JP4898279B2 - Geothermal air-conditioning system and method with negative ion generation function - Google Patents
Geothermal air-conditioning system and method with negative ion generation function Download PDFInfo
- Publication number
- JP4898279B2 JP4898279B2 JP2006129758A JP2006129758A JP4898279B2 JP 4898279 B2 JP4898279 B2 JP 4898279B2 JP 2006129758 A JP2006129758 A JP 2006129758A JP 2006129758 A JP2006129758 A JP 2006129758A JP 4898279 B2 JP4898279 B2 JP 4898279B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- pipe
- gap
- water surface
- outer pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004378 air conditioning Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 150000002500 ions Chemical class 0.000 claims description 18
- 239000007788 liquid Substances 0.000 description 10
- 239000004575 stone Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- -1 Polyethylene Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 229910052613 tourmaline Inorganic materials 0.000 description 2
- 229940070527 tourmaline Drugs 0.000 description 2
- 239000011032 tourmaline Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、地中熱交換器を利用した新しい空調機構及び方法に関するものである。 The present invention relates to a new air-conditioning mechanism and method using a ground heat exchanger.
昨今、二重管構造の地中熱交換器を利用した空調機構は特許文献1に開示されているように広く利用されている。本空調機構は、温度、湿度の調節には有効である。 In recent years, an air-conditioning mechanism using a double-pipe underground heat exchanger has been widely used as disclosed in Patent Document 1. This air conditioning mechanism is effective for adjusting temperature and humidity.
本発明の目的は、二重管構造の地中熱交換器を利用した新しい空調機構及び方法を提供せんとするものである。 An object of the present invention is to provide a new air-conditioning mechanism and method using a double-pipe underground heat exchanger.
本発明によるマイナスイオン生成機能を備えた地熱利用型空調システムは、上端は開口されているが下端が底部として閉じられており前記底部に水が溜められている外管と、前記外管の内部に挿入されておりその上端と下端とが共に開口されている内管とから成る、地中に埋設された二重管と、前記外管と内管との間の隙間内に導入された処理対象となる空気が通過するスリット板であって、前記隙間内の前記外管底部の水面の上方近傍に配置され、複数の細いスリットが形成されて成り、前記隙間内を上方から下降する空気が前記複数のスリットを通過するとき、前記空気を複数の細い高速の噴射流に変換させて前記水面に衝突させ、これにより前記水面から飛沫を発生させ、前記水面の上方近傍の空気中にマイナスイオンを発生させるためのスリット板と、処理対象となる空気を前記内管と外管との隙間内に送り、前記隙間内において地熱と熱交換され且つ前記外管底部の水面からの飛沫により発生したマイナスイオンを含んだ空気を、前記外管の底部の近傍から前記内管内部を介して室内に供給する空気送り手段と、を含むことを特徴とするものである。
また、本発明によるマイナスイオン生成機能を備えた地熱利用型空調方法は、上端は開口されているが下端が底部として閉じられており前記底部に水が溜められている外管と、前記外管の内部に挿入されておりその上端と下端とが共に開口されている内管とから成る、地中に埋設された二重管、を使用する空調方法であって、処理対象となる空気を前記内管と外管との隙間内にその上方から送り、前記空気を前記隙間内において地熱と熱交換させるステップと、複数の細いスリットが形成されて成るスリット板を前記隙間内の前記外管底部の水面の上方近傍に予め配置しておき、前記隙間内を上方から下降する空気を前記複数のスリット中に通過させ、その過程で前記空気を複数の細い高速の噴射流に変換し、この複数の細い高速の噴射流を前記水面に衝突させ、これにより前記水面から飛沫を発生させ、前記水面の上方近傍の空気中にマイナスイオンを発生させるステップと、前記マイナスイオンを含んだ空気を、前記外管の底部の近傍から前記内管内部を介して室内に供給するステップと、を含むことを特徴とするものである。
The geothermal air-conditioning system having a negative ion generation function according to the present invention includes an outer pipe whose upper end is opened but whose lower end is closed as a bottom and water is stored in the bottom, and the interior of the outer pipe A double pipe embedded in the ground, and a treatment introduced into the gap between the outer pipe and the inner pipe. A slit plate through which target air passes, and is arranged in the vicinity of the upper surface of the water surface of the outer tube bottom in the gap, and is formed with a plurality of thin slits, and the air descending from above in the gap When passing through the plurality of slits, the air is converted into a plurality of fine high-speed jets to collide with the water surface, thereby generating splashes from the water surface, and negative ions in the air near the upper surface of the water surface To generate The slit plate and the air to be treated are fed into the gap between the inner tube and the outer tube, and are exchanged with geothermal heat in the gap and include negative ions generated by splashing from the water surface of the bottom of the outer tube. And air feeding means for supplying air into the room through the inside of the inner pipe from the vicinity of the bottom of the outer pipe.
Further, the geothermal air conditioning method having a negative ion generation function according to the present invention includes an outer pipe having an upper end that is open but a lower end that is closed as a bottom and water is stored in the bottom, and the outer pipe An air-conditioning method using a double pipe embedded in the ground, which is composed of an inner pipe whose upper end and lower end are both open. A step of sending the air into the gap between the inner pipe and the outer pipe from above, exchanging heat with the geothermal heat in the gap, and a slit plate formed with a plurality of thin slits in the bottom of the outer pipe in the gap The air descending from above in the gap is passed through the plurality of slits, and in the process, the air is converted into a plurality of thin high-speed jets. The high speed jet flow Colliding with the water surface, thereby generating splashes from the water surface, generating negative ions in the air near the upper surface of the water surface, and air containing the negative ions from the vicinity of the bottom of the outer tube. And supplying to the room through the inside of the inner pipe.
本発明によれば、前記隙間内を上方から下降する空気を前記複数のスリット中に通過させ、その過程で前記空気を複数の細い高速の噴射流に変換し、この複数の細い高速の噴射流を前記水面に衝突させ、これにより前記水面から飛沫を発生させ、その結果、前記水面の上方近傍の空気中にマイナスイオンを発生させるようにし、このように発生したマイナスイオンを含んだ空気を、前記外管の底部を介して前記内管内に送り更に室内に送るようにしたので、マイナスイオンが多量に含まれた精神的な癒し効果のある空調空気をユーザーに供給できるようになる。 According to the present invention, the air descending from above in the gap is passed through the plurality of slits, and in the process, the air is converted into a plurality of thin high-speed jet flows, and the plurality of thin high-speed jet flows Is caused to collide with the water surface, thereby generating splashes from the water surface, and as a result, negative ions are generated in the air near the upper surface of the water surface, and the air containing the negative ions generated in this way, Since it is sent into the inner pipe through the bottom of the outer pipe and further sent into the room, conditioned air containing a large amount of negative ions can be supplied to the user.
図1は、本発明方法の説明図である。
図2は、図1の内管の構造が異なる場合の説明図である。
図1、図2で、地中熱交換器は、先端が封止され、他端が開放された外管に、両端が開放された内管を遊嵌した二重管構造からなるものである。地中熱交換器は、外管の先端を下にして地下に埋入し、該外管と内管の隙間から外気を下方向に流して、外管に接する地熱面と熱交換させた後、外管の底部に貯めた水の液面に衝突させる。
FIG. 1 is an explanatory diagram of the method of the present invention.
FIG. 2 is an explanatory view when the structure of the inner tube of FIG. 1 is different.
1 and 2, the underground heat exchanger has a double-tube structure in which an inner tube having both ends opened is loosely fitted to an outer tube having a sealed end and an open other end. . The underground heat exchanger is embedded in the basement with the outer tube tip down, and after flowing outside air through the gap between the outer tube and the inner tube to exchange heat with the geothermal surface in contact with the outer tube Then, it collides with the liquid level of the water stored at the bottom of the outer tube.
液面に衝突した空気は、図1では内管と液面の隙間から内管の内側に方向を反転させてUターンして、内管の中を通って上方向に向かって流れて外に放出される。図2にあっては内管の先端が液面に浸漬されているので、液面に衝突した空気は、内管の側面に開けられた液面に浸漬されていない孔から内管の内側に流れ、方向を反転させてUターンして、内管の中を通って上方向に向かって流れる。あるいは内管の先端部を多孔質のメッシュ状にして、液面に浸漬されていないメッシュの孔から内管の内側に流れ、方向を反転させてUターンして、内管の中を通って上方向に向かって流れる。
前記水面に衝突させる空気の流速は、概ね1.5m/sec以上で、上限は4.0m/sec以下にする方が経済的である。
In FIG. 1, the air that collided with the liquid surface is reversed in the direction from the gap between the inner tube and the liquid surface to the inside of the inner tube, makes a U-turn, flows upward through the inner tube, and exits. Released. In FIG. 2, since the tip of the inner tube is immersed in the liquid surface, the air that collided with the liquid surface enters the inner tube from the hole that is not immersed in the liquid surface opened on the side surface of the inner tube. Flow, reverse direction, make a U-turn and flow upward through the inner tube. Alternatively, the tip of the inner tube is made into a porous mesh, flows from the mesh hole not immersed in the liquid surface to the inside of the inner tube, reverses the direction, makes a U-turn, passes through the inner tube Flows upward.
It is more economical that the flow velocity of the air colliding with the water surface is approximately 1.5 m / sec or more and the upper limit is 4.0 m / sec or less.
空気の衝突によって、水面に飛沫(しぶき)が発生する。細い高速噴射流を衝てることで、水面に飛沫(しぶき)を発生させる。細い高速噴射流を衝てるためには、細いスリットから噴射するようにすればよい。 Splashes are generated on the water surface due to the collision of air. Splashes are generated on the water surface by striking a thin high-speed jet flow. In order to impinge a thin high-speed jet flow, the jet may be jetted from a thin slit.
本発明の空調機構では、地中熱交換器の底に貯めた水は、衝突空気に因って外に持ち去られるので、徐々に水位が低下してくる。水位の低下を防ぐために、水位センサーを設けて、ある水位に低下すると自動的に水を補給する機構が必須不可欠である。またパイプ内面を洗浄するために外管の頂部内面にパイプ洗浄装置を設けて、パイプ内面を常に清潔に保つ必要もある。水位低下を防ぐ水の補給は、パイプ洗浄装置から供給しても良い。また、これに合わせて、底に溜まった水を外にくみ出す装置を設置することが好適である。 In the air-conditioning mechanism of the present invention, the water stored at the bottom of the underground heat exchanger is carried away due to the collision air, so that the water level gradually decreases. In order to prevent the water level from dropping, it is essential to provide a water level sensor and automatically replenish water when the water level drops to a certain level. In order to clean the inner surface of the pipe, it is necessary to provide a pipe cleaning device on the inner surface of the top portion of the outer pipe so that the inner surface of the pipe is always kept clean. Replenishment of water to prevent a drop in water level may be supplied from a pipe cleaning device. In accordance with this, it is preferable to install a device for pumping out water accumulated at the bottom.
図3は、これを説明した図である。
外管の液面上部に、液面の水位センサーが、外管の頂部内面に、パイプ洗浄装置が設けられている。
空気の衝突のために用いられるスリットは図3に示した位置に設置される。
図3には図示していないが、底に溜まった水を外にくみ出す装置も適宜併設される。
FIG. 3 is a diagram illustrating this.
A liquid level sensor is provided above the liquid level of the outer tube, and a pipe cleaning device is provided on the top inner surface of the outer tube.
The slit used for air collision is installed at the position shown in FIG.
Although not shown in FIG. 3, an apparatus for drawing water accumulated at the bottom to the outside is also provided as appropriate.
地中熱交換器には、図4に示すように、グリ石層(蓄熱層)を併設しても良い。すなわち、外気を蓄熱層に通して一段目の調湿、調温した後、地中熱交換器に通して調湿、調温するようにしても良い。
グリ石は、直径30〜200mmの石を、建物の1階床下の地下数十cmの深さから地表面に概ね40〜50cmの堆積厚さに積んだものである。
堆積層の上面は断熱性のシートで覆われている。又堆積層の底面には地中からの湿分の上昇を防止するための防湿シートが敷かれている。このシートはグリ石層に発生した水滴等はシートを通って地中に浸透することは出来るが、地中からの湿分の上昇は防止する構造になっている。これは複数のシートを位置をずらして重なった部分が出来るように全体に敷設することで達成できる。すなわち地面からの湿分、水分の上昇は防止できるが、上方からの水分は重なった部分の隙間から外に染み出ることができるようになっている。
特に、防水とする場合は、コンクリート底盤とすれば十分に目的を達成できる。
地熱は四季を通じて13〜18℃の温度に保たれており、グリ石の堆積層はこの地熱の影響を受けて夏季には20〜24℃、冬季には15〜19℃の温度に保持されている。
堆積されたグリ石とグリ石の間には隙間が存在し、外気はこのグリ石の隙間の中を通過するときに冷却され、グリ石にて第1段の除湿、冷却が行われることとなる。
As shown in FIG. 4, a ground stone heat exchanger (heat storage layer) may be provided in the underground heat exchanger. That is, outside air may be passed through a heat storage layer to adjust humidity and temperature in the first stage, and then passed through an underground heat exchanger to adjust humidity and temperature.
Guristone is a stone with a diameter of 30 to 200 mm piled on the ground surface from a depth of several tens of centimeters below the first floor of the building to a deposition thickness of approximately 40 to 50 cm.
The upper surface of the deposited layer is covered with a heat insulating sheet. In addition, a moisture-proof sheet is provided on the bottom surface of the deposited layer to prevent moisture from rising from the ground. This sheet has a structure that prevents water droplets and the like generated in the guristone layer from penetrating into the ground through the sheet, but preventing moisture from rising from the ground. This can be achieved by laying a plurality of sheets on the whole so as to form overlapping portions by shifting the positions. In other words, moisture and moisture can be prevented from rising from the ground, but moisture from above can permeate outside through the gap between the overlapping portions.
In particular, in the case of waterproofing, a concrete bottom can sufficiently achieve the object.
Geothermal heat is maintained at a temperature of 13-18 ° C. throughout the four seasons, and the gritite deposits are affected by the geothermal heat and are maintained at a temperature of 20-24 ° C. in the summer and 15-19 ° C. in the winter. Yes.
There is a gap between the accumulated stones and stones, and the outside air is cooled when passing through the stones, and the first stage of dehumidification and cooling is performed with the stones. Become.
液面に衝突した空気によって、飛沫が発生すると、マイナスイオンが多量に含まれた空気が発生する。精神的な癒し効果のある空調空気が得られる。
水の中にトルマリン等の無機鉱物を入れておくことで、より多量のマイナスイオンが発生する。
When splashes are generated by the air colliding with the liquid surface, air containing a large amount of negative ions is generated. Air-conditioned air with a mental healing effect can be obtained.
By placing an inorganic mineral such as tourmaline in the water, a larger amount of negative ions is generated.
マイナスイオンを発生する鉱石(トルマリン等)を設置する部位については、飛沫が発生しやすい地中熱交換器底部の水面或いは水中に設置することが好ましいが、空調空気が通過・接触する地中熱交換器の内・外管の部位であれば特に限定されるものでない。 It is preferable to install the ore that generates negative ions (tourmaline, etc.) on the surface of the ground heat exchanger where water droplets are easily generated or in the water. It is not particularly limited as long as it is a part of the inner / outer tube of the exchanger.
図1〜図4では、地中熱交換器には外気を流すと説明したが、本発明の地中熱交換器は外気のみに限定されるものではなく、室内を循環した空気を再循環させてもよいし、あるいはその他の方法で空調された空気を利用しても良い。 In FIGS. 1 to 4, it has been described that outside air flows through the underground heat exchanger. However, the underground heat exchanger according to the present invention is not limited to only outside air, and recirculates air circulated in the room. Alternatively, air conditioned by other methods may be used.
参考例1
地中熱交換器の仕様
地中熱交換器の構造:図2の構造
外管:外径φ250mm、長さ:5,000mm
外管材質:厚さ3.2mmのアルミニウムパイプ
内管:外径φ157.6mm、長さ:5,000mm
内管材質:厚さ3.8mmのポリエチレンパイプ
空気の流量:350m3/h
空気の衝突面積:約0.047m2
空気の流速:2.1m/sec
底に貯めた水量:1回目15リットル,2回目27リットル
Reference example 1
Specifications of underground heat exchanger Structure of underground heat exchanger: Structure of Fig. 2 Outer tube: Outer diameter φ250mm, Length: 5,000mm
Outer tube material: 3.2 mm thick aluminum pipe Inner tube: outer diameter φ157.6 mm, length: 5,000 mm
Inner tube material: Polyethylene pipe with a thickness of 3.8mm
Air flow rate: 350m3 / h
Air collision area: about 0.047m2
Air flow rate: 2.1m / sec
Volume of water stored at the bottom: 15 liters for the first time, 27 liters for the second time
参考例2
地中熱交換器の仕様
地中熱交換器の構造:図2の構造(2連直列に接続)
(内管の側面に孔を開けて衝突した空気を通過させる構造)
外管:外径φ250mm、長さ:5,000mm
外管材質:厚さ3.2mmのアルミニウムパイプ
内管:外径φ157.6mm、長さ:5,000mm
内管材質:厚さ3.8mmのポリエチレンパイプ
空気の流量: 850 m3/h(425m3/h × 2本)
空気の衝突面積:0.047m2×2
空気の流速:2.5m/sec
底に貯めた水量:30リットル(15リットル× 2本)
Reference example 2
Specifications of underground heat exchanger Structure of underground heat exchanger: Structure of Fig. 2 (2 series connected in series)
(A structure that allows air to collide by passing a hole in the side of the inner tube)
Outer tube: outer diameter φ250mm, length: 5,000mm
Outer tube material: 3.2 mm thick aluminum pipe Inner tube: outer diameter φ157.6 mm, length: 5,000 mm
Inner tube material: Polyethylene pipe with a thickness of 3.8mm
Air flow rate: 850 m3 / h (425 m3 / h x 2)
Air collision area: 0.047m2 × 2
Air flow rate: 2.5m / sec
Volume of water stored at the bottom: 30 liters (15 liters x 2)
参考例3
地中熱交換器の仕様
地中熱交換器の構造:図2の構造
(内管の側面に孔を開けて衝突した空気を通過させる構造)
外管:外径φ250mm、長さ:5,000mm
外管材質:厚さ3.2mmのアルミニウムパイプ
内管:外径φ157.6mm、長さ:5,000mm
内管材質:厚さ3.8mmのポリエチレンパイプ
空気の流量: 1000 m3/h(500m3/h × 2本)
空気の衝突面積:0.047m2×2本
空気の流速:3.0m/sec
底に貯めた水量:約15リットル/本
Reference example 3
Specifications of the underground heat exchanger Structure of the underground heat exchanger: Structure of Fig. 2 (Structure that allows air to collide by making a hole in the side of the inner pipe)
Outer tube: outer diameter φ250mm, length: 5,000mm
Outer tube material: 3.2 mm thick aluminum pipe Inner tube: outer diameter φ157.6 mm, length: 5,000 mm
Inner tube material: Polyethylene pipe with a thickness of 3.8mm
Air flow rate: 1000 m3 / h (500 m3 / h x 2)
Air collision area: 0.047m2 x 2
Air flow rate: 3.0m / sec
Volume of water stored at the bottom: about 15 liters / bottle
Claims (2)
前記外管と内管との間の隙間内に導入された処理対象となる空気が通過するスリット板であって、前記隙間内の前記外管底部の水面の上方近傍に配置され、複数の細いスリットが形成されて成り、前記隙間内を上方から下降する空気が前記複数のスリットを通過するとき、前記空気を複数の細い高速の噴射流に変換させて前記水面に衝突させ、これにより前記水面から飛沫を発生させ、前記水面の上方近傍の空気中にマイナスイオンを発生させるためのスリット板と、A slit plate through which air to be processed introduced into a gap between the outer pipe and the inner pipe passes, and is disposed near the upper surface of the water surface of the bottom of the outer pipe in the gap, and is a plurality of thin plates A slit is formed, and when the air descending from above in the gap passes through the plurality of slits, the air is converted into a plurality of thin high-speed jets to collide with the water surface, and thereby the water surface A slit plate for generating splashes and generating negative ions in the air near the upper surface of the water surface;
処理対象となる空気を前記内管と外管との隙間内に送り、前記隙間内において地熱と熱交換され且つ前記外管底部の水面からの飛沫により発生したマイナスイオンを含んだ空気を、前記外管の底部の近傍から前記内管内部を介して室内に供給する空気送り手段と、The air to be treated is sent into the gap between the inner pipe and the outer pipe, and the air containing the negative ions generated by the splash from the water surface at the bottom of the outer pipe that is heat-exchanged with the geothermal heat in the gap, An air feeding means for supplying air into the room from the vicinity of the bottom of the outer pipe through the inner pipe;
を含むことを特徴とする、マイナスイオン生成機能を備えた地熱利用型空調システム。A geothermal air-conditioning system equipped with a negative ion generation function.
処理対象となる空気を前記内管と外管との隙間内にその上方から送り、前記空気を前記隙間内において地熱と熱交換させるステップと、Sending air to be treated from above into the gap between the inner tube and the outer tube, and allowing the air to exchange heat with geothermal heat in the gap;
複数の細いスリットが形成されて成るスリット板を前記隙間内の前記外管底部の水面の上方近傍に予め配置しておき、前記隙間内を上方から下降する空気を前記複数のスリット中に通過させ、その過程で前記空気を複数の細い高速の噴射流に変換し、この複数の細い高速の噴射流を前記水面に衝突させ、これにより前記水面から飛沫を発生させ、前記水面の上方近傍の空気中にマイナスイオンを発生させるステップと、A slit plate formed with a plurality of thin slits is disposed in advance near the upper surface of the water surface of the bottom of the outer tube in the gap, and the air descending from above in the gap is allowed to pass through the slits. In the process, the air is converted into a plurality of thin high-speed jets, the plurality of thin high-speed jets collide with the water surface, thereby generating splashes from the water surface, and air in the vicinity above the water surface. Generating negative ions therein,
前記マイナスイオンを含んだ空気を、前記外管の底部の近傍から前記内管内部を介して室内に供給するステップと、Supplying the air containing the negative ions from the vicinity of the bottom of the outer tube into the room through the inner tube;
を含むことを特徴とする、マイナスイオン生成機能を備えた地熱利用型空調方法。A geothermal utilization type air conditioning method having a negative ion generation function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129758A JP4898279B2 (en) | 2006-05-09 | 2006-05-09 | Geothermal air-conditioning system and method with negative ion generation function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129758A JP4898279B2 (en) | 2006-05-09 | 2006-05-09 | Geothermal air-conditioning system and method with negative ion generation function |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007303693A JP2007303693A (en) | 2007-11-22 |
JP4898279B2 true JP4898279B2 (en) | 2012-03-14 |
Family
ID=38837778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006129758A Active JP4898279B2 (en) | 2006-05-09 | 2006-05-09 | Geothermal air-conditioning system and method with negative ion generation function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4898279B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101691189B1 (en) * | 2016-09-22 | 2016-12-30 | 이은석 | Heating and cooling system using geothermal pipe |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200448758Y1 (en) | 2008-04-21 | 2010-05-13 | 이상훈 | A waste heat exchanger for dust collection |
JP4882021B1 (en) * | 2010-12-24 | 2012-02-22 | 春彦 極檀 | Heat exchange system |
JP4944265B1 (en) * | 2011-06-03 | 2012-05-30 | スミコーホームズ株式会社 | Air conditioner and air circulation system of building using the same |
JP2013092277A (en) * | 2011-10-24 | 2013-05-16 | Birutekku Kk | Heat exchanger for air conditioning equipment |
JP5955823B2 (en) * | 2013-11-11 | 2016-07-20 | エコエネルギーシステムズ株式会社 | Underground heat exchange system |
WO2019232290A1 (en) | 2018-05-31 | 2019-12-05 | Dow Global Technologies Llc | Devolatilizer design |
CN112312983B (en) * | 2018-05-31 | 2023-02-28 | 陶氏环球技术有限责任公司 | Distributor and process for devolatilization of polymer solutions |
JP7489327B2 (en) | 2018-05-31 | 2024-05-23 | ダウ グローバル テクノロジーズ エルエルシー | Method and system for polymer production - Patents.com |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735384Y2 (en) * | 1980-03-14 | 1982-08-05 | ||
JP2004017038A (en) * | 2002-06-14 | 2004-01-22 | Tadashi Fukamizu | Desktop fountain apparatus |
JP2006084093A (en) * | 2004-09-15 | 2006-03-30 | Toko Kogyo:Kk | Heat pump type air conditioner |
-
2006
- 2006-05-09 JP JP2006129758A patent/JP4898279B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101691189B1 (en) * | 2016-09-22 | 2016-12-30 | 이은석 | Heating and cooling system using geothermal pipe |
Also Published As
Publication number | Publication date |
---|---|
JP2007303693A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4898279B2 (en) | Geothermal air-conditioning system and method with negative ion generation function | |
TWI227166B (en) | Air cooling device and air cooling method | |
JP2009503431A (en) | Convector for cooling pipe circulating fluid | |
US8678359B2 (en) | System and method for reducing mineral buildup on drift eliminators of a cooling tower | |
JP5223145B2 (en) | Cooling and cooling methods for structures | |
CN105579782A (en) | Humidifying unit for a hvac system | |
JP2007271200A (en) | Air conditioner | |
JP5891254B2 (en) | Air conditioning and cleaning equipment | |
CN105688581A (en) | Liquid film dedusting device and desulfurizer dedusting rectification system with same | |
KR20180104254A (en) | Cooling Tower Reducing Generation of White Plume | |
JP6430285B2 (en) | Heat exchanger cooling device and cooling method | |
JP2007271121A (en) | Hot environment reducing device | |
KR20070080629A (en) | Method and apparatus for treating exhaust gas in order to prevent generation of white smoke | |
JPWO2016098791A1 (en) | Humidifier and air conditioner equipped with humidifier | |
JP4176588B2 (en) | Water heater | |
CN107008092A (en) | A kind of emission-control equipment | |
CN209952568U (en) | Wet flue desulfurization waste water flue sprays evaporation zero release processing system | |
JP2009113008A (en) | Fluid magnetizer, magnetized fluid feeding apparatus, magnetic treatment apparatus, and magnetic treatment method | |
AU2012318899B2 (en) | Solids maker cooling tower | |
CN212369916U (en) | Spray-free efficient desulfurization device and spray-free desulfurization system | |
JP6236254B2 (en) | Geothermal heat exchanger and air conditioning system using the same | |
JP3185318U (en) | Cooling tower system | |
WO2016008536A1 (en) | Counter-flow fill module and method | |
JP2009275977A (en) | Cooling tower system | |
JP2012120993A (en) | Apparatus for promoting deposition of scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090501 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111020 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4898279 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |