JP3448982B2 - Manufacturing method of retainer for sealed lead-acid battery - Google Patents

Manufacturing method of retainer for sealed lead-acid battery

Info

Publication number
JP3448982B2
JP3448982B2 JP23696194A JP23696194A JP3448982B2 JP 3448982 B2 JP3448982 B2 JP 3448982B2 JP 23696194 A JP23696194 A JP 23696194A JP 23696194 A JP23696194 A JP 23696194A JP 3448982 B2 JP3448982 B2 JP 3448982B2
Authority
JP
Japan
Prior art keywords
retainer
acid battery
dispersed
sealed lead
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23696194A
Other languages
Japanese (ja)
Other versions
JPH08102311A (en
Inventor
博喜 岡本
祐一朗 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP23696194A priority Critical patent/JP3448982B2/en
Publication of JPH08102311A publication Critical patent/JPH08102311A/en
Application granted granted Critical
Publication of JP3448982B2 publication Critical patent/JP3448982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形鉛蓄電池の改
良、殊に、正極板と負極板の間に介在させるリテーナの
改良に関する。また、そのリテーナの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery, and more particularly to an improved retainer interposed between a positive electrode plate and a negative electrode plate. It also relates to a method of manufacturing the retainer.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池の正負極板間にはセパレ
ータとして、リテーナを介在させている。リテーナは、
微細なガラス繊維を主体として抄造した不織布からな
り、電解液を保持して非流動化する役目も有している。
リテーナが電解液をよく吸収する特性(吸液性)と吸収
した電解液を多く保持する特性(保液性)は、素材であ
るガラス繊維によって決定される。リテーナはガラス繊
維の毛管現象により電解液を吸収するので、ガラス繊維
間が小さく表面積が大きいリテーナほど吸液性はよい。
しかし、このようなリテーナは密度が大きい(ガラス繊
維間の空間が少ない)ので、保液性はよくない。一方、
ガラス繊維間の空間が大きく密度の小さいリテーナは、
保液性はよいが吸液性がよくない傾向にある。用途に応
じて、リテーナの密度等を変えることにより対応してい
るが、ガラス繊維とシリカの微粉体とを組合せたり、微
細なガラス繊維(繊維長および/または繊維径の小さい
ガラス繊維)と繊維長および/または繊維径の比較的大
きなガラス繊維とを組合せてリテーナを構成することに
より、吸液性と保液性を両立させようとする試みが行な
われている。
2. Description of the Related Art A retainer is interposed as a separator between positive and negative electrode plates of a sealed lead-acid battery. Retainer
It is made of a non-woven fabric mainly made of fine glass fibers, and also has a role of holding the electrolytic solution and making it non-fluidized.
The characteristics of the retainer that absorb the electrolytic solution well (liquid absorbing property) and the characteristic that it retains a large amount of the absorbed electrolytic solution (liquid retaining property) are determined by the glass fiber as a material. Since the retainer absorbs the electrolytic solution due to the capillary action of the glass fiber, the retainer having a small space between the glass fibers and a large surface area has a better liquid absorbing property.
However, since such a retainer has a high density (the space between the glass fibers is small), the liquid retaining property is not good. on the other hand,
A retainer with a large space between glass fibers and a small density
Good liquid retention but poor liquid absorption. It is handled by changing the density of the retainer, etc. according to the application, but it is possible to combine glass fiber and fine silica powder, or fine glass fiber (glass fiber with a small fiber length and / or fiber diameter) and fiber. Attempts have been made to achieve both liquid absorption and liquid retention by combining glass fibers having a relatively large length and / or a relatively large fiber diameter to form a retainer.

【0003】[0003]

【発明が解決しようとする課題】リテーナはガラス繊維
を主成分として分散させた水を上方から下方への流れの
中で抄造して製造されるが、ガラス繊維より比重が大き
いもの(シリカの微粉体)や微細なガラス繊維は、抄造
時に先に沈降しやすく、従って、片面に片寄りがちであ
る。シリカの微粉体や微細なガラス繊維が片寄った側
は、表面積が大きくなり吸液性が高くなる。このような
両表面の吸液性がアンバランスなリテーナを密閉形鉛蓄
電池に使用すると、その両側に位置する正負極板の一方
への電解液移動が優先的に行なわれ、正負極板への電解
液の供給量にアンバランスが生じて電池性能の向上を期
待できない。リテーナの片側の表面積が大きくなる現象
は、微細なガラス繊維を併用しない場合でも起こり、ガ
ラス繊維を水に分散させて抄造するとき、抄造した下面
は最後まで水分が残るのでガラス繊維間がしまって密度
が高くなり、従って表面積が大きくなる。抄造によりリ
テーナを製造する場合に避けられない問題である。シリ
カの微粉体や微細なガラス繊維をリテーナ中に均一に分
散させたならば、電解液はリテーナ全体にほぼ均一に保
持されるので、低率放電においては電解液が拡散により
まずまず良好にリテーナから極板に供給される。しか
し、高率放電においては、拡散によるだけではリテーナ
から極板への電解液の供給が間にあわず、リテーナの厚
さ方向中央に保持されている電解液は利用されないとい
う問題がある。本発明が解決しようとする課題は、保液
性が十分であり、また、正負極板への電解液の供給を良
好に行なうことにより電池性能を向上させることができ
る密閉形鉛蓄電池用リテーナを提供することである。ま
た、そのようなリテーナを製造することである。
The retainer is manufactured by making water in which glass fibers are dispersed as the main component in a flow from the upper side to the lower side, but having a specific gravity larger than that of the glass fibers (fine particles of silica). The body) and fine glass fibers tend to settle first during papermaking, and therefore tend to be biased on one side. On the side where the fine silica powder and fine glass fibers are offset, the surface area becomes large and the liquid absorption becomes high. When a retainer with unbalanced liquid absorption on both surfaces is used in a sealed lead-acid battery, the electrolyte is preferentially transferred to one of the positive and negative electrode plates located on both sides of the retainer, and An imbalance in the amount of electrolyte supplied cannot be expected to improve battery performance. The phenomenon that the surface area of one side of the retainer becomes large occurs even when fine glass fibers are not used together, and when the glass fibers are dispersed in water to make a paper, the lower surface of the papermaking leaves moisture until the end, so the glass fibers are clogged. Higher density and therefore higher surface area. This is an unavoidable problem when manufacturing a retainer by papermaking. If fine silica powder or fine glass fibers are evenly dispersed in the retainer, the electrolyte will be held almost uniformly throughout the retainer, so at low rate discharge, the electrolyte will be diffused from the retainer reasonably well. Supplied to the electrode plate. However, in the high-rate discharge, there is a problem in that the electrolytic solution is not supplied from the retainer to the electrode plate in time only by diffusion, and the electrolytic solution held in the center of the retainer in the thickness direction is not used. The problem to be solved by the present invention is to provide a retainer for a sealed lead-acid battery that has sufficient liquid retention and can improve battery performance by satisfactorily supplying an electrolytic solution to the positive and negative electrode plates. Is to provide. It is also to manufacture such a retainer.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明に係る密閉形鉛蓄電池用リテーナは、ガラス繊
維を主成分とする不織布からなるものにおいて、両表面
が相対的に高密度の層であり、厚さ方向中央部が相対的
に低密度の層であることを特徴とする。上記密閉形鉛蓄
電池用リテーナの製造法は、ガラス繊維を主成分として
分散させた水を上方から下方への流れの中で抄造して乾
燥し不織布を得る第1工程と、さらに、前記不織布の上
側面に、ガラス繊維を主成分として分散させた水を上方
から下方への前記より速い流れの中で抄造する第2工程
を経ることを特徴とする。第2工程で分散させるガラス
繊維の量は、好ましくは第1工程より多くする。上記密
閉形鉛蓄電池用リテーナの別の製造法は、ガラス繊維を
主成分として分散させた水を上方から下方への流れの中
で抄造して乾燥し不織布を得る第1工程と、さらに、前
記不織布の上側面に、第1工程より繊維長および/また
は繊維径が小さいガラス繊維、またはシリカの微粉体を
分散させた水を上方から下方への流れの中で抄造する第
2工程を経ることを特徴とする。上記の製造法におい
て、第1工程における抄造厚さは、第2工程を経た後の
全体厚さの好ましくは80%以上とする。
The retainer for a sealed lead-acid battery according to the present invention for solving the above-mentioned problems is made of a non-woven fabric containing glass fiber as a main component, and both surfaces thereof have a relatively high density. It is a layer, and is characterized in that the central portion in the thickness direction is a layer having a relatively low density. The method for producing a retainer for a sealed lead-acid battery comprises: a first step of forming a nonwoven fabric by water-making a glass fiber dispersed as a main component in a flow from the upper side to a lower side, and further drying the nonwoven fabric; It is characterized in that the upper surface is subjected to a second step of paper-making the water in which glass fibers are dispersed as a main component in the faster flow from the upper side to the lower side. The amount of glass fibers dispersed in the second step is preferably larger than that in the first step. Another method of manufacturing the above retainer for a sealed lead-acid battery comprises a first step of forming water by dispersing glass fiber as a main component in a downward flow to obtain a nonwoven fabric, and further, Go through a second step of making water in which a fine glass fiber or silica fiber having a smaller fiber length and / or a smaller fiber diameter than the first step is dispersed on the upper surface of the non-woven fabric in a downward flow. Is characterized by. In the above manufacturing method, the papermaking thickness in the first step is preferably 80% or more of the total thickness after the second step.

【0005】また、本発明に係る密閉形鉛蓄電池は、正
極板と負極板の間にリテーナを介在させて組立てた極板
群を備えたものにおいて、前記リテーナが上記の本発明
に係る密閉形鉛蓄電池用リテーナであることを特徴とす
る。
Further, the sealed lead acid battery according to the present invention comprises an electrode group assembled by interposing a retainer between the positive electrode plate and the negative electrode plate, wherein the retainer is the sealed lead acid battery according to the present invention. It is a retainer for use.

【0006】[0006]

【作用】本発明に係る密閉形鉛蓄電池用リテーナは、リ
テーナの両表面が高密度の層になっているので吸液性が
よく、中央部の低密度の層に多量に保持されている電解
液を、両表面の吸液性のよい高密度の層を通じて、リテ
ーナの両側に密着して位置している正負極板に円滑に供
給することができる。リテーナに中央部に保持されてい
る電解液が、両表面に吸収されていく構造となっている
ので、高率放電時にも電解液の供給が容易となる。ま
た、リテーナ両表面の高密度の層は、極板と密着する面
積も広くなり、リテーナから極板への電解液の移動を一
層容易にしている。リテーナ中央部の低密度の層は、リ
テーナ全体にクッション性を付与し、リテーナ表面と極
板との密着性を高めている。本発明に係る抄造によるリ
テーナの製造法では、ガラス繊維を主成分として分散さ
せた水を上方から下方への流れの中で抄造するので、図
2に示すように、第1工程で下面に高密度の層10が必
然的にでき、その上に低密度の層11が形成される。そ
して、第2工程で、低密度の層11の上に上方から下方
への第1工程より速い流れの中で抄造することにより、
ガラス繊維間がつまった高密度の層10を形成すること
ができる。このとき、ガラス繊維の水への分散量を多く
して抄造をすれば、高密度の層の形成がより容易にな
る。また、第2の工程で、第1工程より繊維長および/
または繊維径が小さいガラス繊維、またはシリカの微粉
体を水に分散させて抄造をすれば、ガラス繊維同士の絡
まりが少なかったりガラス繊維間が狭くなって、また、
シリカの微粉体の存在で高密度の層の形成がより容易に
なる。
The retainer for a sealed lead-acid battery according to the present invention has a high-density layer on both surfaces of the retainer, so that the retainer has a good liquid-absorbing property and a large amount is retained in the low-density layer at the center. The liquid can be smoothly supplied to the positive and negative electrode plates located in close contact with both sides of the retainer through the high-density layers having good liquid absorption on both surfaces. Since the electrolytic solution held in the center of the retainer is absorbed on both surfaces, the electrolytic solution can be easily supplied even at high rate discharge. Further, the high-density layers on both surfaces of the retainer also have a large area of contact with the electrode plate, which makes it easier to move the electrolytic solution from the retainer to the electrode plate. The low-density layer in the central part of the retainer provides cushioning properties to the entire retainer and enhances the adhesion between the retainer surface and the electrode plate. In the method of manufacturing a retainer by papermaking according to the present invention, since water in which glass fibers are dispersed as the main component is made in a flow from the upper side to the lower side, as shown in FIG. Inevitably a dense layer 10 is formed on which a low density layer 11 is formed. Then, in the second step, paper is formed on the low-density layer 11 in a faster flow from the upper side to the lower side than in the first step,
It is possible to form the high-density layer 10 in which the glass fibers are closely packed. At this time, if the amount of glass fibers dispersed in water is increased to perform papermaking, it becomes easier to form a high-density layer. In the second step, the fiber length and / or
Alternatively, glass fibers having a small fiber diameter, or fine powder of silica dispersed in water for papermaking, there is less entanglement between glass fibers or the gap between glass fibers becomes narrower,
The presence of fine silica powder makes it easier to form a dense layer.

【0007】[0007]

【実施例】【Example】

実施例1 ガラス繊維を主成分として分散させた水を上方から下方
への流れの中で、常法により抄造して乾燥し不織布を得
た(第1工程)。下側には、0.2mmの厚さで密度0.
19g/cm3の層(高密度の層10)ができ、その上
に、1.6mmの厚さで密度0.13g/cm3の層(低密
度の層11)ができた。次に、上記の低密度の層11の
上へ、ガラス繊維を主成分として分散させた水を上方か
ら下方への流れの中で、さらに抄造を行なった(第2工
程)。第2工程では、水に分散させるガラス繊維の量を
第1工程より20%多くし、ガラス繊維を分散させた水
の上方から下方への流れを20%速くした。抄造時間は
第1工程より短くする。これにより、低密度の層11の
上に、0.2mmの厚さで密度0.19g/cm3の層(高
密度の層10)を形成した。このように製造した本発明
の実施例に係るリテーナは、平均密度が0.17g/cm
3である。
Example 1 Water in which glass fibers were dispersed as a main component was made into paper by a conventional method in a flow from the upper side to the lower side, and dried to obtain a nonwoven fabric (first step). The lower side has a thickness of 0.2 mm and a density of 0.
A layer of 19 g / cm 3 (high-density layer 10) was formed, and a layer having a thickness of 1.6 mm and a density of 0.13 g / cm 3 (low-density layer 11) was formed thereon. Next, papermaking was further performed on the above low-density layer 11 in a flow of water in which glass fibers were dispersed as a main component from above to below (second step). In the second step, the amount of glass fibers dispersed in water was increased by 20% compared to the first step, and the flow of the glass fiber dispersed water from above to below was increased by 20%. The papermaking time is shorter than in the first step. Thus, a layer having a thickness of 0.2 mm and a density of 0.19 g / cm 3 (high-density layer 10) was formed on the low-density layer 11. The retainer according to the embodiment of the present invention thus manufactured has an average density of 0.17 g / cm.
Is 3 .

【0008】上記のリテーナと全体が高密度のリテーナ
(従来例1)、全体が低密度のリテーナ(従来例2)、
繊維長が短いガラス繊維を全体に分散させたリテーナ
(従来例3)との特性の比較を表1に示す。表中、保液
率と圧縮率は、(数1)と(数2)に基づいてそれぞれ
計算したものである。また、正負極板への電解液移行率
は、50mm×50mmの寸法のリテーナを正極板と負極板
の間に20Kg/dm2の圧力で挾んだ状態で、当該リテー
ナに4.5mlの電解液を注入し、電解液がリテーナから
正極板および負極板に移行する割合を測定したものであ
る。第1工程で形成された高密度の層の側を負極板に当
接する構成で実験を行なった。保液率は大きいほど保液
量が多くなるので好ましく、圧縮率は小さいほどリテー
ナと極板との密着性がよくなるので好ましい。
The above retainer, a retainer having a high density as a whole (conventional example 1), a retainer having a low density as a whole (conventional example 2),
Table 1 shows a comparison of characteristics with a retainer (conventional example 3) in which glass fibers having a short fiber length are dispersed throughout. In the table, the liquid retention rate and the compression rate are calculated based on (Equation 1) and (Equation 2), respectively. The rate of transfer of the electrolyte to the positive and negative plates is such that a retainer having a size of 50 mm x 50 mm is sandwiched between the positive and negative plates at a pressure of 20 kg / dm 2 and 4.5 ml of the electrolytic solution is applied to the retainer. The ratio of the injected and transferred electrolytic solution from the retainer to the positive electrode plate and the negative electrode plate was measured. An experiment was conducted with a structure in which the side of the high-density layer formed in the first step was brought into contact with the negative electrode plate. The larger the liquid retention rate is, the more the liquid retention amount is, and the smaller the compression rate is, the better the adhesion between the retainer and the electrode plate is.

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【表1】 [Table 1]

【0012】実施例および従来例の各リテーナを用いた
2V−10Ahの密閉形鉛蓄電池について、電流を変えて
放電試験を行ない、放電持続時間を確認した結果を表2
に示す。各電池には、遊離の電解液が出るまで電解液を
注入したため、使用した電解液量は異なる(実施例1:
77ml,従来例1:75ml,従来例2:80ml,従来例
3:75ml)。表2から、実施例の密閉形鉛蓄電池は、
低率放電においても高率放電においても、良好な結果が
得られたことが理解できる。図1は、実施例の密閉形鉛
蓄電池の断面を示したものであり、正極板1と負極板2
の間に、実施例1のリテーナ3を配置した極板群を電槽
4に収納し、安全弁5を装着して密閉化をしている。リ
テーナ3は、厚さ方向中央が低密度の層11、両表面層
が高密度の層10である。
With respect to the sealed lead-acid battery of 2V-10Ah using each retainer of the example and the conventional example, the discharge test was conducted by changing the current, and the discharge duration was confirmed.
Shown in. The amount of the electrolytic solution used was different because each cell was injected with the electrolytic solution until the free electrolytic solution came out (Example 1:
77 ml, conventional example 1:75 ml, conventional example 2:80 ml, conventional example 3:75 ml). From Table 2, the sealed lead-acid battery of the example is
It can be understood that good results were obtained in both low rate discharge and high rate discharge. FIG. 1 shows a cross section of the sealed lead-acid battery of the embodiment, which is a positive electrode plate 1 and a negative electrode plate 2.
In the meantime, the electrode plate group in which the retainer 3 of Example 1 is arranged is housed in the battery case 4, and the safety valve 5 is attached to seal the electrode plate group. The retainer 3 has a low-density layer 11 at the center in the thickness direction and a high-density layer 10 at both surface layers.

【0013】[0013]

【表2】 [Table 2]

【0014】次に、上記実施例において、第2工程を経
た後のリテーナの全体厚さに対する第1工程における抄
造厚さの比率を変えて、正負極板への電解液移行率の変
化を確認した。実験は、50mm×50mm×2mmの寸法の
リテーナを正極板と負極板の間に20Kg/dm2の圧力で
挾んだ状態で、当該リテーナに4.5mlの電解液を注入
し、電解液がリテーナから正極板および負極板に移行す
る割合を測定したものである。第1工程で形成された高
密度の層の側を負極板に当接する構成とした。結果を図
3に示す。第1工程と第2工程で抄造を行なう場合に、
第2工程を経た後のリテーナ全体厚さに対する第1工程
における抄造厚さの比率を80%以上にすることによ
り、正極板への電解液移行率が最も高くなることが分か
る。但し、第1工程の抄造では、第2工程で高密度の層
を形成する厚さ分を残しておかなければならない。尚、
第1工程で形成された高密度の層の側を正極板に当接し
た構成で同様の実験を行なったときは、図4に示すよう
に、第1工程における抄造厚さの比率にあまり影響を受
けない。本発明に係るリテーナは、表裏いずれの面を正
極板に当接する構成としても、正極板に電解液を良好に
供給できることを理解できる。
Next, in the above embodiment, the ratio of the thickness of the papermaking in the first step to the total thickness of the retainer after the second step was changed to confirm the change of the electrolytic solution transfer rate to the positive and negative electrode plates. did. In the experiment, a retainer measuring 50 mm x 50 mm x 2 mm was sandwiched between the positive electrode plate and the negative electrode plate at a pressure of 20 kg / dm 2 , and 4.5 ml of electrolytic solution was injected into the retainer, and the electrolytic solution was removed from the retainer. The ratio of transfer to the positive electrode plate and the negative electrode plate was measured. The side of the high-density layer formed in the first step was brought into contact with the negative electrode plate. The results are shown in Fig. 3. When performing papermaking in the first step and the second step,
It can be seen that when the ratio of the papermaking thickness in the first step to the total thickness of the retainer after the second step is 80% or more, the electrolytic solution transfer rate to the positive electrode plate is highest. However, in the papermaking in the first step, the thickness for forming the high-density layer in the second step must be left. still,
When a similar experiment was performed with the structure in which the side of the high-density layer formed in the first step was in contact with the positive electrode plate, as shown in FIG. 4, the ratio of the papermaking thickness in the first step was not significantly affected. Do not receive It can be understood that the retainer according to the present invention can satisfactorily supply the electrolytic solution to the positive electrode plate even if either surface of the retainer is in contact with the positive electrode plate.

【0015】上記の実施例では、リテーナ製造の第2工
程で水に分散させるガラス繊維の量を第1工程より多く
し、ガラス繊維を分散させた水の上方から下方への流れ
を第1工程より速くして、低密度の層の上に高密度の層
を形成している。この第2工程で、ガラス繊維を分散さ
せた水の上方から下方への流れを第1工程より速くする
だけでも、低密度の層の上に高密度の層を形成すること
が可能である。また、第2工程で、第1工程より繊維長
および/または繊維径が小さいガラス繊維、またはシリ
カの微粉体を分散させた水を上方から下方への流れの中
で抄造しても、実施例1と同様の特性のリテーナを製造
することができた。繊維長および/または繊維径が小さ
いガラス繊維、またはシリカの微粉体はかさばらないの
で、高密度の層となる。
In the above embodiment, the amount of glass fibers dispersed in water in the second step of manufacturing the retainer is set to be larger than that in the first step, and the flow of the water in which the glass fibers are dispersed downward from the first step Faster, forming higher density layers on top of lower density layers. In this second step, it is possible to form a high-density layer on the low-density layer only by making the flow of the glass fiber-dispersed water from above to below faster than in the first step. Further, in the second step, even if the water in which the fine powder of glass fiber or silica having a smaller fiber length and / or fiber diameter than in the first step is dispersed is made in the flow from the upper side to the lower side, It was possible to manufacture a retainer having the same characteristics as No. 1. Glass fibers having a small fiber length and / or a small fiber diameter, or fine particles of silica are not bulky, and thus form a high-density layer.

【0016】[0016]

【発明の効果】上述のように、本発明に係るリテーナを
用いることにより、リテーナの厚さ方向中央部に多量に
保持された電解液をリテーナ表面層に円滑に移行させる
ことができる。そして、リテーナ表面層は、極板面との
密着性がよいため、リテーナの厚さ方向中央部から表面
層まで移行してきた電解液を極板に円滑に供給して、密
閉形鉛蓄電池の放電性能を低率放電においても高率放電
においても高めることができる。また、本発明に係る方
法によれば、両表面が高密度の層であり厚さ方向中央部
が低密度の層である密閉形鉛蓄電池用リテーナを容易に
製造することができる。
As described above, by using the retainer according to the present invention, it is possible to smoothly transfer a large amount of the electrolytic solution held in the central portion of the retainer in the thickness direction to the retainer surface layer. Since the retainer surface layer has good adhesion to the electrode plate surface, the electrolytic solution that has migrated from the center portion in the thickness direction of the retainer to the surface layer is smoothly supplied to the electrode plate to discharge the sealed lead acid battery. Performance can be enhanced in both low rate and high rate discharges. Further, according to the method of the present invention, it is possible to easily manufacture a retainer for a sealed lead-acid battery, both surfaces of which are high-density layers and whose central portion in the thickness direction is a low-density layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例の密閉形鉛蓄電池の断面説
明図である。
FIG. 1 is a cross-sectional explanatory view of a sealed lead-acid battery according to an embodiment of the present invention.

【図2】本発明に係る実施例において、リテーナを製造
する工程を示す断面説明図である。
FIG. 2 is a cross-sectional explanatory view showing a process of manufacturing a retainer in an example according to the present invention.

【図3】第2工程を経た後のリテーナの全体厚さに対す
る第1工程における抄造厚さの比率と正負極板への電解
液移行率の関係を示す曲線図である(第1工程で形成さ
れた高密度の層の側を負極板に当接)。
FIG. 3 is a curve diagram showing the relationship between the ratio of the papermaking thickness in the first step to the total thickness of the retainer after the second step and the electrolytic solution transfer rate to the positive and negative electrode plates (formed in the first step). The side of the high-density layer that has been abutted against the negative electrode plate).

【図4】第2工程を経た後のリテーナの全体厚さに対す
る第1工程における抄造厚さの比率と正負極板への電解
液移行率の関係を示す曲線図である(第1工程で形成さ
れた高密度の層の側を正極板に当接)。
FIG. 4 is a curve diagram showing the relationship between the ratio of the papermaking thickness in the first step to the total thickness of the retainer after the second step and the electrolytic solution transfer rate to the positive and negative electrode plates (formed in the first step). The side of the high-density layer was abutted on the positive electrode plate).

【符号の説明】[Explanation of symbols]

1は正極板 2は負極板 3はリテーナ 4は電槽 5は安全弁 10は高密度の層 11は低密度の層 1 is the positive plate 2 is the negative plate 3 is the retainer 4 is a battery case 5 is a safety valve 10 is a high-density layer 11 is a low-density layer

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス繊維を主成分として分散させた水を
上方から下方への流れの中で抄造して乾燥し不織布を得
る第1工程と、 さらに、前記不織布の上側面に、ガラス繊維を主成分と
して分散させた水を上方から下方への前記より速い流れ
の中で抄造する第2工程を経ることを特徴とする密閉形
鉛蓄電池用リテーナの製造法。
1. A first step of forming a non-woven fabric by paper-making in a flow from the upper part to a lower part of water in which glass fiber is dispersed as a main component, and further, a glass fiber is provided on an upper surface of the non-woven fabric. A method for manufacturing a retainer for a sealed lead-acid battery, which comprises a second step of making water dispersed as a main component in the faster flow from above to below.
【請求項2】第2工程で分散させるガラス繊維の量を第
1工程より多くする請求項1記載の密閉形鉛蓄電池用リ
テーナの製造法。
2. The method for manufacturing a retainer for a sealed lead-acid battery according to claim 1, wherein the amount of glass fiber dispersed in the second step is larger than that in the first step.
【請求項3】ガラス繊維を主成分として分散させた水を
上方から下方への流れの中で抄造して乾燥し不織布を得
る第1工程と、 さらに、前記不織布の上側面に、第1工程より繊維長お
よび/または繊維径が小さいガラス繊維、またはシリカ
の微粉体を分散させた水を上方から下方への流れの中で
抄造する第2工程を経ることを特徴とする密閉形鉛蓄電
池用リテーナの製造法。
3. A first step of forming a non-woven fabric by paper-making in a flow from the upper side to the lower side of water in which glass fibers are dispersed as a main component, and drying, and a first step on the upper surface of the non-woven fabric. For a sealed lead-acid battery, characterized in that it undergoes a second step of papermaking in a flow from the upper side to the lower side of water in which fine particles of glass fiber or silica having a smaller fiber length and / or diameter are dispersed. Retainer manufacturing method.
【請求項4】第1工程における抄造厚さを、第2工程を
経た後の全体厚さの80%以上とする請求項1〜3のい
ずれかに記載の密閉形鉛蓄電池用リテーナの製造法。
4. The method for manufacturing a retainer for a sealed lead acid battery according to claim 1, wherein the papermaking thickness in the first step is 80% or more of the total thickness after the second step. .
JP23696194A 1994-09-30 1994-09-30 Manufacturing method of retainer for sealed lead-acid battery Expired - Fee Related JP3448982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23696194A JP3448982B2 (en) 1994-09-30 1994-09-30 Manufacturing method of retainer for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23696194A JP3448982B2 (en) 1994-09-30 1994-09-30 Manufacturing method of retainer for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH08102311A JPH08102311A (en) 1996-04-16
JP3448982B2 true JP3448982B2 (en) 2003-09-22

Family

ID=17008333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23696194A Expired - Fee Related JP3448982B2 (en) 1994-09-30 1994-09-30 Manufacturing method of retainer for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3448982B2 (en)

Also Published As

Publication number Publication date
JPH08102311A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US7981818B2 (en) Battery separator structures
EP3314680B1 (en) Improved absorbent glass mat separators, vrla batteries, and related methods of manufacture and use
US5468572A (en) Pre-compressed glass fiber separators for batteries
EP0867044B1 (en) Filled glass fiber separators for batteries and method for making such separators
CN107431173B (en) Battery separator comprising inorganic particles
JPH05508049A (en) Glass fiber separator and its manufacturing method
EP2104161A1 (en) Separator for alkaline battery, method for producing the same, and battery
US3159507A (en) Separator for galvanic cells
JP3448982B2 (en) Manufacturing method of retainer for sealed lead-acid battery
JP2002514344A (en) Recombination battery separator
JPS60170159A (en) Seald type alkaline storage cell
US6528205B1 (en) Non-woven fabric separator for sealed electrolytic cells
JP3002830B2 (en) Battery separator and manufacturing method thereof
JPS60100363A (en) Separator for storage battery
JP3511858B2 (en) Lead storage battery
JPS5987755A (en) Paste-type lead storage battery
JPH07220751A (en) Sealed lead acid battery and manufacture thereof
JPH03147255A (en) Lead-acid battery
JPS6028167A (en) Manufacture of non-sintered type electrode for battery
JPH02168556A (en) Sealed type lead storage battery
JPH0465496B2 (en)
JPS5887757A (en) Paste type lead-acid battery
JPH0432158A (en) Closed lead acid battery
JPS59196565A (en) Manufacture of nonsintered electrode
JPH0654681B2 (en) Sealed lead acid battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees