JP4905873B2 - Sealed lead-acid battery separator and sealed lead-acid battery - Google Patents

Sealed lead-acid battery separator and sealed lead-acid battery Download PDF

Info

Publication number
JP4905873B2
JP4905873B2 JP2005104507A JP2005104507A JP4905873B2 JP 4905873 B2 JP4905873 B2 JP 4905873B2 JP 2005104507 A JP2005104507 A JP 2005104507A JP 2005104507 A JP2005104507 A JP 2005104507A JP 4905873 B2 JP4905873 B2 JP 4905873B2
Authority
JP
Japan
Prior art keywords
microcapsules
separator
acid battery
sealed lead
microcapsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104507A
Other languages
Japanese (ja)
Other versions
JP2006286392A (en
Inventor
正浩 川地
昌司 杉山
芳信 柿崎
真琴 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2005104507A priority Critical patent/JP4905873B2/en
Publication of JP2006286392A publication Critical patent/JP2006286392A/en
Application granted granted Critical
Publication of JP4905873B2 publication Critical patent/JP4905873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、微細ガラス繊維を主体とした抄造シートよりなり、電解液保持体と隔離板の機能を併せ持つ密閉型鉛蓄電池用セパレータとそれを用いた密閉型鉛蓄電池に関する。   The present invention relates to a sealed lead-acid battery separator comprising a paper-sheet made mainly of fine glass fibers and having both functions of an electrolytic solution holding body and a separator, and a sealed lead-acid battery using the same.

従来、このような密閉型鉛蓄電池用セパレータとしては、例えば、特許文献1〜3に開示されるような、微細ガラス繊維のみ、あるいは、微細ガラス繊維と少量のバインダーのみで構成される抄造シートよりなるセパレータが主に使用されているが、微細ガラス繊維は高価な材料であるため、製品コストが高くなるという問題がある。   Conventionally, as such a sealed lead-acid battery separator, for example, as disclosed in Patent Documents 1 to 3, only a fine glass fiber, or a papermaking sheet composed of only a fine glass fiber and a small amount of a binder. However, since the fine glass fiber is an expensive material, there is a problem that the product cost increases.

このため、特許文献4〜5には、微細ガラス繊維を主体としたセパレータでありながら、セパレータを低密度化することで、コストダウンを図ろうとする考え方のセパレータとして、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータが提案されている。   For this reason, in Patent Documents 4 to 5, although the separator is mainly made of fine glass fibers, the separator is designed to reduce costs by reducing the density of the separators. A sealed lead-acid battery separator made of a papermaking sheet containing a capsule has been proposed.

しかしながら、特許文献1〜3に開示される従来の微細ガラス繊維のみ、あるいは、微細ガラス繊維と少量のバインダーのみで構成されるセパレータの場合、微細ガラス繊維の交絡によってセパレータ内部に多量の空間が形成されるが、特許文献4〜5に開示されるマイクロカプセルを含有したセパレータでは、微細ガラス繊維の交絡によって形成される空間をマイクロカプセルが埋めてしまい、セパレータの電解液保持性が低下するという問題がある。   However, in the case of a separator composed only of the conventional fine glass fiber disclosed in Patent Documents 1 to 3 or only of the fine glass fiber and a small amount of binder, a large amount of space is formed inside the separator by the entanglement of the fine glass fiber. However, in the separator containing the microcapsules disclosed in Patent Documents 4 to 5, the microcapsule fills the space formed by the entanglement of the fine glass fibers, and the electrolyte retention of the separator is reduced. There is.

このため、本出願人は、特許文献6において、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータにおいて、セパレータ内に含ませたマイクロカプセルに透水性を持たせるようにして、マイクロカプセルの内部にも電解液を保持できる構造とすることで、マイクロカプセルを混在させたことによるセパレータの保液性の低下を解消できるようにした密閉型鉛蓄電池用セパレータを提案した。
特開昭59−71255号公報 特開昭56−99968号公報 特開昭63−224144号公報 特開昭59−138059号公報 特開平7−122291号公報 国際公開第2004/75317号パンフレット
For this reason, in the patent document 6, the applicant assigns water permeability to the microcapsules contained in the separator in a sealed lead-acid battery separator made of a papermaking sheet mainly composed of fine glass fibers and containing microcapsules. In this way, we propose a sealed lead-acid battery separator that can eliminate the decrease in liquid retention of the separator due to the mixing of microcapsules by making the structure that can hold the electrolyte inside the microcapsules. did.
JP 59-71255 A JP-A-56-99968 JP 63-224144 A JP 59-138059 A JP-A-7-122291 International Publication No. 2004/75317 Pamphlet

しかしながら、特許文献4〜6に開示されるマイクロカプセルを含有した密閉型鉛蓄電池用セパレータは、何れも、微細ガラス繊維を主体とし、これにマイクロカプセルを混合して抄造した抄造シートよりなるものであり、前記マイクロカプセルが前記抄造シートの全体に略均一分散状態に混在した構造となっている。   However, the sealed lead-acid battery separators containing the microcapsules disclosed in Patent Documents 4 to 6 are all made of a papermaking sheet mainly made of fine glass fibers and mixed with the microcapsules. There is a structure in which the microcapsules are mixed in a substantially uniformly dispersed state throughout the papermaking sheet.

密閉型鉛蓄電池において、短時間大電流放電性能である高率放電性能を高めるには、セパレータと極板との密着性が高いこと、極板と接するセパレータの表面部付近に多くの電解液を保持していることが重要とされるが、この観点から、前述の密閉型鉛蓄電池用セパレータについて改めて評価してみる。   In a sealed lead-acid battery, in order to improve high-rate discharge performance, which is high-current discharge performance for a short time, the adhesion between the separator and the electrode plate is high, and a large amount of electrolyte solution is placed near the surface of the separator in contact with the electrode plate. Although it is important to hold, from this point of view, the above-mentioned sealed lead-acid battery separator will be evaluated again.

特許文献1〜3に開示された従来の微細ガラス繊維のみ、あるいは、微細ガラス繊維と少量のバインダーのみで構成されるセパレータでは、微細ガラス繊維の交絡によってセパレータ内部に多量の空間が形成され、セパレータ表面部においても同様に多量の空間を有し、多くの電解液を保持しているため、高率放電時にも、セパレータ表面部に存在する豊富な電解液がスムーズに極板側へ供給され、良好な高率放電性能が発揮できる。   In the separator composed only of the conventional fine glass fiber disclosed in Patent Documents 1 to 3, or only the fine glass fiber and a small amount of binder, a large amount of space is formed inside the separator by the entanglement of the fine glass fiber. Similarly, the surface portion has a large amount of space and holds a large amount of electrolyte, so even during high-rate discharge, the abundant electrolyte present on the separator surface is smoothly supplied to the electrode plate side. Good high rate discharge performance can be exhibited.

これに対して、特許文献4〜5に開示される微細ガラス繊維を主体としマイクロカプセルを含有したセパレータでは、微細ガラス繊維の交絡によって形成される空間にマイクロカプセルが介在した構造で、電解液保持量が少なくなっており、セパレータ表面部においても、電解液保持量が少ないため、高率放電時に、極板側へ十分な量の電解液をスムーズに供給できず、良好な高率放電性能が発揮できない。   On the other hand, in the separator mainly composed of fine glass fibers disclosed in Patent Documents 4 to 5 and containing microcapsules, the structure in which the microcapsules are interposed in the space formed by the entanglement of the fine glass fibers and the electrolyte solution holding Since the amount of electrolyte is reduced and the amount of electrolyte retained on the separator surface is small, a sufficient amount of electrolyte cannot be smoothly supplied to the electrode plate during high rate discharge, resulting in good high rate discharge performance. I can't show it.

また、特許文献6に開示される微細ガラス繊維を主体とし透水性を有したマイクロカプセルを含有したセパレータでは、特許文献4〜5のセパレータと同様、微細ガラス繊維の交絡によって形成される空間にマイクロカプセルが介在した構造であるが、マイクロカプセルが透水性を有し、マイクロカプセル内部に電解液を保持するため、特許文献1〜3の従来のマイクロカプセルを含有しないセパレータと同等以上の電解液保持量を有しており、セパレータ表面部においても同様に高い電解液保持量を有するが、マイクロカプセル内部に保持された電解液では、高率放電時に極板側へスムーズに電解液を供給することが困難であり、結局のところ、特許文献4〜5の場合と同様、高率放電時に、極板側へ十分な量の電解液をスムーズに供給できず、良好な高率放電性能が発揮できない。   Moreover, in the separator containing the microcapsule mainly composed of the fine glass fiber disclosed in Patent Document 6 and having water permeability, the micro-space is formed in the space formed by the entanglement of the fine glass fiber as in the separators of Patent Documents 4 to 5. Capsule intervening structure, but the microcapsule has water permeability and retains the electrolyte inside the microcapsule. Therefore, the electrolyte is retained at least as much as the conventional separator that does not contain microcapsules in Patent Documents 1 to 3. In the separator surface part, the amount of electrolyte retained is also high, but with the electrolyte retained inside the microcapsule, the electrolyte is smoothly supplied to the electrode plate during high-rate discharge. After all, as in the case of Patent Documents 4 to 5, at the time of high rate discharge, a sufficient amount of electrolyte can be smoothly supplied to the electrode plate side. Not, good high rate discharge performance can not be exhibited.

そこで、本発明は、このような従来の問題点に鑑み、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータにおいて、電池の高率放電性能を向上させ得る密閉型鉛蓄電池用セパレータとそれを用いた密閉型鉛蓄電池を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention provides a sealed lead-acid battery separator composed of a papermaking sheet mainly composed of fine glass fibers and containing microcapsules, which can improve the high-rate discharge performance of the battery. It aims at providing the separator for type lead acid batteries, and the sealed lead acid battery using the same.

本発明の密閉型鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータであって、前記マイクロカプセルが膨張性マイクロカプセルを膨張させた透水性を有するマイクロカプセルであり、前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層となっていることを特徴とする。
また、本発明の密閉型鉛蓄電池用セパレータは、請求項2に記載の通り、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータであって、前記マイクロカプセルが膨張によって透水性を得るとともに形状維持することが可能な熱可塑性のポリオレフィンまたはポリアクリロニトリル系の殻からなる未膨張の膨張性マイクロカプセルであり、前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層となっていることを特徴とする
た、本発明の密閉型鉛蓄電池は、前記目的を達成するべく、請求項3に記載の通り、正・負極板間に請求項1記載の密閉型鉛蓄電池用セパレータを介装したことを特徴とする。
また、本発明の密閉型鉛蓄電池は、請求項4に記載の通り、正・負極板間に請求項2記載の密閉型鉛蓄電池用セパレータを介装して極板群を構成し、電槽内に収納後、電解液を注液してなる密閉型鉛蓄電池であって、前記電解液の注液前又は注液後に前記セパレータ中の前記膨張性マイクロカプセルを膨張させて透水性を付与したことを特徴とする。
また、本発明の密閉型鉛蓄電池は、請求項5に記載の通り、正・負極板間に、微細ガラス繊維を主体としマイクロカプセルを略均一分散状態に混在させた抄造シートと、微細ガラス繊維を主体としマイクロカプセルを実質的に含有しない抄造シートとを、重ね合わせ状態になるように介装して極板群を構成し、電槽内に収納後、電解液を注液してなる密閉型鉛蓄電池であって、前記電解液注液後のマイクロカプセルが膨張性マイクロカプセルを膨張させた透水性を有するマイクロカプセルであることを特徴とする。
また、請求項6記載の密閉型鉛蓄電池は、請求項3乃至5の何れか1項に記載の密閉型鉛蓄電池において、前記マイクロカプセルの低充填密度層、あるいは、前記マイクロカプセルを実質的に含有しない抄造シートが、正極板側に当接されていることを特徴とする。
In order to achieve the above object, a sealed lead-acid battery separator according to the present invention is a sealed lead-acid battery separator comprising a sheet-formed sheet mainly composed of fine glass fibers and containing microcapsules as described in claim 1. The microcapsule is a water-permeable microcapsule obtained by expanding the expandable microcapsule, the microcapsule being unevenly distributed in the thickness direction of the papermaking sheet , and the microcapsule in the thickness direction of the papermaking sheet. A high packing density layer and a low packing density layer are formed, and one or both surface layers of the papermaking sheet are the low packing density layers of the microcapsules.
In addition, the sealed lead-acid battery separator according to the present invention is a sealed lead-acid battery separator made of a sheet-formed sheet mainly containing fine glass fibers and containing microcapsules, as defined in claim 2, It is an unexpanded expandable microcapsule made of a thermoplastic polyolefin or polyacrylonitrile-based shell capable of obtaining water permeability and maintaining its shape by expansion, and the microcapsule is unevenly distributed in the thickness direction of the papermaking sheet. Then, a high filling density layer and a low filling density layer of the microcapsule are formed in the thickness direction of the papermaking sheet, and one or both surface layers of the papermaking sheet become a low filling density layer of the microcapsule. It is characterized by being .
Also, sealed lead-acid battery of the present invention, in order to achieve the above object, as claimed in claim 3, the positive and negative electrode plates that is interposed a sealed lead separator for storage battery of claim 1, wherein Features.
Moreover, the sealed lead-acid battery according to the present invention comprises a separator for a sealed lead-acid battery according to claim 2 between the positive and negative electrode plates, as defined in claim 4, and constitutes an electrode plate group. A sealed lead-acid battery in which an electrolytic solution is injected after being housed therein, and water permeability is imparted by expanding the expandable microcapsules in the separator before or after injection of the electrolytic solution. It is characterized by that.
Further, the sealed lead-acid battery according to the present invention comprises, as described in claim 5, a papermaking sheet mainly composed of fine glass fibers and mixed with microcapsules in a substantially uniformly dispersed state between the positive and negative electrode plates, and fine glass fibers. A sheet made of paper and containing substantially no microcapsule is interposed so as to be superposed to form an electrode plate group, and after being stored in a battery case, sealed with an electrolyte solution It is a type lead acid battery, The microcapsule after the said electrolyte solution injection is a microcapsule which has the water permeability which expanded the expansible microcapsule .
Further, sealed lead-acid battery of claim 6, wherein, in the sealed lead-acid battery according to any one of claims 3 to 5, the low packing density layer of the microcapsules, or substantially the microcapsules papermaking sheet not containing the, characterized in that it is in contact with the positive electrode plate side.

本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなるセパレータであって、前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層とされた構造であるため、セパレータの片面又は両面の表面層の空間率が高く、該セパレータを使用した密閉型鉛蓄電池において、セパレータ表面層に多くの電解液を保持するとともに、高率放電時には電解液を極板側へスムーズに供給することが可能であり、良好な高率放電性能をもたらす。   The sealed lead-acid battery separator of the present invention is a separator made of a papermaking sheet mainly containing fine glass fibers and containing microcapsules, wherein the microcapsules are unevenly distributed in the thickness direction of the papermaking sheet, Since the high-filling density layer and the low-filling density layer of the microcapsule are formed in the thickness direction, and the surface layer on one side or both sides of the papermaking sheet is a structure with the low-filling density layer of the microcapsule, The space ratio of the surface layer on one or both sides of the separator is high, and in a sealed lead-acid battery using the separator, a large amount of electrolyte is retained on the separator surface layer, and the electrolyte is smoothly transferred to the electrode plate during high-rate discharge. To provide good high rate discharge performance.

本発明の密閉型鉛蓄電池用セパレータは、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなるセパレータであって、前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層とされたものである。
ここで、低充填密度層とは、高充填密度層との比較において、マイクロカプセルの充填密度が相対的に低くなっていることを表現した言葉であり、充填密度の絶対値のレベルを規定したものではない。よって、低充填密度層とは、マイクロカプセルがまったく充填されていない非充填層であっても構わない。
また、1枚の抄造シートの中に厚さ方向に高充填密度層と低充填密度層とを有すると言っても、必ずしも両層の間に明解な境が存在している必要はなく、例えば、1枚の抄造シートの厚さ方向の一方の側(例えば表面側)から他方の側(例えば裏面側)に向かってマイクロカプセルの充填密度が漸次低くなるようにマイクロカプセルが偏在した抄造シートであってもよい。このような抄造シートの場合では、表面側の層を高充填密度層と呼び、裏面側の層を低充填密度層と呼び、これら高充填密度層や低充填密度層が実際に厚さ方向のどこからどこまでの範囲を指すか(表面層あるいは裏面層を起点に厚さ方向にどの深さの層までを含むか)については明確に定義されない。
また、高充填密度層や低充填密度層の厚さ方向の「層」の範囲がおよそ明解に示せる場合でも、前述したように、高充填密度層、低充填密度層とは、それぞれ低充填密度層、高充填密度層に対して相対的に充填密度の高いまたは低い層であることを示しているに過ぎず、つまり、例えば、それらの中間の充填密度を有する第3の層(中充填密度層)が更に存在していても良いし、高充填密度層よりも更に充填密度が高い第3の層(超高充填密度層)が存在していても良い。
The sealed lead-acid battery separator of the present invention is a separator made of a papermaking sheet mainly containing fine glass fibers and containing microcapsules, wherein the microcapsules are unevenly distributed in the thickness direction of the papermaking sheet, A high filling density layer and a low filling density layer of the microcapsules are formed in the thickness direction, and one or both surface layers of the papermaking sheet are the low filling density layers of the microcapsules.
Here, the low packing density layer is a word expressing that the packing density of the microcapsules is relatively low in comparison with the high packing density layer, and defines the level of the absolute value of the packing density. It is not a thing. Therefore, the low filling density layer may be an unfilled layer in which the microcapsules are not filled at all.
Moreover, even if it says that it has a high filling density layer and a low filling density layer in the thickness direction in one sheet-made sheet, it is not always necessary to have a clear boundary between the two layers. A papermaking sheet in which microcapsules are unevenly distributed so that the packing density of the microcapsules gradually decreases from one side (for example, the front surface side) to the other side (for example, the back surface side) in the thickness direction of one papermaking sheet. There may be. In the case of such a papermaking sheet, the layer on the front side is called a high packing density layer, the layer on the back side is called a low packing density layer, and these high packing density layer and low packing density layer are actually in the thickness direction. It is not clearly defined where to indicate the range (which depth layer is included in the thickness direction starting from the front surface layer or the back surface layer).
In addition, even when the range of the “layer” in the thickness direction of the high packing density layer and the low packing density layer can be clearly shown, as described above, the high packing density layer and the low packing density layer are each a low packing density. It only indicates that the layer is a layer having a high or low packing density relative to the high packing density layer, ie, a third layer (medium packing density, for example) having an intermediate packing density therebetween. Layer) may be present, or a third layer (ultra-high packing density layer) having a higher packing density than the high packing density layer may be present.

前記セパレータを密閉型鉛蓄電池に使用する際のセパレータの形態としては、前記セパレータに含まれるマイクロカプセルが、膨張性マイクロカプセルを膨張させた透水性を有したマイクロカプセルとされているセパレータ、あるいは、前記セパレータに含まれるマイクロカプセルが、未膨張の膨張性マイクロカプセルとされているセパレータ、の何れかであることが好ましい。
前者の形態のセパレータを使用する場合は、該セパレータを正・負極板間に介装して極板群を構成し、通常通りの手順にて組み立てれば、本発明の密閉型鉛蓄電池が得られる。一方、後者の形態のセパレータを使用する場合は、該セパレータを正・負極板間に介装して極板群を構成し、電槽内に収納した後、電解液の注液前又は注液後に前記セパレータ中の膨張性マイクロカプセルを膨張させて前記マイクロカプセルに透水性を付与するようにするのがよい。
このように、本発明の密閉型鉛蓄電池用セパレータは、電池に組み立てられて、電解液の注液が完了した時点では、前記セパレータ中に含まれるマイクロカプセルが、透水性を有していることが好ましい。
As a form of the separator when the separator is used for a sealed lead-acid battery, a microcapsule included in the separator is a separator having a water-permeable microcapsule obtained by expanding an expandable microcapsule, or It is preferable that the microcapsules contained in the separator are any of the separators that are unexpanded expandable microcapsules.
When the former form of separator is used, the sealed lead-acid battery of the present invention can be obtained by constructing the electrode plate group by interposing the separator between the positive and negative electrode plates and assembling in the usual procedure. . On the other hand, in the case of using the latter type of separator, the separator is interposed between the positive and negative electrode plates to form an electrode plate group, which is stored in the battery case, and then before or after the electrolyte solution is injected. It is preferable that the expandable microcapsules in the separator are later expanded to impart water permeability to the microcapsules.
As described above, when the sealed lead-acid battery separator of the present invention is assembled into a battery and the injection of the electrolytic solution is completed, the microcapsules contained in the separator have water permeability. Is preferred.

本発明の密閉型鉛蓄電池用セパレータは、前述の通り、微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなるセパレータであって、前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層に形成されたものであり、電池に組み込む際に、既にこの形態を有していることが理想的であるが、密閉型鉛蓄電池に使用した際の高率放電性能を改善するという本発明の目的からすれば、電池に構成された際に、上記のような形態になっていれば、一応目的は達せられる。
このような考え方に基づき、本発明の密閉型鉛蓄電池は、正・負極板間に、微細ガラス繊維を主体としマイクロカプセルを略均一分散状態に混在させた抄造シートと、微細ガラス繊維を主体としマイクロカプセルを実質的に含有しない抄造シートとを、重ね合わせ状態になるように介装して極板群を構成し、電槽内に収納後、電解液を注液してなり、前記電解液注液後のマイクロカプセルが透水性を有したものであってもよい。
As described above, the sealed lead-acid battery separator of the present invention is a separator made of a papermaking sheet mainly containing fine glass fibers and containing microcapsules, and the microcapsules are unevenly distributed in the thickness direction of the papermaking sheet. The high density layer and the low density layer of the microcapsule are formed in the thickness direction of the paper sheet, and one or both surface layers of the paper sheet are formed on the low density layer of the microcapsule. It is ideal to have this form when incorporated in a battery, but for the purpose of the present invention to improve high rate discharge performance when used in a sealed lead-acid battery. If the battery is configured as described above, the purpose can be achieved.
Based on such a concept, the sealed lead-acid battery of the present invention is mainly composed of a paper sheet made mainly of fine glass fibers and microcapsules mixed in a substantially uniform dispersion state between the positive and negative electrodes, and fine glass fibers. An electrode sheet group is formed by interposing a paper-making sheet substantially free of microcapsules so as to be in a superposed state, and after being accommodated in a battery case, an electrolyte solution is injected, and the electrolyte solution The microcapsule after injection may have water permeability.

本発明の密閉型鉛蓄電池用セパレータを使用して密閉型鉛蓄電池を構成する場合は、前記マイクロカプセルの低充填密度層、あるいは、前記マイクロカプセルを実質的に含有しない抄造シートが、正極板側に当接されるように構成するのがよい。
通常、鉛蓄電池は、正負両極で容量が異なっており、電池全体の容量は、容量が低い方の電極の容量によって規制される形となり、容量が高い方の電極の容量が十分に活かし切れていない。したがって、電池全体の容量を高めるには、正負両極の極板に対して均等に多くの電解液を供給するのではなく、容量が低い方の電極の極板に対してより多くの電解液を供給するようにするのがよいと言える。
通常、鉛蓄電池において形成される極板群は、極板構成が例えば正極板が4枚に対して負極板が5枚というように負極板の方が多くなっており、正極が、相対的に容量の低い電極となっている。よって、容量の低い正極側に、より多くの電解液を供給できる形に電池を構成すれば、電池全体の容量が高められ、高容量の電池に構成できる。
また、前記マイクロカプセルの低充填密度層、あるいは、前記マイクロカプセルを実質的に含有しない抄造シートを正極板側に当接させるようにした場合は、セパレータ中のマイクロカプセルが正極板と直接接することによって正極板からの強い酸化力を受け早期の酸化損耗・劣化を生じるのを防ぐことができるという利点もある。
When the sealed lead-acid battery is configured using the sealed lead-acid battery separator of the present invention, the microcapsule low-packing density layer or the papermaking sheet substantially not containing the microcapsule is on the positive electrode plate side. It is good to comprise so that it may contact | abut.
Normally, lead-acid batteries have different capacities between the positive and negative electrodes, and the overall capacity of the battery is regulated by the capacity of the electrode with the lower capacity, and the capacity of the electrode with the higher capacity is fully utilized. Absent. Therefore, in order to increase the capacity of the entire battery, rather than supplying a large amount of electrolyte evenly to the positive and negative electrode plates, a larger amount of electrolyte is supplied to the electrode plate of the lower capacity electrode. It can be said that it is better to supply.
Usually, the electrode plate group formed in the lead-acid battery has a larger number of negative electrode plates such that the electrode plate configuration is, for example, four positive electrode plates and five negative electrode plates, and the positive electrode is relatively The electrode has a low capacity. Therefore, if the battery is configured in such a way that a larger amount of electrolyte can be supplied to the positive electrode side having a lower capacity, the capacity of the entire battery can be increased and a high capacity battery can be configured.
In addition, when a low-packing density layer of the microcapsules or a papermaking sheet substantially not containing the microcapsules is brought into contact with the positive electrode plate, the microcapsules in the separator are in direct contact with the positive electrode plate. As a result, there is an advantage that it is possible to prevent the occurrence of early oxidation wear and deterioration due to the strong oxidizing power from the positive electrode plate.

本発明の密閉型鉛蓄電池用セパレータは、例えば、次のような方法により製造することができる。微細ガラス繊維を主体とし所定量の熱膨張性マイクロカプセルを含有した第1の抄紙原料液と、微細ガラス繊維を主体としマイクロカプセルを実質的に含有しない第2の抄紙原料液を使用して、多層抄き抄紙機により、二層抄きシートを得る。尚、第1の抄紙原料液を得る場合、微細ガラス繊維とマイクロカプセルを含む原料を水中に分散・混合した後、適量の凝集剤を添加し、前記微細ガラス繊維の表面に前記マイクロカプセルを吸着・担持させるようにするのがよい。
前記二層抄きシートは、該シート中の熱膨張性マイクロカプセルが膨張したシート、あるいは、前記シート中の熱膨張性マイクロカプセルが未膨張のままであるシートの何れであってもよいが、前者のシートに形成する場合は、二層抄きシートを得る際の抄紙後の乾燥工程もしくは乾燥工程に続く工程で、前記熱膨張性マイクロカプセルの発泡温度に合わせた適当な温度にて熱処理するようにする。この場合の熱処理温度は、前記熱膨張性マイクロカプセルが破裂を生じない程度に適度に膨張し透水性が付与されるような適当な温度を設定する。また、後者のシートに形成する場合は、抄紙後の乾燥工程では、前記熱膨張性マイクロカプセルが膨張(発泡)を生じない温度で乾燥を行うようにする。
The separator for sealed lead-acid batteries of the present invention can be manufactured by, for example, the following method. Using a first papermaking raw material liquid mainly containing fine glass fibers and containing a predetermined amount of thermally expandable microcapsules, and a second papermaking raw material liquid mainly containing fine glass fibers and containing no microcapsules, A two-layer paper sheet is obtained by a multilayer paper machine. In addition, when obtaining the first papermaking raw material liquid, a raw material containing fine glass fibers and microcapsules is dispersed and mixed in water, and then an appropriate amount of an aggregating agent is added to adsorb the microcapsules on the surface of the fine glass fibers. -It should be supported.
The double-layered sheet may be either a sheet in which the thermally expandable microcapsules in the sheet are expanded, or a sheet in which the thermally expandable microcapsules in the sheet remain unexpanded, In the case of forming the former sheet, heat treatment is performed at an appropriate temperature in accordance with the foaming temperature of the thermally expandable microcapsule in the drying step after the paper making when obtaining the double-layered sheet or the step subsequent to the drying step. Like that. In this case, the heat treatment temperature is set to an appropriate temperature at which the thermally expandable microcapsules are appropriately expanded and water permeability is imparted to such an extent that no bursting occurs. When the latter sheet is formed, in the drying step after papermaking, the thermally expandable microcapsules are dried at a temperature at which expansion (foaming) does not occur.

本発明のセパレータに使用する微細ガラス繊維としては、平均繊維径が3μm以下、好ましくは1μm以下のCガラス組成のガラス短繊維を使用するのが好ましい。   As the fine glass fibers used in the separator of the present invention, it is preferable to use short glass fibers having a C glass composition having an average fiber diameter of 3 μm or less, preferably 1 μm or less.

本発明のセパレータに使用するマイクロカプセルとしては、耐電解液性(耐酸性)を有し、カプセルの内部に、加熱や電解液(硫酸)との接触によって膨張する膨張性材料(例えば、前者の場合には低沸点炭化水素、後者の場合には重炭酸ナトリウム)を内包した構造の膨張性マイクロカプセルを使用するのが好ましい。尚、前記膨張性材料としては、カプセル外に漏出したとしても電解液や電池に悪影響を与えない材料を選択するのがよい。
また、本発明のセパレータに使用するマイクロカプセルの粒子径は、微細ガラス繊維を主体とする抄紙原料と共に混合抄造される場合を想定すると、出来上がった抄造シート中への均一分散性を考慮し、数十μm以下であることが好ましい。
また、本発明のセパレータに使用する膨張性マイクロカプセルの本体すなわち殻の材質としては、耐酸性を有するとともに、膨張によって透水性を得ることができるものの破裂等せず形状維持が可能な材料を使用するのが好ましく、熱可塑性のポリオレフィン、ポリアクリロニトリル系等が使用できる。
また、セパレータ中のマイクロカプセルの含有量としては、1〜30質量%が好ましく、1〜10質量%がさらに好ましい。通常、マイクロカプセルとしては疎水性である有機材料を使用することになるため、マイクロカプセルの含有量が多くなり過ぎると、相対的に親水性である微細ガラス繊維の含有量が減り、セパレータの親水性が低下するので、好ましくない。また、本発明において、セパレータ中にマイクロカプセルを混在させることで期待する効果としては、主に、セパレータの低密度化及びクッション性の向上であるが、10質量%以下の含有量でもこれらについて一定の効果を得ることは可能である。
尚、膨張性マイクロカプセルを使用して作製されたセパレータの該膨張性マイクロカプセルが膨張した後の状態については、セパレータ中に含まれる膨張済みマイクロカプセルの基本的にその全量が、膨張によって透水性を得つつ形状を維持した状態になっていることが望ましいが、このような制御を完璧に行うことは難しいことから、例えば、膨張済みマイクロカプセルの全量の中に、膨張によっても透水性が得られなかった膨張済みマイクロカプセルが一部存在したり、膨張により形状を維持し切れずに破裂してしまった膨張済みマイクロカプセルが一部存在していてもよい。また、前記膨張済みマイクロカプセルが有する透水性についても、必ずしも膨張済みマイクロカプセルの表面の全領域が透水性を有している必要はなく、透水性を有しない領域が一部存在していてもよい。
The microcapsule used in the separator of the present invention has an electrolytic solution resistance (acid resistance), and an expandable material (for example, the former one) that expands inside the capsule by heating or contact with an electrolytic solution (sulfuric acid). In this case, it is preferable to use an expandable microcapsule having a structure including a low-boiling hydrocarbon (in the latter case, sodium bicarbonate in the latter case). As the expansible material, it is preferable to select a material that does not adversely affect the electrolyte or battery even if it leaks out of the capsule.
In addition, the particle size of the microcapsule used in the separator of the present invention is several, considering the uniform dispersibility in the finished papermaking sheet, assuming that the papermaking is mixed with the papermaking raw material mainly composed of fine glass fibers. It is preferably 10 μm or less.
The material of the expandable microcapsule used in the separator of the present invention, that is, the material of the shell, is a material that has acid resistance and can maintain its shape without rupture, etc. It is preferable to use thermoplastic polyolefin, polyacrylonitrile, or the like.
Moreover, as content of the microcapsule in a separator, 1-30 mass% is preferable, and 1-10 mass% is further more preferable. Usually, a hydrophobic organic material is used as the microcapsule. Therefore, if the content of the microcapsule is excessively large, the content of the relatively hydrophilic fine glass fiber is reduced, and the hydrophilicity of the separator is reduced. This is not preferable because the properties are lowered. Further, in the present invention, the effects expected by mixing microcapsules in the separator are mainly the reduction of the density of the separator and the improvement of the cushioning property, but even with a content of 10% by mass or less, these are constant. It is possible to obtain the effect.
Regarding the state of the separator produced using the expandable microcapsule after the expandable microcapsule has expanded, basically the entire amount of the expanded microcapsule contained in the separator is permeable to water by expansion. It is desirable to maintain the shape while maintaining the shape.However, since it is difficult to perform such control perfectly, for example, in the entire amount of the expanded microcapsules, water permeability can be obtained even by expansion. There may be some expanded microcapsules that have not been formed, or there may be some expanded microcapsules that have ruptured without maintaining their shape due to expansion. Further, regarding the water permeability of the expanded microcapsules, the entire area of the surface of the expanded microcapsules is not necessarily required to have water permeability, and there may be some areas that do not have water permeability. Good.

次に、本発明の実施例について従来例と共に詳細に説明する。
(実施例1)
平均繊維径0.8μmのガラス繊維90質量%と、熱膨張性マイクロカプセル(松本油脂製薬社製マツモトマイクロスフェアーF−55)10質量%とを、水中で分散・混合後、アクリルアミド系吸着剤を添加して前記マイクロカプセルを前記ガラス繊維の表面に吸着・担持させた後、通常の抄紙機にて湿式抄造して湿紙シートAを得た。また同様に前記ガラス繊維のみを用い、通常の抄紙機にて湿紙シートBを得た。次に、湿紙シートA(A層)と湿紙シートB(B層)を重ね合わせ、120℃で乾燥して前記A層のマイクロカプセルを膨張させて、厚さ1.02mm、坪量100g/m2、マイクロカプセル含有量5質量%の密閉型鉛蓄電池用セパレータを得た。尚、前記湿紙シートAと前記湿紙シートBは乾紙状態での坪量がほぼ同じとなっている。
Next, examples of the present invention will be described in detail together with conventional examples.
Example 1
90% by mass of glass fiber having an average fiber diameter of 0.8 μm and 10% by mass of thermally expandable microcapsules (Matsumoto Yushi Seiyaku Matsumoto Microsphere F-55) are dispersed and mixed in water, and then an acrylamide-based adsorbent. Was added to adsorb and support the microcapsules on the surface of the glass fiber, and wet paper making was performed with a normal paper machine to obtain a wet paper sheet A. Similarly, a wet paper sheet B was obtained using a normal paper machine using only the glass fiber. Next, the wet paper sheet A (A layer) and the wet paper sheet B (B layer) are overlapped and dried at 120 ° C. to expand the microcapsules of the A layer, and have a thickness of 1.02 mm and a basis weight of 100 g. / M 2 , a separator for a sealed lead-acid battery having a microcapsule content of 5% by mass was obtained. The wet paper sheet A and the wet paper sheet B have substantially the same basis weight in the dry paper state.

(実施例2)
平均繊維径0.8μmのガラス繊維80質量%と、熱膨張性マイクロカプセル(松本油脂製薬社製マツモトマイクロスフェアーF−55)20質量%とを、水中で分散・混合後、アクリルアミド系吸着剤を添加して前記マイクロカプセルを前記ガラス繊維の表面に吸着・担持させた後、通常の抄紙機にて湿式抄造して湿紙シートCを得た。また同様に前記ガラス繊維のみを用い、通常の抄紙機にて湿紙シートD,Eを得た。次に、湿紙シートD(D層)と湿紙シートE(E層)の間に湿紙シートC(C層)を挟むように3層を重ね合わせ、120℃で乾燥して前記C層のマイクロカプセルを膨張させて、厚さ1.01mm、坪量101g/m2、マイクロカプセル含有量7質量%の密閉型鉛蓄電池用セパレータを得た。尚、前記湿紙シートCと前記湿紙シートDと前記湿紙シートEは乾紙状態での坪量がほぼ同じとなっている。
(Example 2)
An acrylamide-based adsorbent after 80% by mass of glass fiber having an average fiber diameter of 0.8 μm and 20% by mass of thermally expandable microcapsules (Matsumoto Yushi Seiyaku Matsumoto Microsphere F-55) are dispersed and mixed in water. And the microcapsules were adsorbed and supported on the surface of the glass fiber, and then wet-made with a normal paper machine to obtain a wet paper sheet C. Similarly, wet paper sheets D and E were obtained using a normal paper machine using only the glass fiber. Next, three layers are stacked so that the wet paper sheet C (C layer) is sandwiched between the wet paper sheet D (D layer) and the wet paper sheet E (E layer), and dried at 120 ° C. The microcapsule was expanded to obtain a sealed lead-acid battery separator having a thickness of 1.01 mm, a basis weight of 101 g / m 2 , and a microcapsule content of 7% by mass. The wet paper sheet C, the wet paper sheet D, and the wet paper sheet E have substantially the same basis weight in the dry paper state.

(実施例3)
平均繊維径0.8μmのガラス繊維80質量%と、熱膨張性マイクロカプセル(松本油脂製薬社製マツモトマイクロスフェアーF−55)20質量%とを、水中で分散・混合後、アクリルアミド系吸着剤を添加して前記マイクロカプセルを前記ガラス繊維の表面に吸着・担持させた後、通常の抄紙機にて湿式抄造して湿紙シートFを得た。また同様に前記ガラス繊維のみを用い、通常の抄紙機にて湿紙シートGを得た。次に、湿紙シートF(F層)と湿紙シートG(G層)を重ね合わせ、95℃で乾燥して、厚さ0.75mm、坪量98g/m2、マイクロカプセル含有量10質量%の密閉型鉛蓄電池用セパレータを得た。尚、前記湿紙シートFと前記湿紙シートGは乾紙状態での坪量がほぼ同じとなっている。
Example 3
An acrylamide-based adsorbent after 80% by mass of glass fiber having an average fiber diameter of 0.8 μm and 20% by mass of thermally expandable microcapsules (Matsumoto Yushi Seiyaku Matsumoto Microsphere F-55) are dispersed and mixed in water. And the microcapsules were adsorbed and supported on the surface of the glass fiber, and then wet-made with a normal paper machine to obtain a wet paper sheet F. Similarly, a wet paper sheet G was obtained using a normal paper machine using only the glass fiber. Next, the wet paper sheet F (F layer) and the wet paper sheet G (G layer) are overlapped and dried at 95 ° C., and the thickness is 0.75 mm, the basis weight is 98 g / m 2 , and the microcapsule content is 10 mass. % Of a sealed lead-acid battery separator was obtained. The wet paper sheet F and the wet paper sheet G have substantially the same basis weight in the dry paper state.

(従来例1)
平均繊維径0.8μmのガラス繊維90質量%と、熱膨張性マイクロカプセル(松本油脂製薬社製マツモトマイクロスフェアーF−55)10質量%とを、水中で分散・混合後、アクリルアミド系吸着剤を添加して前記マイクロカプセルを前記ガラス繊維の表面に吸着・担持させた後、通常の抄紙機にて湿式抄造し、120℃で乾燥して前記マイクロカプセルを膨張させて、厚さ1.07mm、坪量97g/m2の密閉型鉛蓄電池用セパレータを得た。
(Conventional example 1)
90% by mass of glass fiber having an average fiber diameter of 0.8 μm and 10% by mass of thermally expandable microcapsules (Matsumoto Yushi Seiyaku Matsumoto Microsphere F-55) are dispersed and mixed in water, and then an acrylamide-based adsorbent. And the microcapsules are adsorbed and supported on the surface of the glass fiber, then wet-made with a normal paper machine, dried at 120 ° C. to expand the microcapsules, and a thickness of 1.07 mm A separator for a sealed lead-acid battery having a basis weight of 97 g / m 2 was obtained.

(従来例2)
平均繊維径0.8μmのガラス繊維100質量%を水中で分散後、通常の抄紙機にて湿式抄造し、120℃で乾燥して、厚さ1.03mm、坪量150g/m2の密閉型鉛蓄電池用セパレータを得た。
(Conventional example 2)
100% by mass of glass fiber having an average fiber diameter of 0.8 μm is dispersed in water, wet-made with a normal paper machine, dried at 120 ° C., and a sealed type having a thickness of 1.03 mm and a basis weight of 150 g / m 2 . A lead-acid battery separator was obtained.

次に、上記にて得られた実施例1〜3及び従来例1〜2の各セパレータについて、最大孔径、クッション性、吸液量等のセパレータ諸特性を評価した。また、前記各セパレータを、6M4(6V4Ahの略)の電池に組み込み電解液を注液して密閉型鉛蓄電池を作製し、電池特性(高率放電特性)を評価した。結果を表1に示す。尚、実施例3のセパレータについては、無加圧で6M4の電池に組み込んだ後、該電池を120℃に加熱処理してセパレータ中の膨張性マイクロカプセルを膨張させマイクロカプセルに透水性を付与するとともに、セパレータの厚さを膨張させ、極板群に所定の加圧を掛けた後、電解液を注液して密閉型鉛蓄電池を得るようにした。   Next, for the separators of Examples 1 to 3 and Conventional Examples 1 and 2 obtained above, various properties of the separator such as the maximum pore diameter, cushioning properties, and liquid absorption were evaluated. Each separator was incorporated into a 6M4 (6V4Ah) battery and an electrolyte was injected to produce a sealed lead-acid battery, and battery characteristics (high-rate discharge characteristics) were evaluated. The results are shown in Table 1. In addition, about the separator of Example 3, after incorporating in a 6M4 battery without pressure, the battery is heat-treated at 120 ° C. to expand the expandable microcapsules in the separator to impart water permeability to the microcapsules. At the same time, the thickness of the separator was expanded, a predetermined pressure was applied to the electrode plate group, and then an electrolytic solution was injected to obtain a sealed lead-acid battery.

Figure 0004905873
Figure 0004905873

表1の結果から以下のことが分かった。
(1)ガラス繊維主体の抄造シートに膨張済みマイクロカプセルを5〜10質量%含有させてなる本発明の実施例1〜3のセパレータ(実施例3もマイクロカプセル膨張後の状態で評価)は、ガラス繊維のみからなる従来例2のセパレータに比較して、密度が32〜36%低減し、製品単価の低コスト化が図れている。しかも、実施例1〜3のセパレータにおいては、ガラス繊維の交絡による空間内に膨張済みマイクロカプセルを介在させているにも拘わらず、前記膨張済みマイクロカプセルの多くが、形状を維持しつつ透水性を有しているため、ガラス繊維のみからなる従来例2のセパレータに比較して、吸液量が低下していない。つまり、実施例1〜3のセパレータは、ガラス繊維主体の抄造シートに膨張済みマイクロカプセルを10質量%含有しセパレータ全体に膨張済みマイクロカプセルが略均一に分散した従来例1のセパレータと同等の特長を有している。
(2)しかも、実施例1〜3のセパレータは、ガラス繊維主体の抄造シートに膨張済みマイクロカプセルを5〜10質量%含有しセパレータの片面又は両面の表面層が前記膨張済みマイクロカプセルの低充填密度層もしくは非充填層となるように膨張済みマイクロカプセルを偏在させているため、実施例1〜3のセパレータを使用した電池において、ガラス繊維主体の抄造シートに膨張済みマイクロカプセルを10質量%含有しセパレータ全体に膨張済みマイクロカプセルが略均一に分散したセパレータを使用した従来例1の電池に比較して、高率放電持続時間比が10〜13%良化した。この高率放電特性の結果について以下に解説する。従来例1及び実施例1〜3のマイクロカプセルを含有したセパレータを使用した電池では、従来例2のマイクロカプセルを含有しないセパレータを使用した電池に比べて、セパレータは、クッション性が高くつまり圧縮反発性が高いため、極板との密着性に優れ極板へ電解液を供給し易くなって、高率放電特性の良化に寄与している。ただし、従来例1の電池では、従来例2の電池に対し、セパレータと極板との密着性は良化しているものの、セパレータ表面部にマイクロカプセルが多く存在しており、高率放電時に極板側へスムーズに供給できる電解液をセパレータ表面部に多く保持することができていないため、セパレータと極板との密着性向上による効果を帳消しにし、高率放電特性は同等に留まっている。これに対し、実施例1〜3の電池では、従来例1の電池に対し、セパレータ表面部に存在するマイクロカプセルが少なくなり、高率放電時に極板側へスムーズに供給できる電解液をセパレータ表面部に多く保持することができた(従来例2と同等の効果)ため、高率放電特性が10〜13%良化したと考えられる。
From the results in Table 1, the following was found.
(1) The separators of Examples 1 to 3 of the present invention in which 5 to 10% by mass of expanded microcapsules are contained in a paper sheet mainly made of glass fibers (Example 3 is also evaluated in the state after expansion of microcapsules). Compared with the separator of Conventional Example 2 made only of glass fiber, the density is reduced by 32 to 36%, and the cost of the product can be reduced. In addition, in the separators of Examples 1 to 3, although the expanded microcapsules are interposed in the space formed by the entanglement of the glass fibers, most of the expanded microcapsules maintain the shape while being permeable. Therefore, compared with the separator of the prior art example 2 which consists only of glass fiber, the liquid absorption amount is not falling. That is, the separators of Examples 1 to 3 have the same features as the separator of Conventional Example 1 containing 10% by mass of expanded microcapsules in a paper sheet mainly made of glass fiber, and the expanded microcapsules dispersed substantially uniformly throughout the separator. have.
(2) In addition, the separators of Examples 1 to 3 contain 5 to 10% by mass of expanded microcapsules in a paper sheet mainly made of glass fiber, and one or both surface layers of the separator are low-filled with the expanded microcapsules. Since the expanded microcapsules are unevenly distributed so as to be a density layer or an unfilled layer, in the battery using the separators of Examples 1 to 3, 10% by mass of the expanded microcapsules are contained in the paper sheet mainly made of glass fiber. As compared with the battery of Conventional Example 1 using the separator in which the expanded microcapsules were dispersed substantially uniformly throughout the separator, the high rate discharge duration ratio was improved by 10 to 13%. The results of this high rate discharge characteristic are explained below. In the battery using the separator containing the microcapsules of Conventional Example 1 and Examples 1-3, the separator has a higher cushioning property than the battery using the separator not containing the microcapsules of Conventional Example 2, that is, compression repulsion. Therefore, it has excellent adhesion to the electrode plate, and it is easy to supply the electrolyte to the electrode plate, contributing to the improvement of the high rate discharge characteristics. However, in the battery of Conventional Example 1, although the adhesion between the separator and the electrode plate is improved compared to the battery of Conventional Example 2, there are many microcapsules on the surface of the separator, and the electrode is extremely charged during high rate discharge. Since a large amount of electrolyte that can be smoothly supplied to the plate side cannot be retained on the separator surface, the effect of improving the adhesion between the separator and the electrode plate is eliminated, and the high rate discharge characteristics remain the same. On the other hand, in the batteries of Examples 1 to 3, the number of microcapsules present on the separator surface is smaller than that of the battery of Conventional Example 1, and an electrolyte that can be smoothly supplied to the electrode plate during high rate discharge is supplied to the separator surface. It can be considered that the high rate discharge characteristics were improved by 10 to 13% because of being able to be retained in a large amount (the same effect as in Conventional Example 2).

Claims (6)

微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータであって、
前記マイクロカプセルが膨張性マイクロカプセルを膨張させた透水性を有するマイクロカプセルであり、
前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層となっていることを特徴とする密閉型鉛蓄電池用セパレータ。
A sealed lead-acid battery separator made of a paper sheet mainly composed of fine glass fibers and containing microcapsules,
The microcapsule is a microcapsule having water permeability obtained by expanding an expandable microcapsule,
The microcapsules are unevenly distributed in the thickness direction of the papermaking sheet, and a high filling density layer and a low filling density layer of the microcapsules are formed in the thickness direction of the papermaking sheet. A separator for a sealed lead-acid battery, wherein a surface layer is a low filling density layer of the microcapsules.
微細ガラス繊維を主体としマイクロカプセルを含有した抄造シートよりなる密閉型鉛蓄電池用セパレータであって、  A sealed lead-acid battery separator made of a paper sheet mainly composed of fine glass fibers and containing microcapsules,
前記マイクロカプセルが膨張によって透水性を得るとともに形状維持することが可能な熱可塑性のポリオレフィンまたはポリアクリロニトリル系の殻からなる未膨張の膨張性マイクロカプセルであり、The microcapsule is an unexpanded expandable microcapsule made of a thermoplastic polyolefin or polyacrylonitrile-based shell capable of obtaining water permeability by expansion and maintaining its shape,
前記マイクロカプセルが前記抄造シートの厚さ方向に偏在して、前記抄造シートの厚さ方向に前記マイクロカプセルの高充填密度層と低充填密度層とが形成され、前記抄造シートの片面又は両面の表面層が前記マイクロカプセルの低充填密度層となっていることを特徴とする密閉型鉛蓄電池用セパレータ。The microcapsules are unevenly distributed in the thickness direction of the papermaking sheet, and a high filling density layer and a low filling density layer of the microcapsules are formed in the thickness direction of the papermaking sheet. A separator for a sealed lead-acid battery, wherein a surface layer is a low filling density layer of the microcapsules.
正・負極板間に請求項1記載の密閉型鉛蓄電池用セパレータを介装したことを特徴とする密閉型鉛蓄電池。 A sealed lead-acid battery comprising the sealed lead-acid battery separator according to claim 1 interposed between positive and negative electrodes. 正・負極板間に請求項2記載の密閉型鉛蓄電池用セパレータを介装して極板群を構成し、電槽内に収納後、電解液を注液してなる密閉型鉛蓄電池であって、前記電解液の注液前又は注液後に前記セパレータ中の前記膨張性マイクロカプセルを膨張させて透水性を付与したことを特徴とする密閉型鉛蓄電池。 A sealed lead-acid battery in which the separator for a sealed lead-acid battery according to claim 2 is interposed between the positive and negative electrode plates to form an electrode plate group, which is stored in a battery case and injected with an electrolytic solution. The sealed lead-acid battery is provided with water permeability by expanding the expandable microcapsules in the separator before or after injection of the electrolytic solution. 正・負極板間に、微細ガラス繊維を主体としマイクロカプセルを略均一分散状態に混在させた抄造シートと、微細ガラス繊維を主体としマイクロカプセルを実質的に含有しない抄造シートとを、重ね合わせ状態になるように介装して極板群を構成し、電槽内に収納後、電解液を注液してなる密閉型鉛蓄電池であって、前記電解液注液後のマイクロカプセルが膨張性マイクロカプセルを膨張させた透水性を有するマイクロカプセルであることを特徴とする密閉型鉛蓄電池。 Between the positive and negative electrode plates, a sheet made of fine glass fibers and microcapsules mixed together in a substantially uniform dispersion state, and a sheet made of fine glass fibers and essentially free of microcapsules Is a sealed lead-acid battery in which an electrode plate group is configured to be intercalated and stored in a battery case and then injected with an electrolyte solution, and the microcapsules after the electrolyte solution injection are inflatable A sealed lead-acid battery characterized by being a microcapsule having water permeability obtained by expanding a microcapsule . 前記マイクロカプセルの低充填密度層、あるいは、前記マイクロカプセルを実質的に含有しない抄造シートが、正極板側に当接されていることを特徴とする請求項3乃至5の何れか1項に記載の密閉型鉛蓄電池。 The low packing density layer of microcapsules, or, the papermaking sheet containing substantially no microcapsules according to any one of claims 3 to 5, characterized in that it is in contact with the positive electrode plate side Sealed lead-acid battery.
JP2005104507A 2005-03-31 2005-03-31 Sealed lead-acid battery separator and sealed lead-acid battery Expired - Fee Related JP4905873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104507A JP4905873B2 (en) 2005-03-31 2005-03-31 Sealed lead-acid battery separator and sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104507A JP4905873B2 (en) 2005-03-31 2005-03-31 Sealed lead-acid battery separator and sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2006286392A JP2006286392A (en) 2006-10-19
JP4905873B2 true JP4905873B2 (en) 2012-03-28

Family

ID=37408082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104507A Expired - Fee Related JP4905873B2 (en) 2005-03-31 2005-03-31 Sealed lead-acid battery separator and sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP4905873B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765813A (en) * 1993-08-27 1995-03-10 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
EP1596448B1 (en) * 2003-02-18 2011-04-13 Nippon Sheet Glass Company, Limited Separator for storage battery, storage battery, and method for manufacturing storage battery

Also Published As

Publication number Publication date
JP2006286392A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US8389149B2 (en) Smart battery separators
EP2104161B1 (en) Separator for alkaline battery, method for producing the same, and battery comprising the same
RU2429317C2 (en) Nonwoven fibrous materials and electrodes made from them
JP5113685B2 (en) Electrochemical element separator
ES2657742T3 (en) Multifunctional network for use in a lead-acid battery
JPH05508049A (en) Glass fiber separator and its manufacturing method
JP4594230B2 (en) Lead-acid battery separator, lead-acid battery, and lead-acid battery manufacturing method
JP4813138B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP4905873B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP2004349586A (en) Separator for electric double layer capacitor, electric double layer capacitor, and method for manufacturing separator for electric double layer capacitor
KR20210049156A (en) Battery separator, electrode assembly, system and related methods
JP2005108722A (en) Separator for liquid type lead acid storage battery and its manufacturing method
EP1533861B1 (en) High power lead-acid battery with enhanced cycle life
JP2004071297A (en) Solid polyelectrolyte type fuel cell, separator for solid polyelectrolyte type fuel cell, and manufacturing method of that separator
JP2005100794A (en) Sealed type lead-acid battery
JP2022152915A (en) lead acid battery
JP2005327546A (en) Control valve type lead-acid battery
JP5262046B2 (en) Dry cell, method for manufacturing the same, and apparatus for manufacturing the same
JP3448982B2 (en) Manufacturing method of retainer for sealed lead-acid battery
JP2022152914A (en) lead acid battery
JPH04253154A (en) Electrode plate for battery
KR20220092536A (en) an improved lead acid battery separator with improved compressibility; Cells, systems, and related methods incorporating the same
JPS5937658A (en) Manufacturing method of paste type electrode for battery
JP2001155708A (en) Ni-H BATTERY AND SEPARATOR THEREFOR
JPH0415582B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees