters such as methyl propionate and ethyl propionate; Tetrahydrofuran and its derivatives, 1,4-dimethoxybutane, 1 Ethers such as 1,3-dimethoxybutane, 1,3-dioxane, 1,2-dimethoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane and derivatives thereof; sulfolane and derivatives thereof; Mixtures of al and the like.
[0011]
In particular, when a carbonaceous material is used as the negative electrode active material, it is preferable to contain at least EC because the decomposition of the electrolytic solution is small, and it is preferable to contain at least GBL in order to improve low temperature characteristics. . In addition, it is possible to produce a uniform gel electrolyte with good compatibility with the polyether polyol (meth) acrylic acid ester, and further to improve the permeability of the gel electrolyte to the inside of the pores of the porous electrode. It is preferable to add 2 to 5% by weight of butane and / or 1,3-dimethoxybutane with respect to the whole organic solvent.
[0012]
The lithium salt used as the solute used in the polymer secondary battery of the present invention is LiClO.Four, LiBFFour, LiPF6, LiCFThreeSOThree, LiN (SO2CFThree)2, LiN (COCFThree)2, LiC (SO2CFThree)Three, And combinations thereof can be used. Moreover, it is preferable that lithium salt concentration is 0.8-2.5 mol / l with respect to the whole organic solvent. If the salt concentration is lower than 0.8 mol / l, sufficient ion conductivity cannot be obtained to obtain high-load discharge characteristics of the battery, and if the salt concentration is higher than 2.5 mol / l, the cost of the lithium salt is high. In addition, it takes a very long time to dissolve it, which is not preferable because it is industrially unsuitable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the polymer secondary battery of the present invention, the blending ratio of the polyether polyol (meth) acrylic acid ester and the organic electrolyte obtained by dissolving a lithium salt in the organic solvent is such that the mixture after polymerization is an ion conductive gel electrolyte. The organic electrolyte is sufficient to form a layer and form a continuous phase therein, but it must not be so excessive that the electrolyte separates and exudes over time. This can generally be achieved by setting the monomer / electrolyte weight ratio in the range of 20/80 to 2/98. Furthermore, in order to obtain sufficient ionic conductivity, the range of 5/95 to 2/98 is preferable.
[0014]
In the polymer electrolyte of the present invention, a thermal polymerization initiator having a low 10-hour half-life temperature of 50 to 1000 ppm is added to a precursor solution obtained by dissolving the monomer component in an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent. It can be obtained by adding a thermal polymerization initiator having a high time half-life temperature in the range of 50 to 1000 ppm and polymerizing (crosslinking) at a temperature of 30 to 80 ° C. for 2 to 80 hours. In this case, the half-life temperature of the initiator having a low 10-hour half-life temperature is 30 to 50 ° C., the half-life temperature of the initiator having a high 10-hour half-life temperature is in the range of 50 to 80 ° C., and its activation energy is It is preferably 30 Kcal / mol or less. When the activation energy is higher than 30 Kcal / mol and the 10-hour half-life temperature is higher than 80 ° C., the influence of heat on other battery components is increased, and the reliability of the battery itself is lowered. On the other hand, a 10-hour half-life temperature lower than 30 ° C. is not preferable because the storage stability of the thermal polymerization initiator is lowered. When the activation energy is 25 Kcal / mol or less, storage stability is lowered and battery performance varies, which is not preferable.
[0015]
In the battery of the present invention, an ion conductive gel electrolyte layer is formed on each of a negative electrode and a positive electrode prepared in advance, and the both are overlapped, or a separator base material is previously placed between the negative electrode and the positive electrode, and then the monomer and the organic It can be produced by injecting a solution in which a solvent, a lithium salt, and a thermal polymerization initiator are mixed and polymerizing (crosslinking), but is not limited thereto.
[0016]
When using a separator substrate, the substrate is a microporous membrane of a polymer that is chemically stable in an organic electrolyte such as polypropylene, polyethylene, or polyester, or a sheet (paper, nonwoven fabric, etc.) of these polymer fibers. preferable. These substrates have an air permeability of 1 to 500 sec / cm.ThreeIt is preferable because it has a strength sufficient to prevent a battery internal short circuit while maintaining a low battery internal resistance.
[0017]
The carbonaceous material that is a negative electrode active material that can be used in the present invention is preferably a material that can electrochemically insert and desorb lithium. Since the lithium insertion / extraction potential is close to the deposition / dissolution potential of metallic lithium, a high energy density battery can be constructed, which is particularly preferable. A typical example is natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.). Artificial graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like may be used.
[0018]
With respect to the negative electrode active material of the present invention, more preferred carbon materials include graphite particles having amorphous carbon attached to the surface. As this adhesion method, graphite particles are immersed in coal-based heavy oil such as tar and pitch, or petroleum heavy oil such as heavy oil, pulled up, heated to above the carbonization temperature, and decomposed heavy oil. The carbon material is obtained by pulverization according to the above. Such a treatment significantly suppresses the decomposition reaction of the organic solvent and lithium salt that occurs at the negative electrode during charging, thereby improving the charge / discharge cycle life and suppressing gas generation due to the decomposition reaction. .
[0019]
In the carbon material of the present invention, the pores related to the specific surface area measured by the BET method are blocked to some extent by the adhesion of amorphous carbon, and the specific surface area is 1 to 5 m.2A range of / g is preferred. If the specific surface area is larger than this range, the contact area with an organic electrolyte solution in which a lithium salt is dissolved in an organic solvent is also increased, and these decomposition reactions are liable to occur. Moreover, since the adsorption amount of the thermal polymerization initiator for forming the polymer electrolyte layer on the negative electrode is increased, it is not preferable because the polymer electrolyte is inhibited from being crosslinked. If the specific surface area is smaller than this range, the contact area with the electrolyte also becomes small, so that the electrochemical reaction rate becomes slow and the load characteristics of the battery become low.
[0020]
In the present invention, a metal oxide containing lithium can be used as the positive electrode active material. In particular, Lia (A) b (B) cO2(Here, A is one or more elements of transition metal elements. B is a non-metal element and a semi-metal element of group IIIB, IVB and VB of the periodic table, alkaline earth metal, Zn, Cu, One or more elements selected from metal elements such as Ti, a, b, and c are 0 <a ≦ 1.15, 0.85 ≦ b + c ≦ 1.30, and 0 <c, respectively. It is preferably selected from at least one of a composite oxide having a layered structure represented by (1)) or a composite oxide containing a spinel structure. Further, these metal oxides are preferable because they have an effect of promoting the reaction of the organic peroxide thermal polymerization initiator.
[0021]
A typical lithium-containing composite oxide is LiCoO.2, LiNiO2, LiMn2O, LiCoXNi1-xO2(0 <x <1)FourAnd LiNi1-xMxO2(Where M is a transition metal element) and the like, and when a carbonaceous material is used for the negative electrode active material using these, a voltage change (about 1 V vs. Li) associated with charging / discharging of the carbonaceous material itself. / Li+) Occurs in a sufficiently practical operating voltage, and Li ions necessary for battery charging / discharging reactions are assembled before the battery is assembled.2, LiNiO2Etc. already have the benefit of being contained within the battery.
[0022]
The positive electrode and the negative electrode are basically formed by forming respective active material layers in which a positive electrode and a negative electrode active material are fixed with a binder on a metal foil serving as a current collector. The material of the metal foil used as the current collector is aluminum, stainless steel, titanium, copper, nickel, etc., but considering the electrochemical stability, stretchability and economy, the aluminum foil and the negative electrode are used for the positive electrode. Copper foil is preferred for use.
[0023]
In the present invention, the form of the positive electrode and negative electrode current collector is mainly a metal foil, but other forms include a mesh, an expanded metal, a lath body, a porous body or a resin film coated with an electron conductive material, etc. However, it is not limited to this.
[0024]
If necessary for the production of the positive and negative electrodes, use a chemically stable conductive material such as graphite, carbon black, acetylene black, ketjen black, carbon fiber, and conductive metal oxide in combination with the active material to conduct electronic conduction. Can be improved.
[0025]
In preparing the positive electrode and the negative electrode, the binder is selected from thermoplastic resins that are chemically stable and soluble in an appropriate solvent but not affected by the organic electrolyte. Many resins are known, but for example, polyvinylidene fluoride (PVDF) which is selectively soluble in organic solvent N-methyl-2-pyrrolidone (NMP) but is stable in organic electrolytes is preferably used. .
[0026]
Other thermoplastic resins that can be used include, for example, acrylonitrile, methacrylonitrile, vinyl fluoride, chloroprene, vinyl pyridine and derivatives thereof, vinylidene chloride, ethylene, propylene, cyclic dienes (eg, cyclopentadiene, 1,3-cyclohexadiene). And the like. Instead of the solution, a dispersion of a binder resin may be used.
[0027]
For the electrode, paste the active material and, if necessary, the conductive material with a binder resin solution to make a paste, apply this to the metal foil with a uniform coater, dry, and press It is produced by. The ratio of the binder in the active material layer should be the minimum necessary, and generally 1 to 15 parts by weight is sufficient. When a conductive material is used, the amount of the conductive material is generally 2 to 15 parts by weight of the active material layer.
[0028]
In the electrode thus fabricated, an ion conductive gel electrolyte layer and an electrode active material layer are integrally formed, and the ion conductive gel layer is impregnated with an organic electrolyte containing a lithium salt in an ion conductive polymer matrix. Or it is something held. Such a layer is macroscopically in a solid state, but microscopically, a lithium salt solution forms a continuous phase and exhibits higher ionic conductivity than an ion conductive polymer electrolyte without using a solvent. The ion conductive gel electrolyte layer is prepared by polymerizing monomers of a polymer matrix in the form of a mixture with a lithium salt-containing organic electrolyte solution by a method such as thermal polymerization or photopolymerization.
[0029]
The manufactured battery can be used as an outer packaging material made of nickel plated iron, cylindrical cans made of aluminum, rectangular cans, or films laminated with resin on aluminum foil, but are not limited to these. Absent.
[0030]
(Example)
The following examples are for illustrative purposes and are not intended to limit the invention.
[0031]
Example 1
The battery of Example 1 was produced through the following steps.
[0032]
a) Preparation of negative electrode
Carbon material powder in which amorphous carbon is adhered to the surface of graphite particles (average particle size 12 μm, specific surface area 2 m2/ G) 100 parts by weight and PVDF as a binder were mixed at a weight ratio of 100: 9, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a negative electrode material paste. This was coated on 18 μm Cu foil, dried and pressed to obtain a negative electrode sheet. The negative electrode was cut into 30 × 30 mm, and a Ni collector tab was welded to obtain a negative electrode.
[0033]
b) Preparation of positive electrode
LiCoO with an average particle size of 7 μm2100 parts by weight, 5 parts by weight of conductive material acetylene black and 5 parts by weight of PVDF binder were mixed, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a positive electrode material paste. This was coated on a 20 μm Al foil, dried and pressed to obtain a positive electrode sheet. This positive electrode was cut into 30 × 30 mm, and an AL current collecting tab was welded to obtain a positive electrode.
[0034]
c) Preparation of precursor solution of polymer electrolyte
LiBF in a 50:50 volume ratio mixed solvent of EC and GBLFourWas dissolved to a concentration of 2 mol / l to obtain an organic electrolyte.
[0035]
To this organic electrolytic solution 95% by weight, 3.5% by weight of a trifunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000 and 1.5% by weight of a monofunctional polyether polyol acrylate ester having a molecular weight of 220 to 300 are mixed. Furthermore, t-butyl peroxyneodecanoate (10 hours half-life temperature 47 ° C., activation energy 29 Kcal / mol) 50 ppm and t-butyl peroxypivalate (10 hours half-life temperature 53 ° C.) which are thermal polymerization initiators. , Activation energy 28 Kcal / mol) 100 ppm was added to the above solution to obtain a precursor solution.
[0036]
d) Battery assembly
A polyester nonwoven fabric (thickness 20 μm, air permeability 180 sec / cm) as a separator substrate between the negative electrode and the positive electrode obtained above.Three) Were inserted into a bag made of an Al laminate resin film as an exterior material, and the precursor solution obtained in c) was injected to seal the bag. It was heat-treated at 60 ° C. for 24 hours to complete the battery.
[0037]
(Example 2)
The battery of Example 2 was produced through the following steps.
[0038]
a) Preparation of negative electrode
Artificial graphite powder (average particle size 12μm, specific surface area 8m2/ G) 100 parts by weight and PVDF as a binder were mixed at a weight ratio of 100: 9, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a negative electrode material paste. This was coated on 18 μm Cu foil, dried and pressed to obtain a negative electrode sheet. The negative electrode was cut into 30 × 30 mm, and a Ni collector tab was welded to obtain a negative electrode.
[0039]
b) Preparation of positive electrode
LiNi with an average particle size of 7 μm0.2Co0.8O2100 parts by weight, 5 parts by weight of conductive material acetylene black and 5 parts by weight of PVDF binder were mixed, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a positive electrode material paste. This was coated on a 20 μm Al foil, dried and pressed to obtain a positive electrode sheet. This positive electrode was cut into 30 × 30 mm, and an Al current collecting tab was welded to obtain a positive electrode.
[0040]
c) Preparation of precursor solution of polymer electrolyte
LiPF6 was dissolved in a 20:60:20 volume ratio mixed solvent of EC, GBL, and EMC to a concentration of 1.5 mol / l to obtain an organic electrolyte.
To 97 wt% of the organic electrolyte, 2.5 wt% of a trifunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000 and 0.5 wt% of a monofunctional polyether polyol acrylate ester having a molecular weight of 2500 to 3000 are mixed. Furthermore, α-cumylperoxyneodecanoate (10-hour half-life temperature 38 ° C., activation energy 27 Kcal / mol) 250 ppm which is a thermal polymerization initiator and m-toluoxyl-benzoyl peroxide (10-hour half-life temperature 73 ° C.) , Activation energy 30 Kcal / mol) 500 ppm was added to the above solution to obtain a precursor solution.
[0041]
d) Battery assembly
A polyethylene microporous membrane (thickness 25 μm, air permeability 380 sec / cm) as a separator substrate between the negative electrode and the positive electrode obtained above.Three) Were inserted into a bag made of an Al laminate resin film as an exterior material, and the precursor solution obtained in c) was injected to seal the bag. It was heat-treated at 40 ° C. for 80 hours to complete the battery.
[0042]
(Example 3)
A battery of Example 3 was fabricated through the following steps.
[0043]
a) Preparation of negative electrode
Artificial graphite powder (average particle size 12μm, specific surface area 5m2/ G) 100 parts by weight and PVDF as a binder were mixed at a weight ratio of 100: 9, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a negative electrode material paste. This was coated on 18 μm Cu foil, dried and pressed to obtain a negative electrode sheet. The negative electrode was cut into 30 × 30 mm, and a Ni collector tab was welded to obtain a negative electrode.
[0044]
b) Preparation of positive electrode
LiMn with an average particle size of 9 μm2OFour100 parts by weight, 7 parts by weight of conductive material acetylene black and 3 parts by weight of PVDF binder were mixed, and an appropriate amount of NMP was added as a solvent and kneaded to obtain a positive electrode material paste. This was coated on a 20 μm Al foil, dried and pressed to obtain a positive electrode sheet. This positive electrode was cut into 30 × 30 mm, and an Al current collecting tab was welded to obtain a positive electrode.
[0045]
c) Preparation of precursor solution of polymer electrolyte
In a 50:30:20 volume ratio mixed solvent of EC, PC and DEC, LiN (COCFThree)2Was dissolved to a concentration of 1.0 mol / l to obtain an organic electrolyte.
[0046]
90% by weight of the organic electrolyte is mixed with 7% by weight of a trifunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000 and 3% by weight of a monofunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000, and is further thermally polymerized. Α-cumylperoxyneodecanoate as an initiator (10-hour half-life temperature 38 ° C., activation energy 27 Kcal / mol) 100 ppm and 3,5,5-trimethylhexanoyl peroxide (10-hour half-life temperature 59 ° C.) , Activation energy 30 Kcal / mol) 1000 ppm was added to the above solution to obtain a precursor solution.
[0047]
d) Battery assembly
A polypropylene microporous membrane (thickness 25 μm, air permeability 480 sec / cm) as a separator substrate between the negative electrode and the positive electrode obtained above.Three) Were inserted into a bag made of an Al laminate resin film as an exterior material, and the precursor solution obtained in c) was injected to seal the bag. It was heat-treated at 80 ° C. for 2 hours to complete the battery.
[0048]
(Comparative Example 1)
The battery of Comparative Example 1 was produced through the following steps.
[0049]
a) Preparation of negative electrode
The same operation as in Example 1 was repeated to obtain a negative electrode.
[0050]
b) Preparation of positive electrode
The same operation as in Example 1 was repeated to obtain a positive electrode.
[0051]
c) Preparation of precursor solution of polymer electrolyte
Thermal polymerization initiator is t-butyl peroxyneodecanoate (10 hour half-life temperature 47 ° C., activation energy 29 Kcal / mol) 50 ppm and benzoyl peroxide (10 hour half-life temperature 74 ° C., activation energy 32 Kcal / mol). ) A precursor solution was obtained by repeating the same operation as in Example 1 except that 100 ppm was added.
[0052]
d) Battery assembly
The same operation as in Example 1 was repeated to complete the battery.
[0053]
(Comparative Example 2)
The battery of Comparative Example 2 was produced through the following steps.
[0054]
a) Preparation of negative electrode
The same operation as in Example 2 was repeated to obtain a negative electrode.
[0055]
b) Preparation of positive electrode
The same operation as in Example 2 was repeated to obtain a positive electrode.
[0056]
c) Preparation of precursor solution of polymer electrolyte
The same procedure as in Example 2 was repeated except that only one thermopolymerization initiator, 750 ppm of m-toluoxyl-benzoyl peroxide (10-hour half-life temperature 73 ° C., activation energy 30 Kcal / mol), was added to the precursor. A solution was obtained.
[0057]
d) Battery assembly
The same operation as in Example 2 was repeated to complete the battery.
[0058]
Example 4Reference example
A battery of Example 4 was produced through the following steps.
[0059]
a) Preparation of negative electrode
The same operation as in Example 3 was repeated to obtain a negative electrode.
[0060]
b) Preparation of positive electrode
The same operation as in Example 3 was repeated to obtain a positive electrode.
[0061]
c) Preparation of precursor solution of polymer electrolyte
The same operation as in Example 3 was performed except that the monomer used was 8% by weight of a bifunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000 and 2% by weight of a monofunctional polyether polyol acrylate ester having a molecular weight of 7500 to 9000. Repeatedly, a precursor solution was obtained.
[0062]
d) Battery assembly
The same operation as in Example 3 was repeated to complete the battery.
[0063]
The batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were charged with a positive electrode active material and a negative electrode active material so that the battery capacity was 20 mAh. These batteries were charged at a constant current value of 2.5 mA until the battery voltage reached 4.1 V, and after reaching 4.1 V, the batteries were charged at a constant voltage until the total charging time reached 12 hours. Discharging was performed at a constant current value of 5 mA until the battery voltage reached 2.75V. FIG. 1 shows the transition of the discharge capacity when charging / discharging was repeated up to 300 cycles.
[0064]
As can be seen from FIG. 1, the cycle characteristic of the battery of Comparative Example 1 was lower than that of Example 1. This is because, even when two types of thermal polymerization initiators are used, benzoyl peroxide having a high activation energy of 32 Kcal / mol is used as one initiator, so that the crosslinking reaction inside the polymer electrolyte layer becomes insufficient. Further, the strength of the electrolyte layer itself is low, and the unreacted monomer remains in the battery, so that the cycle characteristics of the polymer secondary battery are deteriorated.
[0065]
Also, the cycle characteristics of the battery of Comparative Example 2 were lower than those of Example 2. This is because a thermal polymerization initiator having a low 10-hour half-life temperature was not used, so that the skeleton formation between the electrode active material / polymer electrolyte layer interface and the polymer electrolyte layer itself was insufficient, and the cycle characteristics of the polymer secondary battery were It has deteriorated.
[0066]
Next, when Example 1 and Example 2 were compared, the polymer secondary battery of Example 1 showed better cycle characteristics. This is because a carbon material powder in which amorphous carbon is adhered to the surface of graphite particles is used as the negative electrode active material, so that the adsorption amount of the thermal polymerization initiator is reduced because the specific surface area is low, and the electrode active material / polymer This is because the skeleton formation between the interface of the electrolyte layer and the polymer electrolyte layer itself is sufficient, and no unreacted monomer remains in the battery.
[0067]
Finally, from the results of Example 3 and Example 4, it is easier to form a three-dimensional skeleton of the polymer electrolyte layer itself when the trifunctional polyether polyol acrylate is used, the strength of the electrolyte layer itself is high, and the unreacted Since the monomer did not remain in the battery, cycle deterioration was reduced.
[0068]
【The invention's effect】
According to the present invention, a negative electrode using a carbonaceous material as an active material, a lithium ion conductive polymer electrolyte layer, and a positive electrode using at least a metal oxide containing lithium as an active material, the polymer electrolyte layer is high. Polyether polyol terminal (meth) acrylic acid ester containing EO unit alone or both EO unit and PO unit in the molecular chain, at least two kinds of 10-hour half-life temperature and activation energy of 30 Kcal / mol or less Thus, a lithium polymer secondary battery with improved cycle characteristics can be provided.
[0069]
In addition, by using a carbon material with amorphous carbon attached to the surface of the graphite particles as the negative electrode active material, adsorption of the thermal polymerization initiator is suppressed, and a lithium polymer secondary battery with excellent cycle characteristics and reliability is provided. it can.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in charge / discharge cycles and discharge capacities of Examples 1 to 4 and Comparative Examples 1 and 2. FIG.

Claims (4)

炭素質材料を活物質とする負極と、リチウムイオン伝導性ポリマー電解質層と、リチウムを含有する金属酸化物を少なくとも活物質とする正極とからなり、前記ポリマー電解質層が高分子鎖中にエチレンオキシド(EO)単位単独またはEO単位とプロピレンオキシド(PO)単位の両方を含むポリエーテルポリオールの末端(メタ)アクリル酸エステルを、2種の異なる10時間半減期温度の熱重合開始剤で架橋したものであり、
前記熱重合開始剤は、活性化エネルギーが30Kcal/mol以下であり、
前記ポリエーテルポリオールの末端(メタ)アクリル酸エステルが、3官能ポリエーテルポリオール(メタ)アクリル酸エステルを含んでいることを特徴とするポリマー二次電池。
A negative electrode using a carbonaceous material as an active material, a lithium ion conductive polymer electrolyte layer, and a positive electrode using at least a metal oxide containing lithium as an active material, and the polymer electrolyte layer contains ethylene oxide ( EO) unit alone or a polyether polyol terminal (meth) acrylic ester containing both EO units and propylene oxide (PO) units crosslinked with two different 10 hour half-life temperature thermal polymerization initiators. Oh it is,
The thermal polymerization initiator has an activation energy of 30 Kcal / mol or less,
The end of the polyether polyol (meth) acrylic acid ester, trifunctional polyether polyol (meth) polymer secondary battery, characterized Rukoto include acrylic acid ester.
少なくとも2種の10時間半減期温度が30〜50℃の範囲のものと、50〜80℃の範囲のものから選ばれる有機過酸化物であることを特徴とする請求項に記載のポリマー二次電池。The polymer 2 according to claim 1 , which is an organic peroxide selected from at least two types of 10-hour half-life temperatures in the range of 30 to 50 ° C and those in the range of 50 to 80 ° C. Next battery. ポリマー電解質層が少なくともエチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とを含有しているゲル電解質層であることを特徴とする請求項1または2に記載のポリマー二次電池。The polymer secondary battery according to claim 1 or 2 , wherein the polymer electrolyte layer is a gel electrolyte layer containing at least ethylene carbonate (EC) and γ-butyrolactone (GBL). 炭素質材料が少なくとも黒鉛粒子の表面に非晶質炭素を付着させた炭素材料を含んでいることを特徴とする請求項1ないしのいずれかに記載のポリマー二次電池。The polymer secondary battery according to any one of claims 1 to 3 , wherein the carbonaceous material includes at least a carbon material in which amorphous carbon is adhered to the surface of graphite particles.
JP2001114743A 2001-04-13 2001-04-13 Polymer secondary battery Expired - Fee Related JP4909466B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001114743A JP4909466B2 (en) 2001-04-13 2001-04-13 Polymer secondary battery
TW091107452A TW543213B (en) 2001-04-13 2002-04-12 Lithium polymer secondary cell
PCT/JP2002/003708 WO2002084776A1 (en) 2001-04-13 2002-04-12 Lithium polymer secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114743A JP4909466B2 (en) 2001-04-13 2001-04-13 Polymer secondary battery

Publications (2)

Publication Number Publication Date
JP2002313426A JP2002313426A (en) 2002-10-25
JP4909466B2 true JP4909466B2 (en) 2012-04-04

Family

ID=18965757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114743A Expired - Fee Related JP4909466B2 (en) 2001-04-13 2001-04-13 Polymer secondary battery

Country Status (3)

Country Link
JP (1) JP4909466B2 (en)
TW (1) TW543213B (en)
WO (1) WO2002084776A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454610C (en) * 2002-06-19 2009-01-21 夏普株式会社 Lithium polymer secondary battery and process for producing the same
JP2013069418A (en) * 2011-09-20 2013-04-18 Semiconductor Energy Lab Co Ltd Lithium secondary battery and method of manufacturing the same
CN115058002B (en) * 2022-06-14 2023-11-14 温州大学 Carboxylated itaconic acid polyethylene diester solid electrolyte material and application thereof
CN116364350B (en) * 2023-03-14 2023-08-11 石家庄新泰特种油有限公司 Preparation method of oleophylic aqueous conductive paste for battery aluminum foil
CN117423805B (en) * 2023-12-18 2024-03-29 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Solid quasi-dry gel electrode and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987474B2 (en) * 1991-10-15 1999-12-06 第一工業製薬株式会社 Solid electrolyte
JP3222022B2 (en) * 1994-10-27 2001-10-22 シャープ株式会社 Method for producing lithium secondary battery and negative electrode active material
JPH11214038A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Gel high polymer solid electrolyte battery and manufacture thereof
JP3580523B2 (en) * 1998-03-18 2004-10-27 株式会社リコー Ion conductive polymer gel electrolyte and battery containing the gel electrolyte
JP2000080114A (en) * 1998-09-03 2000-03-21 Nof Corp Cured product of radically polymerizable thermosetting resin, preparation thereof and hardener
JP2002252034A (en) * 2001-02-22 2002-09-06 Sony Corp Solid electrolyte and its manufacturing method, solid electrolyte battery equipped with this solid electrolyte and its manufacturing method

Also Published As

Publication number Publication date
TW543213B (en) 2003-07-21
WO2002084776A1 (en) 2002-10-24
JP2002313426A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US5851504A (en) Carbon based electrodes
JP4014816B2 (en) Lithium polymer secondary battery
KR20190054920A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102113656B1 (en) Manufacturing method of secondary battery
JP2007258127A (en) Negative electrode and battery
KR100768836B1 (en) Lithium polymer secondary cell and the method for manufacture thereof
JP5187720B2 (en) Lithium ion polymer battery
JP2008282735A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5105807B2 (en) Lithium polymer battery
JP5082221B2 (en) Negative electrode for secondary battery and secondary battery
JP5312751B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2002110244A (en) Lithium secondary battery
JP2007134245A (en) Electrolyte solution and battery
JP4909466B2 (en) Polymer secondary battery
JP2003272706A (en) Voltage control method for nonaqueous electrolyte secondary battery
JP4288863B2 (en) Lithium secondary battery
CN114051666A (en) Method for manufacturing secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4817483B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP2001266890A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4558169B2 (en) Method for manufacturing lithium secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP6946719B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5115104B2 (en) Secondary battery charging method, charging device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees