JPH03245524A - Cooling method for vapor growth device - Google Patents

Cooling method for vapor growth device

Info

Publication number
JPH03245524A
JPH03245524A JP4336290A JP4336290A JPH03245524A JP H03245524 A JPH03245524 A JP H03245524A JP 4336290 A JP4336290 A JP 4336290A JP 4336290 A JP4336290 A JP 4336290A JP H03245524 A JPH03245524 A JP H03245524A
Authority
JP
Japan
Prior art keywords
cooling
reaction vessel
temperature
wall
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4336290A
Other languages
Japanese (ja)
Inventor
Masahiko Matsuda
松田 正彦
Tsugio Ishikawa
石川 二男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP4336290A priority Critical patent/JPH03245524A/en
Publication of JPH03245524A publication Critical patent/JPH03245524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the adherence-deposition of any reaction products by a method wherein the outer wall of a reaction vessel is divided into multiple regions for enabling the outer walls in respective regions to be cooled down by multiple cooling systems; the outer wall temperature and/or the refrigerant temperatures after cooling down process in respective regions are compared to control the refrigerant temperatures for equalizing the outer wall temperatures of the vessel. CONSTITUTION:A cooling system of a reaction vessel 1 is composed of three hoods 101-103 e.g. from upstream side encircling the whole vessel 1; an individual cooling system is composed of cooling blowers 111 113, heat exchamgers 121-123 for air cooling arranged above respective hoods to be exhausted through lower exhaust ports 131-133 while cooling down the outer periphery of the vessel 1 by the cold air from respective blowers 111-113. In such a constitution, the part at the highest temperature of the susceptor for mounting a semiconductor substrate 3 contained in the vessel 1 is cooled down by the cooling system positioned in the central part while the parts at relatively low temperature are cooled down by the other cooling systems on both sides. Furthermore, respective cooling systems are fitted with thermocouples 14 and a blower control system 15 to control the refrigerant temperature.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体基板に薄膜を生成する気相成長装置
の冷却方法に係り、気相成長装置の反応容器内壁面にて
反応ガスが反応し、望ましくない反応生成物を生じ、内
壁面へ付着することなどを防止するため、反応容器の外
壁を複数領域に分割して複数系統の冷却装置を設け、各
壁面温度に応じて個別に温度制御して反応容器の外壁を
所要温度に冷却する気相成長装置の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a cooling method for a vapor phase growth apparatus for forming a thin film on a semiconductor substrate, in which a reaction gas reacts on the inner wall surface of a reaction vessel of the vapor phase growth apparatus. In order to prevent undesirable reaction products from forming and adhering to the inner wall surface, the outer wall of the reaction vessel is divided into multiple areas and multiple cooling systems are installed, and the temperature is controlled individually according to the temperature of each wall surface. The present invention relates to a method for cooling a vapor phase growth apparatus in which the outer wall of a reaction vessel is cooled to a required temperature.

従来の技術 シリコン等の半導体基板に薄膜を生成する気相成長装置
には、種々の反応炉形式があるが、半導体基板をカーボ
ングラファイト製のサセプター上に載置し、所要の反応
容器に収納し、反応容器外に配置した赤外線ランプによ
る輻射熱、高周波発振コイルによる高周波誘導加熱、サ
セプター内に埋め込まれた抵抗体による抵抗加熱等の種
々の加熱方法にて加熱し、所要の反応ガスを反応容器内
に導入して気相成長を行なう構成からなる。
Conventional technology There are various reactor types for vapor phase growth equipment that produces thin films on semiconductor substrates such as silicon, but the semiconductor substrate is placed on a carbon graphite susceptor and housed in the required reaction vessel. The required reaction gas is heated by various heating methods such as radiant heat using an infrared lamp placed outside the reaction vessel, high frequency induction heating using a high frequency oscillation coil, and resistance heating using a resistor embedded in the susceptor. It consists of a configuration in which the vapor phase growth is performed by introducing the

これらの反応容器は、一般に石英チャンバーと呼ばれる
ように石英で製作されており、また、反応容器内壁面に
気相反応による反応生成物が堆積するを防ぐため、空冷
もしくは水冷で、容器全体を外部より一括して冷却して
いる。
These reaction vessels are generally called quartz chambers and are made of quartz, and in order to prevent reaction products from gas-phase reactions from accumulating on the inner walls of the reaction vessels, the entire vessel is air-cooled or water-cooled and the entire vessel is cooled externally. It is cooled all at once.

例えば、水平に配置する円筒状の反応容器内に、板状サ
セプターを水平あるいは傾斜させて配置する所謂横型気
相成長装置の場合、あるいは垂直に配置するバーレル型
の反応容器内に略多角錐形状のサセプターを回転可能に
配置する所謂バーレル型気相成長装置の場合、容器の外
周部に周設される赤外線ランプや高周波発振コイルの外
側に、これら全体を包囲する如くフードが配置されて、
冷却ブロワ−の冷風が外周全方位から吹きつけられ反応
容器全体を冷却している。
For example, in the case of a so-called horizontal vapor phase growth apparatus in which a plate-shaped susceptor is placed horizontally or tilted in a cylindrical reaction vessel placed horizontally, or in the case of a generally polygonal pyramid-shaped susceptor placed in a barrel-shaped reaction vessel placed vertically. In the case of a so-called barrel-type vapor phase growth apparatus in which a susceptor is rotatably arranged, a hood is placed outside an infrared lamp and a high-frequency oscillation coil that are installed around the outer periphery of the container so as to completely surround them.
Cold air from the cooling blower is blown from all directions around the reactor to cool the entire reaction vessel.

ドーム型の反応容器内にテーブル型のサセプターを回転
可能に配置し、サセプターの下方に高周波発振コイルを
設けた所謂縦型気相成長装置の場合、反応容器と相似形
で大型のフードを被せて、冷却ブロワ−からの冷風をフ
ード上端部から反応容器の下周縁部側へ導入出する間に
反応容器全体を冷却している。
In the case of a so-called vertical vapor phase growth apparatus in which a table-shaped susceptor is rotatably arranged inside a dome-shaped reaction vessel and a high-frequency oscillation coil is installed below the susceptor, a large hood similar in shape to the reaction vessel is placed over the susceptor. The entire reaction vessel is cooled while the cold air from the cooling blower is introduced from the upper end of the hood to the lower peripheral edge of the reaction vessel.

発明が解決しようとする課題 従来のいずれの気相成長装置でも、サセプターからの輻
射熱により、反応容器の局部的な加熱が起こり、反応容
器壁面における反応生成物の堆積を防ぐことができない
Problems to be Solved by the Invention In any conventional vapor phase growth apparatus, radiant heat from the susceptor causes local heating of the reaction vessel, making it impossible to prevent reaction products from accumulating on the walls of the reaction vessel.

この反応生成物の壁面での堆積が起きると、次回の反応
でその部分がよりいっそう局部加熱され、さらに反応生
成物の堆積を生む。
When this reaction product is deposited on the wall surface, that area is heated even more locally in the next reaction, resulting in further deposition of the reaction product.

この堆積物は、容器壁面より剥がれ半導体基板表面へ付
着し、半導体基板の品質を悪化させる原因となっていた
This deposit peels off from the wall surface of the container and adheres to the surface of the semiconductor substrate, causing deterioration in the quality of the semiconductor substrate.

また、この堆積物を除去するために、反応容器の洗浄を
定期的に行なわねばならず、生産性低下の要因ともなっ
ていた。
Furthermore, in order to remove this deposit, the reaction vessel must be cleaned periodically, which also causes a decrease in productivity.

この発明は、かかる現状に鑑み、反応容器の局部的な加
熱にともない生じる反応容器壁面の反応生成物の堆積を
防止できる手段の提供を目的としている。
In view of the current situation, it is an object of the present invention to provide a means for preventing the deposition of reaction products on the wall surface of a reaction vessel that occurs due to local heating of the reaction vessel.

発明の概要 この発明は、反応容器壁面に生じる反応生成物の堆積の
防止手段を目的に、種々検討した結果、容器全体が一括
して冷却されているため、反応容器の局部的な加熱が起
こり反応生成物の堆積することに着目し、例えば、反応
容器の外壁をいくつかの領域に分割し、反応容器の外壁
の温度の常時モニターを行ない、これを冷却系へフィー
ドバック、あるいはフィードフォワードし、その領域を
個別な冷媒温度で冷却を行ない反応容器の外壁温度を均
一化することにより、該反応生成物の堆積を防止でき、
反応容器の洗浄インターバルを従来よりも長くできるこ
とを知見し、この発明を完成した。
SUMMARY OF THE INVENTION As a result of various studies aimed at preventing the accumulation of reaction products on the wall surface of a reaction vessel, this invention solves the problem that local heating of the reaction vessel occurs because the entire vessel is cooled all at once. Focusing on the accumulation of reaction products, for example, the outer wall of the reaction vessel is divided into several regions, the temperature of the outer wall of the reaction vessel is constantly monitored, and this is fed back or feedforward to the cooling system. By cooling that region with individual refrigerant temperatures and making the temperature of the outer wall of the reaction vessel uniform, the accumulation of the reaction products can be prevented.
This invention was completed after discovering that the cleaning interval for reaction vessels can be made longer than before.

すなわち、この発明は、 前述した各種の気相成長装置の反応容器を空気などの冷
媒による冷却において、外壁を所要温度に冷却する際、 反応容器の外壁を複数領域に分割して、各領域の外壁を
個別に冷却可能にする複数系統の冷却装置を設け、 各領域間の外壁温度およびlまたは冷却後の冷媒温度を
比較して、各冷却装置の冷媒温度の制御を行ない、反応
容器の外壁温度を均一化することを特徴とする気相成長
装置の冷却方法である。
That is, the present invention provides a method of dividing the outer wall of the reaction container into a plurality of regions and controlling the temperature of each region when cooling the outer wall of the reaction container of the various vapor phase growth apparatuses mentioned above to a required temperature using a refrigerant such as air. A plurality of systems of cooling devices are provided that can individually cool the outer wall, and the temperature of the outer wall and the coolant temperature after cooling are compared between each region to control the coolant temperature of each cooling device. This is a method of cooling a vapor phase growth apparatus characterized by making the temperature uniform.

発明の図面に基づく開示 第1図は横型気相成長装置に適用したこの発明による冷
却装置を示す縦断説明図である。第2図a、bは容器壁
温度の分布を示すグラフであり、同図aは従来、同図す
はこの発明の場合を示す。
DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is a longitudinal sectional view showing a cooling device according to the present invention applied to a horizontal vapor phase growth apparatus. FIGS. 2a and 2b are graphs showing the distribution of container wall temperature, with FIG. 2a showing the conventional case and FIG. 2B showing the case of the present invention.

第3図は縦型気相成長装置に適用したこの発明による冷
却装置を示す縦断説明図である。第4図はバーレル型気
相成長装置に適用したこの発明による冷却装置を示す縦
断説明図である。
FIG. 3 is a vertical cross-sectional view showing a cooling device according to the present invention applied to a vertical vapor phase growth apparatus. FIG. 4 is a longitudinal sectional view showing a cooling device according to the present invention applied to a barrel type vapor phase growth apparatus.

天部、flJ1 構成 横型気相成長装置は、第1図に示す如く、水平に配置す
る円筒状の石英製の反応容器(1)内に、カーボングラ
ファイトにSiCコーティングされた板状サセプター(
2)を水平配置し、サセプター(2)に半導体基板(3
)を載置する構成で、反応容器(1)に所定間隔をおい
て周設される赤外線ランプや高周波発振コイル(4)に
て加熱し、反応容器(1)の反応ガス入口(5)より成
長ソースガスが導入され、基板(3)上で気相成長反応
が行なわれて、反応ガスは、ガス排気口(6)より排出
される。
Top section, flJ1 Structure As shown in Figure 1, the horizontal vapor phase growth apparatus has a plate-shaped susceptor (SiC-coated carbon graphite) placed in a horizontally arranged cylindrical quartz reaction vessel (1).
2) is placed horizontally, and the semiconductor substrate (3) is placed on the susceptor (2).
) is placed in the reaction vessel (1), heated by an infrared lamp or high-frequency oscillation coil (4) placed around the reaction vessel (1) at a predetermined interval, and then released from the reaction gas inlet (5) of the reaction vessel (1). A growth source gas is introduced, a vapor phase growth reaction is performed on the substrate (3), and the reaction gas is exhausted from the gas exhaust port (6).

反応容器(1)の冷却装置は、これら全体を包囲する如
く上流側から3つのフード(101〜103)が配設し
てあり、各フード(101〜103)の上方には冷却エ
アーを送る冷却ブロワ−(111〜113)、エアーを
冷却するための熱交換器(121〜123)が設けられ
て個別の冷却系を構成し、各冷却ブロワ−(111〜1
13)からの冷風が反応容器(1)外周を冷却しながら
下方の排気口(131〜133)を通って排気される構
成からなる。
The cooling device for the reaction vessel (1) has three hoods (101 to 103) arranged from the upstream side so as to surround the whole, and above each hood (101 to 103) there is a cooling device that sends cooling air. Blower (111-113) and heat exchanger (121-123) for cooling air are provided to constitute an individual cooling system, and each cooling blower (111-113) is provided with a heat exchanger (121-123) for cooling air.
13) is exhausted through the lower exhaust ports (131 to 133) while cooling the outer periphery of the reaction vessel (1).

反応容器(1)の外周部を複数の領域に分割して独立し
た冷却系を形成するため、少なくともサセプター(2)
からの輻射熱により、反応容器(1)が最も加熱される
領域と、それ以外の領域に分ける必要があり、ここでは
反応容器(1)の外周で最も加熱される中央のフード(
102)の領域と、それ以外の領域の3領域に分割して
いる。
In order to form an independent cooling system by dividing the outer circumference of the reaction vessel (1) into a plurality of regions, at least the susceptor (2)
It is necessary to divide the reaction vessel (1) into an area where it is heated the most due to the radiant heat from the hood (1), and another area where it is heated the most.
102) and other areas.

また、各領域、すなわち各冷却系には、当該領域内の所
要箇所あるいは複数箇所の反応容器(1)外壁の温度を
計測するための熱電対などの計測装置(143)と、該
温度計測値を受けて、冷却ブロワ−(ii3)の能力の
制御を行なう制御装置(15)が設置される。なお、第
1図では図示を簡略化するため、図の右側のフード(1
03)内のみ図示している。
In addition, each region, that is, each cooling system, is equipped with a measuring device (143) such as a thermocouple for measuring the temperature of the outer wall of the reaction vessel (1) at a required location or multiple locations within the region, and a measuring device (143) such as a thermocouple to measure the temperature measurement value. In response to this, a control device (15) is installed to control the capacity of the cooling blower (ii3). In addition, in Figure 1, in order to simplify the illustration, the hood (1
03) are shown.

作用効果 サセプター(2)および半導体基板(3)の加熱が始ま
ると、反応容器(1)外壁の温度のモニターを行ない、
他領域より加熱されている領域のブロワ−冷却系におい
て、冷媒温度の制御が行なって各領域の反応容器(1)
外壁の温度が均一になるように制御する。
Effect: When heating of the susceptor (2) and the semiconductor substrate (3) begins, the temperature of the outer wall of the reaction vessel (1) is monitored;
In the blower cooling system of an area that is heated more than other areas, the refrigerant temperature is controlled and the reaction vessel (1) of each area is heated.
Control the temperature of the outer wall to be uniform.

単一冷却系からなる従来の反応容器では、第2図aに示
す如く、反応容器の中央部の外壁の温度が高くなり、内
壁面の反応生成物の堆積が発生するが、上述のこの発明
の場合、同図すに示す如く、高温部を個別に冷却できる
ため、反応容器(1)外壁の温度を均一化でき、反応生
成物の付着、堆積を防止できる。
In a conventional reaction vessel consisting of a single cooling system, as shown in FIG. 2a, the temperature of the outer wall at the center of the reaction vessel becomes high and the reaction products accumulate on the inner wall surface. In this case, as shown in the figure, since the high-temperature parts can be individually cooled, the temperature of the outer wall of the reaction vessel (1) can be made uniform, and adhesion and deposition of reaction products can be prevented.

この発明によれば、反応ガスが反応容器内壁での反応堆
積を起さないように、すなわち、反応容器の温度制御が
可能になり、気相成長の際、反応容器内壁面の反応生成
物の堆積を防止でき、作製される半導体基板の品質が向
上し、かつ、反応装置の洗浄サイクルが従来の1.5〜
2倍以上に伸びるため、生産性も大きく向上する。
According to this invention, it is possible to control the temperature of the reaction vessel so that the reaction gas does not cause reaction deposition on the inner wall of the reaction vessel, and to prevent reaction products from forming on the inner wall of the reaction vessel during vapor phase growth. Deposition can be prevented, the quality of the semiconductor substrates produced is improved, and the cleaning cycle of the reaction equipment is reduced from 1.5 to 1.5 times compared to conventional methods.
Since it can be more than doubled, productivity is also greatly improved.

この発明において、反応容器の温度制御方法は、上述の
如く、各領域の反応容器外壁の温度をモニターして比較
し、高温域の冷却系にフィードバック制御を行なうほが
、各領域の反応容器外壁の温度と冷却系の冷媒温度、例
えば、冷却前後の温度をモニターしてこれらを他領域の
それと比較し、高温域の冷却系に送風量を増減させたり
、予め所要の熱交換器の能力を高めておくなど、フィー
ドバックあるいはフィードフォワード制御を行ない、均
一な反応容器外壁面温度を得ることができる。
In this invention, the temperature control method of the reaction vessel is such that, as described above, the temperature of the outer wall of the reaction vessel in each area is monitored and compared, and feedback control is performed on the cooling system in the high temperature area. By monitoring the temperature of the cooling system and the refrigerant temperature of the cooling system, for example, the temperature before and after cooling, and comparing these with those in other areas, it is possible to increase or decrease the amount of air sent to the cooling system in high temperature areas, or to adjust the required heat exchanger capacity in advance. A uniform outer wall surface temperature of the reaction vessel can be obtained by performing feedback or feedforward control such as increasing the temperature.

実施例2 構成 縦型気相成長装置は、第3図に示す如く、ドーム型の反
応容器(1)内に半導体基板(3)を載置するテーブル
型のサセプター(2)を回転可能に配置し、サセプター
(2)の下方に加熱用の高周波発振コイル(4)を設け
、サセプター(2)の中央に貫通配置した反応ガスノズ
ル(7)より成長ソースガスが導入噴出され、基板(3
)上で気相成長反応が行なわれた後、反応ガスは下方に
設けられたガス排気口(6)より排出される構成からな
る。
Example 2 Configuration As shown in FIG. 3, a vertical vapor phase growth apparatus has a table-shaped susceptor (2) on which a semiconductor substrate (3) is placed in a dome-shaped reaction vessel (1), which is rotatably arranged. A high-frequency oscillation coil (4) for heating is provided below the susceptor (2), and a growth source gas is introduced and ejected from a reaction gas nozzle (7) penetrating through the center of the susceptor (2).
) After the vapor phase growth reaction is carried out on the upper surface, the reaction gas is discharged from a gas exhaust port (6) provided below.

反応容器(1)の冷却装置は、これら全体を包囲する如
くドーム型の反応容器(1)を水平方向に3分割した3
つのフード(101〜1o3)が周配設してあり、各フ
ード(101〜103)の−万端には冷却エアーを送る
冷却ブロワ−(111〜113)、エアーを冷却するた
めの熱交換器(121〜123)が設けられて個別の冷
却系を構成し、各冷却ブロワ−(111〜113)がら
の冷風が反応容器(1)外周を冷却しながら他方の排気
口(131〜133)を通って排気される構成からなる
The cooling device for the reaction vessel (1) consists of 3 parts, which are divided into 3 parts in the dome-shaped reaction vessel (1) in the horizontal direction so as to surround the whole of the reaction vessel (1).
Two hoods (101 to 1o3) are arranged around the periphery, and each hood (101 to 103) has a cooling blower (111 to 113) that sends cooling air, and a heat exchanger (101 to 113) to cool the air. 121 to 123) are provided to constitute an individual cooling system, and the cold air from each cooling blower (111 to 113) passes through the other exhaust port (131 to 133) while cooling the outer periphery of the reaction vessel (1). It consists of a structure that is exhausted by

各冷却系には、当該領域内の反応容器(1)外壁の温度
を計測するための熱電対などの計測装置(141〜14
3)と、該温度計測値を受けて、冷却ブロワー(111
〜113)の能力の制御を行なう制御装置(15)が設
置される。
Each cooling system is equipped with measuring devices (141 to 14) such as thermocouples to measure the temperature of the outer wall of the reaction vessel (1) in the area
3), and in response to the temperature measurement value, the cooling blower (111
A control device (15) is installed to control the capabilities of the devices (113) to 113).

作用効果 この発明による冷却方法は、実施例1の場合と同様に複
数の冷却系統を設け、各領域の反応容器(1)外壁面温
度に応じて、個別に冷媒の温度制御して反応容器の外壁
を所要温度に冷却することができる。
Effects The cooling method according to the present invention provides a plurality of cooling systems as in the case of Example 1, and controls the temperature of the refrigerant individually according to the temperature of the outer wall surface of the reaction vessel (1) in each region. The outer wall can be cooled to the required temperature.

縦型気相成長装置の場合は、サセプター(2)の下方に
加熱用の高周波発振コイル(4)を設けるため、サセプ
ター(2)近傍の中段のフード(102)領域の反応容
器(1)が最も加熱される領域となり、下段の領域はベ
ースプレート(8)側への熱伝導があり比較的多くの冷
却を要しない。
In the case of a vertical vapor phase growth apparatus, a high-frequency oscillation coil (4) for heating is provided below the susceptor (2), so the reaction vessel (1) in the middle hood (102) area near the susceptor (2) is This is the region that gets heated the most, and the lower region does not require a relatively large amount of cooling because heat is conducted to the base plate (8) side.

去扇!担 構成 バーレル型気相成長装置は、第4図に示す如く、垂直に
配置するバーレル型の反応容器(1)内に多数の半導体
基板(3)を収納できる略多角錐形状のサセプター(2
)を回転可能に配置する構成からなり、反応容器(1)
の外周部に加熱用の赤外線ランプ(9)が対設される。
Gyofan! As shown in FIG. 4, the barrel-type vapor phase growth apparatus has a substantially polygonal pyramid-shaped susceptor (2) that can accommodate a large number of semiconductor substrates (3) in a vertically arranged barrel-type reaction vessel (1).
) is rotatably arranged, and the reaction vessel (1)
An infrared lamp (9) for heating is provided on the outer periphery of the lamp.

反応容器(1)の冷却装置は、実施例2と同様に、上段
、中段、下段の3領域に3つのフード(10□〜103
)が周配設してあり、冷却ブロワ−1熱交換器、計測装
置、制御装置を有する3系統の冷却系を構成している。
As in Example 2, the cooling device for the reaction vessel (1) has three hoods (10□ to 103) in three areas: upper, middle, and lower.
) are arranged around the cooling blower, forming a three-system cooling system including a cooling blower, a heat exchanger, a measuring device, and a control device.

作用効果 バーレル型気相成長装置の場合は、大型のサセプター(
2)に対向している広い範囲の中段領域の反応容器(1
)が輻射熱で加熱されているため、同領域を重点的に冷
却することにより、反応容器(1)外壁面温度を均一化
でき、反応生成物の付着、堆積を防止できる 発明の効果 以上に述べたこの発明によれば、各種の気相成長装置に
おいて、気相成長中、反応容器温度を反応生成物が堆積
、付着しない温度に冷却することが可能になり、反応生
成物の付着、堆積tこよる反応容器の洗浄が従来の1.
5〜2倍以上の長期間にわたり不要となり、反応炉の生
産性が向上し、かつ堆積した生成物の薄利に伴う基板へ
の付着が減少することから、半導体基板の結晶欠陥の発
生も抑えることができる。
Effects In the case of barrel type vapor phase growth equipment, a large susceptor (
2) in the middle area of the wide area facing the reaction vessel (1).
) is heated by radiant heat, by intensively cooling this area, the temperature of the outer wall surface of the reaction vessel (1) can be made uniform, and the adhesion and deposition of reaction products can be prevented. According to this invention, in various vapor phase growth apparatuses, it is possible to cool the reaction vessel temperature to a temperature at which reaction products do not accumulate or adhere during vapor phase growth, thereby reducing the adhesion or deposition of reaction products. Therefore, the cleaning of the reaction vessel is different from the conventional method 1.
This eliminates the need for a long period of 5 to 2 times more, improving the productivity of the reactor, and reducing the adhesion of deposited products to the substrate due to low profits, which also suppresses the occurrence of crystal defects in the semiconductor substrate. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は横型気相成長装置に適用したこの発明による冷
却装置を示す縦断説明図である。第2図a、bは容器壁
温度の分布を示すグラフであり、同図aは従来、同図す
はこの発明の場合を示す。 第3図は縦型気相成長装置に適用したこの発明による冷
却装置を示す縦断説明図である。第4図はバーレル型気
相成長装置に適用したこの発明による冷却装置を示す縦
断説明図である。 1・・・反応容器、2・・・サセプター、3・・・半導
体基板、4・・・高周波発振コイル、5・・・反応ガス
入口、6・・・ガス排気口、7・・・反応ガスノズル、
8・・・ベースプレート、9・・・赤外線ランプ、10
1〜103・・・フード、111〜113・・・ブロワ
−121〜123・・・熱交換器、131〜133・・
・排気口、141〜143・・・計測装置、15・・・
制御装置。 第1図 第2図 (α) (b) 温度分布 温度分布
FIG. 1 is a vertical cross-sectional view showing a cooling device according to the present invention applied to a horizontal vapor phase growth apparatus. FIGS. 2a and 2b are graphs showing the distribution of container wall temperature, with FIG. 2a showing the conventional case and FIG. 2B showing the case of the present invention. FIG. 3 is a vertical cross-sectional view showing a cooling device according to the present invention applied to a vertical vapor phase growth apparatus. FIG. 4 is a longitudinal sectional view showing a cooling device according to the present invention applied to a barrel type vapor phase growth apparatus. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Susceptor, 3... Semiconductor substrate, 4... High frequency oscillation coil, 5... Reaction gas inlet, 6... Gas exhaust port, 7... Reaction gas nozzle ,
8...Base plate, 9...Infrared lamp, 10
1-103...Hood, 111-113...Blower-121-123...Heat exchanger, 131-133...
・Exhaust port, 141-143...Measuring device, 15...
Control device. Figure 1 Figure 2 (α) (b) Temperature distribution Temperature distribution

Claims (1)

【特許請求の範囲】 1 気相成長装置の反応容器の冷却において、外壁を所要温
度に冷却する際、 反応容器の外壁を複数領域に分割して、各領域の外壁を
個別に冷却可能にする複数系統の冷却装置を設け、 各領域間の外壁温度および/または冷却後の冷媒温度を
比較して、各冷却装置の冷媒温度の制御を行ない、反応
容器の外壁温度を均一化することを特徴とする気相成長
装置の冷却方法。
[Claims] 1. When cooling the reaction vessel of a vapor phase growth apparatus, when cooling the outer wall to a required temperature, the outer wall of the reaction vessel is divided into a plurality of regions, and the outer wall of each region can be cooled individually. It is characterized by providing multiple systems of cooling devices, comparing the outer wall temperature and/or coolant temperature after cooling between each region, controlling the coolant temperature of each cooling device, and making the outer wall temperature of the reaction vessel uniform. Cooling method for vapor phase growth equipment.
JP4336290A 1990-02-23 1990-02-23 Cooling method for vapor growth device Pending JPH03245524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4336290A JPH03245524A (en) 1990-02-23 1990-02-23 Cooling method for vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336290A JPH03245524A (en) 1990-02-23 1990-02-23 Cooling method for vapor growth device

Publications (1)

Publication Number Publication Date
JPH03245524A true JPH03245524A (en) 1991-11-01

Family

ID=12661749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336290A Pending JPH03245524A (en) 1990-02-23 1990-02-23 Cooling method for vapor growth device

Country Status (1)

Country Link
JP (1) JPH03245524A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014617A (en) * 2002-06-04 2004-01-15 Daikin Ind Ltd Semiconductor manufacturing apparatus
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
WO2012011397A1 (en) * 2010-07-23 2012-01-26 株式会社アルバック Substrate heating furnace
JP2013251442A (en) * 2012-06-01 2013-12-12 Sharp Corp Vapor growth device and manufacturing method of nitride semiconductor light emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014617A (en) * 2002-06-04 2004-01-15 Daikin Ind Ltd Semiconductor manufacturing apparatus
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
WO2012011397A1 (en) * 2010-07-23 2012-01-26 株式会社アルバック Substrate heating furnace
JP2012028544A (en) * 2010-07-23 2012-02-09 Ulvac Japan Ltd Substrate heating furnace
JP2013251442A (en) * 2012-06-01 2013-12-12 Sharp Corp Vapor growth device and manufacturing method of nitride semiconductor light emitting element

Similar Documents

Publication Publication Date Title
JP3090339B2 (en) Vapor growth apparatus and method
WO1992010308A1 (en) Minimization of particle generation in cvd reactors and methods
JPH0945624A (en) Leaf-type heat treating system
JPH03108323A (en) Heating method for heater assembly and substrate
US5679165A (en) Apparatus for manufacturing semiconductor device
EP1315854B1 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JP2005054244A (en) Substrate tray of film deposition system
JPH03245524A (en) Cooling method for vapor growth device
JPH0322523A (en) Vapor growth device
US3964430A (en) Semi-conductor manufacturing reactor instrument with improved reactor tube cooling
JPH08176816A (en) Surface treatment of deposition preventive sheet for film forming device
JPH0779088B2 (en) Semiconductor thin film vapor phase growth equipment
JPH01137621A (en) Vapor growth apparatus
JPS60152675A (en) Vertical diffusion furnace type vapor growth device
EP1809789A1 (en) Epitaxial reactor cooling method and reactor cooled thereby
JPH0732128B2 (en) Vapor phase growth equipment
JP3009371B2 (en) Diamond-like carbon film deposition equipment
JPH06140340A (en) Manufacturing equipment for semiconductor device
US6091889A (en) Rapid thermal processor for heating a substrate
JPS59207622A (en) Semiconductor thin film vapor phase growth apparatus
JPH02262331A (en) Vapor growth apparatus
JPH06232138A (en) Annealing device
JPH08330237A (en) Manufacturing equipment of semiconductor
JPH01215792A (en) Method and apparatus for heating wafer in vapor growth apparatus
JPH01101623A (en) Cvd crystal growth device