JP4906505B2 - Expression profile algorithms and tests for cancer diagnosis - Google Patents

Expression profile algorithms and tests for cancer diagnosis Download PDF

Info

Publication number
JP4906505B2
JP4906505B2 JP2006518761A JP2006518761A JP4906505B2 JP 4906505 B2 JP4906505 B2 JP 4906505B2 JP 2006518761 A JP2006518761 A JP 2006518761A JP 2006518761 A JP2006518761 A JP 2006518761A JP 4906505 B2 JP4906505 B2 JP 4906505B2
Authority
JP
Japan
Prior art keywords
gene
breast cancer
expression
recurrence
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006518761A
Other languages
Japanese (ja)
Other versions
JP2007527220A (en
Inventor
ジョッフル ベーカー,
ジョン エル. ブライアント,
スーンミュン パイク,
スティーブン シャク,
Original Assignee
ジェノミック ヘルス, インコーポレイテッド
エヌエスエービーピー ファウンデーション, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェノミック ヘルス, インコーポレイテッド, エヌエスエービーピー ファウンデーション, インコーポレイテッド filed Critical ジェノミック ヘルス, インコーポレイテッド
Publication of JP2007527220A publication Critical patent/JP2007527220A/en
Application granted granted Critical
Publication of JP4906505B2 publication Critical patent/JP4906505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Description

(発明の分野)
本発明は、癌患者における予後診断決定のための非侵襲性定量試験を提供する。この試験は、特定のメッセンジャーRNA(mRNA)または対応する遺伝子発現産物の腫瘍レベルの測定値に依存する。これらのmRNAレベルまたはタンパク質レベルは、再発リスク(再発スコア)または治療に対する患者応答の可能性(応答スコア)を示す、数値的スコアを得る多項式(アルゴリズム)に代入される。
(Field of Invention)
The present invention provides a non-invasive quantitative test for prognostic decisions in cancer patients. This test relies on tumor level measurements of specific messenger RNA (mRNA) or corresponding gene expression products. These mRNA or protein levels are substituted into a polynomial (algorithm) that yields a numerical score that indicates the risk of relapse (recurrence score) or likelihood of patient response to treatment (response score).

(関連技術の説明)
癌専門医が十分に道理に基づいた処置決定を下すのに役立つ臨床試験が必要である。癌専門医が日常の診療で直面する最も基本的な決定の1つは、化学療法剤を用いて特定の患者の処置を行うか先送りするかの決定である。癌のための現在の治療薬は、一般に、かなりの毒性を伴うが、効力はそれほど大きくない。従って、患者(原発腫瘍の切除後)が転移性再発を有する可能性があることを予め決定することは非常に望ましい。この情報を得るのに信頼できる方法があったならば、高リスク患者には補助的化学療法が選択され得、そして癌の再発を有する可能性のない患者は化学療法に伴う有害事象への不必要な曝露を回避し得たはずである。同様に、患者(原発腫瘍の切除前または後のいずれか)を特定の治療に供する前に、患者がこのような処置に応答を示す可能性があるか否かを知ることが望ましい。特定の治療法(例えば、特定の化学療法剤および/または放射線学を用いる処置)に応答を示す可能性のない患者については、貴重な時間を浪費することなく、他の処置が計画されそして用いられ得る。
(Description of related technology)
There is a need for clinical trials that can help oncologists make well-informed treatment decisions. One of the most basic decisions faced by oncologists in daily practice is the decision to use or postpone specific patients with chemotherapeutic agents. Current therapeutics for cancer are generally accompanied by considerable toxicity but are not as potent. Therefore, it is highly desirable to pre-determine that a patient (after resection of the primary tumor) may have metastatic recurrence. If there was a reliable way to obtain this information, adjuvant chemotherapy may be selected for high-risk patients, and patients not likely to have cancer recurrence will be immune to adverse events associated with chemotherapy. The necessary exposure could have been avoided. Similarly, before subjecting a patient (either before or after resection of the primary tumor) to a particular therapy, it is desirable to know whether the patient is likely to respond to such treatment. For patients who are not likely to respond to a particular therapy (eg, treatment with a particular chemotherapeutic agent and / or radiology), other treatments can be planned and used without wasting valuable time. Can be.

現代分子生物学および生化学により、若干の例外はあるものの、その活性が腫瘍細胞の挙動および分化の状態ならびに特定の治療薬に対する感受性または耐性に影響を及ぼす、何百もの遺伝子を明らかになってきたが、これらの遺伝子の状態は、薬物処置についての臨床決定を日常的に行う目的で開発されてきたものではない。1つの注目すべき例外は、抗エストロゲン薬(例えばタモキシフェン)を用いて処置する患者を選択するための、乳癌におけるエストロゲン受容体(ER)タンパク質発現の利用である。別の例外的な例は、抗Her2抗体であるハーセプチン(登録商標)(Genentech,Inc.,South San Francisco,CA)で処置する患者を選択するための、乳癌におけるErbB2(Her2)タンパク質発現の利用である。   Modern molecular biology and biochemistry, with some exceptions, have revealed hundreds of genes whose activity affects tumor cell behavior and differentiation status and sensitivity or resistance to specific therapeutics. However, the status of these genes has not been developed for the purpose of routine clinical decisions about drug treatment. One notable exception is the use of estrogen receptor (ER) protein expression in breast cancer to select patients to be treated with antiestrogens (eg, tamoxifen). Another exceptional example is the use of ErbB2 (Her2) protein expression in breast cancer to select patients to be treated with the anti-Her2 antibody Herceptin® (Genentech, Inc., South San Francisco, Calif.). It is.

本発明は、その生物学的理解が依然として進展していない癌(例えば乳癌)に関する。ErbB2亜群のような少数の亜群、ならびにエストロゲン受容体(ER)および少数の付加的な因子の遺伝子発現が低いか欠如していることを特徴とする亜群への乳癌の分類(Perou et al.,Nature 406:747〜752(2000))は、乳癌の細胞および分子多様性を反映せず、かつ患者の処置および医療の最適化を可能にしないことは明らかである。他のタイプの癌も同様であり、これらの癌の多くは、乳癌よりずっと少ししか研究および理解されていない。 The present invention relates to cancers whose biological understanding has not yet progressed (eg breast cancer). Classification of breast cancer into a small subgroup, such as the ErbB2 + subgroup, and subgroups characterized by low or lack of gene expression of estrogen receptor (ER) and a few additional factors (Perou et al., Nature 406: 747-752 (2000)) does not reflect the cellular and molecular diversity of breast cancer and does not allow patient treatment and medical optimization. The same is true for other types of cancer, and many of these cancers have been studied and understood much less than breast cancer.

現在、臨床診療で用いられる診断学的検査は単一分析物であり、従って数十の異なる腫瘍マーカー間の関連性を知ることの潜在的意義を捉え損なう。さらに、診断学的検査は、免疫組織化学に依存し、定量的でないことが多い。この方法は、しばしば異なる研究室において異なる結果をもたらす。なぜなら、1つにはこれらの試薬が標準化されておらず、そして1つには解釈が主観的であり容易に定量化され得ないためである。RNAベースの試験はあまり頻繁には用いられていない。なぜなら、経時的なRNA分解の問題および新鮮な組織サンプルを患者から分析のために入手することが困難であるという事実のためである。固定パラフィン包埋組織はより入手しやすく、固定組織中のRNAを検出するために方法が確立されてきた。しかしながら、これらの方法は代表的には、少量の材料に由来する多数の遺伝子の研究を可能にしない。従って、伝統的に、固定組織はタンパク質の免疫組織化学検出以外にはめったに用いられてこなかった。   Currently, diagnostic tests used in clinical practice are single analytes and thus fail to capture the potential significance of knowing the association between dozens of different tumor markers. Furthermore, diagnostic tests rely on immunohistochemistry and are often not quantitative. This method often gives different results in different laboratories. This is because, in part, these reagents are not standardized, and in part, the interpretation is subjective and cannot be easily quantified. RNA-based tests are not used very often. Because of the problem of RNA degradation over time and the fact that it is difficult to obtain fresh tissue samples for analysis from patients. Fixed paraffin embedded tissues are more accessible and methods have been established to detect RNA in fixed tissues. However, these methods typically do not allow the study of large numbers of genes derived from small amounts of material. Thus, traditionally, fixed tissues have been rarely used except for immunohistochemical detection of proteins.

過去数年において、いくつかのグループが、マイクロアレイ遺伝子発現分析による種々の癌タイプの分類に関する研究を発表してきた{例えば、Golub et al.,Science 286:531〜537(1999);Bhattacharjae et al.,Proc.Natl.Acad.Sci.USA 98:13790〜13795(2001);Chen−Hsiang et al.,Bioinformatics 17(補遺1):S316〜S322(2001);Ramaswamy et al.,Proc.Natl.Acad.Sci.USA 98:15149〜15154(2001)を参照のこと}。遺伝子発現パターンに基づくヒト乳癌のある種の分類もまた、報告されている{Martin et al.,Cancer Res.60:2232〜2238(2000);West et al.,Proc.Natl.Acad.Sci.USA 98:11462〜11467(2001)}。これらの研究のほとんどが、種々のタイプの癌(乳癌を含む)の既に確立された分類を改良および精緻化することに重点を置いている。少数の研究により、予後兆候である可能性がある遺伝子発現パターンが同定されているが{Sorlie et al.,Proc.Natl.Acad.Sci.USA 98:10869〜10874(2001);Yan et al.,Cancer Res.61:8375〜8380(2001);Van De Vivjer et al.,New England Journal of Medicine 347:1999〜2009(2002)}、スクリーニングされた患者の数が不十分であるため、臨床的に広く用いられるほど十分に有効ではない。
Perou et al.,Nature 406:747〜752(2000) Golub et al.,Science 286:531〜537(1999);Bhattacharjae et al.,Proc.Natl.Acad.Sci.USA 98:13790〜13795(2001);Chen−Hsiang et al.,Bioinformatics 17(補遺1):S316〜S322(2001) Ramaswamy et al.,Proc.Natl.Acad.Sci.USA 98:15149〜15154(2001) Martin et al.,Cancer Res.60:2232〜2238(2000);West et al.,Proc.Natl.Acad.Sci.USA 98:11462〜11467(2001) Sorlie et al.,Proc.Natl.Acad.Sci.USA 98:10869〜10874(2001) Yan et al.,Cancer Res.61:8375〜8380(2001) Van De Vivjer et al.,New England Journal of Medicine 347:1999〜2009(2002)
In the past few years, several groups have published work on the classification of various cancer types by microarray gene expression analysis {see, eg, Golub et al. , Science 286: 531-537 (1999); Bhattacharjae et al. , Proc. Natl. Acad. Sci. USA 98: 13790-13795 (2001); Chen-Hsiang et al. Bioinformatics 17 (Appendix 1): S316-S322 (2001); Ramawamy et al. , Proc. Natl. Acad. Sci. USA 98: 15149-15154 (2001)}. Certain classifications of human breast cancer based on gene expression patterns have also been reported {Martin et al. , Cancer Res. 60: 2232-2238 (2000); West et al. , Proc. Natl. Acad. Sci. USA 98: 11462-11467 (2001)}. Most of these studies focus on improving and refining the already established classification of various types of cancer (including breast cancer). A few studies have identified gene expression patterns that may be prognostic signs {Sorlie et al. , Proc. Natl. Acad. Sci. USA 98: 10869-10874 (2001); Yan et al. , Cancer Res. 61: 8375-8380 (2001); Van De Vivjer et al. , New England Journal of Medicine 347: 1999-2009 (2002)}, because of the insufficient number of patients screened, it is not effective enough to be widely used clinically.
Perou et al. , Nature 406: 747-752 (2000). Golub et al. , Science 286: 531-537 (1999); Bhattacharjae et al. , Proc. Natl. Acad. Sci. USA 98: 13790-13795 (2001); Chen-Hsiang et al. , Bioinformatics 17 (Appendix 1): S316-S322 (2001) Ramawamy et al. , Proc. Natl. Acad. Sci. USA 98: 15149-15154 (2001) Martin et al. , Cancer Res. 60: 2232-2238 (2000); West et al. , Proc. Natl. Acad. Sci. USA 98: 11462-11467 (2001) Sollie et al. , Proc. Natl. Acad. Sci. USA 98: 10869-10874 (2001) Yan et al. , Cancer Res. 61: 8375-8380 (2001) Van De Vivjer et al. , New England Journal of Medicine 347: 1999-2009 (2002).

本発明は、癌再発の可能性および/または患者が治療法によく応答する可能性を決定するための、アルゴリズムに基づく予後試験を提供する。特定の局面において、本発明は、浸潤乳癌を有する患者における乳癌の再発および/または処置に対する患者応答の可能性を決定するためのアルゴリズムおよび予後試験を提供する。従って、本発明は、例えば腫瘍の外科的切除を受けたリンパ節陰性乳癌患者のような癌患者の治療に関する処置決定に有用性を見出す。具体的には、このアルゴリズムおよび関連する予後試験はそのような患者を補助的化学療法で処置するか否かを決定するのに役立ち、その答えが肯定的である場合、その処置選択肢が選択される。   The present invention provides an algorithm-based prognostic test to determine the likelihood of cancer recurrence and / or the likelihood that a patient will respond well to therapy. In certain aspects, the present invention provides algorithms and prognostic tests to determine the likelihood of patient response to breast cancer recurrence and / or treatment in patients with invasive breast cancer. Thus, the present invention finds utility in treatment decisions relating to the treatment of cancer patients such as, for example, lymph node negative breast cancer patients who have undergone surgical resection of the tumor. Specifically, this algorithm and associated prognostic tests help determine whether such patients are treated with adjuvant chemotherapy, and if the answer is positive, the treatment option is selected. The

このアルゴリズムを他の乳癌予測法と区別する特徴としては、以下の1)〜3)が挙げられる:1)再発可能性を決定するのに用いられる試験mRNA(または対応する遺伝子発現産物)のユニークな組合せ、2)発現データを式に組み入れるのに用いられる特定の重み、3)患者をリスクのレベルが異なる群(例えば、低リスク群、中程度リスク群、および高リスク群)に分類するのに用いられる閾値。このアルゴリズムによって、数値的再発スコア(RS)を得るか、または処置に対する患者応答が評価される場合は、治療への応答スコア(RTS)を得る。この試験は、特定のmRNAまたはそれらの発現産物のレベルを測定するために研究室アッセイを必要とするが、極めて少量の、新鮮な組織か、または既に患者から必然的に収集されそして保存されている凍結組織もしくは固定パラフィン包埋腫瘍生検標本のいずれかを利用し得る。従って、この試験は非侵襲性であり得る。この試験はまた、いくつかの異なる腫瘍組織収集方法(例えば、コア生検または細針吸引による方法)と両立し得る。この腫瘍組織は、正常な組織から肉眼で見て切除が可能であるが、そのようにする必要はない。さらに、遺伝子セットの各メンバーについて、本発明は、この試験に用いられ得るオリゴヌクレオチド配列を特定する。これらのmRNAレベルは、参照遺伝子の特定のセットに対して正規化される。本発明は、類似の様式で、試験遺伝子および参照遺伝子の全ての部分列を包含する。   Features that distinguish this algorithm from other breast cancer prediction methods include the following 1) -3): 1) Uniqueness of test mRNA (or corresponding gene expression product) used to determine recurrence probability 2) specific weights used to incorporate expression data into the formula, 3) classifying patients into groups with different levels of risk (eg, low risk group, medium risk group, and high risk group) Threshold used for. This algorithm obtains a numerical recurrence score (RS) or, if patient response to treatment is evaluated, a response to therapy score (RTS). This test requires a laboratory assay to measure the level of specific mRNAs or their expression products, but it is inevitably collected and stored from a very small amount of fresh tissue or already from the patient. Either frozen tissue or fixed paraffin-embedded tumor biopsy specimens can be used. Therefore, this test can be non-invasive. This test may also be compatible with several different tumor tissue collection methods (eg, by core biopsy or fine needle aspiration). This tumor tissue can be removed with the naked eye from normal tissue, but it need not be. Furthermore, for each member of the gene set, the present invention identifies an oligonucleotide sequence that can be used in this test. These mRNA levels are normalized to a specific set of reference genes. The present invention encompasses all subsequences of test and reference genes in a similar manner.

従って、1つの局面において、本発明は、哺乳動物被験体における癌の再発または治療への応答の可能性に基づいて腫瘍を分類する方法に関し、該方法は以下の工程:
(a)前記被験体から得た癌細胞を含む生物学的サンプルを遺伝子またはタンパク質発現プロファイリングに供する工程;
(b)各遺伝子についての発現値を決定するために、複数の個々の遺伝子の遺伝子またはタンパク質発現レベルを定量化する工程;
(c)遺伝子またはタンパク質発現値のサブセットであって、各サブセットが癌に関連した生物学的機能によっておよび/または同時発現によって連関している遺伝子またはタンパク質についての発現値を含む、サブセットを作製する工程;
(d)サブセット内の各遺伝子の発現レベルに、前記サブセット内の癌の再発または治療への応答に対するその相対的寄与率を反映する係数を掛け、この積を加算して前記サブセットについての項を得る工程;
(e)各サブセットの項に、癌の再発または治療への応答に対するその寄与率を反映する換算係数を掛ける工程;ならびに
(f)前記換算係数を掛けた各サブセットについての項の合計を求めて、再発スコア(RS)または治療への応答スコア(RTS)を得る工程、を包含し、
ここで、癌の再発または治療への応答と線形相関を示さない各サブセットの寄与率は、所定の閾値を超える場合に限り算入され、そして
ここで、含まれる遺伝子またはタンパク質の発現の増大により癌再発のリスクが低下するサブセットには、負の値が付与され、そして、含まれる遺伝子またはタンパク質の発現の増大により癌の再発のリスクが増大するサブセットには、正の値が付与される。
Accordingly, in one aspect, the invention relates to a method of classifying tumors based on the likelihood of cancer recurrence or response to treatment in a mammalian subject, the method comprising the following steps:
(A) subjecting a biological sample containing cancer cells obtained from the subject to gene or protein expression profiling;
(B) quantifying the gene or protein expression level of a plurality of individual genes to determine the expression value for each gene;
(C) creating subsets of gene or protein expression values, each subset comprising expression values for genes or proteins that are linked by biological functions associated with cancer and / or by co-expression Process;
(D) multiplying the expression level of each gene in the subset by a factor that reflects its relative contribution to the recurrence of cancer or response to treatment in the subset, and adding this product to the term for the subset Obtaining step;
(E) multiplying each subset term by a conversion factor that reflects its contribution to cancer recurrence or response to treatment; and (f) determining the sum of the terms for each subset multiplied by the conversion factor. Obtaining a recurrence score (RS) or a response score to therapy (RTS),
Here, the contribution of each subset that does not show a linear correlation with cancer recurrence or response to treatment is included only if it exceeds a pre-determined threshold, and where the expression of the included gene or protein increases the cancer A subset with a reduced risk of recurrence is assigned a negative value, and a subset with an increased expression of an included gene or protein increases the risk of cancer recurrence is assigned a positive value.

このアルゴリズムは、任意のタイプの癌(乳癌が例示されるが、限定されない)について、癌再発のリスクまたは治療への応答を評価するのに適している。   This algorithm is suitable for assessing the risk of cancer recurrence or response to therapy for any type of cancer, including but not limited to breast cancer.

乳癌の場合、この再発アルゴリズムに寄与する遺伝子は、16個の試験遺伝子および5個の参照遺伝子を含む。   In the case of breast cancer, the genes contributing to this recurrence algorithm include 16 test genes and 5 reference genes.

指定された試験遺伝子/mRNAは:Grb7;Her2;ER;PR;BCl2;CEGP1;SURV;Ki−67;MYBL2;CCNB1;STK15;CTSL2;STMY3;GSTM1;BAG1;CD68である。   The designated test genes / mRNA are: Grb7; Her2; ER; PR; BCl2; CEGP1; SURV; Ki-67; MYBL2; CCNB1; STK15; CTSL2; STMY3;

参照遺伝子/mRNAは:β−ACTIN;GAPDH;RPLPO;TFRC;GUSである。   Reference genes / mRNAs are: β-ACTIN; GAPDH; RPLPO; TFRC; GUS.

乳癌について、上記の16個の試験遺伝子のセットは、4つの多重遺伝子サブセットを含む。これらのサブセットの遺伝子メンバーは、相関発現および以下の生物学的機能のカテゴリーの両方に共通点がある:SURV、Ki−67、MYBL2、CCNB1およびSTK15を含む増殖サブセット;Her2およびGrb7を含む成長因子サブセット;ER、PR、BCl2、およびCEGP1を含むエストロゲン受容体サブセット;侵襲性プロテアーゼCTSL2およびSTMY3のための遺伝子を含む侵襲サブセット。   For breast cancer, the set of 16 test genes above includes 4 multigene subsets. The gene members of these subsets have common features in both correlated expression and the following categories of biological functions: growth subsets including SURV, Ki-67, MYBL2, CCNB1 and STK15; growth factors including Her2 and Grb7 Subset; Estrogen receptor subset including ER, PR, BCl2, and CEGP1; Invasive subset including genes for the invasive proteases CTSL2 and STMY3.

従って、特定の局面において、本発明は哺乳動物被験体における乳癌の再発またはホルモン療法への応答の可能性を決定する方法に関し、該方法は、以下の工程:
(a)前記被験体から得た腫瘍細胞を含む生物学的サンプルにおいて、GRB7、HER2、ER、PR、Bcl2、CEGP1、SURV、Ki.67、MYBL2、CCNB1、STK15、CTSL2、およびSTMY3のRNA転写物、またはそれらの発現産物、あるいは対応する代替遺伝子またはそれらの発現産物の発現レベルを決定する工程;
(b)以下の遺伝子サブセット:
(i)成長因子サブセット:GRB7およびHER2;
(ii)分化(エストロゲン受容体)サブセット:ER、PR、Bcl2、およびCEGP1;
(iii)増殖サブセット:SURV、Ki.67、MYBL2、CCNB1、およびSTK15;ならびに
(iv)侵襲サブセット:CTSL2、およびSTMY3;
を作製する工程であって、
ここで、(i)〜(iv)の任意のサブセット内の遺伝子は、ピアソンの相関係数が0.40以上である前記腫瘍中の前記遺伝子と同時発現する代替遺伝子で置換され得る、工程;ならびに
(c)乳癌の再発または治療への応答に対する(i)〜(iv)の各サブセットの寄与率を重み付けすることによって、前記被験体についての再発スコア(RS)または治療への応答スコア(RTS)を算出する工程、を包含する。
Accordingly, in a particular aspect, the present invention relates to a method for determining the likelihood of breast cancer recurrence or response to hormonal therapy in a mammalian subject, said method comprising the following steps:
(A) In a biological sample containing tumor cells obtained from the subject, GRB7, HER2, ER, PR, Bcl2, CEGP1, SURV, Ki. Determining the expression level of 67, MYBL2, CCNB1, STK15, CTSL2, and STMY3 RNA transcripts, or their expression products, or corresponding alternative genes or their expression products;
(B) The following gene subset:
(I) Growth factor subset: GRB7 and HER2;
(Ii) Differentiation (estrogen receptor) subset: ER, PR, Bcl2, and CEGP1;
(Iii) Proliferation subset: SURV, Ki. 67, MYBL2, CCNB1, and STK15; and (iv) Invasive subsets: CTSL2, and STMY3;
The process of producing
Wherein genes in any subset of (i)-(iv) can be replaced with alternative genes that are co-expressed with the gene in the tumor having a Pearson correlation coefficient of 0.40 or greater; And (c) a recurrence score (RS) or response to treatment score (RTS) for the subject by weighting the contribution of each subset of (i)-(iv) to the recurrence of breast cancer or response to treatment. ).

特定の実施形態において、この方法は、CD68、GSTM1およびBAG1のRNA転写物またはそれらの発現産物、あるいは対応する代替遺伝子またはそれらの発現産物の発現レベルを決定する工程、ならびに乳癌の再発または治療への応答に対する前記遺伝子または代替遺伝子の寄与率をRSまたはRTSの計算に組み込む工程をさらに包含し、
ここで、より高いRSまたはRTSは、乳癌の再発の可能性の増大または治療(適用可能な場合)に対する応答の可能性の低下を表す。
In certain embodiments, the method comprises determining the expression levels of CD68, GSTM1 and BAG1 RNA transcripts or their expression products, or corresponding alternative genes or their expression products, and breast cancer recurrence or treatment. Further comprising the step of incorporating into the RS or RTS calculation the contribution of said gene or surrogate gene to the response of
Here, a higher RS or RTS represents an increased likelihood of breast cancer recurrence or a reduced response to treatment (if applicable).

特定の局面において、本発明は哺乳動物被験体における乳癌の再発の可能性を決定する方法に関し、該方法は、以下の工程:
(a)前記被験体から得た腫瘍細胞を含む生物学的サンプルにおいて、GRB7、HER2、EstRl、PR、Bcl2、CEGP1、SURV、Ki.67、MYBL2、CCNB1、STK15、CTSL2、STMY3、CD68、GSTM1、およびBAG1、またはそれらの発現産物の発現レベルを決定する工程;ならびに
(b)以下の方程式:
RS=(0.23〜0.70)×GRB7軸閾値(axisthresh)−(0.17〜0.51)×ER軸+(0.53〜1.56)×増殖軸閾値(prolifaxisthresh)+(0.07〜0.21)×侵襲軸(invasionaxis)+(0.03〜0.15)×CD68−(0.04〜0.25)×GSTM1−(0.05〜0.22)×BAG1
によって再発スコア(RS)を算出する工程であって、
ここで、
(i)GRB7軸=(0.45〜1.35)×GRB7+(0.05〜0.15)×HER2;
(ii)GRB7軸<−2であれば、GRB7軸閾値=−2であり、そして
GRB7軸≧−2であれば、GRB7軸閾値=GRB7軸である;
(iii)ER軸=(Est1+PR+Bcl2+CEGP1)/4;
(iv)増殖軸=(SURV+Ki.67+MYBL2+CCNB1+STK15)/5;
(v)増殖軸<−3.5であれば、増殖軸閾値=−3.5であり、
増殖軸≧−3.5であれば、増殖軸閾値=増殖軸である;および
(vi)侵襲軸=(CTSL2+STMY3)/2であって、
ここで、範囲が具体的には示されていない全ての個々の遺伝子についての項は約0.5〜1.5の間で変動し得、そしてここで、より高いRSは乳癌の再発の可能性の増大を表す、工程
を包含する。
In certain aspects, the invention relates to a method for determining the likelihood of recurrence of breast cancer in a mammalian subject, the method comprising the following steps:
(A) In a biological sample containing tumor cells obtained from the subject, GRB7, HER2, EstRl, PR, Bcl2, CEGP1, SURV, Ki. 67, determining the expression level of MYBL2, CCNB1, STK15, CTSL2, STMY3, CD68, GSTM1, and BAG1, or their expression products; and (b) the following equation:
RS = (0.23-0.70) × GRB7-axis threshold (axisthresh) − (0.17-0.51) × ER-axis + (0.53-1.56) × proliferation-axis threshold (prolifaxithresh) + ( 0.07 to 0.21) × invasive axis + (0.03 to 0.15) × CD68− (0.04 to 0.25) × GSTM1− (0.05 to 0.22) × BAG1
Calculating a recurrence score (RS) by:
here,
(I) GRB7 axis = (0.45-1.35) × GRB7 + (0.05-0.15) × HER2;
(Ii) If GRB7 axis <-2, then GRB7 axis threshold = -2, and
If GRB7 axis ≧ −2, GRB7 axis threshold = GRB7 axis;
(Iii) ER axis = (Est1 + PR + Bcl2 + CEGP1) / 4;
(Iv) Growth axis = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15) / 5;
(V) if growth axis <−3.5, growth axis threshold = −3.5;
If growth axis ≧ −3.5, growth axis threshold = proliferation axis; and (vi) invasive axis = (CTSL2 + STMY3) / 2,
Here, the terms for all individual genes whose ranges are not specifically indicated can vary between about 0.5 and 1.5, and where higher RS is the likelihood of breast cancer recurrence A process that represents an increase in sex.

遺伝子発現についての研究室アッセイは、種々の異なるプラットフォームを用い得る。固定パラフィン包埋組織とともに用いるのに好ましい実施形態は、定量的逆転写酵素ポリメラーゼ連鎖反応(qRT−PCR)である。しかしながら、質量分析およびDNAマイクロアレイを含む他のテクノロジープラットフォームもまた用いられ得る。DNAマイクロアレイの場合、ポリヌクレオチドプローブは代表的に約500〜5000塩基長のcDNA(「cDNAアレイ」)であり得るが、より短いかまたはより長いcDNAも用いられ得、かつこれらは本発明の範囲内である。あるいは、これらのポリヌクレオチドは、オリゴヌクレオチド(DNAマイクロアレイ)であり得、代表的に約20〜80塩基長であるが、より短いかまたはより長いオリゴヌクレオチドも適しており、かつこれらは本発明の範囲内である。この固体表面は、例えば、ガラスまたはナイロンであるか、あるいはアレイ(例えばマイクロアレイ)の調製に代表的に用いられる任意の他の固体表面であり得、代表的にはガラスである。
(好ましい実施形態の詳細な説明)
A.定義
他に規定しない限り、本明細書において使用される技術用語および科学用語は、本発明が属する技術の当業者によって通常理解されるのと同様の意味を有する。Singleton et al.,Dictionary of Microbiology and Molecular Biology 2nd ed., J.Wiley & Sons(New York, NY 1994)、およびMarch、Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons(New York, NY 1992)は、本願に用いた多数の用語に対する一般指針を当業者に提供する。
Laboratory assays for gene expression can use a variety of different platforms. A preferred embodiment for use with fixed paraffin embedded tissue is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). However, other technology platforms including mass spectrometry and DNA microarrays can also be used. For DNA microarrays, the polynucleotide probes can typically be cDNAs of about 500 to 5000 bases in length (“cDNA arrays”), although shorter or longer cDNAs can be used and are within the scope of the present invention. Is within. Alternatively, these polynucleotides can be oligonucleotides (DNA microarrays), typically about 20-80 bases in length, although shorter or longer oligonucleotides are also suitable, and these are Within range. This solid surface can be, for example, glass or nylon, or any other solid surface typically used in the preparation of arrays (eg, microarrays), typically glass.
Detailed Description of Preferred Embodiments
A. Definitions Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al. , Dictionary of Microbiology and Molecular Biology 2nd ed. , J. et al. Wiley & Sons (New York, NY 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed. John Wiley & Sons (New York, NY 1992) provides general guidance to those skilled in the art for a number of terms used in this application.

当業者は、本明細書中に記載の方法および材料と類似しているかまたはこれらに相当する多くの方法および材料を認識し、これらは本発明の実施において用いられ得る。実際に、本発明は、記載されている方法および材料に全く限定されない。本発明の目的のために、下記の用語を以下に定義する。   Those skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which can be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.

用語「マイクロアレイ」とは、基材上のハイブリダイズ可能なアレイエレメント、好ましくはポリヌクレオチドプローブの、規則正しい配列をいう。   The term “microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.

用語「ポリヌクレオチド」とは、単数形または複数形で用いられる場合、一般に任意のポリリボヌクレオチドまたはポリデオキシリボヌクレオチドをいい、修飾されていないRNAもしくはDNAであっても修飾されたRNAもしくはDNAであってもよい。従って、例えば、本明細書中で定義されるようなポリヌクレオチドとしては、非限定的に、一本鎖および二本鎖DNA、一本鎖および二本鎖領域を含むDNA、一本鎖および二本鎖RNA、ならびに一本鎖および二本鎖領域を含むRNA、一本鎖またはより代表的には二本鎖であり得るかあるいは一本鎖および二本鎖領域を含み得るDNAおよびRNAを含むハイブリッド分子が挙げられる。さらに、本明細書中で使用される場合、用語「ポリヌクレオチド」とは、RNAまたはDNAあるいはRNAおよびDNAの両方を含む三本鎖領域をいう。このような領域中の鎖は、同一分子に由来するかまたは異なる分子に由来し得る。これらの領域は、1以上の分子の全てを含み得るが、より代表的にはこれらの分子のいくつかの一領域のみを含む。これらの三重らせん領域の分子の1つはオリゴヌクレオチドである場合が多い。用語「ポリヌクレオチド」は、具体的にはcDNAを含む。この用語は、1以上の修飾塩基を含むDNA(cDNAを含む)およびRNAを含む。従って、安定性のためにまたは他の理由で修飾された主鎖を有するDNAまたはRNAは、本明細書においてその用語が意図されるような「ポリヌクレオチド」である。さらに、異常塩基(例えば、イノシン)または修飾塩基(例えば、トリチウム化塩基)を含むDNAまたはRNAは、本明細書中で定義されるような用語「ポリヌクレオチド」の中に含まれる。一般に、用語「ポリヌクレオチド」は、修飾されていないポリヌクレオチドの、化学的に、酵素的におよび/または代謝的に修飾された全ての形態、ならびに単純型細胞および複雑型細胞を含む細胞およびウイルスに特有のDNAおよびRNAの化学的形態を包含する。   The term “polynucleotide”, when used in the singular or plural, generally refers to any polyribonucleotide or polydeoxyribonucleotide, including unmodified RNA or DNA, modified RNA or DNA. May be. Thus, for example, polynucleotides as defined herein include, but are not limited to, single stranded and double stranded DNA, single stranded and double stranded DNA, single stranded and double stranded. Including single-stranded RNA, and RNA containing single-stranded and double-stranded regions, DNA and RNA that can be single-stranded or more typically double-stranded or contain single-stranded and double-stranded regions Hybrid molecules are mentioned. Further, as used herein, the term “polynucleotide” refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The chains in such regions can be derived from the same molecule or from different molecules. These regions may include all of one or more molecules, but more typically include only one region of some of these molecules. One of these triple helix region molecules is often an oligonucleotide. The term “polynucleotide” specifically includes cDNA. The term includes DNA (including cDNA) and RNA containing one or more modified bases. Thus, a DNA or RNA having a backbone modified for stability or for other reasons is a “polynucleotide” as that term is intended herein. In addition, DNA or RNA containing unusual bases (eg, inosine) or modified bases (eg, tritiated bases) are included within the term “polynucleotide” as defined herein. In general, the term “polynucleotide” refers to all chemically, enzymatically and / or metabolically modified forms of unmodified polynucleotides, and cells and viruses including simple and complex cells. Including the chemical forms of DNA and RNA unique to

用語「オリゴヌクレオチド」とは比較的短いポリヌクレオチドをいい、非限定的に、一本鎖デオキシリボヌクレオチド、一本鎖または二本鎖リボヌクレオチド、RNA:DNAハイブリッドおよび二本鎖DNAが挙げられる。オリゴヌクレオチド(例えば、一本鎖DNAプローブオリゴヌクレオチド)は、化学的方法で(例えば、市販の自動オリゴヌクレオチドシンセサイザーを使用して)合成される場合が多い。しかしながら、オリゴヌクレオチドは、インビトロ組換えDNA媒介技術を含む種々の他の方法によって、ならびに細胞および生物体内でのDNAの発現によって、作製され得る。   The term “oligonucleotide” refers to a relatively short polynucleotide, including but not limited to single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA: DNA hybrids and double-stranded DNA. Oligonucleotides (eg, single-stranded DNA probe oligonucleotides) are often synthesized by chemical methods (eg, using commercially available automated oligonucleotide synthesizers). However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques, and by expression of DNA in cells and organisms.

交換可能に用いられる、用語「差次的発現遺伝子」、「差次的遺伝子発現」およびそれらの同義語は、疾患(具体的には、乳癌のような、癌)に罹患している被験体において、正常またはコントロール被験体における発現と比較して、より高いかまたはより低いレベルにその発現が活性化される遺伝子をいう。これらの用語はまた、同一の疾患の異なる段階で、より高いかまたはより低いレベルにその発現が活性化される遺伝子も包含する。差次的発現遺伝子は、核酸レベルもしくはタンパク質レベルで活性化または阻害されてもよく、あるいは選択的スプライシングを受けた結果として異なるポリペプチド産物を生成してもよいことも理解される。このような差異は、例えば、mRNAレベル、表面発現、分泌または他のポリペプチドの区分の変化によって証明され得る。差次的遺伝子発現は、2以上の遺伝子またはそれらの遺伝子産物の間の発現の比較、あるいは2以上の遺伝子またはそれらの遺伝子産物の間の発現比率の比較、あるいは同一遺伝子の2つの異なるプロセス産物の比較さえも包含し得、これらは正常な被験体と疾患(具体的には癌)に罹患した被験体との間で、あるいは同一疾患の種々の段階間で異なる。差次的発現は、例えば、正常細胞と異常細胞の間、あるいは異なる疾患事象または疾患段階を経験した細胞間の、遺伝子またはその発現産物の一過性または細胞性発現パターンにおける量的差異および質的差異の両方を含む。本発明の目的のために、正常被験体および疾患被験体における、または疾患被験体の種々の疾患進行段階における所定の遺伝子の発現の間に、少なくとも約2倍、好ましくは少なくとも約4倍、より好ましくは少なくとも約6倍、最も好ましくは少なくとも約10倍の差異がある場合に、「差次的遺伝子発現」が存在しているとみなされる。   The terms “differentially expressed gene”, “differential gene expression” and their synonyms, used interchangeably, refer to a subject afflicted with a disease (specifically, cancer, such as breast cancer). A gene whose expression is activated to a higher or lower level as compared to expression in normal or control subjects. These terms also encompass genes whose expression is activated to higher or lower levels at different stages of the same disease. It is also understood that differentially expressed genes may be activated or inhibited at the nucleic acid level or protein level, or may produce different polypeptide products as a result of undergoing alternative splicing. Such differences can be evidenced, for example, by changes in mRNA levels, surface expression, secretion or other polypeptide compartments. Differential gene expression is a comparison of expression between two or more genes or their gene products, or a comparison of expression ratios between two or more genes or their gene products, or two different process products of the same gene May also be included, which differ between normal subjects and subjects with a disease (specifically cancer) or between various stages of the same disease. Differential expression is, for example, quantitative differences and quality in the transient or cellular expression pattern of a gene or its expression product between normal and abnormal cells, or between cells that have experienced different disease events or stages. Including both differences. For purposes of the present invention, at least about 2-fold, preferably at least about 4-fold, and more during expression of a given gene in normal and disease subjects, or at various disease progression stages of a disease subject, “Differential gene expression” is considered to be present if there is a difference of preferably at least about 6 fold, most preferably at least about 10 fold.

「遺伝子増幅」との語句は、遺伝子または遺伝子フラグメントの複数のコピーが特定の細胞または細胞株において形成されるプロセスをいう。この複製領域(増幅されたDNAの伸長)は、しばしば「アンプリコン」と呼ばれる。通常、生成されたメッセンジャーRNA(mRNA)の量(すなわち、遺伝子発現のレベル)もまた、発現された特定の遺伝子の作製されたコピー数に比例して増加する。   The phrase “gene amplification” refers to the process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. This replication region (extension of amplified DNA) is often referred to as an “amplicon”. Usually, the amount of messenger RNA (mRNA) produced (ie, the level of gene expression) also increases in proportion to the number of copies made of the particular gene expressed.

用語「予後診断」は、癌に起因する死亡または新生物性疾患(例えば、乳癌)の再発、転移性拡散、および薬剤耐性を含む進行の可能性の予測をいうのに本明細書中で使用される。   The term “prognosis” is used herein to refer to a prediction of progression including death from cancer or neoplastic disease (eg, breast cancer), metastatic spread, and drug resistance. Is done.

用語「予測」は、患者が1つの薬物または一連の薬物に対して有利にまたは不利に応答する可能性、そしてまたそれらの応答の程度、あるいは患者が原発腫瘍の外科的切除および/または化学療法の後に癌を再発することなく一定期間生存する可能性をいうのに本明細書中で使用される。本発明の予測方法は、患者が処置レジメン(例えば、外科的処置、所定の薬物または薬物の組合せを用いた化学療法、および/または放射線療法)に対して有利に応答する可能性が高いか否か、あるいは外科手術後および/または化学療法もしくは他の治療法の終了後に患者の長期生存が有望であるか否かを予測するのに有益なツールである。   The term “prediction” refers to the likelihood that a patient will respond favorably or unfavorably to a drug or series of drugs, and also the extent of those responses, or the surgical excision and / or chemotherapy of the primary tumor. Is used herein to refer to the possibility of surviving for a period of time without recurrence of cancer. The prediction method of the present invention is whether a patient is likely to respond advantageously to a treatment regimen (eg, surgical treatment, chemotherapy with a given drug or combination of drugs, and / or radiation therapy). Or a useful tool for predicting whether a patient's long-term survival is promising after surgery and / or after completion of chemotherapy or other treatment.

用語「長期」生存は、外科手術または他の処置の後の少なくとも5年間、より好ましくは少なくとも8年間、最も好ましくは少なくとも10年間の生存をいうのに本明細書中で使用される。   The term “long term” survival is used herein to refer to survival for at least 5 years, more preferably at least 8 years, most preferably at least 10 years after surgery or other procedures.

用語「腫瘍」は、本明細書中で使用される場合、悪性であろうと良性であろうと、全ての新生細胞の成長および増殖、ならびに全ての前癌性および癌性の細胞および組織をいう。   The term “tumor” as used herein refers to the growth and proliferation of all neoplastic cells, whether malignant or benign, and all precancerous and cancerous cells and tissues.

用語「癌」および「癌性」とは、代表的には無秩序な細胞増殖を特徴とする、哺乳動物における生理学的状態をいうかまたは記述する。癌の例としては、乳癌、結腸癌、肺癌、前立腺癌、肝細胞癌、胃癌、膵癌、子宮頸癌、卵巣癌、肝臓癌、膀胱癌、尿路癌、甲状腺癌、腎臓癌、癌腫、黒色腫、および脳腫瘍が挙げられるが、これらに限定されない。   The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, bladder cancer, urinary tract cancer, thyroid cancer, kidney cancer, carcinoma, black Tumors, and brain tumors, but are not limited to these.

(腫瘍)癌の「病理」は、患者の健康を損なう全ての現象を包含する。これは、非限定的に、異常なまたは制御できない細胞増殖、転移、周辺細胞の正常機能への干渉、異常なレベルでのサイトカインまたは他の分泌物の放出、炎症応答または免疫応答の抑制または悪化、新生物形成、前悪性腫瘍、悪性腫瘍、周囲または遠隔の組織または器官(例えばリンパ節)の侵襲などを包含する。   The “pathology” of (tumor) cancer encompasses all phenomena that impair the health of the patient. This includes, but is not limited to, abnormal or uncontrollable cell growth, metastasis, interference with normal functioning of surrounding cells, release of cytokines or other secretions at abnormal levels, suppression or exacerbation of inflammatory or immune responses , Neoplasia, pre-malignant tumor, malignant tumor, invasion of surrounding or distant tissues or organs (eg lymph nodes) and the like.

ハイブリダイゼーション反応の「ストリンジェンシー」は、当業者によって容易に決定可能であり、そして一般には、プローブ長、洗浄温度、および塩濃度に依存する経験的計算である。一般的には、より長いプローブは、適切なアニーリングのためにより高い温度を必要とするが、より短いプローブは、より低い温度を必要とする。ハイブリダイゼーションは、一般的に、相補鎖がこれらの融点未満の環境に存在する場合、変性したDNAが再アニールする能力に依存する。プローブとハイブリダイズ可能な配列との間の所望の相同性の程度が高いほど、使用され得る相対温度が高くなる。結果として、より高い相対温度は、反応条件をよりストリンジェントにするが、より低い温度は、反応条件をあまりストリンジェントにしない傾向にある。ハイブリダイゼーション反応のストリンジェンシーのさらなる詳細および説明については、Ausubel et al.,Current Protocols in Molecular Biology,Wiley Interscience Publishers,(1995)を参照のこと。   The “stringency” of a hybridization reaction is readily determinable by one of ordinary skill in the art and is generally an empirical calculation that depends on probe length, wash temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes require lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when the complementary strand is present in an environment below these melting points. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, higher relative temperatures make the reaction conditions more stringent, while lower temperatures tend to make the reaction conditions less stringent. For further details and explanation of the stringency of hybridization reactions, see Ausubel et al. , Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

本明細書中で規定されるように、「ストリンジェント条件」または「高いストリンジェント条件」は、代表的には以下:(1)洗浄のために、低いイオン強度および高温を使用し、例えば、50℃で0.015M塩化ナトリウム/0.0015Mクエン酸ナトリウム/0.1%ドデシル硫酸ナトリウムを使用する;(2)ハイブリダイゼーションの間、変性剤(例えば、ホルムアミド)を使用し、例えば、42℃で0.1%ウシ血清アルブミン/0.1%Ficoll/0.1%ポリビニルピロリドン/750mM塩化ナトリウム、75mMクエン酸ナトリウムを含有する50mMリン酸ナトリウム緩衝液(pH6.5)を含有する50%(v/v)ホルムアミドを使用する;または(3)42℃で50%ホルムアミド、5×SSC(0.75M NaCl、0.075Mクエン酸ナトリウム)、50mMリン酸ナトリウム(pH6.8)、0.1%ピロリン酸ナトリウム、5×Denhardt溶液、超音波処理したサケ精子DNA(50μg/mL)、0.1%SDS、および10%硫酸デキストランを使用し、42℃で0.2×SSC(塩化ナトリウム/クエン酸ナトリウム)、55℃で50%ホルムアミド、続いて55℃でEDTAを含む0.1×SSCから構成される高ストリンジェンシー洗浄液で洗浄する。   As defined herein, “stringent conditions” or “high stringent conditions” are typically: (1) using low ionic strength and high temperature for washing, eg, Use 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate at 50 ° C .; (2) Use denaturing agents (eg, formamide) during hybridization, eg, 42 ° C. 50% containing 50 mM sodium phosphate buffer (pH 6.5) containing 0.1% bovine serum albumin / 0.1% Ficoll / 0.1% polyvinylpyrrolidone / 750 mM sodium chloride, 75 mM sodium citrate. v / v) use formamide; or (3) 50% formamide at 42 ° C., 5 × SSC (0.7 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 × Denhardt solution, sonicated salmon sperm DNA (50 μg / mL), 0.1 From 0.2 × SSC (sodium chloride / sodium citrate) at 42 ° C., 50% formamide at 55 ° C., followed by 0.1 × SSC containing EDTA at 55 ° C. using 10% SDS, and 10% dextran sulfate Wash with a high stringency wash solution that is composed.

「中程度にストリンジェントな条件」は、Sambrook et al.,Molecular Cloning:A Laboratory Manual,New York:Cold Spring Harbor Press,1989によって記載されるように特定され得、そして上記される条件よりもあまりストリンジェントでない洗浄溶液およびハイブリダイゼーション条件(例えば、温度、イオン強度およびSDS%)の使用を含む。中程度にストリンジェントな条件の例は、溶液(以下を含む:20%ホルムアミド、5×SSC(150mM NaCl、15mMクエン酸三ナトリウム)、50mMリン酸ナトリウム(pH7.6)、5×Denhardt溶液、10%硫酸デキストラン、および20mg/mL変性切断サケ精子DNA)中で37℃で一晩インキュベーションし、その後に約37〜50℃で1×SSC中でフィルターを洗浄することである。当業者は、プローブ長などのような因子を適応させるために必要な温度、イオン強度などを調整する方法を認識している。   “Moderately stringent conditions” are described in Sambrook et al. , Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and washing conditions and hybridization conditions that are less stringent than those described above (eg, temperature, ion Use of strength and SDS%). Examples of moderately stringent conditions include solutions (including: 20% formamide, 5 × SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 × Denhardt solution, Incubate overnight at 37 ° C. in 10% dextran sulfate, and 20 mg / mL denatured cut salmon sperm DNA, followed by washing the filter in 1 × SSC at approximately 37-50 ° C. Those skilled in the art know how to adjust the temperature, ionic strength, etc. necessary to accommodate factors such as probe length.

本発明に関連して、任意の特定の遺伝子セットに記載された遺伝子の「少なくとも1つ」、「少なくとも2つ」、「少なくとも5つ」などは、リストに記載された遺伝子のうちのいずれか1つまたはありとあらゆる組合せを意味する。   In the context of the present invention, “at least one”, “at least two”, “at least five”, etc. of the genes listed in any particular gene set are any of the genes listed Mean one or any combination.

用語「(リンパ)節陰性」癌、例えば「(リンパ)節陰性」乳癌は、リンパ節にまで転移していない癌をいうのに本明細書中で使用される。   The term “(lymph) node negative” cancer, eg, “(lymph) node negative” breast cancer, is used herein to refer to a cancer that has not spread to the lymph nodes.

用語「遺伝子発現プロファイリング」は、最も広い意味で使用され、生物学的サンプル中のmRNAレベルおよび/またはタンパク質レベルの定量方法を含む。   The term “gene expression profiling” is used in the broadest sense and includes methods for quantifying mRNA and / or protein levels in a biological sample.

用語「アジュバント療法」は、一次(初期)治療に加えて供される処置に一般に使用される。癌治療において、用語「アジュバント療法」は、癌再発のリスクを低下させることを主要目的とする、腫瘍の外科的切除後の化学療法、ホルモン療法および/または放射線療法をいうのに使用される。   The term “adjuvant therapy” is generally used for treatments offered in addition to primary (initial) therapy. In cancer treatment, the term “adjuvant therapy” is used to refer to chemotherapy, hormonal therapy and / or radiation therapy after surgical excision of a tumor, whose primary purpose is to reduce the risk of cancer recurrence.

「ネオアジュバント療法」は、一次(主要)療法の前に供される補助的療法またはアジュバント療法である。ネオアジュバント療法としては、例えば、化学療法、放射線療法、およびホルモン療法が挙げられる。従って、化学療法を外科手術の前に実施して腫瘍を縮小させ得、その結果、外科手術がより有効になり得るか、または既に手術不可能な腫瘍の場合には外科手術が可能になり得る。   “Neoadjuvant therapy” is an adjuvant or adjuvant therapy that is given before the primary (primary) therapy. Neoadjuvant therapy includes, for example, chemotherapy, radiation therapy, and hormone therapy. Thus, chemotherapy can be performed before surgery to shrink the tumor, so that surgery can be more effective, or surgery can be possible in the case of tumors that are already inoperable .

用語「癌に関連した生物学的機能」は、宿主に逆らって癌の成立(cancer success)に影響を与える分子活性(非限定的に、細胞増殖、プログラム細胞死(アポトーシス)、分化、侵襲、転移、腫瘍抑制、免疫監視に対する感受性、血管形成、不死の維持または獲得を調節する活性が挙げられる)をいうのに本明細書中で使用される。   The term “biological function associated with cancer” refers to molecular activities that affect cancer success against the host (including but not limited to cell proliferation, programmed cell death (apoptosis), differentiation, invasion, Metastasis, tumor suppression, susceptibility to immune surveillance, angiogenesis, activity that modulates the maintenance or acquisition of immortality) is used herein to refer to.

B.詳細な説明
本発明の実施には、他に指示がない限り、分子生物学(組換え技術を含む)、微生物学、細胞生物学、および生化学の従来技術を用い、これらは当該分野の技術範囲内である。このような技術は、例えば、「Molecular Cloning:A Laboratory Manual」,2nd edition(Sambrook et al.,1989);「Oligonucleotide Synthesis」(M.J.Gait,編,1984);「Animal Cell Culture」(R.I.Freshney,編,1987);「Methods in Enzymology」(Academic Press,Inc.);「Handbook of Experimental Immunology」,4th edition(D.M.Weir & C.C.Blackwell,編,Blackwell Science Inc.,1987);「Gene Transfer Vectors for Mammalian Cells」(J.M.Miller & M.P.Calos,編,1987);「Current Protocols in Molecular Biology」(F.M.Ausubelら,編,1987);および「PCR:The Polymerase Chain Reaction」、(Mullisら,編,1994)のような文献中で十分に説明される。
B. DETAILED DESCRIPTION Unless otherwise indicated, the practice of the present invention uses conventional techniques of molecular biology (including recombinant technology), microbiology, cell biology, and biochemistry, which are well known in the art. Within range. Such techniques are described, for example, in “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology, 4th edition, C. Wel. C & W. Inc., 1987); “Gene Transfer Vectors. “For Mammalian Cells” (JM Miller & MP Calos, ed., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., ed., 1987); and “PCR: The Polymerase C ”, (Mullis et al., Ed., 1994).

本発明は、癌患者における癌の再発または治療への応答の可能性を決定するためのアルゴリズムを提供する。この方法は、以下の(1)〜(3)に基づく:(1)癌再発のマーカーとして機能し得る遺伝子セットの同定およびクラスター形成または特定の治療に対する患者応答の可能性、(2)クラスターおよびクラスター内の個々の遺伝子(癌の再発または治療への応答を予測する際にそれらの値を反映する)に割り当てられ、そして発現データを式に組み入れるのに用いられる、特定の重み;ならびに(3)癌再発の種々の危険度を有する群、または処置に対する応答の種々の可能性を有する群(例えば、低リスク群、中程度リスク群、および高リスク群、あるいは特定の処置に対する患者応答の可能性が低い群、中程度の群または高い群)に患者を分類するのに用いられる閾値の決定。このアルゴリズムは数値的再発スコア(RS)または処置への応答スコア(RTS)をもたらし、これらは癌患者の治療に関して処置決定を行うのに用いられ得る。   The present invention provides algorithms for determining the likelihood of cancer recurrence or response to treatment in cancer patients. This method is based on the following (1)-(3): (1) Identification of a gene set that can function as a marker of cancer recurrence and clustering or the possibility of patient response to a specific treatment, (2) Cluster and Specific weights assigned to individual genes in the cluster (which reflect their values in predicting cancer recurrence or response to treatment) and used to incorporate expression data into the formula; and (3 ) Groups with varying degrees of cancer recurrence, or with varying likelihood of response to treatment (eg, low-risk, moderate-risk, and high-risk groups, or patient response to specific treatment) Determination of thresholds used to classify patients into low sex, moderate or high groups. This algorithm provides a numerical recurrence score (RS) or response to treatment score (RTS), which can be used to make treatment decisions regarding the treatment of cancer patients.

本発明のアルゴリズムによって分析されるデータを作成する第一工程は、遺伝子またはタンパク質発現プロファイリングである。   The first step in generating data to be analyzed by the algorithm of the present invention is gene or protein expression profiling.

1.発現プロファイリングの技術
本発明は、癌細胞を含む生物学的サンプル中の特定遺伝子(mRNA)またはそれらの発現産物(タンパク質)のレベルを測定するのにアッセイを必要とする。代表的には、この生物学的サンプルは、例えば腫瘍生検または吸引によって腫瘍から得た、新鮮なまたは保存された組織サンプルであるが、腫瘍細胞を含む生物学的流体も分析に用いられ得る。
1. Expression Profiling Techniques The present invention requires an assay to measure the level of specific genes (mRNA) or their expression products (proteins) in a biological sample containing cancer cells. Typically, this biological sample is a fresh or stored tissue sample obtained from a tumor, for example, by tumor biopsy or aspiration, but biological fluids containing tumor cells can also be used for analysis. .

最も一般的な形態において、遺伝子発現プロファイリングは、例えば、既に患者から収集しそして保存されている固定パラフィン包埋腫瘍生検標本のような組織サンプル中のmRNAレベルの決定を包含する。従って、この試験は完全に非侵襲であり得る。この試験はまた、いくつかの異なる腫瘍組織収集方法(例えば、コア生検または細針吸引)と両立し得る。この腫瘍組織は、正常な組織から肉眼で見て切除が可能であるが、そのようにする必要はない。   In the most common form, gene expression profiling involves the determination of mRNA levels in a tissue sample such as, for example, a fixed paraffin-embedded tumor biopsy specimen that has already been collected and stored from a patient. Therefore, this test can be completely non-invasive. This test may also be compatible with several different tumor tissue collection methods (eg, core biopsy or fine needle aspiration). This tumor tissue can be removed with the naked eye from normal tissue, but it need not be.

mRNAレベルの測定に指向される遺伝子発現プロファイリングの方法は、以下の2つの大きな群に分類され得る:ポリヌクレオチドのハイブリダイゼーション分析に基づく方法、およびポリヌクレオチドの配列決定に基づく方法。サンプル中のmRNA発現の定量に最も一般に用いられる当該分野で公知の方法としては、ノーザンブロット法およびインサイチュハイブリダイゼーション(Parker&Barnes, Methods in Molecular Biology 106:247〜283(1999));RNAse保護アッセイ(Hod, Biotechniques 13:852〜854(1992));ならびに逆転写ポリメラーゼ連鎖反応(RT−PCR)(Weis et al.,Trends in Genetics 8:263〜264(1992))が挙げられる。あるいは、DNA二重鎖、RNA二重鎖、およびDNA−RNAハイブリッド二重鎖またはDNA−タンパク質二重鎖を含む特定の二重鎖を認識し得る抗体が用いられ得る。配列決定に基づく遺伝子発現分析のための代表的な方法としては、連続的遺伝子発現解析法(SAGE)、および超並列的な遺伝子ビーズクローン解析法(MPSS)による遺伝子発現分析が挙げられる。   Methods of gene expression profiling directed to the measurement of mRNA levels can be divided into two large groups: methods based on polynucleotide hybridization analysis, and methods based on polynucleotide sequencing. The methods most commonly used in the art for quantifying mRNA expression in a sample include Northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106: 247-283 (1999)); RNAse protection assay (Hod) , Biotechniques 13: 852-854 (1992)); and reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8: 263-264 (1992)). Alternatively, antibodies that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes, can be used. Representative methods for gene expression analysis based on sequencing include gene expression analysis by continuous gene expression analysis (SAGE) and massively parallel gene bead clone analysis (MPSS).

これらの技術の全てにおいて、第一工程は、標的サンプルからのmRNAの単離である。この出発物質は、代表的にはヒト腫瘍または腫瘍細胞株、およびそれぞれ対応する正常組織または細胞株から単離された全RNAである。従って、RNAは、健康なドナーからのプールDNAを用いて、乳房、肺、大腸、前立腺、脳、肝臓、腎臓、膵臓、脾臓、胸腺、精巣、卵巣、子宮などの腫瘍を含む種々の原発腫瘍、または腫瘍細胞株から単離され得る。mRNAの供給源が原発腫瘍である場合、mRNAは、例えば、凍結または保存されているパラフィン包埋および固定(例えば、ホルマリン固定)組織サンプルから抽出され得る。   In all of these techniques, the first step is the isolation of mRNA from the target sample. This starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus, RNA uses pool DNA from healthy donors to produce a variety of primary tumors including tumors such as breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc. Or isolated from a tumor cell line. If the source of the mRNA is a primary tumor, the mRNA can be extracted from, for example, frozen or stored paraffin embedded and fixed (eg, formalin fixed) tissue samples.

mRNA抽出の一般的方法は周知の技術であり、Ausubel et al.,Current Protocols of Molecular Biology,John Wiley and Sons(1997)を含む、分子生物学の標準的テキストに開示されている。パラフィン包埋組織からのRNA抽出の方法は、例えば、RuppおよびLocker、Lab Invest.56:A67(1987)、ならびにDe Andres et al.,BioTechniques 18:42044(1995)に開示されている。特に、RNAの単離は、商業製造者(例えばQiagen)が提供している精製キット、緩衝液セットおよびプロテアーゼを用い、製造業者の指示に従って実施され得る。例えば、培養細胞からの全RNAは、Qiagen RNeasyミニカラムを用いて単離され得る。他の市販のRNA単離キットとしては、MasterPureTM完全DNAおよびRNA精製キット(EPICENTRE(登録商標),Madison,WI)、およびパラフィンブロックRNA単離キット(Paraffin Block RNA Isolation Kit)(Ambion,Inc.)が挙げられる。組織サンプルからの全RNAは、RNA Stat−60(Tel−Test)を用いて単離され得る。腫瘍から調製されたRNAは、例えば、塩化セシウム密度勾配遠心分離によって単離され得る。 The general method of mRNA extraction is a well-known technique and is described in Ausubel et al. , Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin-embedded tissues are described, for example, in Rupp and Locker, Lab Invest. 56: A67 (1987), and De Andres et al. BioTechniques 18: 42044 (1995). In particular, RNA isolation can be performed using purification kits, buffer sets and proteases provided by commercial manufacturers (eg, Qiagen) according to the manufacturer's instructions. For example, total RNA from cultured cells can be isolated using a Qiagen RNeasy mini column. Other commercially available RNA isolation kits include MasterPure complete DNA and RNA purification kits (EPICENTRE®, Madison, Wis.), And paraffin block RNA isolation kits (Ambion, Inc.). ). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from a tumor can be isolated, for example, by cesium chloride density gradient centrifugation.

本発明の実施は、生物学的(例えば組織)サンプル中のmRNAレベルを決定するために開発された技術を参照して説明されるが、プロテオミクス分析の方法のような他の技術もまた、広い概念の遺伝子発現プロファイリングに含まれ、かつ本明細書の範囲内である。一般に、パラフィン包埋組織を用いる好ましい遺伝子発現プロファイリング方法は、定量的逆転写酵素ポリメラーゼ連鎖反応(qRT−PCR)であるが、質量分析およびDNAマイクロアレイを含む、他のテクノロジープラットフォームも使用され得る。   Although the practice of the present invention will be described with reference to techniques developed to determine mRNA levels in biological (eg tissue) samples, other techniques such as methods of proteomic analysis are also broad. Included in conceptual gene expression profiling and within the scope of this specification. In general, the preferred gene expression profiling method using paraffin-embedded tissue is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), but other technology platforms can be used, including mass spectrometry and DNA microarrays.

以下の節において、代表的であるが網羅的ではない一連の遺伝子発現プロファイリング技術が、さらに詳細に議論される。   In the following sections, a representative but not exhaustive series of gene expression profiling techniques is discussed in more detail.

2.逆転写酵素PCT(RT−PCR)
上記の技術のうち、最も高感度かつ最も適応性のある定量方法はqRT−PCRであり、これは、薬物処置を受けたかまたは受けていない、正常および腫瘍組織中の、異なるサンプル集団のmRNAレベルを比較して、遺伝子発現のパターンを特徴付けし、近縁種のmRNA間を区別し、そしてRNA構造を分析するのに用いられ得る。
2. Reverse transcriptase PCT (RT-PCR)
Of the above techniques, the most sensitive and most adaptable quantification method is qRT-PCR, which is the mRNA level of different sample populations in normal and tumor tissues with or without drug treatment. Can be used to characterize patterns of gene expression, distinguish between closely related mRNAs, and analyze RNA structure.

RNAはPCRのテンプレートとなり得ないため、RT−PCRによる遺伝子発現プロファイリングの第一工程は、cDNAへのRNAテンプレートの逆転写であり、その後にPCR反応における指数関数的増幅が続く。最も一般に用いられる2つの逆転写酵素は、鳥骨髄芽球症ウイルス逆転写酵素(AMV−RT)およびモロニーマウス白血病ウイルス逆転写酵素(MMLV−RT)である。逆転写工程を、発現プロファイリングの状況および目的に応じて、代表的には特定のプライマー、ランダムヘキサマー、またはオリゴ−dTプライマーを用いてプライムする。例えば、抽出したRNAを、製造業者の指示に従って、GeneAmp RNA PCRキット(Perkin Elmer,CA,USA)を用いて逆転写させ得る。次いで、生成されたcDNAを、その後のPCR反応のテンプレートとして用い得る。   Since RNA cannot be a template for PCR, the first step in gene expression profiling by RT-PCR is reverse transcription of the RNA template into cDNA followed by exponential amplification in the PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed with specific primers, random hexamers, or oligo-dT primers, depending on the status and purpose of expression profiling. For example, extracted RNA can be reverse transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, CA, USA) according to the manufacturer's instructions. The generated cDNA can then be used as a template for subsequent PCR reactions.

PCR工程は、種々の耐熱性DNA依存性DNAポリメラーゼを用い得るが、代表的にはTaq DNAポリメラーゼを用い、この酵素は、5’−3’ヌクレアーゼ活性を有するが3’−5’プルーフリーディングエンドヌクレアーゼ活性を欠く。従って、TaqMan(登録商標)PCRは、代表的には、TaqまたはTthポリメラーゼの5’−ヌクレアーゼ活性を利用して標的アンプリコンに結合したハイブリダイゼーションプローブを加水分解するが、等価の5’ヌクレアーゼ活性を有する任意の酵素が用いられ得る。2つのオリゴヌクレオチドプライマーを用いて、PCR反応に典型的なアンプリコンを生成する。第3のオリゴヌクレオチド(すなわちプローブ)を設計して、2つのPCRプライマーの間に位置するヌクレオチド配列を検出する。このプローブは、Taq DNAポリメラーゼ酵素によって伸長不可能であり、かつレポーター蛍光色素およびクエンチャー蛍光色素で標識される。これらの2つの色素がこのプローブ上にあるように、互いに近接して位置する場合、レポーター色素からのいかなるレーザー誘起発光もクエンチング色素によってクエンチされる。この増幅反応の間、Taq DNAポリメラーゼ酵素はテンプレート依存的な様式でプローブを切断する。結果として生じたプローブフラグメントを溶液中に分離させ、そして遊離したレポーター色素からのシグナルが第2フルオロフォアのクエンチング作用を受けないようにする。合成された新規分子の各々につき1分子のレポーター色素が遊離され、そしてクエンチされていないレポーター色素を検出することにより、このデータの定量的解釈の根拠を得る。   The PCR process can use various thermostable DNA-dependent DNA polymerases, but typically uses Taq DNA polymerase, which has 5′-3 ′ nuclease activity but a 3′-5 ′ proofreading end. It lacks nuclease activity. Thus, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze the hybridization probe bound to the target amplicon, but the equivalent 5 ′ nuclease activity. Any enzyme having can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide (ie probe) is designed to detect the nucleotide sequence located between the two PCR primers. This probe cannot be extended by Taq DNA polymerase enzyme and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when located in close proximity to each other such that these two dyes are on the probe. During this amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resulting probe fragment is separated into solution and the signal from the released reporter dye is not subject to the quenching action of the second fluorophore. One molecule of reporter dye is released for each new molecule synthesized and the basis for quantitative interpretation of this data is obtained by detecting the unquenched reporter dye.

TaqMan(登録商標)RT−PCRは、例えば、ABI PRISM 7700TM配列検出システムTM(Perkin−Elmer−Applied Biosystems,Foster City,CA,USA)、またはLightcycler(Roche Molecular Biochemicals,Mannheim,Germany)のような市販の装置を用いて実施され得る。好ましい実施形態において、5’ヌクレアーゼ手順は、ABI PRISM 7700TM配列検出システムTMのようなリアルタイム定量的PCRデバイスで実行される。このシステムは、サーモサイクラー、レーザー、電荷結合素子(CCD)、カメラおよびコンピュータで構成される。このシステムは、この機器を作動させるためおよびデータを解析するためのソフトウェアを備える。 TaqMan® RT-PCR can be performed, for example, by ABI PRISM 7700 Sequence Detection System (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA) or Lightcycler (Roche Molecular Biochemistry, Roche Molecular Biochem. It can be carried out using commercially available equipment. In a preferred embodiment, the 5 'nuclease procedure is performed on a real-time quantitative PCR device such as the ABI PRISM 7700 TM sequence detection system TM . The system consists of a thermocycler, laser, charge coupled device (CCD), camera and computer. The system includes software for operating the instrument and analyzing the data.

5’−ヌクレアーゼアッセイデータは、初めにCt(すなわち閾値サイクル)として表される。上記のように、蛍光値はサイクル毎に記録され、増幅反応におけるその時点までで増幅された産物の量を表す。蛍光シグナルが初めて統計学的有意として記録される時点が、閾値サイクル(Ct)である。   5'-nuclease assay data is initially expressed as Ct (ie, threshold cycle). As described above, fluorescence values are recorded every cycle and represent the amount of product amplified to that point in the amplification reaction. The point at which the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).

誤差およびサンプル間変動の影響を最小にするために、通常、内部標準を用いてRT−PCRを行う。理想的な内部標準は、異なる組織間で一定のレベルで発現され、かつ実験的処理によって影響を受けない。遺伝子発現のパターンを正規化するのに最も頻繁に用いられるRNAは、ハウスキーピング遺伝子グリセルアルデヒド3リン酸デヒドロゲナーゼ(GAPDH)およびβアクチンのmRNAである。   To minimize the effects of errors and sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level between different tissues and is not affected by experimental treatment. The RNAs most frequently used to normalize gene expression patterns are the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-actin mRNA.

RT−PCR技術の最近のバリエーションは、リアルタイム定量的PCRであり、これは、二重標識蛍光発光性プローブ(すなわち、TaqMan(登録商標)プローブ)によってPCR産物蓄積を測定する。リアルタイムPCRは、各標的配列に対する内部競合体を正規化に用いる定量的競合PCR、およびサンプル内に含まれる正規化遺伝子またはハウスキーピング遺伝子をRT−PCRに用いる定量的比較PCRの両方と適合する。さらなる詳細については、例えば、Heldら,Genome Research 6:986〜994(1996)を参照のこと。   A recent variation of RT-PCR technology is real-time quantitative PCR, which measures PCR product accumulation with a dual-labeled fluorescent probe (ie, TaqMan® probe). Real-time PCR is compatible with both quantitative competitive PCR using internal competitors for each target sequence for normalization, and quantitative comparative PCR using normalized or housekeeping genes contained in the sample for RT-PCR. For further details, see, eg, Held et al., Genome Research 6: 986-994 (1996).

3.マイクロアレイ
差次的遺伝子発現もまたマイクロアレイ技術を用いて同定され得るか、または確認され得る。従って、乳癌関連遺伝子の発現プロフィールは、マイクロアレイ技術を用いて、新鮮な腫瘍組織かまたはパラフィン包埋腫瘍組織のいずれかにおいて測定され得る。この方法では、目的のポリヌクレオチド配列(cDNAおよびオリゴヌクレオチドを含む)をマイクロチップ基材上にプレートするかまたはアレイ化する。次いで、これらのアレイ化配列を、目的の細胞または組織由来の特定のDNAプローブとハイブリダイズさせる。RT−PCR法と同様に、mRNAの供給源は、代表的にはヒト腫瘍または腫瘍細胞株、および対応する正常組織または細胞株から単離された全RNAである。従って、RNAは、種々の原発腫瘍または腫瘍細胞株から単離され得る。mRNAの供給源が原発腫瘍である場合、mRNAは、例えば、凍結されているかまたは保存されているパラフィン包埋および固定(例えば、ホルマリン固定)組織サンプル(これらは、日々の臨床診療において日常的に調製されかつ保存される)から抽出され得る。
3. Microarray Differential gene expression can also be identified or confirmed using microarray technology. Thus, the expression profile of breast cancer-related genes can be measured in either fresh tumor tissue or paraffin-embedded tumor tissue using microarray technology. In this method, the polynucleotide sequence of interest (including cDNA and oligonucleotides) is plated or arrayed on a microchip substrate. These arrayed sequences are then hybridized with specific DNA probes from the cell or tissue of interest. Similar to the RT-PCR method, the source of mRNA is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus, RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of the mRNA is the primary tumor, then the mRNA is, for example, frozen or stored in paraffin-embedded and fixed (eg formalin-fixed) tissue samples (these are routinely used in daily clinical practice. Prepared and stored).

マイクロアレイ技術の特定の実施形態において、PCR増幅したcDNAクローンのインサートを緻密アレイ中の基材にアプライする。好ましくは、少なくとも10,000個のヌクレオチド配列をこの基材にアプライする。マイクロチップ上に各々10,000エレメントで固定化されたマイクロアレイ化遺伝子が、ストリンジェントな条件下でのハイブリダイゼーションに適する。蛍光標識化cDNAプローブは、目的の組織から抽出されたRNAの逆転写による蛍光ヌクレオチドの取り込みによって生成され得る。チップにアプライされた標識化cDNAプローブを、アレイ上のDNAの各スポットに対する特異性でハイブリダイズする。ストリンジェントな洗浄を行って非特異的結合プローブを除去した後、このチップを共焦点レーザー顕微鏡によって、または別の検出方法(例えば、CCDカメラ)によってスキャンする。各アレイ化エレメントのハイブリダイゼーションの定量化によって、対応するmRNA存在量の評価が可能になる。2つのRNA供給源から生成した、二色蛍光を用いて別々に標識化されたcDNAプローブを、このアレイに2つ1組でハイブリダイズさせる。従って、各々の特定遺伝子に対応する2つの供給源由来の転写物の相対存在量は、同時に決定される。ハイブリダイゼーションの規模を縮小することにより、多数の遺伝子についての発現パターンの簡便かつ迅速な評価が得られる。このような方法は、稀な転写物(細胞当たり数コピーで発現される)を検出するために、かつ発現レベルに少なくとも約2倍の差異を再現可能に検出するために必要な感度を有することが示されている(Schenaら,Proc.Natl.Acad.Sci.USA 93(2):106〜149(1996))。マイクロアレイ分析は、製造業者のプロトコールに従い、市販の装置によって(例えば、Affymetrix GenChip技術、またはIncyteのマイクロアレイ技術を用いることによって)実施され得る。   In a specific embodiment of microarray technology, PCR amplified cDNA clone inserts are applied to a substrate in a dense array. Preferably, at least 10,000 nucleotide sequences are applied to the substrate. Microarrayed genes immobilized at 10,000 elements each on a microchip are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes can be generated by incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from the tissue of interest. Labeled cDNA probes applied to the chip are hybridized with specificity for each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned with a confocal laser microscope or with another detection method (eg, a CCD camera). Quantification of the hybridization of each arraying element allows the assessment of the corresponding mRNA abundance. CDNA probes generated from two RNA sources and separately labeled with two-color fluorescence are hybridized to the array in duplicate. Thus, the relative abundance of transcripts from the two sources corresponding to each particular gene is determined simultaneously. By reducing the scale of hybridization, a simple and rapid evaluation of expression patterns for a large number of genes can be obtained. Such a method should have the sensitivity necessary to detect rare transcripts (expressed at several copies per cell) and to reproducibly detect at least about a 2-fold difference in expression levels. (Schena et al., Proc. Natl. Acad. Sci. USA 93 (2): 106-149 (1996)). Microarray analysis can be performed by commercially available equipment (eg, by using Affymetrix GenChip technology, or Incyte's microarray technology) according to the manufacturer's protocol.

遺伝子発現の大規模解析のためのマイクロアレイ法の開発により、種々の腫瘍タイプにおける癌分類および予後予測の分子マーカーについて系統的に検索することが可能になる。   Development of microarray methods for large-scale analysis of gene expression enables systematic searches for molecular markers for cancer classification and prognosis prediction in various tumor types.

4.連続的遺伝子発現解析法(SAGE)
連続的遺伝子発現解析法(SAGE)は、各転写物についての個々のハイブリダイゼーションプローブを提供する必要なく、多数の遺伝子転写物の同時定量分析を可能にする方法である。まず、転写物を固有に同定するのに十分な情報を含む短配列タグ(約10〜14塩基対)が、このタグが各転写物中の固有の位置から得られるという条件で生成される。次いで、多数の転写物を連結させて、配列決定され得る長い連続分子を形成し、同時に多重タグの同一性を明らかにする。転写物の任意の集団の発現パターンが、個々のタグの存在量を決定し、そして各タグに対応する遺伝子を同定することによって定量的に評価され得る。さらに詳細には、例えば、Velculescu et al.,Science 270:484〜487(1995);およびVelculescu et al.,Cell 88:243〜51(1997)を参照のこと。
4). Continuous gene expression analysis (SAGE)
Sequential gene expression analysis (SAGE) is a method that allows simultaneous quantitative analysis of multiple gene transcripts without the need to provide individual hybridization probes for each transcript. First, a short sequence tag (about 10-14 base pairs) containing sufficient information to uniquely identify a transcript is generated, provided that the tag is obtained from a unique position in each transcript. Multiple transcripts are then ligated to form long continuous molecules that can be sequenced, while simultaneously revealing the identity of multiple tags. The expression pattern of any population of transcripts can be assessed quantitatively by determining the abundance of individual tags and identifying the genes corresponding to each tag. For further details, see, for example, Velculescu et al. , Science 270: 484-487 (1995); and Velculescu et al. , Cell 88: 243-51 (1997).

5.超並列的な遺伝子ビーズクローン解析法(MPSS)による遺伝子発現分析
この方法は、Brenner et al.,Nature Biotechnology 18:630〜634(2000)によって記載され、非ゲルベースのシグニチャー配列決定と個々の直径5μmのマイクロビーズ上の何百万ものテンプレートのインビトロクローニングを組み合わせる配列決定アプローチである。まず、DNAテンプレートのマイクロビーズライブラリーが、インビトロクローニングによって構築される。続いて、高密度で(代表的には、3×10個のマイクロビーズ/cmよりも高い密度で)フローセル中のテンプレート含有マイクロビーズの平面アレイを組み立てる。各マイクロビーズ上のクローン化テンプレートの自由端は、DNAフラグメント分離を必要としない蛍光ベースのシグニチャー配列決定法を用いて同時に分析される。この方法により、単一の操作で、酵母cDNAライブラリーから数十万の遺伝子シグニチャー配列が同時にかつ正確にもたらされることが示されている。
5. Gene expression analysis by massively parallel gene bead clone analysis (MPSS) This method is described in Brenner et al. , Nature Biotechnology 18: 630-634 (2000), a sequencing approach that combines non-gel based signature sequencing and in vitro cloning of millions of templates on individual 5 μm diameter microbeads. First, a DNA template microbead library is constructed by in vitro cloning. Subsequently, a planar array of template-containing microbeads in the flow cell is assembled at high density (typically at a density higher than 3 × 10 6 microbeads / cm 2 ). The free ends of the cloned template on each microbead are analyzed simultaneously using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to produce hundreds of thousands of gene signature sequences simultaneously and accurately from a yeast cDNA library in a single operation.

6.免疫組織化学
免疫組織化学法もまた、本発明の予後マーカーの発現レベルを検出するのに適する。従って、抗体または抗血清、好ましくはポリクローナル抗血清、そして最も好ましくは各マーカーに特異的なモノクローナル抗体が、発現を検出するのに用いられる。これらの抗体は、例えば、放射活性標識、蛍光標識、ビオチンのようなハプテン標識、またはセイヨウワサビペルオキシダーゼもしくはアルカリホスファターゼのような酵素を用いた、抗体自体の直接標識によって検出され得る。あるいは、非標識一次抗体を、この一次抗体に特異的な抗血清、ポリクローナル抗血清またはモノクローナル抗体を含む、標識二次抗体と併せて用いる。免疫組織化学プロトコールおよびキットは当該分野において周知であり、かつ市販されている。
6). Immunohistochemistry Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. These antibodies can be detected, for example, by direct labeling of the antibody itself, using radioactive labels, fluorescent labels, hapten labels such as biotin, or enzymes such as horseradish peroxidase or alkaline phosphatase. Alternatively, an unlabeled primary antibody is used in conjunction with a labeled secondary antibody that includes an antiserum, polyclonal antiserum or monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.

7.プロテオミクス
用語「プロテオーム」は、特定の時点でサンプル(例えば組織、生物体、または細胞培養物)中に存在するタンパク質全体と定義される。中でも、プロテオミクスは、サンプル中のタンパク質発現の全体的な変化の研究(「発現プロテオミクス」とも呼ばれる)を包含する。プロテオミクスは、代表的には以下の工程を包含する:(1)2次元ゲル電気泳動(2−D PAGE)によるサンプル中の個々のタンパク質の分離;(2)例えば質量分析またはN末端配列決定による、ゲルから回収した個々のタンパク質の同定、および(3)バイオインフォマティクスを用いたデータの分析。プロテオミクス法は、遺伝子発現プロファイリングの他の方法への有益な補足であり、単独でも他の方法と組み合わせても、本発明の予後マーカーの産生を検出するのに用いられ得る。
7). Proteomics The term “proteome” is defined as the entire protein present in a sample (eg, tissue, organism, or cell culture) at a particular time. Among other things, proteomics encompasses studies of the overall change in protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) Separation of individual proteins in a sample by two-dimensional gel electrophoresis (2-D PAGE); (2) by, for example, mass spectrometry or N-terminal sequencing , Identification of individual proteins recovered from the gel, and (3) analysis of data using bioinformatics. Proteomic methods are a valuable supplement to other methods of gene expression profiling and can be used alone or in combination with other methods to detect the production of prognostic markers of the present invention.

8.癌遺伝子セット、アッセイした遺伝子配列および遺伝子発現データの臨床応用
本発明の重要な局面は、癌(例えば乳癌)組織による特定の遺伝子の発現(またはそれらの発現産物)を測定し、予後情報を得るのに用いることである。このために、アッセイしたRNAの量における差および用いたRNAの質における可変性の両方について補正(正規化)する必要がある。従って、このアッセイは、代表的には、周知のハウスキーピング遺伝子(例えば、GAPDHおよびβ−ACTIN)を含む特定の正規化遺伝子の発現を測定し、そして組み込む。あるいは、正規化は、全てのアッセイした遺伝子またはそれらの大サブユニットの平均または中央シグナル(Ct)に基づいたものであり得る(全体的な正規化アプローチ)。開示全体にわたって、他に記述のない限り、遺伝子の発現レベルへの言及は、必ずしも明記されているとは限らないが、参照セットと比較して正規化された発現とみなす。
8). Clinical application of oncogene sets, assayed gene sequences and gene expression data An important aspect of the present invention is to measure the expression of specific genes (or their expression products) by cancer (eg breast cancer) tissue and obtain prognostic information To use. This requires correction (normalization) for both differences in the amount of RNA assayed and variability in the quality of RNA used. Thus, this assay typically measures and incorporates the expression of specific normalized genes, including well-known housekeeping genes (eg, GAPDH and β-ACTIN). Alternatively, normalization can be based on the average or median signal (Ct) of all assayed genes or their large subunits (overall normalization approach). Throughout the disclosure, unless otherwise stated, references to gene expression levels are considered not normalized expression but normalized expression relative to a reference set.

9.癌再発スコアを得るためのアルゴリズム
qRT−PCRを用いてmRNAレベルを測定する場合、mRNA量は、Ct(閾値サイクル)単位で表される(Heldら,Genome Research 6:986〜994(1996))。参照mRNA Ctの合計の平均をゼロに設定し、そして各々の測定した試験mRNA Ctを、このゼロ点を参照して得た。例えば、特定の患者腫瘍検体について、5つの参照遺伝子のCtの平均が31であり、かつ試験遺伝子CRB7のCtが35であると求められれば、GRB7についての報告値は−4(すなわち31−35)である。
9. Algorithm for obtaining a cancer recurrence score When measuring mRNA levels using qRT-PCR, the amount of mRNA is expressed in units of Ct (threshold cycle) (Held et al., Genome Research 6: 986-994 (1996)). . The average of the total reference mRNA Ct was set to zero and each measured test mRNA Ct was obtained with reference to this zero point. For example, for a particular patient tumor specimen, if the average Ct of 5 reference genes is 31 and the Ct of the test gene CRB7 is determined to be 35, the reported value for GRB7 is -4 (ie 31-35 ).

mRNAレベルの定量後に、第一工程として、腫瘍検体中で同定された遺伝子および癌の分子病理学に関連することが知られている遺伝子を、サブセットに群化する。従って、増殖に関連することが知られている遺伝子は、「増殖サブセット」(軸)を構成する。癌の侵襲に関連することが知られている遺伝子は、「侵襲サブセット」(軸)を構成する。主要な成長因子レセプター経路に関連する遺伝子は、「成長因子サブセット」(軸)を構成する。エストロゲン受容体(ER)を介する活性化またはシグナル伝達に関与することが知られている遺伝子は、「エストロゲン受容体サブセット」(軸)を構成する。このサブセットのリストは、当然ながら限定ではない。作成されたこれらのサブセット(軸)は、特定の癌(すなわち、乳癌、前立腺癌、膵臓癌、肺癌など)に依存する。通常、その発現が互いに相関していることが知られているか、または同じ経路に関与することが知られている遺伝子は、同じ軸に群化される。   After quantifying mRNA levels, as a first step, genes identified in tumor specimens and genes known to be associated with the molecular pathology of cancer are grouped into subsets. Thus, genes known to be associated with proliferation constitute a “growth subset” (axis). Genes known to be associated with cancer invasion constitute an “invasive subset” (axis). Genes associated with major growth factor receptor pathways constitute a “growth factor subset” (axis). Genes known to be involved in activation or signaling through the estrogen receptor (ER) constitute the “estrogen receptor subset” (axis). This list of subsets is of course not limiting. These created subsets (axes) depend on the specific cancer (ie, breast cancer, prostate cancer, pancreatic cancer, lung cancer, etc.). Usually, genes whose expression is known to correlate with each other or are known to be involved in the same pathway are grouped on the same axis.

次の工程において、サブセット内の各mRNAの測定した腫瘍レベルに、癌再発のリスクに対する相対的セット内寄与率を反映する係数をかけ、この積を、サブセット内のmRNAレベルとそれらの係数との間の他の積に加算して、項(例えば、増殖項、侵襲項、成長因子項、など)を得る。例えば、リンパ節陰性浸潤乳癌の場合、成長因子項は(0.45〜1.35)×GRB7+(0.05〜0.15)×Her2である(下記の実施例を参照のこと)。   In the next step, the measured tumor level of each mRNA in the subset is multiplied by a factor that reflects the relative intraset contribution to the risk of cancer recurrence, and this product is multiplied by the mRNA level in the subset and those factors. Add to other products in between to get terms (eg, growth terms, invasive terms, growth factor terms, etc.). For example, in the case of lymph node negative invasive breast cancer, the growth factor term is (0.45-1.35) × GRB7 + (0.05-0.15) × Her2 (see examples below).

再発スコア全体への各項の寄与率は、係数を用いて重み付けされる。例えば、リンパ節陰性浸潤乳癌の場合、成長因子項の係数は0.23〜0.70の間であり得る。   The contribution rate of each term to the overall recurrence score is weighted using a coefficient. For example, in the case of lymph node negative invasive breast cancer, the coefficient of the growth factor term can be between 0.23 and 0.70.

さらに、一部の項(例えば、成長因子項および増殖項)について、さらなる工程が実施される。項と再発リスクとの間の関係が非線形である場合、この項の非線形関数変換(例えば、閾値)が用いられる。従って、リンパ節陰性浸潤乳癌において、成長因子項が−2よりも小さい場合、この値は−2に固定される。増殖項が−3.5よりも小さい場合、この値は−3.5に固定される。   Furthermore, additional steps are performed for some terms (eg, growth factor terms and proliferation terms). If the relationship between the term and the risk of recurrence is non-linear, a non-linear function transformation (eg, threshold) for this term is used. Thus, in lymph node negative invasive breast cancer, this value is fixed at -2 if the growth factor term is less than -2. If the growth term is less than -3.5, this value is fixed at -3.5.

得られたこれらの項の合計から、再発スコア(RS)を得る。   From the sum of these terms obtained, a recurrence score (RS) is obtained.

再発スコア(RS)と再発リスクとの間の関係は、浸潤乳癌を有するリンパ節陰性患者の集団に由来する生検腫瘍検体における試験遺伝子および参照遺伝子の発現を測定し、そしてこのアルゴリズムを適用することによって求められている。   The relationship between recurrence score (RS) and risk of recurrence measures the expression of test and reference genes in biopsy tumor specimens from a population of lymph node negative patients with invasive breast cancer and applies this algorithm It is demanded by.

本発明のアルゴリズムによってもたらされたRSスケールは、種々の方法で調整され得ることが知られている。従って、上で具体的に記載したRSスケールは、効率的には−4.5〜−2.0であるが、この範囲は、このスケールが例えば0〜10、0〜50、または0〜100となるように選択され得る。   It is known that the RS scale produced by the algorithm of the present invention can be adjusted in various ways. Thus, the RS scale specifically described above is effectively -4.5 to -2.0, but this range is, for example, 0-10, 0-50, or 0-100. Can be selected.

例えば、特定のスケーリングアプローチにおいて、スケールド再発スコア(scaled recurrence score)(SRS)を0〜100のスケールで算出した。便宜上、10Ct単位を各測定Ct値に加算し、そして調整されていないRSを前記のように算出する。スケールド再発スコア(SRS)は、以下に示す方程式を用いて算出される。   For example, in a particular scaling approach, a scaled recurrence score (SRS) was calculated on a scale of 0-100. For convenience, 10 Ct units are added to each measured Ct value, and the unadjusted RS is calculated as described above. The scaled recurrence score (SRS) is calculated using the equation shown below.

Figure 0004906505
Figure 0004906505

以下の再発スコアを用いて種々のリスクカテゴリーに割り当てられた患者:   Patients assigned to various risk categories using the following recurrence scores:

Figure 0004906505
Figure 0004906505

この調整アプローチを用いて、図2に示した再発スコアを算出した。   Using this adjusted approach, the recurrence score shown in FIG. 2 was calculated.

10.再発スコアおよび処置への応答スコアの利用
本発明のアルゴリズムによって決定されるような再発スコア(RS)または処置への応答スコア(RTS)は、開業医が重大な処置決定を行うのに有益なツールをもたらす。従って、特定の患者のRSが低ければ、医師は、癌(例えば乳癌)の外科的切除後の化学療法が患者の長期生存を保証するのに必須ではないと判断する場合がある。結果として、この患者は、医療化学療法処置の標準のしばしば非常に重篤な副作用を受けることがない。一方、RSが高いと決定されると、この情報を用いて、どの化学療法または他の処置選択肢(例えば、放射線療法)がこの患者の処置に最も適するかを決定し得る。同様に、特定の処置について患者のRTSスコアが低ければ、他のより有効な治療法を用いて、その特定の患者の癌を治療する。
10. Utilization of Recurrence Score and Response Score to Treatment The recurrence score (RS) or response to treatment score (RTS) as determined by the algorithm of the present invention provides a useful tool for practitioners to make critical treatment decisions. Bring. Thus, if the RS of a particular patient is low, the physician may determine that chemotherapy after surgical resection of the cancer (eg, breast cancer) is not essential to ensure the patient's long-term survival. As a result, this patient does not suffer from the often very severe side effects of medical chemotherapy treatment standards. On the other hand, if it is determined that the RS is high, this information can be used to determine which chemotherapy or other treatment option (eg, radiation therapy) is best suited for the treatment of this patient. Similarly, if a patient's RTS score is low for a particular treatment, other more effective therapies are used to treat that particular patient's cancer.

例証として、乳癌の処置のための現在の標準の医療化学療法選択肢としては、アントラサイクリン+シクロホスファミド(AC);またはAC+タキサン(ACT);またはC+メトトレキサート+5−フルオロウラシル(CMF)の投与;あるいは任意のこれらの薬物単独、または任意の組合せの投与が挙げられる。癌(例えば乳癌)処置にしばしば用いられる他の化学療法剤としては、例えば、ハーセプチン(登録商標)、ビンブラスチン、アクチノマイシンD、エトポシド、シスプラチン、およびドキソルビシンが挙げられる。本発明のアルゴリズムによって特定の患者についてのRSを決定することにより、患者が長期生存の最良の機会を有する一方、望ましくない副作用を最小化するように、医師が患者の処置を合わせることが可能である。   By way of example, current standard medical chemotherapy options for the treatment of breast cancer include anthracycline + cyclophosphamide (AC); or AC + taxane (ACT); or C + methotrexate + 5-fluorouracil (CMF); Alternatively, administration of any of these drugs alone or in any combination is included. Other chemotherapeutic agents often used for cancer (eg, breast cancer) treatment include, for example, Herceptin®, vinblastine, actinomycin D, etoposide, cisplatin, and doxorubicin. By determining the RS for a particular patient with the algorithm of the present invention, the physician can tailor the patient's treatment so that the patient has the best chance of long-term survival while minimizing undesirable side effects. is there.

従って、癌再発のリスクが低い患者は、代表的には、ホルモン処置単独、またはホルモン処置および毒性が少ない化学療法処置レジメント(例えば、ハーセプチン(登録商標)を用いた)を受ける。一方、癌再発のリスクが中程度であるかまたは高いと決定された患者は、代表的には、より積極的な化学療法(例えば、アントラサイクリンおよび/またはタキサンに基づく処置レジメン)を受ける。   Thus, patients with a low risk of cancer recurrence typically receive hormonal treatment alone, or hormonal treatment and a less toxic chemotherapy treatment regimen (eg, using Herceptin®). On the other hand, patients who have been determined to have a moderate or high risk of cancer recurrence typically receive more aggressive chemotherapy (eg, anthracycline and / or taxane-based treatment regimens).

RS値はまた、特定の癌のための主要な処置プロトコールには現在のところ必要とされていない治療薬(例えば、EGFRインヒビター)を用いて、および/または他の処置選択肢によって、例えば、放射線療法単独、または化学療法処置の前もしくは後に、患者を処置するべきか否かを決定するのにも用いられ得る。   RS values can also be used with therapeutic agents (eg, EGFR inhibitors) that are not currently required for major treatment protocols for specific cancers and / or by other treatment options, eg, radiation therapy It can also be used to determine whether a patient should be treated, alone or before or after chemotherapy treatment.

本発明のさらなる詳細は、以下の非限定的な実施例において提供される。   Further details of the invention are provided in the following non-limiting examples.

実施例1
乳癌の再発を予測するためのアルゴリズム
このアルゴリズムは、16個のmRNAマーカーの腫瘍レベルの測定値に基づいておりり、これらのマーカーは以下の2つの大基準によって選択した:1)下記の臨床研究における乳癌の再発との一変量相関、および2)公表科学文献に示されるように腫瘍病理学における潜在的重要性。
Example 1
Algorithm for predicting recurrence of breast cancer This algorithm is based on tumor level measurements of 16 mRNA markers, which were selected by the following two major criteria: 1) The following clinical studies Univariate correlation with breast cancer recurrence, and 2) potential importance in tumor pathology as shown in the published scientific literature.

これらの選択マーカーは、癌の再発におけるいくつかの細胞性作用および経路の役割を示す:例えば、Her2成長因子;エストロゲン受容体、増殖、および侵襲。乳癌の分子病理学の現時点での理解と一致して、成長因子軸、増殖軸、および侵襲軸においてmRNAレベルの増加を示す遺伝子は、再発のリスクの増大と相関しているのに対し、エストロゲン受容体軸においてmRNAレベルの増加を示す遺伝子は、再発のリスクの低下と相関している。これらの経路における関連遺伝子は、ピアソンの相関係数によって示されるように、生物学的機能で関連があるのみならず、同時発現でも関連がある(データは示さず)。ピアソンの相関係数の算出については、例えばK.PearsonおよびA.Lee,Biometrika 2:357(1902)を参照のこと。   These selectable markers indicate a role for several cellular effects and pathways in cancer recurrence: eg, Her2 growth factor; estrogen receptor, proliferation, and invasion. Consistent with current understanding of molecular pathology of breast cancer, genes that show increased mRNA levels in the growth factor axis, proliferation axis, and invasive axis correlate with increased risk of recurrence, whereas estrogen Genes that show increased mRNA levels in the receptor axis correlate with reduced risk of recurrence. Related genes in these pathways are not only related in biological function, but also in co-expression as shown by Pearson's correlation coefficient (data not shown). For calculating the Pearson correlation coefficient, see, for example, K.K. Pearson and A.M. See Lee, Biometrica 2: 357 (1902).

アルゴリズムを、上記経路の特定の同時発現遺伝子の寄与率を重み付けすることによって構築する。このモデルを、再発リスクに対する最高の相関について選択することによって反復的に最適化した。モデルフィッティングは、上記の機能軸および同時発現軸を示す最良の遺伝子の選択ならびに最適な方程式の係数についての選択を包含する。   An algorithm is constructed by weighting the contribution of specific co-expressed genes of the pathway. This model was iteratively optimized by selecting for the best correlation to recurrence risk. Model fitting involves selection of the best genes that exhibit the functional and co-expression axes described above, as well as selection for optimal equation coefficients.

さらに、上記の遺伝子のいずれかに対してまたは互いに対して発現において密接には相関していないが、癌再発の予測に独立的に寄与することも見出されている、他の遺伝子を含めた。腫瘍マクロファージは誤った癌の予後診断を与えるという、生物医学文献中に蓄積している証拠(M.OrreおよびP.A Rogers Gynecol.Oncol.73:47〜50[1999];L.M.Coussens et al.,Cell 103:481〜90[2000];S.Huang et al.,J.Natl.Cancer Inst.94:1134〜42[2002];M.A.Cobleigh et al.,Proceedingsof A.S.C.O.22:Abstract 3415[2003])を考慮して、マクロファージマーカーCD68も試験遺伝子セットに含めた。最終的に、以下の遺伝子を含むモデルを同定した:Grb7;Her2;ER;PR;BCl2;CEGP1;SURV;Ki−67;MYBL2;CCNB1;STK15;CTSL2;STMY3;GSTM1;BAG1;CD68。   In addition, other genes were included that were not closely correlated in expression to any of the above genes or to each other but were also found to contribute independently to the prediction of cancer recurrence . Accumulated evidence in the biomedical literature that tumor macrophages provide a prognostic diagnosis of cancer (M. Orre and PA Rogers Gynecol. Oncol. 73: 47-50 [1999]; LM Coussens) et al., Cell 103: 481-90 [2000]; S. Huang et al., J. Natl. Cancer Inst. 94: 1134-42 [2002]; MA Cobleigh et al., Processed Sof A. S C.O.22: Abstract 3415 [2003]), the macrophage marker CD68 was also included in the test gene set. Finally, a model containing the following genes was identified: Grb7; Her2; ER; PR; BCl2; CEGP1; SURV; Ki-67; MYBL2; CCNB1; STK15; CTSL2;

このアルゴリズムにより、再発リスクスコア(RS)を得る。具体的には、RSを以下のように導く:
1.GRB7軸を規定
GRB7軸=(0.45〜1.35)×GRB7+(0.05〜0.15)×HER2
2.GRB7軸閾値を規定
GRB7軸<−2である場合
GRB7GT閾値=−2、
他のGRB7GT閾値=GRB7軸
3.ER軸を規定
Er軸=(EstR1+PR+Bcl2+CEGP1)/4であって、ここで、リストに記載した遺伝子の個々の寄与率は、0.5から1.5までにわたる換算係数によって重み付けされ得る。
4.増殖軸(prolifaxis)を規定
増殖軸=(SURV+Ki.67+MYBL2+CCNB1+STK15)/5であって、ここで、リストに記載した遺伝子の個々の寄与率は、0.5から1.5までの換算係数によって重み付けされ得る。
5.増殖軸閾値(prolifaxisthresh)を規定
増殖軸<−3.5である場合
増殖軸閾値=−3.5、
他の増殖軸閾値=増殖軸
6.侵襲軸を規定
侵襲軸=(CTSL2+STMY3)/2であって、ここで、リストに記載した遺伝子の個々の寄与率は、0.5から1.5までの換算係数によって重み付けされ得る。
7.再発スコア(RS)を算出
RS=(0.23〜0.70)×GRB7GT閾値−(0.17〜0.51)×ER軸+(0.52〜1.56)×増殖軸閾値+(0.07〜0.21)×侵襲軸+(0.03〜0.15)×CD68−(0.04〜0.25)×GSTM1−(0.05〜0.22)×BAG1。
With this algorithm, a recurrence risk score (RS) is obtained. Specifically, the RS is derived as follows:
1. GRB7 axis is defined GRB7 axis = (0.45-1.35) x GRB7 + (0.05-0.15) x HER2
2. GRB7 axis threshold is specified When GRB7 axis <−2 GRB7GT threshold = −2,
2. Other GRB7GT threshold = GRB7 axis Define ER axis Er axis = (EstR1 + PR + Bcl2 + CEGP1) / 4, where the individual contributions of the genes listed can be weighted by a conversion factor ranging from 0.5 to 1.5.
4). Proliferation axis defined Proliferation axis = (SURV + Ki.67 + MYBL2 + CCNB1 + STK15) / 5, where the individual contributions of the genes listed are weighted by a conversion factor from 0.5 to 1.5 obtain.
5. Define growth axis threshold (proliferation threshold) When growth axis <−3.5 Growth axis threshold = −3.5,
5. Other growth axis threshold = growth axis Define Invasion Axis Invasion Axis = (CTSL2 + STMY3) / 2, where the individual contributions of the listed genes can be weighted by a conversion factor from 0.5 to 1.5.
7). Calculate recurrence score (RS) RS = (0.23-0.70) × GRB7GT threshold− (0.17-0.51) × ER axis + (0.52-1.56) × proliferation axis threshold + ( 0.07 to 0.21) x invasive axis + (0.03 to 0.15) x CD68- (0.04 to 0.25) x GSTM1- (0.05 to 0.22) x BAG1.

特定の実施形態において、RSを以下のように算出する:
RS=0.47×GRB7GT閾値−0.34×ER軸+1.04×増殖軸閾値+0.14×侵襲軸+0.11×CD68−0.17×GSTM1−0.15BAG1。
In certain embodiments, RS is calculated as follows:
RS = 0.47 × GRB7GT threshold−0.34 × ER axis + 1.04 × proliferation axis threshold + 0.14 × invasive axis + 0.11 × CD68−0.17 × GSTM1-0.15BAG1.

当業者は、上に特定した16個の試験遺伝子の代わりに他の遺伝子を用い得ることを理解する。大まかには、このアルゴリズム中の遺伝子の代わりに16個の遺伝子試験パネル中の遺伝子と同時発現する任意の遺伝子(ピアソンの相関係数≧0.40)を用い得る。遺伝子Xを、相関する遺伝子Yに置き換えるために、患者集団における遺伝子Xについての値域、患者集団における遺伝子Yについての値域を決定し、そして一次変換を適用して遺伝子Yについての値を遺伝子Xについての対応する値にマッピングする。例えば、患者集団における遺伝子Xについての値域が0〜10であり、患者集団における遺伝子Yについての値域が0〜5である場合、適切な変換は、遺伝子Yの値に2を掛けることである。   Those skilled in the art will appreciate that other genes can be used in place of the 16 test genes identified above. In general, any gene that is co-expressed with the genes in the 16-gene test panel (Pearson's correlation coefficient ≧ 0.40) can be used instead of the genes in the algorithm. To replace gene X with correlated gene Y, determine the range for gene X in the patient population, the range for gene Y in the patient population, and apply a linear transformation to convert the value for gene Y to gene X Maps to the corresponding value of. For example, if the value range for gene X in the patient population is 0-10 and the value range for gene Y in the patient population is 0-5, an appropriate conversion is to multiply the value of gene Y by 2.

例証として、Her2アンプリコン内にある以下の遺伝子は、成長因子遺伝子サブセットの中に置換され得る遺伝子の一部である:Q9BRT3;TCAP;PNMT;ML64;IPPD;Q9H7G1;Q9HBS1;Q9Y220;PSMD3;およびCSF3。   By way of illustration, the following genes within the Her2 amplicon are some of the genes that can be substituted into the growth factor gene subset: Q9BRT3; TCAP; PNMT; ML64; IPPD; Q9H7G1; Q9HBS1; CSF3.

例証として、増殖遺伝子サブセットの中に置換され得る遺伝子の一部は以下である:C20.orf1、TOP2A、CDC20、KNSL2、MELK、TK1、NEK2、LMNB1、PTTG1、BUB1、CCNE2、FLJ20354、MCM2、RAD54L、PR02000、PCNA、Chk1、NME1、TS、FOXM1、AD024、およびHNRPAB。   By way of illustration, some of the genes that can be replaced in a growth gene subset are: C20. orf1, TOP2A, CDC20, KNSL2, MELK, TK1, NEK2, LMNB1, PTTG1, BUB1, CCNE2, FLJ20354, MCM2, RAD54L, PR02000, PCNA, Chk1, NME1, TS, FOXM1, AD024, and HNRPA.

例証として、エストロゲン受容体(ER)サブセットの中に置換され得る遺伝子の一部は以下である:HNF3A、ErbB3、GATA3、BECN1、IGF1R、AKT2、DHPS、BAG1、hENT1、TOP2B、MDM2、CCND1、DKFZp586M0723、NPD009、B.カテニン、IRS1、Bclx、RBM5、PTEN、A.カテニン、KRT18、ZNF217、ITGA7、GSN、MTA1、G.カテニン、DR5、RAD51C、BAD、TP53BP1、RIZ1、IGFBP2、RUNX1、PPM1D、TFF3、S100A8、P28、SFRS5、およびIGFBP2。   By way of illustration, some of the genes that can be substituted into the estrogen receptor (ER) subset are: HNF3A, ErbB3, GATA3, BECN1, IGF1R, AKT2, DHPS, BAG1, hENT1, TOP2B, MDM2, CCND1, DKFZp586M0723 , NPD009, B.I. Catenin, IRS1, Bclx, RBM5, PTEN, A. Catenin, KRT18, ZNF217, ITGA7, GSN, MTA1, G. Catenin, DR5, RAD51C, BAD, TP53BP1, RIZ1, IGFBP2, RUNX1, PPM1D, TFF3, S100A8, P28, SFRS5, and IGFBP2.

例証として、侵襲軸の中に置換され得る遺伝子の一部は以下である:upa、COLlA1、COL1A2、およびTIMP2。   By way of illustration, some of the genes that can be replaced in the invasive axis are: upa, COL1A1, COL1A2, and TIMP2.

CD68の代わりに用いられ得る遺伝子の一部は以下である:CTSB、CD18、CTSL、HLA.DPB1、MMP9。   Some of the genes that can be used in place of CD68 are: CTSB, CD18, CTSL, HLA. DPB1, MMP9.

GSTM1の代わりに用いられ得る遺伝子の一部は以下である:GSTM3.2、MYH11.1、GSN.3、ID1.1。   Some of the genes that can be used in place of GSTM1 are: GSTM3.2, MYH11.1, GSN. 3, ID 1.1.

BAG1の代わりに用いられ得る遺伝子の一部は以下である:Bcl2.2、GATA3.3、DHPS.3、HNF3A.1。   Some of the genes that can be used in place of BAG1 are: Bcl2.2, GATA3.3, DHPS. 3, HNF3A. 1.

決定したRS値を用いて、リンパ節陰性乳癌患者を補助的化学療法で処置するか否かの2項(イエスかノーか)の決定を導き得る。このために、閾値は、低リスク患者から高リスク患者を分離することを規定し得る。前に述べたように、高リスク、中程度リスクおよび低リスクの3つのカテゴリーを規定すること(2つのRS切点を必要とする)は、より有益であり得る。切点は、特定の臨床研究データにアルゴリズムを適用することによって所望のリスクカテゴリーに患者をサブグループ化するために選択され得る。例えば、癌専門医は、10年以内で10%未満の再発のリスクを有するリンパ節陰性乳癌患者の処置を回避することを希望し得る。このアルゴリズムを実施例2に記載の臨床試験データへ適用することにより、−3.9未満のRSを有する患者が10年間で10%未満の再発のリスクを有するのに対し、−3.5より大きいRSを有する患者は10年間で39%より大きい再発のリスクを有することを示す。中程度のRS値を有する患者は、中程度のリスクカテゴリーに入るとみなされ得る。癌専門医は、10年カプランマイヤー生存に対する連続数字関連再発スコアの形でRS結果を得ることができる。   The determined RS value can be used to guide a two-term (yes or no) decision on whether to treat lymph node-negative breast cancer patients with adjuvant chemotherapy. For this reason, the threshold value may stipulate separating high-risk patients from low-risk patients. As previously mentioned, defining three categories of high risk, medium risk and low risk (requiring two RS cut points) may be more beneficial. Cut points can be selected to subgroup patients into the desired risk category by applying algorithms to specific clinical study data. For example, oncologists may wish to avoid treatment of patients with node-negative breast cancer who have a risk of recurrence of less than 10% within 10 years. By applying this algorithm to the clinical trial data described in Example 2, patients with RS less than -3.9 have a risk of recurrence of less than 10% in 10 years, compared to -3.5 Patients with large RS are shown to have a risk of recurrence greater than 39% over 10 years. Patients with moderate RS values can be considered to fall into the moderate risk category. Oncologists can obtain RS results in the form of serial number-related recurrence scores for 10-year Kaplan-Meier survival.

実施例2
242個の悪性乳房腫瘍における遺伝子発現の研究
遺伝子発現研究を計画しかつ実行して、リンパ節陰性浸潤乳癌を有する患者の集団における再発スコア(RS)値を決定し、そしてRS値と疾患を有さない生存との間の相関を求めた。本研究は、保存されている固定パラフィン包埋腫瘍ブロックをRNAの供給源として利用し、そして保管されている患者記録を適合させた。
Example 2
Gene expression studies in 242 malignant breast tumors Gene expression studies are planned and executed to determine recurrence score (RS) values in a population of patients with node-negative invasive breast cancer and have RS values and disease Correlation between not surviving was determined. This study utilized stored fixed paraffin-embedded tumor blocks as a source of RNA and adapted stored patient records.

研究計画:
分子アッセイを、浸潤乳癌と診断された252人の個々の患者から得たパラフィン包埋ホルマリン固定原発乳房腫瘍組織に対して行った。全ての患者は、リンパ節陰性、ER陽性であり、タモキシフェンで処置されていた。平均年齢は52歳であり、平均臨床腫瘍サイズは2cmであった。平均追跡検査は10.9年であった。2003年1月1日現在で、41人の患者が、局所または遠隔に疾患を再発したかまたは乳癌死した。患者は、組織病理学的評価(材料および方法の項に記載されるように実施される)が適当量の腫瘍組織および同種の病理を示す場合に限り、本研究に含まれる。
Research plan:
Molecular assays were performed on paraffin-embedded formalin-fixed primary breast tumor tissue obtained from 252 individual patients diagnosed with invasive breast cancer. All patients were lymph node negative, ER positive and treated with tamoxifen. The average age was 52 years and the average clinical tumor size was 2 cm. The average follow-up was 10.9 years. As of January 1, 2003, 41 patients relapsed locally or remotely or died of breast cancer. Patients are included in this study only if histopathological assessment (performed as described in the Materials and Methods section) shows adequate amount of tumor tissue and allogeneic pathology.

材料および方法:
代表的な腫瘍ブロックの各々を、診断、腫瘍の量の半定量的評価、および腫瘍進行度について標準組織病理学によって特徴付けした。腫瘍領域が断面の70%未満であった場合、腫瘍領域を肉眼で見て解剖し、そして組織を6つの(10ミクロン)切片から取り出した。さもなければ、合計3つの切片(同じく各々厚み10ミクロン)を調製した。切片を、2本のCostar Brandマイクロ遠心分離管(ポリプロピレン、1.7mLチューブ、透明)に入れた。2以上の腫瘍ブロックを外科的手順の一環として得た場合、病理の最も代表的なブロックを分析に用いた。遺伝子発現分析;mRNAを固定パラフィン包埋組織サンプルから抽出および精製し、上述のように遺伝子発現分析用に調製した。定量的遺伝子発現の分子アッセイを、ABI PRISM 7900TM配列検出システムTM(Perkin−Elmer−Applied Biosystems,Foster City,CA,USA)を用いてRT−PCRによって行った。ABI PRISM 7900TMは、サーモサイクラー、レーザー、電荷結合素子(CCD)、カメラおよびコンピュータで構成される。このシステムは、サーモサイクラーで384ウェル形式中のサンプルを増幅する。このシステムは、この機器を作動させるためおよびデータを解析するためのソフトウェアを備える。
Materials and methods:
Each representative tumor block was characterized by standard histopathology for diagnosis, semi-quantitative assessment of tumor volume, and tumor progression. If the tumor area was less than 70% of the cross section, the tumor area was dissected with the naked eye and the tissue was removed from 6 (10 micron) sections. Otherwise, a total of 3 sections (also 10 microns thick each) were prepared. Sections were placed in two Costar Brand microcentrifuge tubes (polypropylene, 1.7 mL tubes, clear). When more than one tumor block was obtained as part of the surgical procedure, the most representative block of pathology was used for analysis. Gene expression analysis; mRNA was extracted and purified from fixed paraffin embedded tissue samples and prepared for gene expression analysis as described above. Molecular assays for quantitative gene expression were performed by RT-PCR using the ABI PRISM 7900 Sequence Detection System (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA). The ABI PRISM 7900 consists of a thermocycler, laser, charge coupled device (CCD), camera and computer. This system amplifies samples in a 384 well format on a thermocycler. The system includes software for operating the instrument and analyzing the data.

結果:
正規化した遺伝子発現値を上記患者検体から得、これらを用いて各患者についてのRSを算出し、このRSは、図1AおよびBに示したように、各々のKaplan−Meierの10年生存データと適合させた。図のように、約−3.75未満のRS値を有する患者は、10年間再発のない生存の見込みを〜90%有する。再発率は、RS値>−3.3で急増する。RSが〜−3.0で10年間の再発リスクは約30%であり、RSが〜−2.0で10年間の再発リスクは50%を超える。図1Bは、約70%の患者が、最も低いリスクカテゴリーに入ることを示す。
result:
Normalized gene expression values were obtained from the above patient specimens and used to calculate the RS for each patient, which RS data for each Kaplan-Meier 10-year survival as shown in FIGS. 1A and B And adapted. As shown, patients with RS values less than about −3.75 have a ~ 90% chance of survival without recurrence for 10 years. The recurrence rate increases rapidly with RS values> -3.3. The risk of recurrence for 10 years with an RS of ˜−3.0 is about 30%, and the risk of recurrence for 10 years with an RS of ˜−2.0 is over 50%. FIG. 1B shows that approximately 70% of patients fall into the lowest risk category.

従って、これらの結果は、前記試験およびアルゴリズムによって決定されるようなRS値と乳癌再発のリスクとの間に密接な一致を示す。   Therefore, these results show a close agreement between the RS value as determined by the test and algorithm and the risk of breast cancer recurrence.

実施例3
本発明のアルゴリズムの妥当性
前向き臨床妥当性研究を行って、米国乳癌・大腸癌術後補助療法プロジェクト(National Surgical Adjuvant Breast and Bowel Project)(NSABP)のタモキシフェン単独部門に登録された患者における固定パラフィン包埋腫瘍組織からのRNAの抽出および定量のための多重遺伝子RT−PCRアッセイの性能を検査した。
Example 3
Validity of the Algorithm of the Present Invention A fixed paraffin in patients enrolled in the tamoxifen single department of the National Surgical Adjuvant Breast and Bowel Project (NSABP) after conducting a prospective clinical validity study The performance of the multigene RT-PCR assay for RNA extraction and quantification from embedded tumor tissue was examined.

研究B−14:ゲノム腫瘍発現プロフィールが原発浸潤乳癌、陰性腋窩リンパ節およびエストロゲン受容体陽性腫瘍を有する患者における再発の可能性を明確にし得るか否かを臨床的に検査するための実験室研究。このNSABP研究B−14は、リンパ節陰性原発乳癌患者における乳房切除術後のタモキシフェン処置の効力を評価するために行い、そして、適格とみなされて5年間処置された合計2,892人の患者を含んだ。このプロトコールを、タモキシフェンを10mgの用量で1日2回受けている一組の患者および物理的に同一のプラシーボ錠剤を受けている一組のコントロール患者に対して無作為化二重盲検法で実施した。多重遺伝子アッセイを、腫瘍分類の標準組織病理学的基準および分子基準に対して比較した。   Study B-14: A laboratory study to clinically examine whether genomic tumor expression profiles can clarify the likelihood of recurrence in patients with primary invasive breast cancer, negative axillary lymph nodes and estrogen receptor positive tumors . This NSABP Study B-14 was conducted to evaluate the efficacy of tamoxifen treatment after mastectomy in lymph node negative primary breast cancer patients and a total of 2,892 patients treated for 5 years as eligible Included. This protocol was randomized, double-blind, for a set of patients receiving tamoxifen twice daily at a dose of 10 mg and a set of control patients receiving physically identical placebo tablets. Carried out. Multigene assays were compared against standard histopathological and molecular criteria for tumor classification.

多重遺伝子アッセイから導き出された患者特異的再発スコアを、NSABP研究B−14のタモキシフェン単独部門からの合計668人の適格な患者(平均追跡検査期間、14.1年)について得た。統計的分析により、得られた患者特異的再発スコア(図2)は、遠隔の再発の可能性と有意に(P=6.5 E−9)相関し、そして腫瘍分類(外科手術時の患者年齢、臨床腫瘍サイズおよび腫瘍進行度を含む)の標準臨床基準を超える重要な情報を提供することを明らかにした。   Patient-specific recurrence scores derived from multigene assays were obtained for a total of 668 eligible patients (mean follow-up period, 14.1 years) from the tamoxifen single department of NSABP Study B-14. By statistical analysis, the patient-specific recurrence score obtained (FIG. 2) was significantly (P = 6.5 E-9) correlated with the likelihood of distant recurrence and tumor classification (patients at surgery) It has been shown to provide important information beyond standard clinical criteria (including age, clinical tumor size and tumor progression).

本発明のアッセイおよびアルゴリズムにより、タモキシフェンで処置したリンパ節陰性、ER+、原発乳癌患者について外科手術時に収集した腫瘍組織から、遠隔再発の可能性の再現可能なかつ有益な基準が得られることが見出された。本発明の方法によってもたらされ患者再発スコアは、年齢、臨床腫瘍サイズおよび腫瘍進行度を含む、臨床診療において一般に用いられる腫瘍分類の標準組織病理学的基準および分子基準を超える有意な(P<0.0001)情報をもたらす。他の一般的な臨床基準とは対照的に、この患者再発スコアは高度に再現性があり、そして他の分子試験とは異なり複数のゲノムマーカー(ER、PRおよびHER2を含む)にわたって情報を同時に活用する。   It has been found that the assays and algorithms of the present invention provide reproducible and useful criteria for the likelihood of distant recurrence from tumor tissue collected at the time of surgery for node-negative, ER +, primary breast cancer patients treated with tamoxifen. It was done. The patient recurrence score provided by the method of the present invention is significant (P <<) over the standard histopathological and molecular criteria of tumor classification commonly used in clinical practice, including age, clinical tumor size and tumor progression. 0.0001) brings information. In contrast to other common clinical criteria, this patient recurrence score is highly reproducible, and unlike other molecular tests, information can be shared simultaneously across multiple genomic markers (including ER, PR and HER2) use.

本発明は、特定の実施形態とみなされるものを参照して記載されてきたが、本発明はこのような実施形態に限定されないことが理解されるはずである。それと反対に、本発明は、添付の特許請求の範囲の精神および範囲内に含まれる種々の改変および等価物を包含することが意図される。例えば、本開示は、種々の乳癌関連遺伝子および遺伝子セットの同定、および乳癌の個人的予後診断に重点的に取り組むが、他のタイプの癌に関する類似の遺伝子、遺伝子セットおよび方法は、詳細には本明細書における範囲内である。   Although the present invention has been described with reference to what are considered to be the specific embodiments, it should be understood that the invention is not limited to such embodiments. On the contrary, the invention is intended to cover various modifications and equivalents falling within the spirit and scope of the appended claims. For example, while the present disclosure focuses on the identification of various breast cancer-related genes and gene sets, and personal prognosis of breast cancer, similar genes, gene sets and methods for other types of cancer are described in detail. Within the scope of this specification.

本開示全体にわたって引用される全ての参考文献は、本明細書中に参考として明白に援用される。   All references cited throughout this disclosure are expressly incorporated herein by reference.

Figure 0004906505
Figure 0004906505

Figure 0004906505
Figure 0004906505

Figure 0004906505
Figure 0004906505

(表1) 表1は、試験遺伝子および参照遺伝子を記載し、これらの遺伝子の発現は乳癌再発のアルゴリズムを構築するのに用いられる。この表は、遺伝子の受託番号、PCR増幅に用いられる順方向プライマーおよび逆方向プライマー(それぞれ「f」および「r」と称される)ならびにプローブ(「p」と称される)の配列を含む。   Table 1 Table 1 lists test and reference genes, and the expression of these genes is used to construct an algorithm for breast cancer recurrence. This table contains the gene accession numbers, the forward and reverse primers used for PCR amplification (referred to as “f” and “r”, respectively) and the probe (referred to as “p”) sequences. .

(表2) 表2は、前述の遺伝子のアンプリコン配列を示す。
図1Aは、10年再発データが入手可能な、侵襲性リンパ節陰性乳癌を有する242人の患者の臨床研究の結果を示す。図1Aは、計算された再発スコアに対する、実際に癌を再発している患者の割合(Kaplan−Meier法)を示す。患者は、−4.5よりも小さいスコアを有する患者(ひとまとめにして群化される)を除いて、5パーセンタイル単位で群化される。 図1Bは、10年再発データが入手可能な、侵襲性リンパ節陰性乳癌を有する242人の患者の臨床研究の結果を示す。図1Bは、図1Aと同様である。図1Bもまた実際に癌を再発している患者の割合を示すが、この場合、実際の再発データは再発スコアのパーセンタイルに対してプロットされる。患者は、低い方から20パーセンタイルの患者(ひとまとめにして群化される)を除いて、5パーセンタイル単位で群化される。 図2は、再発スコア{RS}と10年後の乳癌の遠隔再発の率または可能性との間の関係を図示する。NSABP B−14患者集団からデータを取得する。破線は95%信頼区間を表す。X軸上の各チェックマークは、一致するRSを有する患者を示す。
Table 2 Table 2 shows the amplicon sequences of the aforementioned genes.
FIG. 1A shows the results of a clinical study of 242 patients with invasive lymph node-negative breast cancer for which 10-year recurrence data is available. FIG. 1A shows the proportion of patients who have actually relapsed cancer (Kaplan-Meier method) to the calculated relapse score. Patients are grouped in 5th percentile units, except for patients with scores less than -4.5 (grouped together). FIG. 1B shows the results of a clinical study of 242 patients with invasive lymph node negative breast cancer for which 10-year recurrence data is available. FIG. 1B is similar to FIG. 1A. FIG. 1B also shows the percentage of patients who have actually relapsed cancer, in which case the actual relapse data is plotted against the percentile of the recurrence score. Patients are grouped in 5th percentile units, except the lowest 20th percentile (grouped together). FIG. 2 illustrates the relationship between the recurrence score {RS} and the rate or likelihood of distant recurrence of breast cancer after 10 years. Data is acquired from the NSABP B-14 patient population. The dashed line represents the 95% confidence interval. Each check mark on the X axis indicates a patient with a matching RS.

Claims (12)

侵襲性リンパ節陰性エストロゲン受容体(ER)陽性乳癌のヒト患者における乳癌の再発またはタモキシフェン療法への応答の可能性を決定する方法であって、該方法は、以下の工程:
(a)該乳者の乳癌腫瘍から得た生物学的サンプルにおいて、GRB7;HER2;EstR1;PR;BCL2;CEGP1;SURV;Ki.67;MYBL2;CCNB1;STK15;CTSL2、STMY3、CD68、GSTM1およびBAG1からなる遺伝子群のRNA転写物またはそれらの発現産物の発現レベルを測定する工程、
(b)以下の遺伝子サブセット:
(i)増殖サブセット:SURV、Ki.67、MYBL2、CCNB1、およびSTK15;
(ii)侵襲サブセット:CTSL2、およびSTMY3;
(iii)成長因子サブセット:GRB7およびHER2;
(iv)エストロゲン受容体サブセット:EstR1、PR、BCL2、およびCEGP1;
に分類する工程;
(c)前記(a)で得られた各遺伝子のRNA転写物、またはそれらの発現産物の発現レベルに、当該遺伝子の乳癌再発に対する寄与率を乗じる工程;
(d)前記(c)で得られた値を各サブセット毎に加算し、増殖スコア、侵襲スコア、GRB7スコア及びERスコアを含む各スコアを算出する工程;
(e)(d)で得られた各サブセットのスコアに当該サブセットの乳癌の再発に対する寄与率を重み付けして加算するとともに、CD68、GSTM1およびBAG1の重み付けされた発現レベルを加算することにより再発スコア(RS)算出する工程;及び
(f)前記RSを提供する報告を作成する工程であって、より高いRSが当該患者における乳癌再発の可能性が高いこと又は当該患者のホルモン療法への応答性が低いことを示す工程を含む、方法。
A method of determining the likelihood of recurrence of breast cancer or response to tamoxifen therapy in a human patient with invasive lymph node negative estrogen receptor (ER) positive breast cancer , the method comprising the following steps:
(A) In a biological sample obtained from the breast cancer tumor of the breast, GRB7; HER2; EstR1; PR; BCL2; CEGP1; SURV; 67; MYBL2; CCNB1; STK15; measuring the expression level of an RNA transcript of a gene group consisting of CTSL2, STMY3, CD68, GSTM1 and BAG1, or an expression product thereof;
(B) The following gene subset:
(I) Proliferation subset: SURV, Ki. 67, MYBL2, CCNB1, and STK15;
(Ii) Invasive subset: CTSL2, and STMY3;
(Iii) Growth factor subset: GRB7 and HER2;
(Iv) an estrogen receptor subsets: EstR1, PR, B CL 2 , and CEGP1;
Categorizing into:
(C) multiplying the expression level of the RNA transcript of each gene obtained in (a) or their expression product by the contribution rate of the gene to breast cancer recurrence;
(D) adding the values obtained in (c) for each subset, and calculating each score including a proliferation score, an invasive score, a GRB7 score, and an ER score;
(E) The score of each subset obtained in (d) is weighted and added to the contribution rate of breast cancer recurrence of the subset, and the recurrence score is added by adding the weighted expression levels of CD68, GSTM1 and BAG1. step for calculating a (RS); and
(F) creating a report providing the RS, wherein a higher RS indicates that the patient is more likely to have breast cancer recurrence or the patient is less responsive to hormonal therapy ,Method.
前記遺伝子GRB7、HER2、EstR1、PR、CEGP1、BCL2、SURV、Ki.67、MYBL2、CCNB1、STK15、CTSL2、STMY3、CD68、GSTM1およびBAG1の発現が、タンパク質発現レベルである、請求項1に記載の方法。The genes GRB7, HER2, EstR1, PR, CEGP1, BCL2, SURV, Ki. The method of claim 1, wherein the expression of 67, MYBL2, CCNB1, STK15, CTSL2, STMY3, CD68, GSTM1 and BAG1 is at the protein expression level. CD68のRNA転写物、またはその発現産物のレベルの増加が、乳癌の再発のリスクの増大と関連し、かつ正の値が付与される、請求項1に記載の方法。2. The method of claim 1 , wherein an increase in the level of CD68 RNA transcript, or expression product thereof, is associated with an increased risk of breast cancer recurrence and is given a positive value. GSTM1およびBAGのRNA転写物、またはその発現産物のレベルの増加が、乳癌の再発のリスクの低下と関連し、かつ負の値が付与される、請求項1に記載の方法。GSTM1 and RNA transcripts BAG 1, or an increase in the level of its expression product, associated with reduced risk of recurrence of breast cancer, and a negative value is applied, the method of claim 1. (i)〜(iv)の各遺伝子サブセットの各遺伝子の個々の寄与率が別々に重み付けされる、請求項1に記載の方法。The method of claim 1, wherein individual contributions of each gene of each gene subset of (i) to (iv) are weighted separately. (i)〜(iv)の遺伝子サブセットに記載される遺伝子、またはそれらの発現産物の、乳癌の再発に対する個々の寄与率を同等に重み付けする工程を包含する、請求項1に記載の方法。The method according to claim 1, comprising the step of equally weighting individual contributions of the genes described in the gene subsets of (i) to (iv), or their expression products, to breast cancer recurrence. サブセット(i)、(ii)および(iii)における遺伝子のRNA転写物、またはそれらの発現産物のレベルの増加が、乳癌の再発のリスクの増大と関連し、かつ正の値が付与される、請求項1に記載の方法。Increased levels of RNA transcripts of the genes in subsets (i), (ii) and (iii), or their expression products, are associated with an increased risk of breast cancer recurrence and are given positive values; The method of claim 1. サブセット(iv)の遺伝子における遺伝子のRNA転写物、またはそれらの発現産物のレベルの増加が、乳癌の再発のリスクの低下と関連し、かつ負の値が付与される、請求項1に記載の方法。2. The increase in the level of gene RNA transcripts, or their expression products in the subset (iv) genes is associated with a reduced risk of breast cancer recurrence and is given a negative value. Method. 前記生物学的サンプルが、新鮮な腫瘍組織、細針吸引液、腹水、管洗浄液および胸膜液からなる群より選択される、請求項1に記載の方法。The method of claim 1, wherein the biological sample is selected from the group consisting of fresh tumor tissue, fine needle aspirate, ascites, tubal wash and pleural fluid. 前記生物学的サンプルが、固定パラフィン包埋腫瘍組織から得られる、請求項1に記載の方法。The method of claim 1, wherein the biological sample is obtained from fixed paraffin-embedded tumor tissue. 前記RNA転写物の発現レベルが、RT−PCRによって決定される、請求項1に記載の方法。The method of claim 1, wherein the expression level of the RNA transcript is determined by RT-PCR. 前記生物学的サンプルが、フラグメント化されたRNAを含む、請求項1に記載の方法。The method of claim 1, wherein the biological sample comprises fragmented RNA.
JP2006518761A 2003-07-10 2004-06-30 Expression profile algorithms and tests for cancer diagnosis Active JP4906505B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US48630203P 2003-07-10 2003-07-10
US60/486,302 2003-07-10
US52694703P 2003-12-03 2003-12-03
US60/526,947 2003-12-03
PCT/US2004/021163 WO2005008213A2 (en) 2003-07-10 2004-06-30 Expression profile algorithm and test for cancer prognosis

Publications (2)

Publication Number Publication Date
JP2007527220A JP2007527220A (en) 2007-09-27
JP4906505B2 true JP4906505B2 (en) 2012-03-28

Family

ID=34083370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006518761A Active JP4906505B2 (en) 2003-07-10 2004-06-30 Expression profile algorithms and tests for cancer diagnosis

Country Status (9)

Country Link
US (2) US7526387B2 (en)
EP (2) EP3330875B1 (en)
JP (1) JP4906505B2 (en)
AU (1) AU2004258085B2 (en)
CA (1) CA2531967C (en)
DK (1) DK1644858T3 (en)
ES (2) ES2905579T3 (en)
HK (1) HK1254085A1 (en)
WO (1) WO2005008213A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624697A (en) * 2018-08-20 2018-10-09 默禾医疗科技(上海)有限公司 A kind of 21 gene detecting kit of breast cancer and its detection method

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514209B2 (en) 2001-06-18 2009-04-07 Rosetta Inpharmatics Llc Diagnosis and prognosis of breast cancer patients
US7171311B2 (en) * 2001-06-18 2007-01-30 Rosetta Inpharmatics Llc Methods of assigning treatment to breast cancer patients
US20030198972A1 (en) 2001-12-21 2003-10-23 Erlander Mark G. Grading of breast cancer
EP2258872B1 (en) * 2002-03-13 2013-08-14 Genomic Health, Inc. Gene expression profiling in biopsied tumor tissues
US20040231909A1 (en) 2003-01-15 2004-11-25 Tai-Yang Luh Motorized vehicle having forward and backward differential structure
CA3061769C (en) * 2003-06-24 2021-10-26 Genomic Health, Inc. Methods of predicting the likelihood of long-term survival of a human patient with node-negative, estrogen receptor (er) positive, invasive ductal breast cancer without the recurrence of breast cancer
US20060003391A1 (en) * 2003-08-11 2006-01-05 Ring Brian Z Reagents and methods for use in cancer diagnosis, classification and therapy
US9856533B2 (en) 2003-09-19 2018-01-02 Biotheranostics, Inc. Predicting breast cancer treatment outcome
US20060195266A1 (en) * 2005-02-25 2006-08-31 Yeatman Timothy J Methods for predicting cancer outcome and gene signatures for use therein
EP1737980A2 (en) 2004-04-09 2007-01-03 Fondazione IRCCS Istituto Nazionale dei Tumori Gene expression markers for predicting response to chemotherapy
CN114250299A (en) 2004-07-23 2022-03-29 太平洋边缘有限公司 Urine markers for detection of bladder cancer
CA2575557A1 (en) * 2004-07-30 2006-02-09 Rosetta Inpharmatics Llc Prognosis of breast cancer patients
WO2006039582A2 (en) * 2004-09-30 2006-04-13 The Regents Of The University Of California Compositions and methods for diagnosing and treating brain cancer and identifying neural stem cells
JP5020088B2 (en) * 2004-11-05 2012-09-05 ジェノミック ヘルス, インコーポレイテッド Predicting response to chemotherapy using gene expression markers
DK1815014T3 (en) * 2004-11-05 2012-06-18 Genomic Health Inc Molecular indicators of breast cancer prognosis and prediction of treatment response
EP1872124A4 (en) * 2005-04-19 2008-06-11 Prediction Sciences Llc Diagnostic markers of breast cancer treatment and progression and methods of use thereof
WO2007086915A2 (en) 2005-05-12 2007-08-02 Applied Genomics, Inc. Reagents and methods for use in cancer diagnosis, classification and therapy
JP5024583B2 (en) * 2005-09-14 2012-09-12 ソニー株式会社 Information processing apparatus and information processing method, information processing system, program, and recording medium
US8014957B2 (en) * 2005-12-15 2011-09-06 Fred Hutchinson Cancer Research Center Genes associated with progression and response in chronic myeloid leukemia and uses thereof
BRPI0706511A2 (en) 2006-01-11 2011-03-29 Genomic Health Inc gene expression markers for colorectal cancer prognosis
US20070207467A1 (en) * 2006-03-01 2007-09-06 Ming Xu Detection of lymph node metastasis from gastric carcinoma
US20100009905A1 (en) * 2006-03-24 2010-01-14 Macina Roberto A Compositions and Methods for Detection, Prognosis and Treatment of Colon Cancer
WO2007123772A2 (en) * 2006-03-31 2007-11-01 Genomic Health, Inc. Genes involved in estrogen metabolism
US8768629B2 (en) * 2009-02-11 2014-07-01 Caris Mpi, Inc. Molecular profiling of tumors
IL282783B2 (en) 2006-05-18 2023-09-01 Caris Mpi Inc System and method for determining individualized medical intervention for a disease state
US20070281305A1 (en) * 2006-06-05 2007-12-06 Sean Wuxiong Cao Detection of lymph node metastasis from gastric carcinoma
WO2008058018A2 (en) 2006-11-02 2008-05-15 Mayo Foundation For Medical Education And Research Predicting cancer outcome
US20090186034A1 (en) * 2006-12-19 2009-07-23 Genetech, Inc. Gene expression markers for inflammatory bowel disease
US20100216137A1 (en) * 2007-04-05 2010-08-26 SOURCE PRECISION MEDICINE, INC d/b/a SOURCE MDX Gene Expression Profiling for Identification, Monitoring and Treatment of Ovarian Cancer
WO2009009662A1 (en) * 2007-07-10 2009-01-15 University Of South Florida Method of predicting non-response to first line chemotherapy
AU2008289148A1 (en) * 2007-08-16 2009-02-26 Aventis Inc. Gene expression markers of recurrence risk in cancer patients after chemotherapy
CN102395682B (en) * 2007-09-06 2015-09-30 生物治疗诊断股份有限公司 Tumor grade and cancer prognosis
WO2009067655A2 (en) * 2007-11-21 2009-05-28 University Of Florida Research Foundation, Inc. Methods of feature selection through local learning; breast and prostate cancer prognostic markers
KR20110015409A (en) 2007-11-29 2011-02-15 제넨테크, 인크. Gene expression markers for inflammatory bowel disease
WO2009071655A2 (en) * 2007-12-06 2009-06-11 Siemens Healthcare Diagnostics Inc. Methods for breast cancer prognosis
WO2009131365A2 (en) * 2008-04-21 2009-10-29 한국생명공학연구원 Cst1, dcc1, ifitm1 or melk as markers for diagnosing stomach cancer
KR100980004B1 (en) 2008-04-21 2010-09-03 한국생명공학연구원 MELK as a marker for the diagnosis of gastric cancer
DK2294215T3 (en) 2008-05-12 2013-04-22 Genomic Health Inc Tests to predict cancer patients' response to various chemotherapeutic treatment options
EP2806054A1 (en) 2008-05-28 2014-11-26 Genomedx Biosciences Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
CN102159727A (en) * 2008-07-16 2011-08-17 达纳-法伯癌症研究院有限公司 Signatures and pcdeterminants associated with prostate cancer and methods of use thereof
US10359425B2 (en) * 2008-09-09 2019-07-23 Somalogic, Inc. Lung cancer biomarkers and uses thereof
US20100221752A2 (en) * 2008-10-06 2010-09-02 Somalogic, Inc. Ovarian Cancer Biomarkers and Uses Thereof
CN106153918A (en) * 2008-10-14 2016-11-23 卡里斯Mpi公司 Describe tumor type biological marker pattern and the gene target of feature set and the protein targets of gene expression
US20110295782A1 (en) 2008-10-15 2011-12-01 Alexander Stojadinovic Clinical Decision Model
WO2010056337A2 (en) 2008-11-12 2010-05-20 Caris Mpi, Inc. Methods and systems of using exosomes for determining phenotypes
US9495515B1 (en) 2009-12-09 2016-11-15 Veracyte, Inc. Algorithms for disease diagnostics
US10236078B2 (en) 2008-11-17 2019-03-19 Veracyte, Inc. Methods for processing or analyzing a sample of thyroid tissue
US20110236903A1 (en) * 2008-12-04 2011-09-29 Mcclelland Michael Materials and methods for determining diagnosis and prognosis of prostate cancer
US9074258B2 (en) 2009-03-04 2015-07-07 Genomedx Biosciences Inc. Compositions and methods for classifying thyroid nodule disease
US8669057B2 (en) 2009-05-07 2014-03-11 Veracyte, Inc. Methods and compositions for diagnosis of thyroid conditions
EP2584049A3 (en) 2009-07-20 2013-08-28 Genentech, Inc. Gene expression markers for Crohn's disease
DK2504451T3 (en) * 2009-11-23 2019-08-05 Genomic Health Inc Methods for predicting the clinical course of cancer
US10446272B2 (en) 2009-12-09 2019-10-15 Veracyte, Inc. Methods and compositions for classification of samples
ES2364166B1 (en) * 2009-12-31 2012-07-10 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) GENOMIC FOOTPRINT AS A PREDICTOR OF TREATMENT RESPONSE.
NZ600268A (en) 2010-01-11 2014-08-29 Genomic Health Inc Method to use gene expression to determine likelihood of clinical outcome of renal cancer
JP5808349B2 (en) 2010-03-01 2015-11-10 カリス ライフ サイエンシズ スウィッツァーランド ホールディングスゲーエムベーハー Biomarkers for theranosis
US20130143753A1 (en) * 2010-03-01 2013-06-06 Adelbio Methods for predicting outcome of breast cancer, and/or risk of relapse, response or survival of a patient suffering therefrom
BR112012025593A2 (en) 2010-04-06 2019-06-25 Caris Life Sciences Luxembourg Holdings circulating biomarkers for disease
SG186953A1 (en) 2010-07-09 2013-02-28 Somalogic Inc Lung cancer biomarkers and uses thereof
US9141756B1 (en) 2010-07-20 2015-09-22 University Of Southern California Multi-scale complex systems transdisciplinary analysis of response to therapy
EP2913405B1 (en) * 2010-07-27 2016-11-09 Genomic Health, Inc. Method for using gene expression to determine prognosis of prostate cancer
CN106198980B (en) 2010-08-13 2018-09-07 私募蛋白质体公司 Cancer of pancreas biomarker and application thereof
EP2648762B1 (en) 2010-12-09 2018-02-21 Biotheranostics, Inc. Post-treatment breast cancer prognosis
CA2830602A1 (en) 2011-03-22 2012-09-27 Thomas J. Fahey, Iii Distinguishing benign and malignant indeterminate thyroid lesions
CA2831074A1 (en) * 2011-03-26 2012-10-04 Oregon Health And Science University Gene expression predictors of cancer prognosis
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2012170710A1 (en) * 2011-06-08 2012-12-13 Altheadx Incorporated Disease classification modules
CA2840066A1 (en) 2011-06-27 2013-01-03 Dana-Farber Cancer Institute, Inc. Signatures and determinants associated with prostate cancer progression and methods of use thereof
WO2013070521A1 (en) * 2011-11-08 2013-05-16 Genomic Health, Inc. Method of predicting breast cancer prognosis
EP2791359B1 (en) 2011-12-13 2020-01-15 Decipher Biosciences, Inc. Cancer diagnostics using non-coding transcripts
JP6351112B2 (en) 2012-01-31 2018-07-04 ジェノミック ヘルス, インコーポレイテッド Gene expression profile algorithms and tests to quantify the prognosis of prostate cancer
US10408846B2 (en) 2012-05-15 2019-09-10 Novartis Ag Quantitative methods and kits for providing reproducible IHC4 scores
EP3435084B1 (en) 2012-08-16 2023-02-22 Decipher Biosciences, Inc. Prostate cancer prognostics using biomarkers
US9671405B2 (en) 2012-09-19 2017-06-06 Cornell University Identifying taxane sensitivity in prostate cancer patients
CA2896899A1 (en) 2013-01-18 2014-07-24 Ellis KLINE Selective glycosidase regimen for immune programming and treatment of cancer
WO2014124454A1 (en) 2013-02-11 2014-08-14 Katerina Gurova Use of facilitates chromatin transcription complex (fact) in cancer
CN105247074A (en) * 2013-05-07 2016-01-13 国立研究开发法人国立癌症研究中心 Method for predicting recurrence of stomach cancer
DK3004392T3 (en) * 2013-05-30 2020-10-26 Genomic Health Inc GENE EXPRESSION PROFILE ALGORM FOR CALCULATING A RECURRENCY SCORE FOR A PATIENT WITH KIDNEY CANCER
AU2014339977A1 (en) * 2013-10-23 2016-05-19 Oregon Health & Science University Methods of determining breast cancer prognosis
HUE051159T2 (en) 2013-12-20 2021-03-01 Univ Lausanne Diagnostic, prognostic and therapeutic uses of long noncoding rnas for heart disease and regenerative medicine
WO2015178804A1 (en) * 2014-05-19 2015-11-26 Общество С Ограниченной Ответственностью "Гамма Глобал Рд" Method for determining the probability of breast cancer recurrence
KR101945093B1 (en) * 2014-05-30 2019-02-07 난토믹스, 엘엘씨 Systems and methods for comprehensive analysis of molecular profiles across multiple tumor and germline exomes
CN104232781B (en) * 2014-09-26 2017-04-19 陕西佰美基因股份有限公司 TaqMan probe real-time fluorescence PCR (Polymerase Chain Reaction) method for detecting HLA (Human Leukocyte Antigen)-B*5801 alleles
ES2833543T3 (en) 2014-10-24 2021-06-15 Koninklijke Philips Nv Evaluation of the activity of the TGF cell signaling pathway using mathematical models of target gene expression
AU2015334842B2 (en) 2014-10-24 2022-02-17 Koninklijke Philips N.V. Medical prognosis and prediction of treatment response using multiple cellular signaling pathway activities
CA2965217A1 (en) 2014-10-24 2016-04-28 Koninklijke Philips N.V. Medical prognosis and prediction of treatment response using multiple cellular signaling pathway activities
US20170335396A1 (en) 2014-11-05 2017-11-23 Veracyte, Inc. Systems and methods of diagnosing idiopathic pulmonary fibrosis on transbronchial biopsies using machine learning and high dimensional transcriptional data
KR102116485B1 (en) 2015-01-20 2020-05-28 난토믹스, 엘엘씨 Systems and methods for predicting response of highly differentiated bladder cancer to chemotherapy
JP2018514187A (en) * 2015-03-04 2018-06-07 ベラサイト インコーポレイテッド Method for assessing risk of disease onset or recurrence using expression level and sequence variant information
US9689874B2 (en) 2015-04-10 2017-06-27 Applied Proteomics, Inc. Protein biomarker panels for detecting colorectal cancer and advanced adenoma
WO2016183585A1 (en) 2015-05-14 2016-11-17 Joslin Diabetes Center, Inc. Retinol-binding protein 3 (rbp3) as a protective factor in non-diabetic retinal degeneration
TWI582240B (en) * 2015-05-19 2017-05-11 鄭鴻鈞 Prediction of local and regional recurrence and response to radiotherapy in breast cancer by genomic prognostic kits
CN107849556A (en) * 2015-07-01 2018-03-27 学校法人庆应义塾 The heterogeneous label of cancerous tissue and its use
CN108138237B (en) 2015-08-14 2022-04-05 皇家飞利浦有限公司 Assessment of NFkB cell signaling pathway activity using mathematical modeling of target gene expression
US11640849B2 (en) * 2015-09-10 2023-05-02 Crown Bioscience, Inc. (Taicang) Methods for histological diagnosis and treatment of diseases
WO2017066712A2 (en) 2015-10-16 2017-04-20 The Children's Medical Center Corporation Modulators of telomere disease
EP3374526A4 (en) 2015-11-13 2019-09-11 Biotheranostics, Inc. Integration of tumor characteristics with breast cancer index
US10934590B2 (en) 2016-05-24 2021-03-02 Wisconsin Alumni Research Foundation Biomarkers for breast cancer and methods of use thereof
CN110506127B (en) 2016-08-24 2024-01-12 维拉科特Sd公司 Use of genomic tags to predict responsiveness of prostate cancer patients to post-operative radiation therapy
US10487365B2 (en) 2016-09-20 2019-11-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods for detecting expression of lnc-FANCI-2 in cervical cells
JP6280997B1 (en) * 2016-10-31 2018-02-14 株式会社Preferred Networks Disease onset determination device, disease onset determination method, disease feature extraction device, and disease feature extraction method
AU2018210695A1 (en) 2017-01-20 2019-08-08 The University Of British Columbia Molecular subtyping, prognosis, and treatment of bladder cancer
WO2018165600A1 (en) 2017-03-09 2018-09-13 Genomedx Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
EP3615003A4 (en) 2017-04-24 2021-05-26 University Of Massachusetts Lowell Diagnosis and treatment of vitiligo
US11078542B2 (en) 2017-05-12 2021-08-03 Decipher Biosciences, Inc. Genetic signatures to predict prostate cancer metastasis and identify tumor aggressiveness
US11217329B1 (en) 2017-06-23 2022-01-04 Veracyte, Inc. Methods and systems for determining biological sample integrity
EP3658915A1 (en) 2017-07-28 2020-06-03 Institut Curie New subpopulations of cancer associated fibroblasts as prognosis markers for immunotherapy treatments
EP3461915A1 (en) 2017-10-02 2019-04-03 Koninklijke Philips N.V. Assessment of jak-stat1/2 cellular signaling pathway activity using mathematical modelling of target gene expression
EP3502279A1 (en) 2017-12-20 2019-06-26 Koninklijke Philips N.V. Assessment of mapk-ap 1 cellular signaling pathway activity using mathematical modelling of target gene expression
US20210381059A1 (en) 2018-10-25 2021-12-09 Institut Curie Use of long non-coding rna for the diagnosis of prostate cancer
EP3677693A1 (en) 2019-01-03 2020-07-08 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Transpochimeric gene trancripts (tcgts) as cancer biomarkers
CN115943312A (en) 2020-05-07 2023-04-07 法国居里学院 Biomarker ANTXR1 of immunosuppressive fibroblast population and its use in predicting response to immunotherapy
WO2022187227A1 (en) * 2021-03-01 2022-09-09 Pfs Genomics, Inc. Methods and genomic classifiers for prognosis of breast cancer and identifying subjects not likely to benefit from radiotherapy
EP4347889A1 (en) 2021-05-28 2024-04-10 Centre Hospitalier Universitaire Vaudois (CHUV) Novel incrna controlling cardiac fibrosis
WO2024003360A1 (en) 2022-07-01 2024-01-04 Institut Curie Biomarkers and uses thereof for the treatment of neuroblastoma
CN115792247B (en) * 2023-02-09 2023-09-15 杭州市第一人民医院 Application of protein combination in preparation of thyroid papillary carcinoma risk auxiliary layering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072828A1 (en) * 2001-03-14 2002-09-19 Dna Chip Research Inc. Method of predicting cancer

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699877A (en) 1982-11-04 1987-10-13 The Regents Of The University Of California Methods and compositions for detecting human tumors
CA1252046A (en) 1982-11-04 1989-04-04 Martin J. Cline Methods for oncogenic detection
USRE35491E (en) 1982-11-04 1997-04-08 The Regents Of The University Of California Methods and compositions for detecting human tumors
US7838216B1 (en) 1986-03-05 2010-11-23 The United States Of America, As Represented By The Department Of Health And Human Services Human gene related to but distinct from EGF receptor gene
US5015568A (en) 1986-07-09 1991-05-14 The Wistar Institute Diagnostic methods for detecting lymphomas in humans
US5202429A (en) 1986-07-09 1993-04-13 The Wistar Institute DNA molecules having human BCL-2 gene sequences
US4968603A (en) 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US5831066A (en) 1988-12-22 1998-11-03 The Trustees Of The University Of Pennsylvania Regulation of bcl-2 gene expression
US5858678A (en) 1994-08-02 1999-01-12 St. Louis University Apoptosis-regulating proteins
US5830753A (en) 1994-09-30 1998-11-03 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor dage and uses thereof.
DE69635740T2 (en) 1995-12-18 2006-09-14 Sugen, Inc., South San Francisco DIAGNOSIS AND TREATMENT OF AURA-1 AND / OR AUR-2 ASSOCIATED DISEASES
US6716575B2 (en) 1995-12-18 2004-04-06 Sugen, Inc. Diagnosis and treatment of AUR1 and/or AUR2 related disorders
US5670325A (en) 1996-08-14 1997-09-23 Exact Laboratories, Inc. Method for the detection of clonal populations of transformed cells in a genomically heterogeneous cellular sample
US5741650A (en) 1996-01-30 1998-04-21 Exact Laboratories, Inc. Methods for detecting colon cancer from stool samples
US5821082A (en) 1996-05-23 1998-10-13 St. Louis University Health Sciences Center Anti-proliferation domain of a human Bcl-2 and DNA encoding the same
US5928870A (en) 1997-06-16 1999-07-27 Exact Laboratories, Inc. Methods for the detection of loss of heterozygosity
US6100029A (en) 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
US6203993B1 (en) 1996-08-14 2001-03-20 Exact Science Corp. Methods for the detection of nucleic acids
US5952178A (en) 1996-08-14 1999-09-14 Exact Laboratories Methods for disease diagnosis from stool samples
US6020137A (en) 1996-08-14 2000-02-01 Exact Laboratories, Inc. Methods for the detection of loss of heterozygosity
US6143529A (en) 1996-08-14 2000-11-07 Exact Laboratories, Inc. Methods for improving sensitivity and specificity of screening assays
US6146828A (en) 1996-08-14 2000-11-14 Exact Laboratories, Inc. Methods for detecting differences in RNA expression levels and uses therefor
US5861278A (en) 1996-11-01 1999-01-19 Genetics Institute, Inc. HNF3δ compositions
KR100645448B1 (en) 1996-11-20 2006-11-13 예일 유니버시티 Survivin, a protein that inhibit cellular apoptosis, and its modulation
US5830665A (en) 1997-03-03 1998-11-03 Exact Laboratories, Inc. Contiguous genomic sequence scanning
US6033893A (en) 1997-06-26 2000-03-07 Incyte Pharmaceuticals, Inc. Human cathepsin
WO1999002714A1 (en) 1997-07-07 1999-01-21 Abbott Laboratories Reagents and methods useful for detecting diseases of the breast
US6020135A (en) 1998-03-27 2000-02-01 Affymetrix, Inc. P53-regulated genes
AU766544B2 (en) 1998-06-06 2003-10-16 Genostic Pharma Limited Probes used for genetic profiling
US6696558B2 (en) 1998-09-09 2004-02-24 The Burnham Institute Bag proteins and nucleic acid molecules encoding them
AU3246200A (en) 1999-02-25 2000-09-14 Boris Bilynsky Nucleic acid molecules associated with melanoma and thyroid tumors
US20020039764A1 (en) 1999-03-12 2002-04-04 Rosen Craig A. Nucleic, acids, proteins, and antibodies
AU3395900A (en) 1999-03-12 2000-10-04 Human Genome Sciences, Inc. Human lung cancer associated gene sequences and polypeptides
US6960439B2 (en) 1999-06-28 2005-11-01 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
US6692916B2 (en) 1999-06-28 2004-02-17 Source Precision Medicine, Inc. Systems and methods for characterizing a biological condition or agent using precision gene expression profiles
US6326148B1 (en) 1999-07-12 2001-12-04 The Regents Of The University Of California Detection of copy number changes in colon cancer
US6710170B2 (en) 1999-09-10 2004-03-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of ovarian cancer
US6271002B1 (en) 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
EP1218394A4 (en) 1999-10-06 2004-04-14 Univ California Differentially expressed genes associated with her-2/neu overexpression
EP2228446A1 (en) 1999-12-01 2010-09-15 Genentech, Inc. Secreted and transmembrane polypeptieds and nucleic acids encoding the same
US6750013B2 (en) 1999-12-02 2004-06-15 Protein Design Labs, Inc. Methods for detection and diagnosing of breast cancer
US6248535B1 (en) 1999-12-20 2001-06-19 University Of Southern California Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens
WO2001051661A2 (en) 2000-01-13 2001-07-19 Amsterdam Support Diagnostics B.V. A universal nucleic acid amplification system for nucleic acids in a sample
US6322986B1 (en) 2000-01-18 2001-11-27 Albany Medical College Method for colorectal cancer prognosis and treatment selection
EP1257664A4 (en) 2000-01-28 2006-04-05 Althea Technologies Inc Methods for analysis of gene expression
CA2395398A1 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
AU4592601A (en) 2000-03-21 2001-10-03 Millennium Predictive Medicine Novel genes, compositions, kits, and method for identification, assessment, prevention, and therapy of ovarian cancer
AU2001251086A1 (en) 2000-03-31 2001-10-15 Sir Mortimer B. Davis Jewish General Hospital Microchip arrays of regulatory genes
WO2002000677A1 (en) 2000-06-07 2002-01-03 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
WO2002008461A2 (en) 2000-07-21 2002-01-31 Global Genomics Ab A METHOD AND AN ALGORITHM FOR mRNA EXPRESSION ANALYSIS
US7118853B2 (en) 2000-07-26 2006-10-10 Applied Genomics, Inc. Methods of classifying, diagnosing, stratifying and treating cancer patients and their tumors
AU2001277202A1 (en) 2000-07-26 2002-02-05 Applied Genomics, Inc. Bstp-ras/rerg protein and related reagents and methods of use thereof
AU2001278011A1 (en) 2000-07-26 2002-02-05 Applied Genomics, Inc. Bstp-ecg1 protein and related reagents and methods of use thereof
US7795232B1 (en) 2000-08-25 2010-09-14 Genta Incorporated Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers
US6582919B2 (en) 2001-06-11 2003-06-24 Response Genetics, Inc. Method of determining epidermal growth factor receptor and HER2-neu gene expression and correlation of levels thereof with survival rates
US6602670B2 (en) 2000-12-01 2003-08-05 Response Genetics, Inc. Method of determining a chemotherapeutic regimen based on ERCC1 expression
AU2002234799A1 (en) 2000-12-08 2002-06-18 Ipsogen Gene expression profiling of primary breast carcinomas using arrays of candidate genes
AU2002255478A1 (en) 2001-01-10 2002-09-12 Pe Corporation (Ny) Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof
US7776518B2 (en) 2001-01-12 2010-08-17 Yale University Detection of survivin in the biological fluids of cancer patients
WO2002057787A2 (en) 2001-01-12 2002-07-25 Yale University Detection of survivin in the biological fluids of cancer patients
MXPA03006617A (en) 2001-01-24 2004-12-02 Protein Design Labs Inc Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer.
CN1554025A (en) 2001-03-12 2004-12-08 Īŵ���ɷ����޹�˾ Cell-based detection and differentiation of disease states
US7514209B2 (en) 2001-06-18 2009-04-07 Rosetta Inpharmatics Llc Diagnosis and prognosis of breast cancer patients
WO2003011897A1 (en) 2001-07-27 2003-02-13 The Regents Of The University Of California Modulation of heregulin and her3 interaction
WO2003029273A2 (en) 2001-09-28 2003-04-10 Whitehead Institute For Biomedical Research Classification of lung carcinomas using gene expression analysis
US6964850B2 (en) 2001-11-09 2005-11-15 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
US20030198972A1 (en) 2001-12-21 2003-10-23 Erlander Mark G. Grading of breast cancer
EP1492871A2 (en) 2002-03-28 2005-01-05 QLT Inc. Cancer associated protein kinases and their uses
EP1365034A3 (en) 2002-05-21 2004-02-18 Bayer HealthCare AG Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasia
US20040231909A1 (en) 2003-01-15 2004-11-25 Tai-Yang Luh Motorized vehicle having forward and backward differential structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072828A1 (en) * 2001-03-14 2002-09-19 Dna Chip Research Inc. Method of predicting cancer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624697A (en) * 2018-08-20 2018-10-09 默禾医疗科技(上海)有限公司 A kind of 21 gene detecting kit of breast cancer and its detection method
CN108624697B (en) * 2018-08-20 2018-12-18 默禾医疗科技(上海)有限公司 A kind of 21 gene detecting kit of breast cancer and its detection method

Also Published As

Publication number Publication date
US20050048542A1 (en) 2005-03-03
CA2531967C (en) 2013-07-16
EP1644858A4 (en) 2009-05-13
WO2005008213A3 (en) 2005-03-24
AU2004258085A1 (en) 2005-01-27
ES2905579T3 (en) 2022-04-11
WO2005008213A2 (en) 2005-01-27
JP2007527220A (en) 2007-09-27
EP3330875B1 (en) 2021-12-01
EP1644858B1 (en) 2017-12-06
ES2651849T3 (en) 2018-01-30
AU2004258085B2 (en) 2010-05-27
US20090280490A1 (en) 2009-11-12
US7526387B2 (en) 2009-04-28
US7939261B2 (en) 2011-05-10
EP3330875A1 (en) 2018-06-06
EP1644858A2 (en) 2006-04-12
HK1254085A1 (en) 2019-07-12
DK1644858T3 (en) 2018-01-22
CA2531967A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4906505B2 (en) Expression profile algorithms and tests for cancer diagnosis
JP6190434B2 (en) Gene expression markers to predict response to chemotherapeutic agents
JP4680898B2 (en) Predicting the likelihood of cancer recurrence
JP4723472B2 (en) Gene expression markers for breast cancer prognosis
US7622251B2 (en) Molecular indicators of breast cancer prognosis and prediction of treatment response
JP6351112B2 (en) Gene expression profile algorithms and tests to quantify the prognosis of prostate cancer
US7930104B2 (en) Predicting response to chemotherapy using gene expression markers
WO2009114836A1 (en) Gene expression markers for prediction of patient response to chemotherapy
JP2007507222A (en) Gene expression markers for predicting response to chemotherapy
EP3556867A1 (en) Methods to predict clinical outcome of cancer
EP2140020A2 (en) Gene expression markers for prediction of patient response to chemotherapy
AU2016210735A1 (en) Gene expression markers for predicting response to chemotherapy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110909

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250