JP4898839B2 - Method for manufacturing a three-dimensional frame structure for use as a core structure in a sandwich structure and the frame structure manufactured thereby - Google Patents

Method for manufacturing a three-dimensional frame structure for use as a core structure in a sandwich structure and the frame structure manufactured thereby Download PDF

Info

Publication number
JP4898839B2
JP4898839B2 JP2008555701A JP2008555701A JP4898839B2 JP 4898839 B2 JP4898839 B2 JP 4898839B2 JP 2008555701 A JP2008555701 A JP 2008555701A JP 2008555701 A JP2008555701 A JP 2008555701A JP 4898839 B2 JP4898839 B2 JP 4898839B2
Authority
JP
Japan
Prior art keywords
semi
dimensional
lattice structure
finished product
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008555701A
Other languages
Japanese (ja)
Other versions
JP2009527379A (en
Inventor
ハンス−ユルゲン ヴェーバー
グレゴール クリスティアン エンドレス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Priority claimed from PCT/EP2007/001549 external-priority patent/WO2007096172A1/en
Publication of JP2009527379A publication Critical patent/JP2009527379A/en
Application granted granted Critical
Publication of JP4898839B2 publication Critical patent/JP4898839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/005Making gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/04Making rigid structural elements or units, e.g. honeycomb structures composite sheet metal profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F27/00Making wire network, i.e. wire nets
    • B21F27/12Making special types or portions of network by methods or means specially adapted therefor
    • B21F27/128Making special types or portions of network by methods or means specially adapted therefor of three-dimensional form by connecting wire networks, e.g. by projecting wires through an insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D24/00Producing articles with hollow walls
    • B29D24/002Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/02Dropping, ejecting, or releasing articles
    • B64D1/08Dropping, ejecting, or releasing articles the articles being load-carrying devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • B29C53/06Forming folding lines by pressing or scoring
    • B29C53/063Forming folding lines by pressing or scoring combined with folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • B32B37/206Laminating a continuous layer between two continuous plastic layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2002/3488Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by frame like structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Producing a three-dimensional framework comprises producing a two-dimensional lattice structure from rods that cross at defined points, bonding the rods together at the crossing points, softening the rods by local heating along groups of three nonintersecting straight lines, and applying force along the middle of each three straight lines. Independent claims are also included for: (1) framework for a sandwich structure produced as above; (2) aircraft with a structural component comprising a composite material with a core structure produced as above.

Description

本願は、2006年2月24日出願のドイツ特許出願第10 2006 008 728.3号および2006年2月24日出願の米国特許仮出願第60/776,524の優先権を主張し、それらの出願の開示内容は援用によって本明細書の内容の一部をなす。   This application claims the priority of German Patent Application No. 10 2006 008 728.3 filed on February 24, 2006 and US Provisional Application No. 60 / 776,524 filed on February 24, 2006, The disclosure content of the application is incorporated herein by reference.

本発明は、複合材料の技術分野に関し、特に、サンドイッチ構造でコア構造として使用できる3次元骨組み構造の製造方法に関する。更に、本発明は、本発明に基づく方法により製造された、サンドイッチ構造における骨組み構造に関し、また、コア構造が本発明に基づく方法により製造された、サンドイッチ構造の構成要素を含む、航空機に関する。   The present invention relates to the technical field of composite materials, and more particularly to a method for manufacturing a three-dimensional framework structure that can be used as a core structure in a sandwich structure. Furthermore, the present invention relates to a framework structure in a sandwich structure manufactured by a method according to the present invention and to an aircraft in which a core structure includes components of a sandwich structure manufactured by a method according to the present invention.

剛性または強度と密度との良好な比率により、複合材料、特にサンドイッチ構造は、航空機構造分野において幅広い用途がある。概して言えば、サンドイッチ構造は上部および下部のカバー層から成り、その間は、剛性を強化する目的で、例えば垂直に六角形断面拡張セルで成る、ハニカムコア構造がある。   Due to the good ratio of stiffness or strength to density, composite materials, especially sandwich structures, have a wide range of applications in the field of aircraft construction. Generally speaking, a sandwich structure consists of upper and lower cover layers, between which there is a honeycomb core structure, for example consisting of vertically hexagonal cross-section expanded cells, for the purpose of enhancing rigidity.

ハニカム構造を含む構造の代替として、剛性の多孔性材料が使用できる。しかしながら、剛性多孔性材料コアを備えるサンドイッチ構造は、サンドイッチ構造とハニカムコア構造および同等の密度とを比較するとき、ある程度は力学的特性が劣るといった欠点を有する。これを補うために、繊維、糸、または引き抜き形成された骨組み半製品が、規定された角度および確定した密度で剛性多孔性材料に組み込まれる。繊維または糸、およびそれに続く樹脂の浸透過程においては、繊維が多孔性材料の力学的強化に寄与する。この場合、多孔性材料は、ピンを樹脂強化繊維または糸の形で適所に保持する担体として作用するだけでなく、負荷時に、前記ピンの座屈または崩壊を防ぐか、少なくとも遅らせるために、ピンを安定させる役目をする。   As an alternative to structures including honeycomb structures, rigid porous materials can be used. However, a sandwich structure comprising a rigid porous material core has the disadvantage that the mechanical properties are somewhat inferior when comparing the sandwich structure with the honeycomb core structure and equivalent density. To compensate for this, fibers, yarns, or pultruded framework semi-finished products are incorporated into rigid porous materials at defined angles and defined densities. In the permeation process of the fiber or yarn and the subsequent resin, the fiber contributes to the mechanical reinforcement of the porous material. In this case, the porous material not only acts as a carrier that holds the pin in place in the form of resin reinforced fibers or yarns, but also prevents or at least delays the buckling or collapse of the pin when loaded. To stabilize.

しかしながら、このように強化された剛性多孔性材料の荷重負荷能力が、導入されたピン、または引き抜き形成された骨組み半製品によって明白に決定されるので、概して、既存の多孔性コアは不必要にコア構造の密度の増加に寄与する傾向がある。更に、概して、強化された多孔性材料構造は、概して複合材料への損傷は塑性的かつ永久的な傾向があるため、負荷に対して弾性的であるわずかな狭い領域を有する。最後に、カバー層との間の空間が完全に剛性多孔性材料で満たされるため、強化された剛性多孔性材料を伴ったサンドイッチ構造の曝気または脱水は不可能である。   However, existing porous cores are generally unnecessary because the load carrying capacity of such reinforced rigid porous materials is unambiguously determined by the pins introduced or pultruded frame semi-finished products. There is a tendency to contribute to an increase in density of the core structure. In addition, reinforced porous material structures generally have a few narrow regions that are elastic to loads, as damage to composite materials generally tends to be plastic and permanent. Finally, since the space between the cover layers is completely filled with rigid porous material, aeration or dehydration of sandwich structures with reinforced rigid porous material is not possible.

特許文献1および特許文献2から、例えば、3次元格子構造を製造する方法は公知である。そこにおいて、3次元格子が生じるように、下部型および付随する上部型によって3次元方向に曲げられる、金属格子構造が、最初に生成される。この曲げの間、金属格子マットの外側縁は、これが3次元方向への曲げを阻害するので、適所に保持されない。しかしながら、下部型、及び付随する上部型を用いたこの曲げは、比較的柔軟性がない。それは、格子構造の角度を変化させること、及び格子構造の高さを変化させることは、下部型、及び付随する上部型の変更を必要とするためである。   From Patent Document 1 and Patent Document 2, for example, a method of manufacturing a three-dimensional lattice structure is known. There, a metal grid structure is first generated that is bent in a three-dimensional direction by a lower mold and an accompanying upper mold so that a three-dimensional grid results. During this bending, the outer edge of the metal grid mat is not held in place because it hinders bending in the three-dimensional direction. However, this bending with the lower mold and the accompanying upper mold is relatively inflexible. This is because changing the angle of the grating structure and changing the height of the grating structure requires a change in the lower mold and the accompanying upper mold.

特許文献3は、コア構造体としてのサンドイッチ構造用に用いる3次元格子構造の製造プロセスも記載している。この方法においては、まず、平面の格子構造は金属板で形成され、次に、3次元形状を上述の平面の格子構造にするために、その格子構造は、再び成形過程により、下部型および付随する上部型によって曲げられる。
国際公開第WO 2004/022869号明細書 国際公開第WO 03/101721号明細書 米国特許第3,884,646号明細書
Patent Document 3 also describes a manufacturing process of a three-dimensional lattice structure used for a sandwich structure as a core structure. In this method, first, the planar lattice structure is formed of a metal plate, and then, in order to change the three-dimensional shape to the above-described planar lattice structure, the lattice structure is again formed by the molding process and the lower mold and the accompanying mold. Bent by the upper mold.
International Publication No. WO 2004/022869 International Publication No. WO 03/101721 U.S. Pat. No. 3,884,646

上記の文献に従って製造される3次元格子構造は、多孔性材料によって強化されたコア構造体の不利な点を有していないが、3次元格子構造を製造するための製造方法は、上述の通り、下部型、及び上部型を使用するため比較的柔軟性がない。   The three-dimensional lattice structure manufactured according to the above literature does not have the disadvantages of the core structure reinforced with the porous material, but the manufacturing method for manufacturing the three-dimensional lattice structure is as described above. Since the lower mold and the upper mold are used, there is relatively no flexibility.

とりわけ、キャリア部材を用いずに、例えば剛性多孔性材料の形の3次元骨組み構造を製造する方法を述べる必要がある。そこにおいて、様々な格子ジオメトリの製造に関してこの骨組み構造は、上述の下部型、及び上部型を用いた方法より、柔軟である。   In particular, it is necessary to describe a method for producing a three-dimensional framework structure, for example in the form of a rigid porous material, without using a carrier member. Therein, this framework structure is more flexible than the above-described method using the lower mold and the upper mold in terms of manufacturing various lattice geometries.

本発明の文脈の範囲内で、「棒形の直線状半製品」は、引抜成形された、押出加工された、又は延伸された明確な断面を有する棒形のジオメトリを意味する。そして、断面は、例えば、円形、三角形、矩形、六角形、管状、または、類似の幾何学的形状でよい。半製品は、補強のための補強繊維の有無にかかわらず製造することができる。半製品は、例えば、1)押出加工された熱可塑性プラスチック、2)部分的に架橋され、引抜成形されたポリマー、特に、熱硬化性プラスチック材料、又はduromers、3)引抜成形された金属又はセラミック、特に前駆体セラミック(そこにおいて、熱可塑性プラスチック又は熱硬化性プラスチック材料(duromers)は付加的に補強繊維を含んでよい。)を含んでよい。   Within the context of the present invention, “bar-shaped linear semi-finished product” means a bar-shaped geometry with a clear cross-section that is pultruded, extruded or stretched. The cross section may then be, for example, circular, triangular, rectangular, hexagonal, tubular, or similar geometric shape. Semi-finished products can be produced with or without reinforcing fibers for reinforcement. Semi-finished products are, for example, 1) extruded thermoplastics, 2) partially cross-linked, pultruded polymers, in particular thermosetting plastic materials, or duromers, 3) pultruded metals or ceramics , In particular precursor ceramics, in which the thermoplastics or thermosetting plastic materials may additionally contain reinforcing fibers.

本発明の第1の態様によれば、本発明の目的は、3次元骨組み構造を製造する方法によって達成され、そこにおいて、第一ステップとして、棒形の直線状半製品から生成される2次元格子構造が製造される。この方法において、この直線状半製品は、連続的材料として供給されてもよい。このプロセスにおいて、この直線状半製品は、2次元格子構造を形成するために、それらが規定された交点で交差するように配列される。例えば、先ず最初に、直線状半製品の第1層は、個々の棒形の直線状半製品がその層において群として、お互いに並行に延びるように配置できる。その後、群としてお互いに並行に延びる、直線状半製品の第2層は、第1層上に配置される。そこにおいて、直線状半製品は、2枚の層の直線状半製品が規定された交点で交差するように、第1層とは異なる角度で配置される。最初はお互いに結合されていない棒形の直線状半製品から形成される格子構造は、均一なパターンを構成できるが、これは必須ではない。更なる製造工程において、その後、棒形の直線状半製品は、交点において、相互接続される。この接続は、例えば、半製品が柔らかくなり、わずかに各々に付着するように、交点の領域における点接触加熱によって行うことができる。更に次の工程において、棒形の直線状半製品は、それらがいくらか粘着的、又は粘着性になるように、軟化される。この軟化は、例えば、3本の仮想の交差しない直線に沿って、格子構造に局所的加熱を行うことによってできる。2次元格子構造に対する加熱は、例えば、仮想の交差しない直線の第1群に沿って、及び、同様に、想像上の交差しない直線の第2群に沿って、行うことができる。ここにおいて、第1群の直線および第2群の直線は、お互い交互に延びている。換言すれば、どの場合にも、第2群の1本の直線は第1群の2本の直線の間に位置し、第1群の1本の直線は第2群の2本の直線の間に位置する。   According to a first aspect of the present invention, the object of the present invention is achieved by a method for manufacturing a three-dimensional framework structure, wherein as a first step, a two-dimensional generated from a rod-shaped linear semi-finished product. A lattice structure is manufactured. In this way, this linear semi-finished product may be supplied as a continuous material. In this process, the linear semi-finished products are arranged so that they intersect at defined intersections to form a two-dimensional lattice structure. For example, first of all, the first layer of linear semi-finished products can be arranged such that the individual rod-shaped linear semi-finished products extend in parallel with each other as a group in the layer. Thereafter, a second layer of linear semi-finished products, extending parallel to each other as a group, is arranged on the first layer. There, the linear semi-finished product is arranged at a different angle from the first layer so that the linear semi-finished products of the two layers intersect at a defined intersection. A lattice structure initially formed from rod-shaped linear semi-finished products that are not joined together can form a uniform pattern, but this is not essential. In a further manufacturing process, the bar-shaped linear semi-finished products are then interconnected at the intersections. This connection can be made, for example, by point contact heating in the area of the intersection so that the semi-finished products become soft and slightly adhere to each other. In a further step, the bar-shaped linear semi-finished products are softened so that they become somewhat sticky or sticky. This softening can be done, for example, by locally heating the lattice structure along three virtual non-intersecting straight lines. The heating of the two-dimensional lattice structure can be performed, for example, along a first group of imaginary non-intersecting straight lines and similarly along a second group of imaginary non-intersecting straight lines. Here, the straight lines of the first group and the straight lines of the second group extend alternately. In other words, in any case, one straight line of the second group is located between two straight lines of the first group, and one straight line of the first group is two straight lines of the second group. Located between.

その後所望の3次元構造を格子構造に伝達するために、力が、格子構造がその2次元平面から変形するように、加熱された仮想の直線の中間の直線に沿って格子構造に加えられる。格子構造の変形の結果、導入された力は、半製品に作用する一対の張力に偏向され、その結果、格子構造が、熱が加えられた直線の中間の仮想の直線に沿って3次元方向に引き込まれる。この工程は、半製品の材料が引き延ばされない深い引き抜き加工が擬似的に関係する。代わりに、格子構造は、3次元方向への変形の結果、平面において短くなる。力が加えられるときに、格子構造がランダムに偏位することを防ぐために、格子構造の境界又は中間の直線の側面に位置している直線は可動ベアリングによって保持してもよい。これによって、加えられた力が目標とする半製品中の引張り力に変換、又は分解できることを確実にする。   A force is then applied to the lattice structure along a straight line intermediate the heated virtual straight line so that the lattice structure deforms from its two-dimensional plane in order to transfer the desired three-dimensional structure to the lattice structure. As a result of the deformation of the lattice structure, the introduced force is deflected into a pair of tensions acting on the semi-finished product, so that the lattice structure is in a three-dimensional direction along an imaginary straight line in the middle of the heated line Be drawn into. This process involves a deep drawing process in which the semi-finished material is not stretched. Instead, the lattice structure becomes shorter in the plane as a result of deformation in the three-dimensional direction. In order to prevent the lattice structure from being randomly displaced when a force is applied, the straight line located at the boundary of the lattice structure or in the middle straight line may be held by a movable bearing. This ensures that the applied force can be converted or decomposed into the target tensile force in the semi-finished product.

力が格子構造に加えられる工程において、2次元の格子構造は、連続的に交互に繰り返される山及び谷の形成によって、3次元の折り畳み構造に変形される。この処理において、山は第1群の直線に位置している。その一方で、谷の最深部は第2群の直線に位置している。この文書において、「山」、及び「谷」の用語は、いずれも、作成される3次元折り畳み構造の断面に関する。そこにおいて、折り畳み構造の山、及び谷は明白である。斜視図において、格子構造の表面に関して見るとき、山、及び谷は、「山脈」または隆起、及びそれらの間にある「谷」に解釈される。この処理において、山、及び谷は、形成される高い位置及び低い位置の方向に格子構造に力が交互に加えられる、2つの群の直線の、直線の領域において、形成される。形成される高い位置、及び低い位置の方向に力を加えることによって、2次元格子構造は平面から変形する。この結果、上述の、間に谷を有する山脈が2つの群の直線の、直線に沿って形成される。格子構造の半製品上へ作用する力の結果、2つの真直ぐな群の直線に沿って、2次元格子構造は、平面から変形する。その結果、山、及び谷が所望の方法で形成される。直線に「沿って」格子構造に加えられる力は、力が格子構造に基本的に垂直に加わり、力がその直線に沿って分配されることを、意味する。   In the process in which force is applied to the lattice structure, the two-dimensional lattice structure is transformed into a three-dimensional folded structure by the formation of peaks and valleys that are continuously and repeatedly repeated. In this process, the mountain is located on the straight line of the first group. On the other hand, the deepest part of the valley is located on the second group of straight lines. In this document, the terms “mountain” and “valley” both relate to the cross-section of the three-dimensional folded structure being created. There, the peaks and valleys of the fold structure are obvious. In the perspective view, when viewed with respect to the surface of the lattice structure, mountains and valleys are interpreted as “mountains” or ridges and “valleys” between them. In this process, peaks and valleys are formed in two groups of straight, linear regions where forces are alternately applied to the lattice structure in the direction of the high and low positions that are formed. By applying a force in the direction of the high and low positions that are formed, the two-dimensional lattice structure is deformed from the plane. As a result, the above-described mountain range having valleys is formed along the straight line of two groups of straight lines. As a result of the forces acting on the semi-finished product of the lattice structure, the two-dimensional lattice structure deforms from a plane along two straight groups of straight lines. As a result, peaks and valleys are formed in the desired manner. A force applied to the lattice structure “along” a straight line means that the force is applied essentially perpendicular to the lattice structure and the force is distributed along the straight line.

掛かる時間に対して最適に方法を実施するために、棒形の直線状半製品の交点への接続、棒形の直線状半製品の軟化、及び力の導入は、上記工程が繰り返され、製造の方向の点に進む連続方法を行う連続的に流れる方法で実施できる。特に、棒形の直線状半製品を、それらを軟化しているときに接続することは都合がよい。これは、これらの製品は、軟化処理によっていくらか粘着性になるので、半製品を他の半製品に置くとお互いに付着するためである。当然ながら、棒形の直線状半製品の軟化は、棒形の直線状半製品がお互いに交点の領域で接続するように、交点の領域で行うことは必要である。連続的繰り返し製造工程は、連続工程において製造の方向に、格子構造を変形させるために、格子構造の更なる仮想の直線に加熱が行われ、力がこれらの直線に沿って加えられるという特徴を有する。   In order to carry out the method optimally for the time required, the above process is repeated for the connection to the intersection of the bar-shaped linear semi-finished product, the softening of the bar-shaped linear semi-finished product, and the introduction of force. It can be implemented in a continuously flowing way, with a continuous way going to a point in the direction. In particular, it is convenient to connect rod-shaped linear semi-finished products when they are softened. This is because these products become somewhat sticky due to the softening process and thus adhere to each other when a semi-finished product is placed on another semi-finished product. Of course, the softening of the bar-shaped linear semi-finished product needs to be performed in the region of the intersection so that the rod-shaped linear semi-finished products are connected to each other in the region of the intersection. The continuous repetitive manufacturing process is characterized in that heating is performed on further virtual straight lines of the lattice structure and forces are applied along these straight lines in order to deform the lattice structure in the direction of manufacture in the continuous process. Have.

更に製造工程を最適化するために、3本の交差しない直線に沿って格子構造が加熱される間、力を加えることもできる。この加熱の結果、格子構造の上述の直線に沿った塑性変形を、力を加えることによって、目標とする方法で行うことができる。   Further, force can be applied while the lattice structure is heated along three non-intersecting straight lines to optimize the manufacturing process. As a result of this heating, plastic deformation along the aforementioned straight line of the lattice structure can be performed in a targeted manner by applying force.

静力学に関する、及び望ましい構造に関する理由により、棒形の直線状半製品の3次元方向における交点が、作成すべき3次元骨組み構造の外形境界を形成するのであれば、加熱は、製造の方向に関して垂直になるように配置された交点に同時に熱が加わるように行ってよい。これらの、製造の方向に対して垂直であるように配置された交点は、格子構造の種々の直線状半製品が交差する交点に隣接する。力の格子構造への導入は、常に3本の直線の中間の一つに沿って行われ、その直線に沿って格子構造への加熱が行われるので、この力の導入の結果、及び格子構造の変形による力の半製品中に働く引張り力への偏位の結果、加熱された交点は所望の3次元方向に引き付けられ、この交点は3次元骨組み構造の3次元方向の外形境界になる。   If for the reasons of statics and the desired structure, the intersection in the three-dimensional direction of the rod-shaped linear semi-finished product forms the outer boundary of the three-dimensional framework structure to be created, the heating is related to the direction of manufacture. You may carry out so that a heat may be simultaneously added to the intersection arrange | positioned so that it may become perpendicular | vertical. These intersections arranged perpendicular to the direction of manufacture are adjacent to the intersections where the various linear semi-finished products of the lattice structure intersect. The introduction of force into the lattice structure is always performed along one of the three straight lines, and heating to the lattice structure is performed along the straight line. As a result of the displacement of the force due to the deformation to the tensile force acting in the semi-finished product, the heated intersection is attracted in the desired three-dimensional direction, which becomes the outer boundary of the three-dimensional framework structure in the three-dimensional direction.

上述の通り、棒形の直線状半製品の交点での接続は、製造の方向に対して垂直であるように位置された交点への並列の加熱の間、及び並列の加熱の結果、行われる。これは、加熱が、製造の方向に対して垂直であるように配置された交点を並列して加熱するように行われる場合、好適である。のこの種のその熱であるケースにおいて、特に好都合である。個々の層の直線状半製品が交点領域において柔らかくなるので、そして、それらが接触することの結果として(更に、該当するのであれば、関係する力(例えば、重力)の結果として)、お互いに結合される。   As mentioned above, the connection at the intersection of the bar-shaped linear semi-finished products is made during and as a result of the parallel heating to the intersection located so as to be perpendicular to the direction of manufacture. . This is preferred when the heating is carried out in parallel to the intersections arranged to be perpendicular to the direction of manufacture. This is particularly advantageous in the case of this kind of heat. As the linear semi-finished products of the individual layers soften in the intersection area, and as a result of their contact (and as a result of the forces involved (eg gravity), if applicable), each other Combined.

本発明の特定の態様によれば、3次元折り畳み構造が形成される。連続的な繰り返し工程において、力が繰り返し、格子構造に第2の仮想の直線のそれぞれに沿って導入され、その直線には熱が加えられ、力は、半製品を所望の深さまで3次元方向に向かって引く。この工程において、格子構造平面は、加熱が行われる中間直線に並ぶ2つの直線がお互いにその平面状で近づくように、変形し、その結果、断面が「コンサーティーナ」形状の折り畳み構造が生成される。当然ながら、加熱された全ての第1の、第3の、第5の、等の直線に3次元方向の負方向の力を加えることに対して、加熱されたあらゆる第2の直線に沿って格子構造に3次元方向の正方向の力を加えることも可能である。これにより、ジグザグ形状の折り畳み構造が形成できる。   According to a particular aspect of the invention, a three-dimensional folded structure is formed. In a continuous iterative process, forces are repeatedly introduced into the grid structure along each of the second imaginary straight lines, heat is applied to the straight lines, and the forces are directed through the semi-finished product to the desired depth in three dimensions. Pull towards. In this process, the lattice structure plane is deformed so that two straight lines aligned with the intermediate straight line where heating is performed approach each other in the planar shape, and as a result, a folded structure having a “consertina” shape is generated. The Of course, along with every second straight line heated against applying a negative three-dimensional force to every heated first, third, fifth, etc. straight line. It is also possible to apply a three-dimensional positive force to the lattice structure. Thereby, a zigzag folded structure can be formed.

下部型、及び上部型を使用する公知の方法と比較して、本発明に基づく方法は、非常に柔軟である。熱が加えられる直線に沿って力が加えられる結果として、3次元骨組み構造のあらゆる所望の個々の厚み、又はいかなる所望の強さを生成できる。例えば、力および熱は、3次元方向に移動可能な、加熱可能な端部によって加えることができる。ここにおいて、適用されることができる。そこにおいて、端部が3次元方向に進む深さに応じて、骨組み構造の可変の厚みが形成される。従って、例えば、格子構造の異なる位置で端部が格子構造を変形させるために3次元の異なる範囲へ移動することにより、3次元骨組み構造の厚みを連続的に変えることができる。   Compared to known methods using lower molds and upper molds, the method according to the present invention is very flexible. As a result of the force being applied along a straight line to which heat is applied, any desired individual thickness or any desired strength of the three-dimensional framework structure can be generated. For example, force and heat can be applied by a heatable end that is movable in three dimensions. Here, it can be applied. There, a variable thickness of the skeleton structure is formed according to the depth at which the end part advances in the three-dimensional direction. Therefore, for example, the thickness of the three-dimensional framework structure can be continuously changed by moving the end portions to different three-dimensional ranges in order to deform the lattice structure at different positions of the lattice structure.

交点において棒形の直線状半製品を確実に接続するために、製造方向に対して垂直となるように位置付けられた交点に沿って、棒形の直線状半製品を軟化させるために、加熱している間に、力を導入することができ、交点の領域において、半製品上に圧力をかけられた材料の小さな領域が形成され、それは、正の副次的作用として、これらの点における半製品の折り畳み性能を強化することができる。   In order to securely connect the rod-shaped linear semi-finished product at the intersection, heating is performed to soften the rod-shaped linear semi-finished product along the intersection located so as to be perpendicular to the production direction. Force can be introduced while in the area of the intersection, a small area of material is formed on the semi-finished product, which acts as a positive side effect, The folding performance of the product can be enhanced.

上述において、3次元骨組み構造を製造する方法が記載され、ここで、2次元格子構造が折り畳まれる直線は一般的に言えば、交差しない。しかしながら、できる限り規則正しく3次元格子構造を形成するためには、並行する(仮想的な)直線に沿って格子構造を加熱すること、および上述の直線における格子構造に力を導入することもまた可能である。   In the above, a method for manufacturing a three-dimensional framework structure is described, where the straight lines on which the two-dimensional lattice structure is folded generally do not intersect. However, in order to form a three-dimensional lattice structure as regularly as possible, it is also possible to heat the lattice structure along parallel (virtual) straight lines and to introduce forces into the lattice structure in the above-mentioned straight lines It is.

2次元格子構造を3次元に変形することを容易にするために、更なる工程において、加熱された直線に沿って、後に形成される製造方向に、3次元の方向に、半製品に予備成形のくぼみを与えることができる。予備成形のくぼみを与える工程は、この目的のために特に提供されたエッジ形状の押印具(impression tool)によって、完全に別個の工程において生じてもよい。これの別の方法として、予備成形のくぼみはまた、可動エッジおよび過熱可能エッジによって半製品に押印してもよい。交点の領域において予備成形のくぼみを押印することによって、これらの交点において材料の厚さが擬似的に(quasi)2倍となるように、棒形の直線状半製品が、交点において、個々の層において交差するので、これらの厚みの増した部分は減少されるか、または、熱硬化性の半製品の場合、全て取り除くことも可能である。特に、接合するための溶接方法を、熱硬化性の半製品の場合に用いることができる   In order to facilitate the transformation of the two-dimensional lattice structure into three dimensions, in a further step, the preform is pre-formed into a semi-finished product in a three-dimensional direction, along the heated straight line, in the production direction to be formed later Can give indentations. The step of providing the pre-formed indentation may occur in a completely separate step, with an edge-shaped impression tool provided specifically for this purpose. As an alternative to this, the preformed recess may also be imprinted on the semi-finished product with a movable edge and a superheatable edge. By imprinting preformed indentations in the region of intersection, the bar-shaped linear semi-finished product is separated at the intersection at individual points so that the material thickness is quasi doubled at these intersections. Because of the crossing in the layers, these thickened parts can be reduced or all removed in the case of a thermoset semi-finished product. In particular, the welding method for joining can be used in the case of thermosetting semi-finished products

骨組み構造が曲げによる変形に対して敏感に反応するように、上述の方法で製造された3次元骨組み構造の抵抗モーメントを増加させるために、更なる、方法に関連する工程において、カバー層が(3次元に引き込まれる)骨組み構造の各側の極端に接するように、カバー層を、製造された空間的な骨組み構造の少なくとも片側に取り付ける(例えば、接着する)ことができる。これらのカバー層は、したがって、3次元骨組み構造が、曲げモーメントに影響を受けた場合に、それ自体変形しない、または、ほんのわずかしか変形しないように、曲げモーメントの適用の結果として生じた圧縮力および張力を吸収する。カバー層を、せん断荷重、または、3次元骨組み構造に対して付随するせん断変形に対して反応しにくくするために、特に、上述の取り付けに加え、伝達されるせん断荷重を増加させるために、カバー層は、縫合工程によって骨組み構造の各側の極端に縫合可能であり、ここで、特に、片側縫合方法を用いることができる。代替として、固定用のくし状部の歯が、その極端に沿って、骨組み構造を介しカバー層へと押圧される点で、カバー層はまた骨組み構造に固定することができ、ここで、歯は最終的に、樹脂の硬化の結果として、カバー層に固定される。   In order to increase the resistance moment of the three-dimensional frame structure manufactured by the above-described method so that the frame structure is sensitive to bending deformation, in a further method-related step, the cover layer is ( The cover layer can be attached (eg, glued) to at least one side of the manufactured spatial framework structure so as to be in extreme contact with each side of the framework structure (which is drawn in three dimensions). These cover layers therefore have a compressive force generated as a result of the application of the bending moment so that the three-dimensional frame structure does not deform itself or only slightly when it is affected by the bending moment. And absorb tension. In order to make the cover layer less sensitive to shear loads or shear deformation associated with a three-dimensional framework structure, in particular to increase the transmitted shear load in addition to the above-mentioned attachments. The layers can be extremely stitched on each side of the framework structure by a stitching process, and in particular, one-side stitching methods can be used. Alternatively, the cover layer can also be fixed to the framework structure, in that the teeth of the fixing combs are pressed along its extremes through the framework structure to the cover layer, where the teeth Is finally secured to the cover layer as a result of curing of the resin.

上述に示すように、3次元骨組み構造を製造するための本発明に係る方法を用いて、剛性の多孔性材料を用いたコア構造の設計と比較して、コア構造の密度の低減を達成することができる。なぜならば、本発明に係る方法においては、そのような剛性の多孔性材料を提供する必要はないからであるさらに、本発明に係る方法を用いて、開いた構造を成形することができ、これは、容易に乾燥でき、すなわち、容易に通気され、または排水できるという点において特徴的である。さらに、構造の開いた設計のために、構造を通したケーブルの配置は、設計された通路の結果としてその構造の機械的統合性に対して妥協を含むような、仮にその設計がなければ生じ得た問題を生じることはない。   As described above, the method according to the present invention for producing a three-dimensional framework structure is used to achieve a reduction in the density of the core structure compared to the design of the core structure using a rigid porous material. be able to. This is because it is not necessary to provide such a rigid porous material in the method according to the present invention. Furthermore, the method according to the present invention can be used to form an open structure. Is characteristic in that it can be easily dried, ie easily aerated or drained. In addition, because of the open design of the structure, the placement of cables through the structure would occur without that design, as a result of the designed passage, which would compromise the mechanical integrity of the structure. It won't cause any problems.

剛性の多孔性材料を用いたコア構造と比較した場合、本発明に係る方法を用いて製造された3次元の骨組み構造は、塑性変形による損傷を生じず、またはわずかしか生じないように、広範な弾性変形をさらに特徴とする。その代わり、過大荷重に影響を受けた場合、折り畳まれた線半製品における個々の格子は弾性的に壊れ、その結果、ダメージに対して改善された耐久度を達成することが可能である。   When compared to a core structure using a rigid porous material, the three-dimensional framework structure produced using the method according to the present invention has a wide range of features so that it is not damaged by plastic deformation or only slightly. Is further characterized by elastic deformation. Instead, when affected by an overload, the individual grids in the folded wire semi-finished product can be elastically broken, so that improved durability against damage can be achieved.

なぜならば、本発明に係る方法において、引き抜き成形、または継続的に延伸され引き抜き成形された明確な断面(三角形、四角形、六角形、空洞状、管状、円形)を有する形状を用いることが可能であるので、建築に携わるエンジニアまたは設計者は、明確な骨組み形状について狙いを定めて選択することによって、コア構造の特徴が、目的に適った方法において改善できるように、3次元骨組み構造の個々の格子の座屈挙動を修正する選択の余地をさらに有する。   This is because, in the method according to the present invention, it is possible to use pultrusion or a shape having a clear cross-section (triangle, quadrangle, hexagon, cavity, tube, circle) continuously drawn and pultruded. As such, architects or designers who are involved in the construction can select individual 3D framework structures in a way that suits the purpose by aiming and selecting a clear framework shape. There is further the option to modify the lattice buckling behavior.

本方法は、押し出し成形また引き伸ばし成形の速度を変更することによって、または、格子構造における角度の修正をすることによって、連続的に流れる方法において実施できるので、傾斜の形成、密度の相違、および3次元骨組み構造の厚さの相違を達成することができる。   The method can be carried out in a continuously flowing method by changing the speed of extrusion or stretching, or by modifying the angle in the lattice structure, so that slope formation, density differences, and 3 Differences in the thickness of the dimensional framework structure can be achieved.

なぜならば、2次元格子構造を3次元に曲げることにおいて、従来技術によって公知である下部型および上部型の配置が用いられないのであり、工程の柔軟性を改善することができる。なぜならば、上部型および下部型を用いる場合、上部型および下部型の両方は、曲げ角度および構造の高さを変更できるように変化させなければならないからである。本発明に係る方法を使用して、曲げ角度および構造の高さにおけるそのような変更は、3次元に曲げることができる加熱可能なエッジ(エッジは3次元における異なる深度に移動する)を使用することで達成することができる。   This is because the lower and upper mold arrangements known from the prior art are not used in bending the two-dimensional lattice structure in three dimensions, and the process flexibility can be improved. This is because when using an upper mold and a lower mold, both the upper mold and the lower mold must be changed so that the bending angle and the height of the structure can be changed. Using the method according to the invention, such changes in bending angle and structure height use heatable edges that can be bent in three dimensions (edges move to different depths in three dimensions). Can be achieved.

以下において、本発明を、添付の図面を参照してさらに詳細に説明する。添付の図面は例示的実施形態を例示する目的のためにのみ提供され、特に、あらゆる意味においても本発明が保護する範囲を限定するものとして解釈されるべきではないことは強調されるべきである。   In the following, the present invention will be described in more detail with reference to the accompanying drawings. It should be emphasized that the accompanying drawings are provided only for the purpose of illustrating exemplary embodiments and in particular should not be construed as limiting the scope of the invention in any way. .

全ての図にわたって、同じ参照文字が、同一または対応する要素に使用される。   Throughout the figures, the same reference characters are used for the same or corresponding elements.

図1は、図に示す例示的実施形態において、棒形の直線状半製品2の2つの群から形成された2次元格子構造を示し、ここで、まず第1の群2は、半製品が並行して延び、第1層において互いに間隔を置くように配置されている。次に、棒形の直線状半製品3の第2の群3は、第2の群の個々の棒形の直線状半製品3が、第1層2の上において、第2層中に、互いに間隔を置き、並行して延びるように、第1層上に配置されている。第1の群2および第2の群3の棒形の直線状半製品の上述の配置の結果として2次元格子構造1が形成され、ここで2つの層の個々の棒形の直線状半製品は交点4の所定の位置において交差する。   FIG. 1 shows, in the exemplary embodiment shown in the figure, a two-dimensional lattice structure formed from two groups of rod-shaped linear semi-finished products 2, where first group 2 consists of semi-finished products. It extends in parallel and is arranged to be spaced from each other in the first layer. Next, the second group 3 of the rod-shaped linear semi-finished products 3 is divided into the second group of individual rod-shaped linear semi-finished products 3 on the first layer 2 and in the second layer. They are arranged on the first layer so as to be spaced apart from each other and extend in parallel. As a result of the above-described arrangement of the first group 2 and the second group 3 rod-shaped linear semi-finished products, a two-dimensional lattice structure 1 is formed, in which two layers of individual rod-shaped linear semi-finished products are formed. Intersect at a predetermined position of intersection 4.

例えば、線半製品は、引き抜き成形(部分的に交差結合された)された熱硬化性材料、押出加工された熱硬化性材料、継続的に延伸され引き抜き成形された金属またはセラミック、特に、セラミック前駆体を含み、ここで、異なる断面ジオメトリを用いることができる。   For example, wire semi-finished products may be pultruded (partially cross-linked) thermosetting materials, extruded thermosetting materials, continuously drawn and pultruded metals or ceramics, especially ceramics Including precursors, where different cross-sectional geometries can be used.

以下の形成工程のために、上述の方法において形成された格子構造の形状を確保するために、棒形の直線状半製品の2つの層2および3は、交点4において相互接続されており、例えば、それは、加熱することによって、または、可能ならば、図1にて破線で示す直線5および6に沿った対応する力の適用によって生じ得る。この処理において、その接続は製造方向7において連続的および順次的である。この連続的で製造方向における工程において、製造方向と略垂直となる直線5および6上に延びる交点4は、同時に熱にさらされる。加熱した結果、線半製品は交点4においてわずかに熱せられ、それらの製品はわずかに粘着性を帯びる。すなわち、粘着性のゆえに相互接続する。   In order to ensure the shape of the lattice structure formed in the above-described method for the following forming steps, the two layers 2 and 3 of the rod-shaped linear semi-finished product are interconnected at the intersection point 4; For example, it can occur by heating or, if possible, by applying corresponding forces along the straight lines 5 and 6 shown in dashed lines in FIG. In this process, the connection is continuous and sequential in the production direction 7. In this continuous process in the production direction, the intersection points 4 extending on the straight lines 5 and 6 which are substantially perpendicular to the production direction are simultaneously exposed to heat. As a result of the heating, the semi-finished products are slightly heated at the intersection 4 and the products are slightly sticky. That is, they are interconnected because of their stickiness.

さらなる関連方法の工程において、次に、棒形の直線状半製品2および3は、3つの交わらない直線5および6に沿った群において軟化でき、それは例えば、格子構造1への局所的加熱によって生じさせることができる。交点4において棒形の直線状半製品を接続する工程が加熱によって生じることができるので、格子構造1が図1に破線で示す3つの直線(これらの直線は交点4を相互接続し、製造方向7に垂直となるように延びる)に沿って軟化されるように、1つの工程において棒形の直線状半製品を接続および軟化することを組み合わせることは都合の良いことである。   In a further related process step, the rod-shaped linear semi-finished products 2 and 3 can then be softened in groups along three non-intersecting straight lines 5 and 6, for example by local heating to the lattice structure 1 Can be generated. Since the process of connecting the rod-shaped linear semi-finished products at the intersection 4 can be caused by heating, the lattice structure 1 has three lines indicated by broken lines in FIG. 1 (these lines interconnect the intersection 4 and the production direction It is expedient to combine the joining and softening of the rod-shaped linear semi-finished product in one step so that it is softened along (extends perpendicular to 7).

後の変形ステップにおいて、3次元における格子構造1の製造を容易にするために、図2に示すように中間ステップにおいて、くぼみの予備成形を半製品2、3に付与してもよい。図2に示すように、格子構造1において小さなくぼみを付与し、後で格子構造1が3次元へ引き込まれる方向へくぼみ9は延びる。この配置において、くぼみ9は上記の直線5、6上に等しく位置付けされ、直線5、6に沿って、格子構造1から軟化した棒形の直線状半製品2、3に熱が加えられる。好ましくは、棒形の直線状半製品2、3の軟化は、これらの半製品2、3の交点4の領域に熱を加えることができるような方法で実施するため、上記の予備成形のくぼみ9の付与の結果、交点4の領域内の材料の厚くなった部分が減少され得るか、または熱可塑性半製品が完全に除去され得るという状態が達成され得る。   In a later deformation step, in order to facilitate the manufacture of the three-dimensional lattice structure 1, indentation preforms may be applied to the semi-finished products 2, 3 in an intermediate step as shown in FIG. As shown in FIG. 2, a small dent is provided in the lattice structure 1, and the dent 9 extends in a direction in which the lattice structure 1 is subsequently drawn into three dimensions. In this arrangement, the recess 9 is positioned equally on the straight lines 5, 6, and heat is applied along the straight lines 5, 6 to the bar-shaped linear semi-finished products 2, 3 softened from the lattice structure 1. Preferably, the softening of the bar-shaped linear semi-finished products 2, 3 is carried out in such a way that heat can be applied to the area of the intersection 4 of these semi-finished products 2, 3, so As a result of the application of 9, the thickened part of the material in the region of the intersection 4 can be reduced or the state that the thermoplastic semi-finished product can be completely removed can be achieved.

図3に示すように、さらなる方法に関連するステップにおいて、仮想的な3直線のうちの中央の直線に沿って、力Fが格子構造1に導入され、そこに熱が加えられる。導入された力Fは、3次元において格子構造1の変形を引き起こし、図3の中間状態に示すように、導入された力Fは半製品に作用する一対の張力F’およびF’’に偏向される。このような力の分解またはこのような偏向は、図3に示す別の力の平行四辺形の図で説明する。この方法において、張力はこのように半製品に導入され、この張力は、熱が3次元へ加えられる中央の直線に沿って格子構造を引っ張る。   As shown in FIG. 3, in a further method-related step, a force F is introduced into the grid structure 1 along the central straight line of the three virtual lines and heat is applied thereto. The introduced force F causes the lattice structure 1 to deform in three dimensions, and the introduced force F is deflected into a pair of tensions F ′ and F ″ acting on the semi-finished product, as shown in the intermediate state of FIG. Is done. Such force decomposition or such deflection is illustrated in another force parallelogram shown in FIG. In this way, tension is thus introduced into the semi-finished product, which pulls the lattice structure along a central straight line where heat is applied in three dimensions.

図3にさらに示すように、格子構造は、後に3次元骨組み構造の端を表す所望の直線5、6に沿って、同時に3種類の機能を実行することができるダブルビーム10の間にまれる。したがって、これらのダブルビーム10は、加熱できかつ3次元に向けて移動できるように適応することができる。このようにして、格子構造1の棒形の直線状半製品2、3の個々の層は、ダブルビーム10を使用して相互接続されることができる。但し、ダブルビーム10は、隣接する交点4に沿って格子構造1の上で作する。ダブルビーム10を加熱することによって、熱が格子構造1に、すなわち交点4に加えられ、その結果、棒形の直線状半製品2、3は、それらの位置および相互接続点において軟化する。交点4において棒形の直線状半製品2、3を接続するこの作用は、ダブルビーム10互いに対して加圧されて、その結果、有利な方法において、交点4における材料の望まれていない厚くなった部分を減少させることができるという点で、さらに支持されることができる。さらに、ダブルビーム10のこの相互圧によって、後で3次元方向に形成される形成方向において、予備成形のくぼみ9を半製品に付与することができるそしてこれは、格子構造1への力の導入に起因して、形成を容易にすることができる。格子構造を3次元へ最終的にき込むために、エッジ8を経由して、ダブルビーム10は、熱が与えられる3直線5、6のうちの中央の直線に沿って、格子構造の中へ力を導入できる。そうすると、格子構造1は、上記に説明した力の分解の結果として、図3に示すように3次元へ変形する。半製品の方向におけるこの力の分解の間、規定した張力F’、F’’を実際に生じさせ得るために、ダブルビーム10は、2つの直線5に沿って格子構造しっかりと挟持する。しかしながら、この配置において、ダブルビーム10は、図3に矢印で示したように、格子構造1の平面内に移動することができ、力Fを加えた結果として、それらは中央の直線6の方向に移動して、すなわちその方向に引き込まれる。このプロセスにおいて、目標とする方法で張力F’およびF’’を生じさせることができるように、ダブルビーム10は、転位に対してカウンターフォースを生じる。 As further shown in FIG. 3, the grating structure after the three-dimensional framework along Nozomu linear 5,6 where represents the previous end of, during the double beam 10 that can perform three functions simultaneously pinching Murrell. Therefore, these double beam 10 can adapt so as to be moved toward the heating can, and 3-dimensional. In this way, individual layers of linear semifinished products 2, 3 bar shaped lattice structure 1 may be mutual connection using a double beam 10. However, double beam 10 along the intersection 4 adjacent to a work on the lattice structure 1. By heating the double beam 10, heat is applied to the grid structure 1 , i.e. at the intersection 4, so that the rod-shaped linear semi-finished products 2, 3 are softened at their positions and interconnection points. The action of intersection 4 smell Te connecting linear semifinished products 2, 3 of the bar-shaped is double-beam 10 is pressurized against each other, as a result, advantageous manner odor Te, is desired of the material at the intersection 4 It can be further supported in that the thickened parts that are not can be reduced . Furthermore, depending on the mutual pressure of da Burubimu 10 can impart Oite, preformed depressions 9 in the semi-finished product in the forming direction is formed later three-dimensional directions. And this is due to the introduction of force into the lattice structure 1, it is possible to facilitate the formation. To burn them finally pull the lattice structure to 3D via the edge 8, Da Burubimu 10, along a central straight line of the three straight lines 5, 6 which heat is given, in the lattice structure Power can be introduced. Then, the lattice structure 1 is deformed into three dimensions as shown in FIG. 3 as a result of the force decomposition described above. During the degradation of the force in the direction of the workpiece, defining the tension F ', F' to be allowed actually produce 'double beam 10 is firmly clamp the lattice structure along two straight lines 5. However, this arrangement smell Te, Da Burubimu 10, as indicated by the arrows in FIG. 3, it can be moved in the plane of the grating structure 1, as a result of a force F, which is the center of the straight line 6 moves in the direction, that is written can pull in that direction. In this process, the double beam 10 produces a counterforce for dislocations so that tensions F ′ and F ″ can be generated in a targeted manner.

上記で説明したように、交点4で棒形の直線状半製品を接続すること、棒形の直線状半製品2、3を軟化すること、および力を導入することは、移動可能で加熱可能なダブルビーム10の配置を用いて共通のステップで実行することができる。ここで、上記のステップにおいて、製品7の方向を見ると、連続流れ工程および連続的反復工程を実行することができる。   As explained above, connecting the rod-shaped linear semi-finished products at the intersection 4, softening the rod-shaped linear semi-finished products 2, 3 and introducing force is movable and heatable Can be performed in a common step using a simple double beam 10 arrangement. Here, in the above steps, when the direction of the product 7 is viewed, a continuous flow process and a continuous repetition process can be performed.

熱が加えられる3直線5、6のうちの中央の直線に沿って格子構造1に力Fが導入される、本発明に従った方法は特に、下部型および上部型を用いる公知の変形プロセスに関連する柔軟性によって特徴付けられる。従って、本発明に従った方法を用いて、密度および厚さを変化させる3次元の骨組み構造を製造することができる。この方法は、ダブルビーム10の配置またはエッジ8が、3次元の別の深度に移動され、そのプロセスの結果、3次元骨組み構造の厚みの次元を変化させることができる。従って、別の深度の3次元骨組み構造を製造するために、下部型および上部型の配置を精巧に変化させる必要性がない。   The method according to the present invention, in which a force F is introduced into the lattice structure 1 along the central straight line of the three straight lines 5, 6 to which heat is applied, is particularly suitable for known deformation processes using lower and upper molds. Characterized by the associated flexibility. Thus, the method according to the present invention can be used to produce a three-dimensional framework structure with varying density and thickness. This method allows the arrangement or edge 8 of the double beam 10 to be moved to another three-dimensional depth, and as a result of that process, the thickness dimension of the three-dimensional framework can be changed. Accordingly, there is no need to finely change the arrangement of the lower mold and the upper mold in order to manufacture a three-dimensional framework structure of another depth.

図4は、本発明に従った方法を用いて製造された3次元骨組み構造を示す。図1に示される2次元格子構造1の変形によって、多数の四角錐を含む格子構造を空間的に形成でき、それは周期的に反復する。この配置において、以前に2次元格子構造1であった交点4によって、角錐の頂点が形成される。変形プロセス後、交点4の隣接に沿って熱を付与および力を導入した結果、3次元骨組み構造を横方向に区切る極端が形成される。再び、例示の目的のために図4は3直線5、6を示し、これに沿って、以前に局所的な熱の付与によって2次元骨組み構造1は交点4で軟化される。熱が付与される中央の直線に沿った格子構造への力の導入の結果、2次元格子構造1が3次元へと引き込まれる。   FIG. 4 shows a three-dimensional frame structure manufactured using the method according to the invention. By the deformation of the two-dimensional lattice structure 1 shown in FIG. 1, a lattice structure including a large number of quadrangular pyramids can be spatially formed, which repeats periodically. In this arrangement, the apex of the pyramid is formed by the intersection point 4 that was previously the two-dimensional lattice structure 1. After the deformation process, the application of heat and introduction of force along the intersection 4 intersects to form an extreme that laterally delimits the three-dimensional framework structure. Again, for illustrative purposes, FIG. 4 shows three straight lines 5, 6 along which the two-dimensional framework structure 1 has been softened at the intersection 4 by the application of local heat previously. As a result of the introduction of force into the lattice structure along the central straight line to which heat is applied, the two-dimensional lattice structure 1 is drawn into three dimensions.

図5は、最終的に、任意の方法に関連したステップを示し、この方法において製造された3次元骨組み構造の両側で、カバー層11が、角錐の形成された頂点による点で支持されるように付与される。3次元骨組み構造にカバー層11を取り付けるために、カバー層は角錐の頂点と接着してもよい。しかしながら、角錐の頂点における接着面は少しのみであり、3次元骨組み構造の極端において角錐の頂点の形のカバー層11は、さらに縫い付けることができる。好ましくは、ソーイングステッチ12によって図5に示すような片側縫合が使用され得る。   FIG. 5 finally shows the steps associated with any method, so that on both sides of the three-dimensional framework structure produced in this method, the cover layer 11 is supported at points with pyramidal vertices. To be granted. In order to attach the cover layer 11 to the three-dimensional framework structure, the cover layer may be bonded to the apex of the pyramid. However, the adhesive surface at the apex of the pyramid is only a few, and the cover layer 11 in the form of the apex of the pyramid can be further sewn at the extreme of the three-dimensional framework structure. Preferably, a one-sided suture as shown in FIG.

加えて、「含む」は他の要素またはステップを排除せず、「1つの(a)」または「1つの(one)」が、複数を排除しないことは注意されるべきである。さらに、上記の例示的な実施形態に関して記載されている特徴またはステップは、上記の他の例示的な実施形態の他の特徴またはステップと組み合わせて使用することができることは注意されるべきである。 添付の特許請求の範囲に参照される特徴は制限されると解釈されるべきではない。   In addition, it should be noted that “comprising” does not exclude other elements or steps, and “one (a)” or “one” does not exclude a plurality. Furthermore, it should be noted that the features or steps described with respect to the above exemplary embodiments can be used in combination with other features or steps of the other exemplary embodiments described above. The features referred to in the appended claims should not be construed as limiting.

棒形の直線状半製品でできる、2次元格子構造を示す図である。It is a figure which shows the two-dimensional lattice structure which can be made with a rod-shaped linear semi-finished product. 半製品へのくぼみの予備成形の様子を説明する図である。It is a figure explaining the mode of the preforming of the hollow to a semi-finished product. この格子構造を3次元へ引きこむために、格子構造への力の導入を例示する図である。It is a figure which illustrates introduction of force to a lattice structure in order to draw this lattice structure into three dimensions. 3次元支持骨組み構造の最終製品を示す図である。It is a figure which shows the final product of a three-dimensional support frame structure. 3次元骨組み構造のカバー層の配置を説明する図である。It is a figure explaining arrangement | positioning of the cover layer of a three-dimensional frame structure.

符号の説明Explanation of symbols

1 格子構造(2次元)
2 棒形の直線状半製品(第1グループ、第1の層)
3 棒形の直線状半製品(第2グループ、第2の層)
4 交点
5 直線(第1グループ)
6 直線(第2グループ)
7 製造方向
8 エッジ(移動可能、加熱可能)
9 予備成形のくぼみ
10 ダブルビーム
11 カバー層
12 ソーイングステッチ
1 Lattice structure (two-dimensional)
2 Bar-shaped linear semi-finished products (first group, first layer)
3 Bar-shaped linear semi-finished products (second group, second layer)
4 intersection 5 straight line (first group)
6 straight lines (second group)
7 Manufacturing direction 8 Edge (movable, heatable)
9 Pre-formed indentation 10 Double beam 11 Cover layer 12 Sewing stitch

Claims (15)

形の直線状半製品(2,3)から、前記半製品(2,3)が、所定の交点(4)で交差する2次元格子構造(1)を形成する工程と、
記棒形の直線状半製品(2,3)を、前記交点(4)で接続する工程と、
ずれの場合にも、前記格子構造に沿って延びる3本の交差しない直線(5,6)に沿って、前記格子構造に局所的に熱の導入を行うことによって、前記棒形の直線状半製品(2,3)を軟化させる工程と、
が導入された前記3本の直線(5,6)のうちの中央の直線に沿って、前記格子構造(1)に力(F)を導入する工程と、を含み、
前記格子構造(1)の変形の結果、前記導入された力(F)、前記半製品(2,3)に作用する一対の張力(F’,F’’)に偏向され、その結果、前記格子構造(1)、熱が加えられた前記3本の直線(5,6)のうちの中央直線に沿って3次元方向に引き込まれる、
3次元骨組み構造の製造方法。
Forming a two-dimensional lattice structure (1) in which the semi-finished product (2, 3) intersects at a predetermined intersection (4) from the rod- shaped linear semi-finished product (2, 3);
The front straight semi-finished products Kibogata (2,3), a step of connecting with the intersection (4),
In each case as well, the grating structure along a straight line (5,6) which is not three cross extending along, by the introduction of local heat to the lattice structure, the linear of the bar-shaped Softening the semi-finished product (2, 3);
Introducing a force (F) to the lattice structure (1) along a central straight line of the three straight lines (5, 6) into which heat has been introduced,
As a result of the deformation of the lattice structure (1), the introduced force (F) is deflected into a pair of tensions (F ′, F ″) acting on the semi-finished product (2, 3), the lattice structure (1) is drawn in a three-dimensional direction along the center straight line of said heat is applied three straight lines (5, 6),
A manufacturing method of a three-dimensional framework structure.
前記棒形の直線状半製品(2,3)を前記交点(4)で接続する工程、前記棒形の直線状半製品(2,3)を軟化させ工程、及び前記力を導入する工程は、連続的な流れ処理で実行でき、上記工程、製造方向(7)への連続的繰り返し処理により実行される、請求項1に記載の方法。 Step of connecting the linear semifinished products of the bar-shaped (2,3) at the intersection (4), step Ru soften the linear semifinished products of the bar-shaped (2, 3), and introducing said force can run in a continuous flow process, the above process is performed by continuously repeating the process in the direction of production (7) the method of claim 1. 前記3本の交差しない直線(5,6)に沿って前記格子構造(1)に熱が加えられる間、前記力の導入行われる、請求項1又は2に記載の方法。The method according to claim 1 or 2, wherein the introduction of the force is performed while heat is applied to the lattice structure (1) along the three non-intersecting straight lines (5, 6). 前記製造方向(7)に対して垂直になるように位置付けられた前記交点(4)に、熱が同時に加えられるように、前記熱の導入行われる、請求項1から3のいずれか項に記載の方法。Wherein the intersection positioned to be perpendicular to the direction of production (7) (4), so that heat is applied simultaneously, the introduction of the heat is conducted, any one of claims 1 3 The method described in 1. 前記棒形の直線状半製品(2,3)の、前記製造方向(7)に対して垂直になるように位置付けられた前記交点(4)への接続、前記交点(4)への同時加熱の間、及びその結果として、行われる、請求項4に記載の方法。The bar-shaped linear semi-finished product (2, 3) is connected to the intersection point (4) positioned perpendicular to the production direction (7) at the same time as the intersection point (4). 5. The method of claim 4, wherein the method is performed during and as a result of heating. 3次元折り畳み構造、連続的な繰り返し処理において、熱が導入される前記3本の直線(5,6)のうちの中央の直線のそれぞれに沿って力が連続して前記格子構造(1)に導入されることによって生成され、前記力は、前記半製品を望ましい深度で3次元方向に引き込む、請求項1から5のいずれか項に記載の方法。3D folded structure, in a continuous, repetitive process, the lattice structure forces along each of the central straight line continuously among the three straight lines which heat is introduced (5,6) (1) produced by Rukoto is introduced into the force, the draw in three-dimensional directions in the semi-finished product the desired depth, the method according to any one of claims 1 to 5. 前記力および前記熱は、3次元方向に移動できる加熱可能エッジ(8)によって、前記半製品(2,3)に加えられる、請求項1から6のいずれか項に記載の方法。The force and the heat of the heatable edge that can move in three-dimensional directions (8), said added to the semi-finished product (2) A method according to any one of claims 1 to 6. 前記骨組み構造の変厚を行うための前記エッジ(8)、3次元方向の別の深さに移動する、請求項7に記載の方法。Wherein said edge for performing variable thickness framework structure (8) is moved to a different depth of the three-dimensional directions, the method of claim 7. 前記製造方向(7)に対して垂直になるように位置付けられた前記交点(4)に沿って、前記棒形の直線状半製品(2,3)を軟化させるために加熱している間に、前記力が導入されるように、前記棒形の直線状半製品(2,3)の接続は、前記交点(4)で行われる、請求項4から8に記載のいずれか項に記載の方法。While heating to soften the rod-shaped linear semi-finished product (2, 3) along the intersection (4) positioned perpendicular to the production direction (7) as the force is introduced, said connecting straight semifinished products rod type (2,3), the carried out at (4), according to any one of claims 4 8 the method of. 前記格子構造(1)への加熱、平行な直線(5,6)に沿って行われる、請求項1から9のいずれか項に記載の方法。The heating of the lattice structure (1) is carried out along a line parallel (5, 6) A method according to any one of claims 1 to 9. 熱が加えられる前記直線(5,6)に沿って、3次元方向に後に形成される製造方向に、前記半製品(2,3)に予備成形のくぼみ(9)を設ける工程を更に含む、請求項1から10のいずれか項に記載の方法。Further comprising the step of providing a preformed depression (9) in the semi-finished product (2, 3) in a production direction to be subsequently formed in a three-dimensional direction along the straight line (5, 6) to which heat is applied, the method according to any one of claims 1 10. カバー層(11)を、前記成形された3次元骨組み構造の少なくとも片側に、前記カバー層(11)が前記骨組み構造のそれぞれの、3次元方向に引かれた、端部に接するように取り付ける工程を更に含む、請求項1から11に記載のいずれか項に記載の方法。A process of attaching the cover layer (11) to at least one side of the molded three-dimensional framework structure so that the cover layer (11) is in contact with an end portion of each of the framework structures drawn in the three-dimensional direction. further comprising a method according to any one of claims 1 11. 前記カバー層の前記骨組み構造のそれぞれの側の前記端部への取り付けは、片側縫合方法(12)によって行われる、請求項1に記載の方法。The method according to claim 1, wherein the attachment of the cover layer to the ends on each side of the framework structure is performed by a one-side stitching method (12). 支持骨組み構造、請求項1から13のいずれか1項に記載の方法に基づき製造される、サンドイッチ構造のための支持骨組み構造。Support skeleton structure is produced on the basis of the method according to any one of claims 1 to 13, the supporting framework for the sandwich structure. コア構造、請求項1から13のいずれか1項に記載の方法に基づき製造された、サンドイッチ構造状の構造物構成要素を含む、航空機。14. An aircraft, wherein the core structure includes a sandwich-structured structural component manufactured according to the method of any one of claims 1-13.
JP2008555701A 2006-02-24 2007-02-22 Method for manufacturing a three-dimensional frame structure for use as a core structure in a sandwich structure and the frame structure manufactured thereby Expired - Fee Related JP4898839B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US77652406P 2006-02-24 2006-02-24
DE102006008728.3 2006-02-24
US60/776.524 2006-02-24
DE102006008728A DE102006008728B3 (en) 2006-02-24 2006-02-24 Producing a three-dimensional framework useful for making structural components of aircraft comprises applying heat and force to a two-dimensional lattice of rods
PCT/EP2007/001549 WO2007096172A1 (en) 2006-02-24 2007-02-22 Method for manufacturing a three dimensional frame structure for use as a core structure in a sandwich construction and frame structure manufactured thereby

Publications (2)

Publication Number Publication Date
JP2009527379A JP2009527379A (en) 2009-07-30
JP4898839B2 true JP4898839B2 (en) 2012-03-21

Family

ID=38190251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555701A Expired - Fee Related JP4898839B2 (en) 2006-02-24 2007-02-22 Method for manufacturing a three-dimensional frame structure for use as a core structure in a sandwich structure and the frame structure manufactured thereby

Country Status (5)

Country Link
JP (1) JP4898839B2 (en)
CN (1) CN101389423B (en)
AT (1) ATE516903T1 (en)
BR (1) BRPI0708198A2 (en)
DE (1) DE102006008728B3 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056568A1 (en) 2006-11-30 2008-06-05 Airbus Deutschland Gmbh Core structure manufacturing method for airplane, involves positioning core layers with defined distance, and inserting reinforcement unit in hollow space between layers, where reinforcement unit and layers form integral core structure
DE102009047491A1 (en) * 2009-12-04 2011-06-09 Sgl Carbon Se Production of a 3D textile structure and semifinished fiber products from fiber composites
JP5398653B2 (en) * 2010-06-30 2014-01-29 株式会社オプトエレクトロニクス Decoding method and decoding processing apparatus
DE102012018158A1 (en) 2012-09-14 2014-04-10 Eads Deutschland Gmbh Structural component e.g. aircraft component for aircraft, has integrated energy storage element which stores electrical energy
DE102014006706A1 (en) 2014-05-09 2014-09-11 Florian Eichenhofer Method for producing a framework
US10358821B2 (en) * 2015-03-02 2019-07-23 The Boeing Company Thermoplastic truss structure for use in wing and rotor blade structures and methods for manufacture
DE102015105533A1 (en) * 2015-04-10 2016-10-13 Technische Universität Dresden Textile structure and process for its production
US11155036B2 (en) * 2015-05-11 2021-10-26 DP Polar GmbH Device and method for applying flowable material to a substratum that can be rotated about an axis of rotation
DE102015007317A1 (en) 2015-06-11 2016-12-15 Florian Eichenhofer Method for reinforcing a basic structure
DE102015013915A1 (en) 2015-10-27 2017-04-27 Florian Eichenhofer Machine system for producing a hybrid component
DE102016009368A1 (en) * 2016-08-03 2018-02-08 Hans Korte Process for the production of laminates with folded middle layer
DE102016122570A1 (en) 2016-11-23 2018-05-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Process for producing cylindrical bodies from fiber-reinforced semifinished products
FR3066134B1 (en) * 2017-05-15 2021-08-13 Porcher Ind CONFORMING STRUCTURE, COMPOSITE PART INCLUDING SUCH CONFORMING STRUCTURE, MANUFACTURING PROCESS OF SUCH COMPOSITE PART

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884646A (en) * 1972-12-05 1975-05-20 James T Kenney Structural panel and method of fabrication thereof
US4530197A (en) * 1983-06-29 1985-07-23 Rockwell International Corporation Thick core sandwich structures and method of fabrication thereof
US5527590A (en) * 1993-03-18 1996-06-18 Priluck; Jonathan Lattice block material
JP3296176B2 (en) * 1996-02-05 2002-06-24 住友金属鉱山株式会社 Method of manufacturing corrugated reinforced mat
US6644535B2 (en) * 2001-05-18 2003-11-11 Massachusetts Institute Of Technology Truss core sandwich panels and methods for making same
WO2003101721A1 (en) * 2002-05-30 2003-12-11 University Virginia Patent Foundation Method for manufacture of periodic cellular structure and resulting periodic cellular structure
WO2004022869A2 (en) * 2002-09-03 2004-03-18 University Of Virginia Patent Foundation Method for manufacture of truss core sandwich structures and related structures thereof

Also Published As

Publication number Publication date
CN101389423B (en) 2010-06-02
CN101389423A (en) 2009-03-18
JP2009527379A (en) 2009-07-30
ATE516903T1 (en) 2011-08-15
DE102006008728B3 (en) 2007-07-19
BRPI0708198A2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
JP4898839B2 (en) Method for manufacturing a three-dimensional frame structure for use as a core structure in a sandwich structure and the frame structure manufactured thereby
RU2530378C2 (en) U-shaped preform
TWI506172B (en) Method of forming a variable width clevis in a woven preform, and woven preform with a variable width clevis
JP6073249B2 (en) Preform and method for reinforcing woven fiber nodes
CN101328955B (en) Resin base point array composite material flat plate of rectangular pyramid configuration and manufacture method thereof
US8220155B2 (en) Method for manufacturing a three dimensional frame structure for use as a core structure in a sandwich construction
CN1874859A (en) Three-dimensional cellular light structures directly woven by continuous wires and the manufacturing method of the same
EP2824251A2 (en) Pyramidal kagome structure and its fabricating method
US10870452B2 (en) Fiber-reinforced plastic component and method for producing same
KR102250962B1 (en) Manufacturing method of fiber-reinforced composite structure
JP6367997B1 (en) Method for manufacturing grid reinforcing structure and grid reinforcing structure
WO2020211697A1 (en) 'high-entropy lattice' achieved by 3d printing
US10434564B2 (en) Method for manufacturing three-dimensional lattice truss structure using flexible linear bodies
CN106029362B (en) Lamination tectosome and its manufacturing method
EP0797486B1 (en) Grid, in particular flat grid (grating)
JP3434254B2 (en) Space truss composite board
KR101995310B1 (en) 3D sandwich core and manufacturing method thereof
EP3888905B1 (en) Sheet-shaped reinforced-fiber base material and manufacturing method therefor
JP5179952B2 (en) Hollow molded product and method for producing hollow molded product
TW201529968A (en) Method for producing a composite structural part, composite structural part and wind power plant
JP5036046B2 (en) Truss material
JPH08261395A (en) Structure blank
CN115438465A (en) Three-dimensional negative Poisson's ratio structure based on sine curve and design method thereof
JPH01266257A (en) Production of three-dimensional structure from continuous tubular warp-knitted fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees