JP4899958B2 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
JP4899958B2
JP4899958B2 JP2007070532A JP2007070532A JP4899958B2 JP 4899958 B2 JP4899958 B2 JP 4899958B2 JP 2007070532 A JP2007070532 A JP 2007070532A JP 2007070532 A JP2007070532 A JP 2007070532A JP 4899958 B2 JP4899958 B2 JP 4899958B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
source gas
film forming
opposing wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007070532A
Other languages
Japanese (ja)
Other versions
JP2008235438A (en
Inventor
博洋 床井
大嶽  敦
一農 田子
友義 三島
和俊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007070532A priority Critical patent/JP4899958B2/en
Publication of JP2008235438A publication Critical patent/JP2008235438A/en
Application granted granted Critical
Publication of JP4899958B2 publication Critical patent/JP4899958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は半導体製造などに適用される成膜方法及び成膜装置に関し、特に膜厚や組成比の均一性に優れた半導体膜を作成するための成膜方法及びその成膜装置に関するものである。   The present invention relates to a film forming method and a film forming apparatus applied to semiconductor manufacturing and the like, and more particularly to a film forming method and a film forming apparatus for forming a semiconductor film having excellent uniformity in film thickness and composition ratio. .

InPやGaAsなどの化合物半導体は、高周波デバイスや発光素子などの材料として用いられる。これら化合物半導体は、基板上に均一厚さで成膜する必要があり、従来その膜厚均一化技術が盛んに開発されてきた。ここで、半導体薄膜の量産装置構造として多く見られる横型装置は、原料ガスが基板に対しほぼ水平方向から反応室内に導入され、化学反応を経て、基板上に成膜する。以下に従来の膜厚均一化技術を示す。
(1)基板対向側を冷却し原料ガス温度を制御する方法(特許文献1)においては、基板上の原料ガス温度を均一もしくは10℃程度の勾配を設けることで均一化を図る。(2)基板対向側を冷却し上流部での過度な原料消費を抑制する方法(特許文献2)においては、基板面‐基板対向面で約400℃の温度差を設け、原料ガスの熱拡散現象を利用する。
(3)基板上流部に載置したプレデポジションボードにより、急激な成膜位置をプレデポジションボード上にシフトし基板上の成長速度を安定化させる方法。
Compound semiconductors such as InP and GaAs are used as materials for high-frequency devices and light-emitting elements. These compound semiconductors need to be formed on a substrate with a uniform thickness, and conventionally, a technology for uniformizing the film thickness has been actively developed. Here, in a horizontal apparatus often seen as a structure for mass production of semiconductor thin films, a source gas is introduced into a reaction chamber from a substantially horizontal direction with respect to a substrate, and a film is formed on the substrate through a chemical reaction. The conventional film thickness uniformization technique is shown below.
(1) In the method of controlling the source gas temperature by cooling the substrate facing side (Patent Document 1), the source gas temperature on the substrate is made uniform by providing a uniform or approximately 10 ° C. gradient. (2) In the method of cooling the substrate facing side and suppressing excessive material consumption in the upstream part (Patent Document 2), a temperature difference of about 400 ° C. is provided between the substrate surface and the substrate facing surface, and the source gas is thermally diffused. Use the phenomenon.
(3) A method of stabilizing the growth rate on the substrate by shifting the rapid film formation position onto the predeposition board by the predeposition board placed on the upstream side of the substrate.

一方、現在はバンドギャップが広く、熱伝導率・電子の飽和速度が大きいなど多くの物性上の優れた特性を有するGaNの生産量が増加しており、その量産化技術が盛んに開発されている。ここでも膜厚の均一化が重要な課題となるが、上記従来技術(1)(2)ではGaNの高い基板面内膜厚均一性を実現することが困難となっている。
このためGaN膜に対しては、上記従来技術(3)や、原料ガス流速の高速化などが行なわれている。しかし、これらの手法は、基板外への成膜量の増加や装置外への原料ガス流出量の増加により原料利用効率の悪化を招くものである。
On the other hand, the production volume of GaN, which has many excellent physical properties such as wide band gap, large thermal conductivity and high electron saturation rate, is increasing, and its mass production technology has been actively developed. Yes. Even in this case, the uniformity of the film thickness is an important issue, but it is difficult to achieve a high in-plane film thickness uniformity of GaN in the conventional techniques (1) and (2).
For this reason, the prior art (3), speeding up of the raw material gas flow rate, and the like are performed on the GaN film. However, these methods cause deterioration of the raw material utilization efficiency due to an increase in the amount of film formation outside the substrate and an increase in the amount of raw material gas flowing out of the apparatus.

特許文献1においては、複数の冷却材流路を反応炉の外周に設け、冷却材の温度又は流量を流路毎に代えて、膜厚、組成、不純物濃度等を均一化することが開示されている。この技術における基本的な考えは、原料ガス温度を基板上において略均一にすることである。もっとも、特許文献1においては、原料ガス温度を均一にしなくともよいことも記載されている。   In Patent Document 1, it is disclosed that a plurality of coolant channels are provided on the outer periphery of the reaction furnace, and the temperature or flow rate of the coolant is changed for each channel to uniform the film thickness, composition, impurity concentration, and the like. ing. The basic idea in this technique is to make the source gas temperature substantially uniform on the substrate. However, Patent Document 1 also describes that the source gas temperature need not be uniform.

特許文献2においては、反応容器の外部に取り付けられた冷却ジャケットと反応容器外壁又は対向板との間に熱伝導体を設置する技術を開示している。具体的には、熱伝導体の厚さを変えて、反応容器の温度を部分的に調節することが記載されている。   In patent document 2, the technique which installs a heat conductor between the cooling jacket attached to the exterior of reaction container, and a reaction container outer wall or an opposing board is disclosed. Specifically, it is described that the temperature of the reaction vessel is partially adjusted by changing the thickness of the heat conductor.

特許文献3においては、被処理物の複数の部分を互いに異なる温度に加熱する複数の加熱機構を設けている。加熱装置によって反応炉内の基板温度を正確に制御することは、反応容器内での輻射が伴って、容易ではない。   In Patent Document 3, a plurality of heating mechanisms for heating a plurality of portions of the workpiece to different temperatures are provided. It is not easy to accurately control the substrate temperature in the reaction furnace with the heating device, accompanied by radiation in the reaction vessel.

特許文献4においては、反応容器のサセプタ上流側のフローチャンネルの仮面に温度制御可能な冷却手段を設けることが開示されている。この技術の狙いは、フローチャンネル天井への薄膜の堆積を防止することにある。   In Patent Document 4, it is disclosed that a cooling unit capable of controlling the temperature is provided on the mask of the flow channel on the upstream side of the susceptor of the reaction vessel. The aim of this technique is to prevent the deposition of thin films on the flow channel ceiling.

特許文献5においては、反応容器の上流側のフローチャンネルを加熱する第1の加熱手段と、基板を加熱する第2の加熱手段を設けている。第1の加熱部の温度は第2の加熱手段の温度よりも低く設定する。この技術におけるポイントは、反応種が基板表面に到達する前に、適切な気相温度に設定しておくというものである。   In Patent Document 5, a first heating means for heating the flow channel on the upstream side of the reaction vessel and a second heating means for heating the substrate are provided. The temperature of the first heating unit is set lower than the temperature of the second heating means. The point in this technique is that an appropriate gas phase temperature is set before the reactive species reach the substrate surface.

特開平4−132213号公報JP-A-4-132213 特開2004‐281836号公報JP 2004-281836 A 特開2001−23975号公報JP 2001-23975 A 特開2000‐100726号公報JP 2000-100726 A 特開平11−74202号公報JP-A-11-74202

そこで、我々はGaNの膜厚均一化を困難にしている原因の検討を重ね、その成膜反応と基板上の温度が原因であることを見出した。GaNの成膜反応は「原料ガス→中間体→成膜」の経路をとる。これは、InPやGaAsにも同様のことが言える。ただし、InPやGaAsの成膜条件は中間体の生成開始温度と成膜開始温度、基板上温度がほぼ等しい。このため、InPやGaAsでは原料ガスが徐々に中間体に変化し、成膜していく。処理温度と成膜量が正の相関を持つため、従来技術(1)(2)が有効に働く。これに対し、GaNの成膜条件は、基板上温度(1000℃〜)が中間体生成開始温度(約450℃)、成膜開始温度(約450℃)よりはるかに高い。このため、原料ガスが基板に達する前に、ほとんど中間体まで変化してしまい成膜均一化制御を困難にする。   Therefore, we repeatedly investigated the cause of the difficulty in making the GaN film thickness uniform, and found that the film formation reaction and the temperature on the substrate were the cause. The film formation reaction of GaN takes the path of “source gas → intermediate → film formation”. The same can be said for InP and GaAs. However, the film formation conditions for InP and GaAs are substantially the same as the intermediate generation start temperature, the film formation start temperature, and the substrate temperature. For this reason, in InP and GaAs, the source gas is gradually changed into an intermediate and film formation is performed. Since the processing temperature and the film formation amount have a positive correlation, the conventional techniques (1) and (2) work effectively. On the other hand, as for the film formation conditions of GaN, the temperature on the substrate (from 1000 ° C.) is much higher than the intermediate formation start temperature (about 450 ° C.) and the film formation start temperature (about 450 ° C.). For this reason, before the source gas reaches the substrate, it almost changes to the intermediate, making it difficult to control film formation uniformity.

本発明の目的は、基板上流部での中間体生成量を抑制し、かつ、基板上での中間体濃度を均一化することで、原料利用効率の大幅な低下を招かずに、基板面内の膜厚均一性の高い成膜が行なえる半導体製造装置を提供することにある。   The object of the present invention is to suppress the amount of intermediates generated in the upstream part of the substrate and to make the intermediate concentration uniform on the substrate, so as not to cause a significant decrease in raw material utilization efficiency. An object of the present invention is to provide a semiconductor manufacturing apparatus capable of forming a film with high film thickness uniformity.

上記課題を解決するために、本発明では、原料ガスから化学反応により生成する気相中間体の基板上濃度を制御することを特徴とする成膜方法、および基板に対向する壁の温度制御によりこれを実現する成膜装置を見出した。   In order to solve the above problems, in the present invention, a film forming method characterized in that the concentration on a substrate of a gas phase intermediate produced from a raw material gas by a chemical reaction is controlled, and a temperature control of a wall facing the substrate. A film forming apparatus that realizes this has been found.

即ち、本発明はCVD(Chemical Vapor Deposition 化学気相成長)装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上の濃度を、前記対向壁の温度を前記基板の温度とは独立に冷却して前記CVD装置の原料ガス上流側の温度を前記原料ガスの中間体の生成温度よりも低く保ち、前記上流側から下流側に向かって前記対向壁の温度が順次高くなるように制御する成膜方法を提供するものである。   That is, the present invention is a method for forming a thin film on a substrate by introducing a raw material gas into a CVD (Chemical Vapor Deposition Chemical Vapor Deposition) apparatus, which comprises a gas phase intermediate produced from the raw material gas by a chemical reaction. The temperature on the substrate is cooled independently of the temperature of the substrate to keep the temperature on the upstream side of the source gas of the CVD apparatus lower than the generation temperature of the intermediate of the source gas. The present invention provides a film forming method for controlling the temperature of the opposing wall to increase sequentially from the side toward the downstream side.

また、本発明は、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、
前記反応室内に前記原料ガスを導入するガス導入口と、
前記反応室から前記原料ガスを排出するガス排出口と、
前記基板を加熱する手段と、
前記対向壁の裏側に設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段と、
前記反応室の前記基板に交叉し、又は略垂直な側壁に設置され、前記基板周辺における前記中間体の濃度を測定する中間体濃度測定手段と、
前記CVD装置の原料ガス上流側の温度を前記原料ガスの中間体の生成温度よりも低く保ち、前記上流側から下流側に向かって前記対向壁の温度が順次高くなるように制御する制御機構を有する成膜装置を提供するものである。
Further, the present invention is a film forming apparatus for forming a thin film on a substrate by CVD using a source gas, a reaction chamber having a wall (hereinafter referred to as an opposing wall) facing a susceptor on which the substrate is placed,
A gas inlet for introducing the source gas into the reaction chamber;
A gas outlet for discharging the source gas from the reaction chamber;
Means for heating the substrate;
Cooling means installed on the back side of the opposing wall, and controlling the temperature of the opposing wall independently of the temperature of the substrate;
An intermediate concentration measuring means for measuring the concentration of the intermediate in the periphery of the substrate, crossed over the substrate of the reaction chamber or installed on a substantially vertical side wall;
A control mechanism for controlling the temperature on the upstream side of the source gas of the CVD apparatus to be lower than the generation temperature of the intermediate of the source gas and controlling the temperature of the opposing wall in order from the upstream side toward the downstream side. A film forming apparatus is provided.

本発明によれば、CVDにより半導体薄膜などの薄膜を成膜する方法において、基板面内で均一な成膜ができる成膜方法及び成膜装置が提供でき、その結果、基板面内均一性の高い薄膜の作成が実現できる。   ADVANTAGE OF THE INVENTION According to this invention, in the method of forming thin films, such as a semiconductor thin film, by CVD, the film-forming method and film-forming apparatus which can form a uniform film in a substrate surface can be provided, As a result, the in-plane uniformity of a substrate can be provided. High thin film can be created.

本発明は、前記特許文献1〜5等に記載される種々の原料ガスに適用されるが、特にGaN,InGaN,AlGaN,GaAs等のGa系薄膜の形成に適している。   The present invention is applied to various source gases described in Patent Documents 1 to 5 and the like, and is particularly suitable for forming Ga-based thin films such as GaN, InGaN, AlGaN, and GaAs.

本発明のある観点では、CVD装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上濃度を制御する成膜方法を提供する。また、本発明の他の観点では、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、前記反応室内に前記原料ガスを導入するガス導入口と、前記反応室から前記原料ガスを排出するガス排出口と、前記基板を加熱する手段と、前記対向壁の前記反応室に対面して設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段と、前記反応室の前記基板に交叉し又は略垂直な側壁に設置され、前記基板周辺における前記中間体の濃度を測定する中間体濃度測定手段を有する成膜装置を提供する。   One aspect of the present invention is a method of introducing a raw material gas into a CVD apparatus to form a thin film on a substrate, wherein a concentration of a gas phase intermediate produced from the raw material gas by a chemical reaction is controlled. A membrane method is provided. In another aspect of the present invention, a film forming apparatus that forms a thin film on a substrate by CVD using a source gas and has a wall (hereinafter referred to as an opposing wall) facing a susceptor on which the substrate is placed. A chamber, a gas inlet for introducing the source gas into the reaction chamber, a gas outlet for discharging the source gas from the reaction chamber, means for heating the substrate, and the reaction chamber on the opposing wall facing the reaction chamber And a cooling means for controlling the temperature of the opposing wall independently of the temperature of the substrate, and installed on a side wall that intersects or is substantially perpendicular to the substrate of the reaction chamber, A film forming apparatus having an intermediate concentration measuring means for measuring the concentration of a body is provided.

前記冷却は冷却手段によりなされ、前記原料ガスの流れ方向における前記中間体の基板上の濃度分布を制御する。前記中間体の基板上の濃度分布が、前記原料ガスの流れ方向で均一になるように制御することが望ましい。   The cooling is performed by a cooling means to control the concentration distribution on the substrate of the intermediate in the flow direction of the source gas. It is desirable to control the concentration distribution of the intermediate on the substrate so as to be uniform in the flow direction of the source gas.

前記対向壁温度を、前記原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が単調に増加するように制御することが好ましい。ここで単調にとは直線的又は段階的にという意味である。中間体の生成温度より十分高いとは、中間体が更に反応して皮膜が形成される温度である。   The facing wall temperature is sufficiently lower than the production temperature of the gas phase intermediate from the source gas inlet to the end position of the substrate closest to the source gas inlet (hereinafter referred to as the substrate upstream end), and the source gas It is preferable to control the edge position of the substrate closest to the discharge port (hereinafter referred to as the downstream end of the substrate) to be sufficiently higher than the generation temperature of the intermediate and to monotonously increase the temperature distribution to the downstream end of the substrate. Here, monotonous means linear or stepwise. The temperature sufficiently higher than the production temperature of the intermediate is a temperature at which the intermediate further reacts to form a film.

前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物である。この中間体が加熱下で更に分解して薄膜、例えばGaNとなる。 Ga (CH 3 ) 3 and NH 3 are used as the source gas, and the intermediate in forming GaN as the thin film is GaNH 2 (CH 3 ) 2 or a decomposition product thereof. This intermediate is further decomposed under heating to a thin film such as GaN.

前記基板の温度を1000〜1200℃に保ち、前記対向壁面温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することが好ましい。   The temperature of the substrate is kept at 1000 to 1200 ° C., and the facing wall temperature is monotonically increased to 230 ° C. or less from the source gas introduction position to the substrate upstream end, to the substrate downstream end, and at the substrate downstream end. It is preferable to set to 520 ° C. or higher.

前記冷却手段に冷媒を供給し、前記冷媒が、水、シリコーンオイル、アルキルアルコール、液化窒素及びそれらの組合せのいずれかであるのが望ましい。   It is desirable that a refrigerant is supplied to the cooling means, and the refrigerant is any one of water, silicone oil, alkyl alcohol, liquefied nitrogen, and combinations thereof.

本発明の更に他の観点では、前記対向壁温度を、前期原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が直線的に増加するように制御することが望ましい。前記中間体濃度測定手段が、赤外分光光度計、質量分析装置、あるいはこれらの組合せにより構成される。   In still another aspect of the present invention, the opposing wall temperature is changed from the source gas inlet to the end position of the substrate closest to the source gas inlet (hereinafter referred to as the substrate upstream end). It is sufficiently lower than the generation temperature and is sufficiently higher than the generation temperature of the intermediate at the end position of the substrate closest to the source gas discharge port (hereinafter referred to as the substrate downstream end), and the temperature distribution to the substrate downstream end is linear. It is desirable to control so as to increase. The intermediate concentration measuring means is constituted by an infrared spectrophotometer, a mass spectrometer, or a combination thereof.

前記冷却手段により、前記原料ガスの流れ方向における前記中間体の基板上濃度分布を制御することができる。前記中間体の基板上濃度分布が、前記原料ガスの流れ方向で均一になるように制御する。   The cooling means can control the concentration distribution on the substrate of the intermediate in the flow direction of the source gas. The concentration distribution on the substrate of the intermediate is controlled to be uniform in the flow direction of the source gas.

本発明は又、原料ガスを用い、CVDにより基板上に薄膜を形成する成膜装置であって、基板を載置するサセプタに対向した壁(以下、対向壁)を有する反応室と、
前記反応室内に前記原料ガスを導入する手段と、前記反応室から前記原料ガスを排出する手段と、前記基板を加熱する手段と、前記対向壁の裏側に設置され、前記対向壁の温度を、前記基板の温度とは独立に前記原料ガスが中間体を生成する温度に基づき制御する冷却手段を有する成膜装置を提供する。
The present invention is also a film forming apparatus for forming a thin film on a substrate by CVD using a source gas, and a reaction chamber having a wall (hereinafter referred to as an opposing wall) facing a susceptor on which the substrate is placed;
A means for introducing the source gas into the reaction chamber; a means for discharging the source gas from the reaction chamber; a means for heating the substrate; and a back side of the opposing wall. There is provided a film forming apparatus having a cooling means for controlling based on a temperature at which the source gas generates an intermediate independently of a temperature of the substrate.

前記冷却手段を、前記対向壁に隣接又は空隙を介して配置され、ガス流れ方向と交叉し又は垂直に複数個に区分された熱伝導体又は断熱材からなる温度調節セルと、前記冷却手段間の空隙と、前記冷却手段に隣接又は空隙を介して配置された熱伝導体からなる冷却手段と、前記冷却部内に設けられた液冷部により構成することができる。   The cooling means is arranged between the cooling means and a temperature control cell made of a heat conductor or a heat insulating material arranged adjacent to the opposing wall or via a gap and intersecting or perpendicularly dividing the gas flow direction. , A cooling means made of a heat conductor disposed adjacent to or through the cooling means, and a liquid cooling part provided in the cooling part.

また、前記温度調節セルを、前記対向壁から前記冷却手段に向かう方向に複数個に分割することができる。更に、前記温度調節セルの材質を変えることによって、前記対向壁面温度を制御することが好ましい。   Further, the temperature control cell can be divided into a plurality in the direction from the facing wall toward the cooling means. Furthermore, it is preferable to control the opposing wall surface temperature by changing the material of the temperature control cell.

前記対向壁温度を、前期原料ガス導入口から前記原料ガス導入口に最も近い前記基板の端部位置(以下、基板上流端)までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガス排出口に最も近い前記基板の端部位置(以下、基板下流端)では前記中間体の生成温度より十分高く、前記基板下流端までの温度分布が単調に増加するように制御することが望ましい。   The counter wall temperature is sufficiently lower than the generation temperature of the vapor phase intermediate from the source gas inlet to the end position of the substrate closest to the source gas inlet (hereinafter referred to as the substrate upstream end). Control is performed so that the temperature at the end position of the substrate closest to the source gas discharge port from the end (hereinafter referred to as the substrate downstream end) is sufficiently higher than the generation temperature of the intermediate and the temperature distribution to the substrate downstream end increases monotonously. It is desirable to do.

前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物である。 Ga (CH 3 ) 3 and NH 3 are used as the source gas, and the intermediate in forming GaN as the thin film is GaNH 2 (CH 3 ) 2 or a decomposition product thereof.

前記基板の温度を1000〜1200℃に保ち、前記対向壁面温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することが好ましい。   The temperature of the substrate is kept at 1000 to 1200 ° C., and the facing wall temperature is monotonically increased from the source gas introduction position to the substrate upstream end to 230 ° C. or less, and from the substrate upstream end to the substrate downstream end, It is preferable to set the temperature at 520 ° C. or more at the downstream end of the substrate.

更に、前記冷却手段を、前記原料ガスの流れ方向と交叉し又はほぼ垂直に複数個に区分された熱伝導体からなる冷却セルと、前記冷却セル間の空隙と、前記冷却セル内に個別に設けられた液冷部により構成することができる。   Furthermore, the cooling means is individually provided in a cooling cell made of a heat conductor that is divided into a plurality of parts intersecting or substantially perpendicular to the flow direction of the source gas, a gap between the cooling cells, and the cooling cell. It can be comprised by the liquid cooling part provided.

前記対向壁は前記反応室内の上流から下流まで一体構造で形成するに限らず、前記冷却セル間の空隙位置に合わせて分割し、前記空隙を通し前記反応室内にパージガスを流すことができる。前記液冷部内に流す冷媒の流量または温度により対向面温度を制御することができる。基板に対応する位置における冷却流路の分割数は、2以上、特に3以上であることが好ましく、かつ6以下特に4以下であることが好ましい。   The opposing wall is not limited to being formed in an integral structure from upstream to downstream in the reaction chamber, but can be divided in accordance with the position of the gap between the cooling cells, and purge gas can flow through the gap into the reaction chamber. The facing surface temperature can be controlled by the flow rate or temperature of the refrigerant flowing in the liquid cooling section. The number of divisions of the cooling flow path at the position corresponding to the substrate is preferably 2 or more, particularly 3 or more, and preferably 6 or less, particularly 4 or less.

前記対向壁内に温度検出手段を設け、前記対向壁温度が常に指定温度になるように前記温度制御手段をリアルタイムに制御することが好ましい。前記基板、前記サセプタ、前記対向壁、前記反応室、前記加熱手段、前記冷却手段が軸対称形状で構成され、前記基板と前記サセプタが公転するように構成することができる。また、前記基板が自転するように構成することができる。   It is preferable that temperature detecting means is provided in the facing wall, and the temperature control means is controlled in real time so that the facing wall temperature always becomes a specified temperature. The substrate, the susceptor, the opposing wall, the reaction chamber, the heating unit, and the cooling unit may be configured in an axisymmetric shape so that the substrate and the susceptor revolve. Further, the substrate can be configured to rotate.

本発明により、膜厚の変動が、最大厚さと最小厚さとの間で±1%以下であるIII‐V族化合物半導体装置が提供される。   According to the present invention, there is provided a III-V group compound semiconductor device whose film thickness variation is ± 1% or less between the maximum thickness and the minimum thickness.

本発明の更に他の観点では、前記原料ガスとしてGa(CHとNHを用い、前記半導体膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物であり、前記基板の温度を1000〜1200℃に保ち、前記対向面温度を、前記原料ガスの導入位置から前記基板上流端までは220℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定する成膜方法を提供する。 In still another aspect of the present invention, Ga (CH 3 ) 3 and NH 3 are used as the source gas, and the intermediate when forming GaN as the semiconductor film is GaNH 2 (CH 3 ) 2 or this It is a decomposition product, the temperature of the substrate is maintained at 1000 to 1200 ° C., the facing surface temperature is 220 ° C. or less from the introduction position of the source gas to the upstream end of the substrate, and from the upstream end of the substrate to the downstream end of the substrate The film forming method increases monotonically up to 520 ° C. at the downstream end of the substrate.

以下、本発明の成膜方法及び成膜装置を、半導体製造装置を例にとって、図面に従って詳細に説明する。   Hereinafter, a film forming method and a film forming apparatus of the present invention will be described in detail with reference to the drawings, taking a semiconductor manufacturing apparatus as an example.

図1は実施例1による半導体製造装置の構成を示す縦断面図であり、(a)は本発明の第1の実施の形による半導体製造装置の縦断面図であり、(b)は(a)のA‐A’線に沿った横断面図を示す図である。また、(c)は(a)のB‐B’線に沿った横断面図を示す図である。   FIG. 1 is a longitudinal sectional view showing a configuration of a semiconductor manufacturing apparatus according to a first embodiment, (a) is a longitudinal sectional view of a semiconductor manufacturing apparatus according to the first embodiment of the present invention, and (b) is (a). It is a figure which shows the cross-sectional view along the AA 'line of (). Further, (c) is a diagram showing a cross-sectional view along the line B-B 'in (a).

図2(a)は従来の半導体製造装置と本発明の半導体製造装置における基板101直上の中間体(GaNH(CHおよびこの分解生成物)の濃度分布を、(b)はこのときの基板上GaN成膜速度分布を、(c)はこのときの対向壁直下の温度分布を示す図である。(d)は反応室内で中間体生成温度に達している領域を示す側面断面図である。 FIG. 2A shows the concentration distribution of the intermediate (GaNH 2 (CH 3 ) 2 and its decomposition product) immediately above the substrate 101 in the conventional semiconductor manufacturing apparatus and the semiconductor manufacturing apparatus of the present invention, and FIG. (C) is a figure which shows the temperature distribution just under an opposing wall at this time. (D) is side surface sectional drawing which shows the area | region which has reached the intermediate body formation temperature in reaction chamber.

本実施例による半導体製造装置は、2.5インチ基板101を載置するカーボン製サセプタ102と、サセプタ102につながる石英製の底壁103を内部に有するとともに、サセプタ102に対面した石英製の対向壁104を有する反応室105を備え、反応室105内に原料ガスとキャリアガスを供給するガス導入口106と、原料ガスとキャリアガスを反応室105から系外に排出するガス排出口107を有する。また、サセプタ102の外側に基板101を加熱するヒーター108を有するとともに、対向壁104の外側にステンレス製の冷却ジャケット109を有する。さらに、本実施例の半導体製造装置は、反応室側壁の一方に石英製の赤外線入射窓110を、これと対面する反応室側壁に石英製の赤外線検出窓111を有し、系外には赤外分光光度計114を有する。   The semiconductor manufacturing apparatus according to this embodiment has a carbon susceptor 102 on which a 2.5-inch substrate 101 is placed, and a quartz bottom wall 103 connected to the susceptor 102 inside, and a quartz facing surface facing the susceptor 102. A reaction chamber 105 having a wall 104 is provided. The reaction chamber 105 includes a gas inlet 106 for supplying a source gas and a carrier gas, and a gas outlet 107 for discharging the source gas and the carrier gas from the reaction chamber 105 to the outside of the system. . In addition, a heater 108 for heating the substrate 101 is provided outside the susceptor 102, and a stainless steel cooling jacket 109 is provided outside the opposing wall 104. Further, the semiconductor manufacturing apparatus of the present embodiment has a quartz infrared incident window 110 on one side of the reaction chamber side wall and a quartz infrared detection window 111 on the side wall of the reaction chamber facing this, and the red is outside the system. It has an outer spectrophotometer 114.

図1(b)は、図1(a)におけるA−A’線に沿った断面を示す平面断面図である。このように冷却ジャケット109は5つの流路I〜Vを有し、冷却液(冷媒)はガス流れと交叉し又は垂直方向112に流れる。図1(c)は、図1(a)におけるB−B’線に沿った横断面を示す図である。このように、赤外線入射窓110と赤外線検出窓111は、反応室内に入射する赤外線の経路113がガス流れ方向に交叉し又はほぼ垂直で、かつ、基板101の直上を通るように、基板101に対応する位置に3ヶ所設ける。赤外分光光度計114はコンピュータ115に接続され、各分子間結合に固有の振動数を測定する。   FIG. 1B is a cross-sectional plan view showing a cross section taken along the line A-A ′ in FIG. Thus, the cooling jacket 109 has five flow paths I to V, and the cooling liquid (refrigerant) crosses the gas flow or flows in the vertical direction 112. FIG.1 (c) is a figure which shows the cross section along the B-B 'line | wire in Fig.1 (a). As described above, the infrared incident window 110 and the infrared detection window 111 are formed on the substrate 101 so that the infrared path 113 incident into the reaction chamber intersects or is almost perpendicular to the gas flow direction and passes directly above the substrate 101. Three places will be provided at corresponding positions. The infrared spectrophotometer 114 is connected to the computer 115 and measures the frequency unique to each intermolecular bond.

以上のように構成された半導体製造装置において、ヒーター108により基板表面温度は1000℃に一定に設定される。原料ガスとしてはV族系原料ガスとしてアンモニア(NH)、III族系原料ガスとしてトリメチルガリウム(TMG)ガスを用い、キャリアガスには水素ガス(H)を用いる。ガス導入口106から導入された原料ガスは、サセプタ102に近づくと加熱され多種の中間体を生成し、その一部が基板上にガリウムナイトライド(GaN)を成膜する。 In the semiconductor manufacturing apparatus configured as described above, the substrate surface temperature is set constant at 1000 ° C. by the heater 108. As a source gas, ammonia (NH 3 ) is used as a group V source gas, trimethylgallium (TMG) gas is used as a group III source gas, and hydrogen gas (H 2 ) is used as a carrier gas. The source gas introduced from the gas inlet 106 is heated as it approaches the susceptor 102 to generate various intermediates, and a part thereof forms a gallium nitride (GaN) film on the substrate.

ここで、本発明者独自の検討によれば、多種存在する中間体の中でも生成開始温度がGaNの成膜開始温度(450℃)にほぼ等しいGaNH(CHやGaNH(CHからの分解生成物が最もGaNの成膜に寄与する中間体であることが明らかになった。そこで、赤外分光光度計114を用い、赤外線入射窓110から反応室105内に赤外線を入射し、赤外線検出窓111を通過する赤外線を検出しGaNH(CHおよびこの分解生成物の濃度を測定する。この際、Ga‐Nの伸縮モードを測定する。また、石英製の窓を介して測定しているため、石英による赤外線吸収量を考慮しなければならない。このようにして測定した基板101上のGaNH(CH濃度が均一になるように冷却液の流量・温度を調整する。 Here, according to the inventor's own study, GaNH 2 (CH 3 ) 2 or GaNH 2 (CH 3 ) whose generation start temperature is almost equal to the film formation start temperature (450 ° C.) of GaN among various intermediates. It was revealed that the decomposition product from 2 is the intermediate that contributes most to the film formation of GaN. Therefore, an infrared spectrophotometer 114 is used to inject infrared light into the reaction chamber 105 from the infrared incident window 110 and detect the infrared light passing through the infrared detection window 111 to detect GaNH 2 (CH 3 ) 2 and this decomposition product. Measure the concentration. At this time, the stretching mode of Ga-N is measured. Further, since the measurement is made through a quartz window, the amount of infrared absorption by quartz must be taken into consideration. The flow rate and temperature of the coolant are adjusted so that the GaNH 2 (CH 3 ) 2 concentration on the substrate 101 measured in this way is uniform.

図2(a)〜図2(d)は、従来の半導体製造装置と図1(a)に示す本発明の半導体製造装置における基板直上のGaNH(CH濃度分布と基板上のGaN成膜速度分布、対向壁直下の温度分布を示す図である。以下の説明において、ガス導入口106から最も近い基板位置を基板上流端、ガス排出口107から最も近い基板位置を基板下流端と定義する。従来半導体製造装置では、基板101の手前でGaNH(CHが多く生成され、基板上流端から基板下流端にかけて急激に減少する。一方、本実施例における半導体製造装置のGaNH(CHおよびその分解生成物の濃度分布は基板上でほぼ均一である。基板上のGaN成膜速度分布もGaNH(CHおよびその分解生成物の濃度分布にほぼ対応する。 2 (a) to 2 (d) show the GaNH 2 (CH 3 ) 2 concentration distribution just above the substrate and the GaN on the substrate in the conventional semiconductor manufacturing apparatus and the semiconductor manufacturing apparatus of the present invention shown in FIG. 1 (a). It is a figure which shows film-forming speed distribution and the temperature distribution just under an opposing wall. In the following description, the substrate position closest to the gas inlet 106 is defined as the substrate upstream end, and the substrate position closest to the gas outlet 107 is defined as the substrate downstream end. In the conventional semiconductor manufacturing apparatus, a large amount of GaNH 2 (CH 3 ) 2 is generated before the substrate 101 and rapidly decreases from the substrate upstream end to the substrate downstream end. On the other hand, the concentration distribution of GaNH 2 (CH 3 ) 2 and its decomposition products in the semiconductor manufacturing apparatus in this example is almost uniform on the substrate. The GaN deposition rate distribution on the substrate also substantially corresponds to the concentration distribution of GaNH 2 (CH 3 ) 2 and its decomposition products.

この原因は、反応室内の温度分布と中間体の生成領域との関係から説明できる。図2(d)は反応室内で中間体が生成可能な温度領域を示す図である。従来の半導体製造装置では、対向壁面の温度が、基板上流端においてすでに中間体生成温度に達している。このため、導入された原料ガスの大部分は基板上流端に達する前に中間体に変換される。これらの中間体は基板101に達すると同時に急激に成膜され消費されるため、基板下流端で原料の枯渇を引き起こす。   This cause can be explained from the relationship between the temperature distribution in the reaction chamber and the intermediate generation region. FIG. 2D is a diagram showing a temperature region in which an intermediate can be generated in the reaction chamber. In the conventional semiconductor manufacturing apparatus, the temperature of the opposing wall surface has already reached the intermediate formation temperature at the substrate upstream end. For this reason, most of the introduced source gas is converted into an intermediate before reaching the upstream end of the substrate. Since these intermediates reach the substrate 101 and are rapidly formed and consumed at the same time, the material is depleted at the downstream end of the substrate.

これに対し、本実施例の半導体製造装置は、ガス導入口106から基板上流端までの対向壁温度を中間体生成開始温度(450℃)よりも十分低く設定しているため、基板上流端での中間体生成可能領域が基板101の近傍に限定される。さらに、基板上流端から基板下流端にかけての対向壁温度が徐々に増加しており、中間体生成可能領域が交叉する方向又は略垂直方向に対向壁面まで拡がっていく。これにより、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇を防ぐことができる。   In contrast, in the semiconductor manufacturing apparatus of this example, the opposing wall temperature from the gas inlet 106 to the upstream end of the substrate is set sufficiently lower than the intermediate generation start temperature (450 ° C.). The intermediate generation possible region is limited to the vicinity of the substrate 101. Furthermore, the opposing wall temperature from the upstream end of the substrate to the downstream end of the substrate gradually increases, and spreads to the opposing wall surface in a crossing direction or a substantially vertical direction. Thereby, the amount of intermediates generated at the upstream end of the substrate is suppressed, and the material depletion at the downstream end of the substrate can be prevented.

さらに、対向壁側で生成した中間体が、成膜により生じる基板近傍の中間体濃度の低下を打ち消すように拡散するため、基板上のGaN成膜速度が均一化される。即ち、基板に対向する対向壁面の温度は、反応ガスの上流では、中間体が生成する温度よりも低く保たれ、基板の領域に掛かると徐々に上昇し、成膜に必要な温度に上昇する。即ち、本発明においては、基板の対向面温度は均一ではなく、上流から下流に向かって上昇する。これは直線的でも良いし、均一な成膜に障害にならない限り、ある程度段階的又は非直線的でも良い。しかし実質的に直線的に上昇するのが均一な膜厚、均一な組成の薄膜を形成する上でもっとも好ましい。   Furthermore, the intermediate formed on the opposite wall side diffuses so as to cancel the decrease in the intermediate concentration in the vicinity of the substrate caused by the film formation, so that the GaN film formation rate on the substrate is made uniform. That is, the temperature of the facing wall facing the substrate is kept lower than the temperature at which the intermediate is formed upstream of the reaction gas, and gradually rises when it reaches the region of the substrate and rises to the temperature required for film formation. . That is, in the present invention, the temperature of the opposing surface of the substrate is not uniform and rises from upstream to downstream. This may be linear or may be stepwise or non-linear to some extent as long as it does not hinder uniform film formation. However, increasing substantially linearly is most preferable in forming a thin film having a uniform film thickness and a uniform composition.

中間体の濃度の測定には、赤外分光光度計114以外に、質量分析装置を用いても良い。質量分析装置を用いる際には、反応室105の側壁に光の入射・検出口に代わり、反応室内のガスを抽出する抽出口を設け、質量数116のGaNH(CHおよびこの分解生成物を測定する必要がある。 In addition to the infrared spectrophotometer 114, a mass spectrometer may be used for measuring the concentration of the intermediate. When using a mass spectrometer, an extraction port for extracting gas in the reaction chamber is provided on the side wall of the reaction chamber 105 in place of the light incident / detection port, and GaNH 2 (CH 3 ) 2 having a mass number of 116 and its decomposition are provided. The product needs to be measured.

上記実施例により、膜厚の変動が、最大厚さと最小厚さとの間で、±1%以下で、極めて均一なIII‐V族化合物半導体装置を製造することができた。このような均一な半導体装置は他の実施例でも同様に製造することができた。   According to the above embodiment, a very uniform III-V compound semiconductor device was able to be manufactured with a variation in film thickness of ± 1% or less between the maximum thickness and the minimum thickness. Such a uniform semiconductor device could be manufactured in the same manner in other examples.

図3は実施例2による半導体製造装置の構成を示す縦断面図であり、(a)は本発明の実施例2による半導体製造装置の縦断面図であり、(b)は(a)のC‐C’線に沿った横断面図を示す図である。   FIG. 3 is a longitudinal sectional view showing the configuration of the semiconductor manufacturing apparatus according to the second embodiment, (a) is a longitudinal sectional view of the semiconductor manufacturing apparatus according to the second embodiment of the present invention, and (b) is a diagram C of (a). It is a figure which shows the cross-sectional view along line -C '.

また、図4(a)は従来の半導体製造装置と本発明の半導体製造装置において計算した基板直上と対向壁面の温度分布を示すグラフであり、(b)はこのときのGaNの成膜速度分布を示すグラフである。   FIG. 4A is a graph showing the temperature distribution of the substrate and the opposite wall surface calculated in the conventional semiconductor manufacturing apparatus and the semiconductor manufacturing apparatus of the present invention, and FIG. 4B is the GaN film formation rate distribution at this time. It is a graph which shows.

また、図5は図3(a)の冷却液流路の他の区分法を示す図である。図6は冷却ジャケット109から対向壁面までの別の構成を示した図である。   FIG. 5 is a view showing another method of dividing the coolant flow path of FIG. FIG. 6 is a view showing another configuration from the cooling jacket 109 to the opposing wall surface.

本実施例による半導体製造装置は、2.5インチ基板101を載置するカーボン製サセプタ102と、断熱材を介しサセプタ102につながる石英製の底壁103を内部に有するとともに、サセプタ102に対面した石英製の対向壁104を有する反応室105を備え、反応室内に原料ガスとキャリアガスを供給するガス導入口106と、原料ガスとキャリアガスを反応室105から系外に排出するガス排出口107を有する。また、サセプタ102の外側に基板101を加熱するヒーター108を有するとともに、対向壁104の外側にステンレス製の冷却ジャケット109を有する。   The semiconductor manufacturing apparatus according to this embodiment has a carbon susceptor 102 on which a 2.5-inch substrate 101 is placed, and a quartz bottom wall 103 connected to the susceptor 102 via a heat insulating material, and faces the susceptor 102. A reaction chamber 105 having an opposing wall 104 made of quartz is provided, a gas inlet 106 for supplying a source gas and a carrier gas into the reaction chamber, and a gas outlet 107 for discharging the source gas and the carrier gas from the reaction chamber 105 to the outside of the system. Have In addition, a heater 108 for heating the substrate 101 is provided outside the susceptor 102, and a stainless steel cooling jacket 109 is provided outside the opposing wall 104.

図3(b)は、図3(a)のC−C’線に沿った横断面を示す図である。このように冷却ジャケット109はI〜Vの5つの流路からなり、冷却液はガス流れに対し交叉し又は略垂直方向に流れる。   FIG. 3B is a view showing a cross section taken along line C-C ′ of FIG. As described above, the cooling jacket 109 includes five flow paths I to V, and the cooling liquid crosses the gas flow or flows in a substantially vertical direction.

以上のように構成された半導体製造装置において、ヒーター108により基板表面温度は1000℃一定に設定される。一方、冷却ジャケット109の3つの独立した流路に対し、それぞれ独立に流量あるいは温度を調整した冷却水を流し、対向壁温度を設定する。この際、事前に実験またはシミュレーションにより冷却液の流量または温度と対向壁温度の関係を把握しておく必要がある。原料ガスとしてはV族系原料ガスとしてアンモニア(NH)、III族系原料ガスとしてトリメチルガリウム(TMG)ガスを用い、キャリアガスには水素ガスを用いる。ガス導入口106から導入された原料ガスは、基板101に近づくと加熱され多種の中間体を生成し基板上にガリウムナイトライド(GaN)を成膜する。 In the semiconductor manufacturing apparatus configured as described above, the substrate surface temperature is set constant at 1000 ° C. by the heater 108. On the other hand, with respect to three independent flow paths of the cooling jacket 109, cooling water whose flow rate or temperature is adjusted independently is supplied to set the opposing wall temperature. At this time, it is necessary to grasp the relationship between the flow rate or temperature of the coolant and the opposing wall temperature in advance by experiment or simulation. As the source gas, ammonia (NH 3 ) is used as the group V source gas, trimethylgallium (TMG) gas is used as the group III source gas, and hydrogen gas is used as the carrier gas. The source gas introduced from the gas inlet 106 is heated as it approaches the substrate 101 to generate various intermediates, and gallium nitride (GaN) is formed on the substrate.

成膜の際の対向壁面温度は、TMGとNHから中間体が生成する温度や、成膜による中間体の減少を考慮して決定する必要がある。原料ガスから化学反応により生成する中間体は多種存在する。本発明者の独自の検討によれば、GaNH(CHおよびその分解生成物がもっともGaNの成膜に寄与する中間体であることが明らかになった。GaNH(CHの生成開始温度は成膜開始温度(約450℃)にほぼ等しい。そこで、対向壁面温度を、ガス導入口106から基板上流端までは十分低く保ち230℃以下に、基板上流端から基板下流端までは単調、段階的日直線的に増加し、基板下流端で520℃以上になるように設定する。 The opposing wall surface temperature during film formation needs to be determined in consideration of the temperature at which an intermediate is generated from TMG and NH 3 and the reduction of the intermediate due to film formation. There are many types of intermediates produced from raw material gases by chemical reaction. According to the inventor's original study, it has been clarified that GaNH 2 (CH 3 ) 2 and its decomposition products are the most intermediates contributing to the film formation of GaN. The generation start temperature of GaNH 2 (CH 3 ) 2 is substantially equal to the film formation start temperature (about 450 ° C.). Therefore, the opposing wall surface temperature is kept sufficiently low from the gas inlet 106 to the upstream end of the substrate to 230 ° C. or less, and increases monotonically and in a stepwise daily linear manner from the upstream end of the substrate to the downstream end of the substrate, and reaches 520 Set so that it is above ℃.

図4(a)は、従来の半導体製造装置と図3(a)に示す本発明の半導体製造装置においてシミュレーションした対向壁面の温度分布を、図4(b)は、基板上のGaN成膜速度分布を示すグラフである。従来の半導体製造装置では、対向壁面の温度が、基板上流端においてすでに中間体生成温度に達している。このため、導入された原料ガスの大分部は基板上流端に達する前に中間体に変換される。これらの中間体は基板101に達すると同時に急激に成膜して消費されるため、基板下流端で原料の枯渇を引き起こす。   4A shows the temperature distribution of the opposing wall surface simulated in the conventional semiconductor manufacturing apparatus and the semiconductor manufacturing apparatus of the present invention shown in FIG. 3A, and FIG. 4B shows the GaN film formation rate on the substrate. It is a graph which shows distribution. In the conventional semiconductor manufacturing apparatus, the temperature of the opposing wall surface has already reached the intermediate formation temperature at the substrate upstream end. For this reason, most of the introduced source gas is converted into an intermediate before reaching the upstream end of the substrate. Since these intermediates reach the substrate 101 and are rapidly formed and consumed at the same time, the material is depleted at the downstream end of the substrate.

これに対し、本実施例の半導体製造装置は、ガス導入口から基板上流端までの対向壁温度が中間体生成温度よりも十分低く設定され、基板上流端での中間体生成可能領域を基板101の近傍に限定されている。さらに、基板上流端から基板下流端にかけては対向壁温度が徐々に増加し、中間体生成可能領域が交叉し又は垂直方向に対向壁面まで拡がっている。これにより、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇が抑制される。さらに、対向壁側で生成した中間体が、成膜により生じる基板近傍の中間体濃度の低下を打ち消すように拡散するため、基板上のGaN成膜速度が均一化される。   In contrast, in the semiconductor manufacturing apparatus of this embodiment, the opposing wall temperature from the gas inlet to the upstream end of the substrate is set sufficiently lower than the intermediate generation temperature, and the intermediate generation possible region at the upstream end of the substrate is defined as the substrate 101. It is limited to the vicinity. Furthermore, the temperature of the opposing wall gradually increases from the upstream end of the substrate to the downstream end of the substrate, so that the intermediate productable region crosses or extends vertically to the opposing wall surface. Thereby, the amount of intermediates generated at the upstream end of the substrate is suppressed, and the material depletion at the downstream end of the substrate is suppressed. Furthermore, the intermediate formed on the opposite wall side diffuses so as to cancel the decrease in the intermediate concentration in the vicinity of the substrate caused by the film formation, so that the GaN film formation rate on the substrate is made uniform.

図5は、冷却ジャケット109の流路を区分する他の例を示す図である。流路の区分位置は、少なくとも図3(b)に示すような対向壁面温度分布を実現できれば良く、図3(a)記載の区分に限られない。図5では、流路の分割数を増加させている。特に対向壁104の温度変化が大きい基板上流端から基板下流端にかけての分割数を増加させることで、より高精度に対向壁温度の制御が可能になる。特に基板面積を拡大するときに有効である。   FIG. 5 is a diagram showing another example of dividing the flow path of the cooling jacket 109. The division position of the flow path is not limited to the division shown in FIG. 3A as long as the opposing wall surface temperature distribution as shown in FIG. In FIG. 5, the number of divisions of the flow path is increased. In particular, by increasing the number of divisions from the upstream end of the substrate where the temperature change of the opposing wall 104 is large to the downstream end of the substrate, the opposing wall temperature can be controlled with higher accuracy. This is particularly effective when expanding the substrate area.

図6は、冷却ジャケット109から対向壁面までの構成における他の例を示す。対向壁面材201には、少なくとも装置の動作温度範囲(常温〜1000℃)において安定で脱ガス量が少ないものを使用する必要がある。また、対向壁面の表面輻射率は低いほうが望ましい。加えて、冷却ジャケット109から対向壁面までは、熱伝達率ができるだけ高くなるように構成することが望ましい。図6のように、対向壁104は材質の異なる複数の板で構成しても良い。たとえば、対向壁面材201には脱ガス量の少ない石英を使用し、対向壁内部材202には熱伝導率の高いカーボンを使用してもよい。また、対向壁104と冷却ジャケット109は接していなくともよく、空間203を設けてもよい。空間203を設けると冷却ジャケット109から対向壁104までの熱伝達率は悪化するものの、熱応力により対向壁104が変形した際に対向壁104が破壊するのを防ぐことができる。   FIG. 6 shows another example of the configuration from the cooling jacket 109 to the opposing wall surface. It is necessary to use the facing wall material 201 that is stable at least in the operating temperature range (normal temperature to 1000 ° C.) of the apparatus and has a small degassing amount. Further, it is desirable that the surface emissivity of the opposing wall surface is low. In addition, it is desirable that the heat transfer coefficient be as high as possible from the cooling jacket 109 to the opposing wall surface. As shown in FIG. 6, the opposing wall 104 may be composed of a plurality of plates made of different materials. For example, quartz having a small degassing amount may be used for the opposing wall surface material 201, and carbon having high thermal conductivity may be used for the opposing wall inner member 202. Further, the facing wall 104 and the cooling jacket 109 do not need to be in contact with each other, and the space 203 may be provided. When the space 203 is provided, the heat transfer rate from the cooling jacket 109 to the opposing wall 104 is deteriorated, but the opposing wall 104 can be prevented from being destroyed when the opposing wall 104 is deformed by thermal stress.

水冷ジャケットは、熱伝導率の高い材料が望ましく、ステンレス・スチール以外に、アルミニウム、銅などを用いても良い。冷却ジャケット109内に流す冷却液として水以外に、シリコーンオイル、アルキルアルコール、液化窒素、またはそれらの組合せを用いてもよい。   The water-cooled jacket is preferably made of a material having high thermal conductivity, and aluminum, copper, etc. may be used in addition to stainless steel. In addition to water, silicone oil, alkyl alcohol, liquefied nitrogen, or a combination thereof may be used as a coolant flowing in the cooling jacket 109.

図7は、本発明の実施例3による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図3(a)に示した実施例2による半導体製造装置と同様であるが、冷却手段が、流れ方向に複数個配置した冷却ジャケット109と、各冷却ジャケット間の空隙301により構成されている。このようにすれば、対向壁温度の制御性を向上させることができる。   FIG. 7 is a longitudinal sectional view showing a semiconductor manufacturing apparatus according to Embodiment 3 of the present invention. Elements similar to those in FIG. 1A are denoted by the same reference numerals. The main configuration of the apparatus is the same as that of the semiconductor manufacturing apparatus according to the second embodiment shown in FIG. 3A, except that a plurality of cooling means 109 are arranged in the flow direction and a gap 301 between the cooling jackets. It is comprised by. In this way, the controllability of the facing wall temperature can be improved.

冷却手段を一体の冷却ジャケット109で構成する場合、流路間のステンレスを通し熱伝導が起こり、各冷却液の温度が相互に影響を及ぼし、流路間の温度勾配が平滑化される。対向壁面の温度分布は、対向壁内の熱伝導過程でさらに平滑化される。各流路ごとに個別の冷却ジャケット109で構成し、その間の熱伝達率を小さくすることにより、各冷却ジャケット間の断熱性を保つことができ、各冷却ジャケットの冷却量の違いをより明確に対向壁104に反映することができる。本実施例は特に対向壁104の厚さが厚いときに効果的である。各ジャケット間に空隙301を設ける代わりに窒化ホウ素(BN)などの断熱材を用いてもよい。   When the cooling means is constituted by the integral cooling jacket 109, heat conduction occurs through the stainless steel between the flow paths, the temperatures of the respective cooling liquids affect each other, and the temperature gradient between the flow paths is smoothed. The temperature distribution of the opposing wall surface is further smoothed during the heat conduction process in the opposing wall. Each flow path is made up of individual cooling jackets 109, and by reducing the heat transfer coefficient between them, the heat insulation between the cooling jackets can be maintained, and the difference in the cooling amount of each cooling jacket can be clarified. This can be reflected on the facing wall 104. This embodiment is particularly effective when the opposing wall 104 is thick. Instead of providing the gaps 301 between the jackets, a heat insulating material such as boron nitride (BN) may be used.

図8は、本発明の実施例4による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図2に示した実施例2による半導体製造装置と同様であるが、対向壁104が冷却ジャケット間の空隙位置に合わせて分割され、この空隙301を通し反応室内に窒素ガス(N)やHなどのパージガス401が流されている。このようにすれば、半導体装置の大型化が可能になる。図3(a)のように、対向壁104を一枚の板で構成し大型化すると、熱応力による破壊が起こりやすくなる。対向壁104を分割して構成することで破壊を抑制できる。また、これによって生じた空隙301には、原料ガスが空隙内へ侵入することを防ぐために、反応室内のガス流れに影響を与えない程度の流量でパージガス401を導入する。 FIG. 8 is a longitudinal sectional view showing a semiconductor manufacturing apparatus according to Embodiment 4 of the present invention. Elements similar to those in FIG. 1A are denoted by the same reference numerals. The main configuration of the apparatus is the same as that of the semiconductor manufacturing apparatus according to the second embodiment shown in FIG. 2, but the opposing wall 104 is divided in accordance with the position of the gap between the cooling jackets, and nitrogen gas is introduced into the reaction chamber through the gap 301. A purge gas 401 such as (N 2 ) or H 2 is flowed. In this way, the size of the semiconductor device can be increased. As shown in FIG. 3A, when the opposing wall 104 is constituted by a single plate and is increased in size, destruction due to thermal stress is likely to occur. Breaking can be suppressed by dividing the opposing wall 104 into a configuration. Further, in order to prevent the source gas from entering the gap 301, the purge gas 401 is introduced at a flow rate that does not affect the gas flow in the reaction chamber.

図9は、本発明の実施例5による半導体製造装置を示す縦断面図である。図1(a)と同様の要素は同じ符号で示す。装置の主たる構成は、図3(a)に示した実施例2による半導体製造装置と同様であるが、対向壁内に温度分布を測定するため熱電対501と、熱電対501から信号線502により接続され、測定値と事前に定めた対向壁面温度の設定値を比較・演算するPID温度制御のためのコンピュータ405と、コンピュータからの出力に基づき流量・温度を調節するマスフローコントローラ406・温度調節器407である。マスフローコントローラ406・温度調節器407の指令により、冷媒の流量を制御するポンプ408を制御する。制御の具体的方法は図10のフロー図に示した通りである。   FIG. 9 is a longitudinal sectional view showing a semiconductor manufacturing apparatus according to Embodiment 5 of the present invention. Elements similar to those in FIG. 1A are denoted by the same reference numerals. The main configuration of the apparatus is the same as that of the semiconductor manufacturing apparatus according to the second embodiment shown in FIG. 3A, but a thermocouple 501 and a thermocouple 501 are connected by a signal line 502 to measure the temperature distribution in the opposing wall. A computer 405 for PID temperature control that compares and calculates a measured value and a preset value of the opposing wall surface temperature, a mass flow controller 406 that adjusts the flow rate and temperature based on the output from the computer, and a temperature controller 407. The pump 408 that controls the flow rate of the refrigerant is controlled by commands of the mass flow controller 406 and the temperature controller 407. A specific method of control is as shown in the flowchart of FIG.

以下、図10のフロー図に基づいて説明する。まず、事前の検討により対向壁温度分布の指定値を決定する。この指定値をコンピュータに入力し、対向壁内に設置した熱電対501の計測値と比較し、冷却液の流量・温度の制御量を演算する。制御量に基づきマスフローコントローラ・温度調節器の出力を調整する。熱電対温度が指定値に一致すればマスフローコントローラ・温度調節器の出力を保持し、一致しない場合には、再びコンピュータにより制御量の演算を行なう。このようにすれば、成膜時の対向壁温度を常に一定に保つことができ、より高精度な膜厚制御が可能になる。   Hereinafter, description will be made based on the flowchart of FIG. First, the specified value of the opposing wall temperature distribution is determined by prior examination. This designated value is input to the computer, and compared with the measured value of the thermocouple 501 installed in the opposite wall, the control amount of the coolant flow rate and temperature is calculated. Adjust the output of the mass flow controller and temperature controller based on the controlled variable. If the thermocouple temperature matches the specified value, the output of the mass flow controller / temperature controller is held. If not, the control amount is calculated again by the computer. In this way, the opposing wall temperature during film formation can be kept constant at all times, and more accurate film thickness control becomes possible.

GaNの成長時には、基板以外の壁面にも成膜が起こる。特に、対向壁面は比較的低温であり付着する膜は透明ではなく黄色〜黒色をしている。このため、成膜時間とともに対向壁面の表面輻射率は大きく変化する。対向壁104の冷却量を一定にしていると、対向壁面の表面輻射率の変化とともに対向壁温度も変化し、狙った膜厚分布が得られない。本実施例のように、GaN成長時の対向壁面温度をリアルタイムに検出し、冷却液の温度もしくは流量にフィードバックすることで、対向壁温度の経時変化を防ぎ、常に一定温度に保つことができる。   During the growth of GaN, film formation occurs on the wall surface other than the substrate. In particular, the opposing wall surface is at a relatively low temperature, and the attached film is not transparent but yellow to black. For this reason, the surface emissivity of the opposing wall surface varies greatly with the film formation time. When the cooling amount of the opposing wall 104 is constant, the opposing wall temperature also changes with the change in the surface radiation rate of the opposing wall surface, and the targeted film thickness distribution cannot be obtained. As in this embodiment, the opposing wall temperature at the time of GaN growth is detected in real time and fed back to the temperature or flow rate of the cooling liquid, so that the opposing wall temperature can be prevented from changing with time and can always be maintained at a constant temperature.

図11は、本発明の実施例6による半導体製造装置を示し、図11(a)は側面断面図である。図11(b)は、図11(a)のD−D’線に沿った横断面図である。図1(a)と同様の要素は同じ符号で示す。本実施例は、おおよそ、実施例2〜5記載の半導体製造装置のガス導入口106を軸に一回転させた構成をとり、基板101を自転させるとともに、軸602の周りに公転させ複数枚の基板101を同時に処理する、いわゆる自公転型の半導体製造装置を対象にしている。   FIG. 11 shows a semiconductor manufacturing apparatus according to Embodiment 6 of the present invention, and FIG. 11 (a) is a side sectional view. FIG.11 (b) is a cross-sectional view along the D-D 'line | wire of Fig.11 (a). Elements similar to those in FIG. 1A are denoted by the same reference numerals. In this example, the gas inlet 106 of the semiconductor manufacturing apparatus described in Examples 2 to 5 is rotated about one axis, and the substrate 101 is rotated and revolved around the axis 602. It is intended for a so-called self-revolving semiconductor manufacturing apparatus that processes the substrate 101 simultaneously.

冷却ジャケット109の流路が公転軸602を中心としたリング状に形成されることを特徴とする。このようにすれば、自公転型の半導体製造装置においても、対向壁面温度の制御が可能となり、基板上流端での中間体生成量が抑制され基板下流端での原料枯渇を防ぐことができ、さらに、対向壁側で生成した中間体が基板上の中間体濃度の低下を打ち消すように拡散し、基板上のGaN成膜速度を均一化することができる。   The flow path of the cooling jacket 109 is formed in a ring shape centering on the revolution shaft 602. In this way, even in the self-revolving semiconductor manufacturing apparatus, the opposing wall surface temperature can be controlled, the amount of intermediate generation at the upstream end of the substrate can be suppressed, and the material depletion at the downstream end of the substrate can be prevented, Furthermore, the intermediate produced on the opposite wall side diffuses so as to cancel the decrease in the intermediate concentration on the substrate, and the GaN film formation rate on the substrate can be made uniform.

図12は、本発明の実施例6による半導体製造装置の断面図である。図1(a)、図7と同様の要素は同じ符号で示す。本実施例装置の主たる構成は、図1(a)に示した実施例1による半導体装置と同様であるが、冷却手段が複数個の温度調節セル121と冷却ジャケット109により構成されている。この温度調節セル121の材質をセルごとに変えることにより、冷却ジャケット109と対向壁面間の熱伝導率を変化させ、対向壁面の温度を調節する。   FIG. 12 is a sectional view of a semiconductor manufacturing apparatus according to Embodiment 6 of the present invention. Elements similar to those in FIGS. 1A and 7 are denoted by the same reference numerals. The main configuration of the apparatus according to the present embodiment is the same as that of the semiconductor device according to the first embodiment shown in FIG. 1A, but the cooling means includes a plurality of temperature control cells 121 and a cooling jacket 109. By changing the material of the temperature control cell 121 for each cell, the thermal conductivity between the cooling jacket 109 and the opposing wall surface is changed to adjust the temperature of the opposing wall surface.

温度調整セル間には特にガス流れ方向に空隙が設けられる。これにより、セル間の断熱性が高まり、セル毎の冷却量の違いをより明確に対向壁に反映させことができ、正確に対向壁面温度を制御することができる。又、液冷の流路を分割する必要が無いため、装置構造を簡単にすることができる。   Between the temperature control cells, a gap is provided particularly in the gas flow direction. Thereby, the heat insulation between cells improves, the difference in the cooling amount for every cell can be more clearly reflected on an opposing wall, and an opposing wall surface temperature can be controlled correctly. Further, since it is not necessary to divide the liquid cooling flow path, the apparatus structure can be simplified.

本発明の実施例による成膜装置の構造を示し、(a)は側断面図、(b)は(a)のA−A’断面図、(c)は(a)のB‐B’線に沿った横断面図。The structure of the film-forming apparatus by the Example of this invention is shown, (a) is sectional side view, (b) is AA 'sectional drawing of (a), (c) is BB' line of (a). FIG. 本発明と従来例における基板と反応容器の対向壁面の位置の特性の関係を示し、(a)は基板上の中間体濃度、(b)はGaN成膜速度、(c)は基板対向面温度、(d)は反応容器内の温度分布。The relationship between the position of the opposing wall surface of the substrate and the reaction vessel in the present invention and the conventional example is shown, (a) is the intermediate concentration on the substrate, (b) is the GaN film formation rate, and (c) is the substrate facing surface temperature. , (D) is the temperature distribution in the reaction vessel. 本発明における他の実施例による成膜装置の構成を示し、(a)は側面断面図、(b)は(a)のC‐C’線に対する横断面図。The structure of the film-forming apparatus by the other Example in this invention is shown, (a) is side surface sectional drawing, (b) is a cross-sectional view with respect to the C-C 'line | wire of (a). 従来の半導体製造装置と本発明の半導体製造装置の基板と対向壁面の特性関係を示し、(a)は計算によって求めた基板直上と対向壁面の温度分布であり、(b)はこのときのGaNの成膜速度分布。The characteristic relationship of the board | substrate of the conventional semiconductor manufacturing apparatus and the semiconductor manufacturing apparatus of this invention and an opposing wall surface is shown, (a) is the temperature distribution of the board | substrate right above and the opposing wall surface calculated | required by calculation, (b) is GaN at this time The film deposition rate distribution. 図3(a)の冷却液流路の他の区分法を示す側面断面図。Side surface sectional drawing which shows the other division method of the cooling fluid flow path of Fig.3 (a). 冷却ジャケットから対向壁面までの別の構成を示した側面断面図。Side surface sectional drawing which showed another structure from a cooling jacket to an opposing wall surface. 本発明の更に他の実施例による半導体製造装置の側面断面図。The side sectional view of the semiconductor manufacturing device by other examples of the present invention. 本発明のもう1つの他の実施例による半導体製造装置の側面断面図。FIG. 6 is a side sectional view of a semiconductor manufacturing apparatus according to another embodiment of the present invention. 本発明の実施例による半導体製造装置システムの概略構成図。1 is a schematic configuration diagram of a semiconductor manufacturing apparatus system according to an embodiment of the present invention. 本発明の実施例における温度制御のフローチャート。The flowchart of the temperature control in the Example of this invention. 本発明の更に他の実施例による半導体製造装置の断面図で、(a)は側面断面図、(b)は(a)のD−D’線に沿った断面図。FIG. 6 is a cross-sectional view of a semiconductor manufacturing apparatus according to still another embodiment of the present invention, in which (a) is a side cross-sectional view and (b) is a cross-sectional view taken along line D-D ′ of (a). 本発明の実施例6による半導体製造装置の断面図。Sectional drawing of the semiconductor manufacturing apparatus by Example 6 of this invention.

符号の説明Explanation of symbols

101…基板、102…サセプタ、103…底壁、104…対向壁、105…反応室、106…ガス導入口、107…ガス排出口、108…ヒーター、109…冷却ジャケット、110…赤外線入射窓、111…赤外線検出窓、112…冷却液流れ方向、113…赤外線進行方向、114…赤外分光光度計、115…コンピュータ、I〜V…冷却液流路、201…対向壁面材、202…対向壁内部材、203…空間、301…空隙、401…パージガス、501…熱電対、601…自転軸、602…公転軸、603…ガス導入口、604…冷却液流れ方向。   DESCRIPTION OF SYMBOLS 101 ... Board | substrate, 102 ... Susceptor, 103 ... Bottom wall, 104 ... Opposite wall, 105 ... Reaction chamber, 106 ... Gas inlet, 107 ... Gas outlet, 108 ... Heater, 109 ... Cooling jacket, 110 ... Infrared incident window, DESCRIPTION OF SYMBOLS 111 ... Infrared detection window, 112 ... Coolant flow direction, 113 ... Infrared traveling direction, 114 ... Infrared spectrophotometer, 115 ... Computer, IV ... Coolant flow path, 201 ... Opposite wall material, 202 ... Opposite wall Inner member, 203 ... space, 301 ... gap, 401 ... purge gas, 501 ... thermocouple, 601 ... rotation axis, 602 ... revolution axis, 603 ... gas inlet, 604 ... coolant flow direction.

Claims (9)

薄膜を形成すべき基板を設置し、該基板に対向する対向壁を有する反応室を備えたCVD(Chemical Vapor Deposition)装置内に原料ガスを導入し、基板上に薄膜を形成する方法であって、前記原料ガスから化学反応により生成する気相中間体の基板上の濃度を、前記対向壁の温度を前記基板の温度とは独立に冷却して前記CVD装置の原料ガス上流側から下流側に前記対向壁の温度が順次高くなるように制御し、前記原料ガスの上流の前記対向壁の温度が前記気相中間体の生成温度よりも低くなるように保持する成膜方法であって、前記対向壁の温度を、前記原料ガスの導入口から前記原料ガスの導入口に最も近い前記基板の端部位置で定義される基板上流端までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガスの排出口に最も近い前記基板の端部位置で定義される基板下流端までは前記気相中間体の生成温度より十分高く、前記基板上流端から前記基板下流端までの温度分布が単調に増加するように制御することを特徴とする成膜方法。 A method of forming a thin film on a substrate by installing a substrate on which a thin film is to be formed, introducing a source gas into a CVD (Chemical Vapor Deposition) apparatus having a reaction chamber having an opposing wall facing the substrate. The concentration of the vapor phase intermediate produced from the source gas by a chemical reaction on the substrate is cooled independently from the temperature of the substrate from the upstream side to the downstream side of the source gas of the CVD apparatus. A method of forming a film , wherein the temperature of the facing wall is controlled so as to be sequentially increased, and the temperature of the facing wall upstream of the source gas is kept lower than the generation temperature of the gas phase intermediate , The temperature of the facing wall is sufficiently lower than the production temperature of the gas phase intermediate from the source gas inlet to the substrate upstream end defined by the end position of the substrate closest to the source gas inlet, From the upstream end of the plate to the downstream end of the substrate defined at the end position of the substrate closest to the source gas discharge port is sufficiently higher than the generation temperature of the vapor phase intermediate, from the upstream end of the substrate to the downstream end of the substrate. The film forming method is characterized in that the temperature distribution is controlled so as to increase monotonously . 前記冷却は前記対向壁を冷却する冷却手段によりなされ、前記原料ガスの流れ方向における前記中間体の基板上の濃度分布を制御することを特徴とする請求項1記載の成膜方法。 The film forming method according to claim 1 , wherein the cooling is performed by a cooling unit that cools the facing wall, and the concentration distribution on the substrate of the intermediate in the flow direction of the source gas is controlled. 前記中間体の基板上の濃度分布が、前記原料ガスの流れ方向で一になるように制御することを特徴とする請求項2記載の成膜方法。 The film forming method according to claim 2, wherein the concentration distribution on the substrate of the intermediate, and controls so as to uniform one flow direction of the raw material gas. 前記原料ガスとしてGa(CHとNHを用い、前記薄膜としてGaNを成膜する際の前記中間体が、GaNH(CHあるいはこの分解生成物であることを特徴とする請求項1記載の成膜方法。 Ga (CH 3 ) 3 and NH 3 are used as the source gas, and the intermediate in forming GaN as the thin film is GaNH 2 (CH 3 ) 2 or a decomposition product thereof. The film forming method according to claim 1. 前記基板の温度を1000〜1200℃に保ち、前記対向壁面の温度を、前記原料ガスの導入位置から前記基板上流端までは230℃以下に、前記基板上流端から基板下流端までは単調増加し、前記基板下流端で520℃以上に設定することを特徴とする請求項1記載の成膜方法。 The temperature of the substrate is kept at 1000 to 1200 ° C., and the temperature of the opposing wall surface is monotonically increased from the source gas introduction position to the substrate upstream end to 230 ° C. or less, and from the substrate upstream end to the substrate downstream end. the film forming method according to claim 1, characterized in that set to 520 ° C. or higher in the substrate downstream end. 前記冷却手段に冷媒を供給し、前記冷媒が、水、シリコーンオイル、アルキルアルコール、液化窒素及びそれらの組合せのいずれかであることを特徴とする請求項2記載の成膜方法。 The coolant supplied to the cooling means, the refrigerant, water, film forming method according to claim 2, wherein the silicone oil is an alkyl alcohol, one of liquid nitrogen and their combinations. 原料ガスを用い、CVDにより化学反応により生成する気相中間体を経て基板上に薄膜を形成する成膜装置であって、
前記基板を載置するサセプタに対向した対向壁を有する反応室と、
前記反応室内に前記原料ガスを導入するガス導入口と、
前記反応室から前記原料ガスを排出するガス排出口と、
前記基板を加熱する加熱手段と、
前記基板とは反対側の前記対向壁に設置され、前記対向壁の温度を、前記基板の温度とは独立に制御する冷却手段とを有し、
前記対向壁の温度を、前記原料ガスの導入口から前記原料ガスの導入口に最も近い前記基板の端部位置で定義される基板上流端までは前記気相中間体の生成温度より十分低く、前記基板上流端から前記原料ガスの排出口に最も近い前記基板の端部位置で定義される基板下流端までは前記中間体の生成温度より十分高く、前記基板上流端から前記基板下流端までの温度分布が単調に増加するように制御する制御機構を備えたことを特徴とする成膜装置。
A film forming apparatus for forming a thin film on a substrate through a gas phase intermediate generated by a chemical reaction by CVD using a source gas,
A reaction chamber having an opposing wall facing the susceptor on which the substrate is placed;
A gas inlet for introducing the source gas into the reaction chamber;
A gas outlet for discharging the source gas from the reaction chamber;
Heating means for heating the substrate;
Cooling means that is installed on the opposite wall opposite to the substrate and controls the temperature of the opposite wall independently of the temperature of the substrate;
The temperature of the opposing wall is sufficiently lower than the production temperature of the gas phase intermediate from the source gas inlet to the substrate upstream end defined at the end position of the substrate closest to the source gas inlet, From the substrate upstream end to the substrate downstream end defined at the end position of the substrate closest to the source gas discharge port is sufficiently higher than the generation temperature of the intermediate, and from the substrate upstream end to the substrate downstream end. A film forming apparatus comprising a control mechanism for controlling the temperature distribution so as to increase monotonously.
前記冷却手段は、前記基板に交叉し、又は垂直な、前記反応室の側壁に設置されていることを特徴とする請求項7に記載の成膜装置。 The film forming apparatus according to claim 7, wherein the cooling unit is installed on a side wall of the reaction chamber that intersects or is perpendicular to the substrate. 更に、前記基板の周辺における前記中間体の濃度を測定する中間体濃度測定手段を有することを特徴とする請求項7に記載の成膜装置。 The film forming apparatus according to claim 7, further comprising intermediate concentration measuring means for measuring the concentration of the intermediate in the periphery of the substrate.
JP2007070532A 2007-03-19 2007-03-19 Film forming method and film forming apparatus Expired - Fee Related JP4899958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070532A JP4899958B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070532A JP4899958B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming apparatus

Publications (2)

Publication Number Publication Date
JP2008235438A JP2008235438A (en) 2008-10-02
JP4899958B2 true JP4899958B2 (en) 2012-03-21

Family

ID=39907918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070532A Expired - Fee Related JP4899958B2 (en) 2007-03-19 2007-03-19 Film forming method and film forming apparatus

Country Status (1)

Country Link
JP (1) JP4899958B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138041A (en) * 2008-12-12 2010-06-24 Sumitomo Electric Ind Ltd Film formation apparatus
JP5655199B2 (en) * 2010-09-06 2015-01-21 学校法人東京理科大学 Semiconductor thin film manufacturing apparatus and nitride semiconductor manufacturing method
KR101248476B1 (en) * 2012-03-15 2013-04-02 주식회사루미지엔테크 Apparatus for depositing thin layer
JP5947133B2 (en) * 2012-07-17 2016-07-06 シャープ株式会社 Vapor phase growth apparatus and semiconductor device manufacturing method
JP6707827B2 (en) 2015-09-28 2020-06-10 東京エレクトロン株式会社 Film forming equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245524A (en) * 1990-02-23 1991-11-01 Kyushu Electron Metal Co Ltd Cooling method for vapor growth device
JPH04132213A (en) * 1990-09-25 1992-05-06 Furukawa Electric Co Ltd:The Vapor phase growth apparatus of semiconductor thin film
JPH05335250A (en) * 1992-05-29 1993-12-17 Hitachi Ltd Cvd device
JP3335492B2 (en) * 1994-12-28 2002-10-15 三菱電機株式会社 Thin film deposition equipment
JPH11180796A (en) * 1997-12-22 1999-07-06 Japan Energy Corp Vapor growth method and vapor growth device for applying the same
JP2001023902A (en) * 1999-07-06 2001-01-26 Hitachi Cable Ltd Vapor-phase epitaxial method and apparatus for semiconductor crystal
JP3607664B2 (en) * 2000-12-12 2005-01-05 日本碍子株式会社 III-V nitride film manufacturing apparatus
JP2006080195A (en) * 2004-09-08 2006-03-23 Taiyo Nippon Sanso Corp Vapor phase growth device
JP4542859B2 (en) * 2004-10-04 2010-09-15 大陽日酸株式会社 Vapor growth equipment
JP4598506B2 (en) * 2004-12-20 2010-12-15 大陽日酸株式会社 Vapor growth equipment
JP2006216864A (en) * 2005-02-04 2006-08-17 Hitachi Cable Ltd Compound semiconductor manufacturing device

Also Published As

Publication number Publication date
JP2008235438A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US11390950B2 (en) Reactor system and method to reduce residue buildup during a film deposition process
KR102641588B1 (en) Cross-flow reactor and method
TWI725979B (en) Susceptor and substrate processing apparatus
JP4899958B2 (en) Film forming method and film forming apparatus
KR101313524B1 (en) Film forming apparatus and film forming method
TW201243955A (en) Apparatus for monitoring and controlling substrate temperature
US20150370245A1 (en) Substrate processing apparatus, substrate processing method, semiconductor device manufacturing method, and control program
US20110206866A1 (en) Deposition apparatus and method
KR20150085137A (en) Linear batch chemical vapor deposition system
US8012884B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
TW202114095A (en) Independently adjustable flowpath conductance in multi-station semiconductor processing
TW201413046A (en) Temperature controlling system and temperature controlling method for regulating surface temperature of substrate
US20180135203A1 (en) Film forming apparatus
JP2641351B2 (en) Variable distribution gas flow reaction chamber
US20140137799A1 (en) Deposition apparatus and method of forming thin film
US9651367B2 (en) Curvature measuring in a substrate processing apparatus
JP4058364B2 (en) Semiconductor manufacturing equipment
JP5947133B2 (en) Vapor phase growth apparatus and semiconductor device manufacturing method
CN105648425A (en) Chemical vapor deposition device and temperature control method thereof
JP2007201098A (en) Device and method for vapor phase growth
JP5655199B2 (en) Semiconductor thin film manufacturing apparatus and nitride semiconductor manufacturing method
US20180286719A1 (en) Film forming apparatus and film forming method
JPS59159980A (en) Vapor growth device
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
Talalaev Transport phenomena in vapor phase epitaxy reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees