JP4897658B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP4897658B2
JP4897658B2 JP2007320307A JP2007320307A JP4897658B2 JP 4897658 B2 JP4897658 B2 JP 4897658B2 JP 2007320307 A JP2007320307 A JP 2007320307A JP 2007320307 A JP2007320307 A JP 2007320307A JP 4897658 B2 JP4897658 B2 JP 4897658B2
Authority
JP
Japan
Prior art keywords
inclination
wafer
light
optical system
light projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007320307A
Other languages
Japanese (ja)
Other versions
JP2009145090A (en
Inventor
勝 赤松
英久 橋爪
康秀 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2007320307A priority Critical patent/JP4897658B2/en
Publication of JP2009145090A publication Critical patent/JP2009145090A/en
Application granted granted Critical
Publication of JP4897658B2 publication Critical patent/JP4897658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は,円盤状の測定対象物(主として半導体ウェーハ,その他,ハードディスク用のアルミサブトレート,ガラスサブストレートなど)の面取り加工された端部の面(端面)の形状をその投影像に基づいて測定する形状測定装置に関するものである。   The present invention is based on the projection image of the shape of the end face (end face) of the disk-shaped measurement object (mainly semiconductor wafer, other hard disk aluminum substrate, glass substrate, etc.) chamfered. The present invention relates to a shape measuring device to be measured.

半導体ウェーハ(以下,ウェーハという)の製造時や,ウェーハを用いたデバイス製造時において,ウェーハの端部(縁部)が,他の部品やウェーハ保持部材と接触することによって傷ついたり,欠けたりする場合がある。さらに,その傷や欠けが原因で,ウェーハが割れることもある。このウェーハの端部における傷や欠けの生じやすさは,ウェーハの端面(いわゆるエッジプロファイル部)の形状と関係があると考えられている。このため,ウェーハに代表される円盤状の測定対象物のエッジプロファイルを正しく測定することは重要である。なお,ここでいう端面の形状は,ウェーハの厚み方向(一次元方向)のプロファイル,即ち,厚み方向断面の形状であり,以下,エッジプロファイルという。
エッジプロファイルの測定方法の代表例は,半導体製造装置/材料に関する業界団体(Semiconductor Equipment and Materials International:以下,SEMI)が定める標準規格であるSemi Standardにおいて規定された非破壊検査法(SEMI-MF-928-0305規格 Method B)である。この非破壊検査法は,円盤状のウェーハの面取り加工された端部に対し,そのウェーハの表裏各面にほぼ平行な方向(第1の方向)から光を投光するとともに,その投光方向に対向する方向からカメラによってウェーハの端部(端面を含む)の投影像を撮像し,その投影像に基づいてウェーハの端面の形状を測定する方法(以下,光投影測定法と称する)である。この光投影測定法により得られる投影像の輪郭は,ウェーハの端部の断面形状(厚み方向に切断した断面の形状)を表す。
例えば,特許文献1には,前記光投影測定法において,点光源の出射光をコリメータレンズに通過させることによってコリメート(平行光化)し,その光束を測定対象物に投光することによって投影像における輪郭のボケや回析縞の発生を防止することが提案されている。
このように,前記光投影測定法により精度の高い形状測定を行うためには,板状の測定対象物の表裏各面に平行な光束が投光されることが必要である。
特開2006−145487号公報
When manufacturing a semiconductor wafer (hereinafter referred to as a wafer) or manufacturing a device using a wafer, the edge (edge) of the wafer may be damaged or chipped due to contact with other components or a wafer holding member. There is a case. In addition, the wafer may break due to the scratches and chips. It is considered that the ease of occurrence of scratches and chips at the edge of the wafer is related to the shape of the wafer end face (so-called edge profile portion). For this reason, it is important to correctly measure the edge profile of a disk-shaped measuring object represented by a wafer. The shape of the end face here is a profile in the thickness direction (one-dimensional direction) of the wafer, that is, the shape of the cross section in the thickness direction, and is hereinafter referred to as an edge profile.
A typical example of the edge profile measurement method is the nondestructive inspection method (SEMI-MF-) specified in the Semi Standard, which is a standard established by the Semiconductor Equipment and Materials International (SEMI). 928-0305 Standard Method B). In this non-destructive inspection method, light is projected from the direction (first direction) substantially parallel to the front and back surfaces of the wafer on the chamfered edge of the disk-shaped wafer, and the direction of light projection. Is a method in which a projected image of an end portion (including an end surface) of a wafer is captured by a camera from a direction facing the surface, and the shape of the end surface of the wafer is measured based on the projected image (hereinafter referred to as an optical projection measurement method) . The contour of the projection image obtained by this optical projection measurement method represents the cross-sectional shape of the edge of the wafer (the cross-sectional shape cut in the thickness direction).
For example, Patent Document 1 discloses a projection image obtained by collimating (collimating) a beam emitted from a point light source through a collimator lens and projecting the luminous flux onto a measurement object in the light projection measurement method. It has been proposed to prevent the occurrence of blurred outlines and diffraction fringes.
Thus, in order to perform highly accurate shape measurement by the light projection measurement method, it is necessary to project light beams parallel to the front and back surfaces of the plate-like measurement object.
JP 2006-145487 A

しかしながら,前記光投影測定法において,光束(平行光)の投光方向と前記測定対象物における前記測定部の表裏各面との平行度が十分でなければ,即ち,投光方向に対して前記測定部の表裏各面が傾いていれば,投影像に基づいて正しい形状測定を行うことができないという問題点があった。特に,ウェーハのように厚みの薄い測定対象物は,製造上のばらつきや重力等によって若干の撓みを有している場合があり,その撓みが投光方向に対する前記測定部の傾きを生じさせることがある。
図9は,前記光投影測定法において,測定対象物に対する投光方向R1と測定対象物における測定部の表裏各面とが平行である場合の光線の経路を模式的に表した図,図10は,前記光投影測定法において,測定対象物に対する投光方向R1と測定対象物における測定部の表裏各面とに傾きが生じている場合の光線の経路を模式的に表した図である。なお,図9及び図10は,測定対象物である円盤状のウェーハ1の端部(測定部)における断面をその断面に垂直な方向(ウェーハ1の半径方向)から見た図である。
図9に示すように,測定部の表裏各面が投光方向R1に沿っている(平行である)場合には,カメラによって撮像される投影像は,測定部の断面形状を正しく表す。一方,図10に示すように,投光方向R1と測定対象物の面とに傾きが生じている場合,測定対象物の周囲を通過後の光の回析等の影響が大きくなる結果,カメラによって撮像される投影像の画像ボケの度合いが大きくなり,その投影像の形状は,測定部の本来の断面形状を表さなくなる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,半導体ウェーハなどの円盤状の測定対象物の端部の形状をその投影像に基づいて測定する場合に,投光方向と測定対象物とを平行な状態に調節して正しい形状測定を行うことができる形状測定装置を提供することにある。
However, in the light projection measurement method, the parallelism between the light projection direction of the light beam (parallel light) and the front and back surfaces of the measurement unit in the measurement object is not sufficient, that is, the light projection direction If the front and back surfaces of the measurement unit are tilted, there is a problem that correct shape measurement cannot be performed based on the projected image. In particular, a thin measurement object such as a wafer may have some deflection due to manufacturing variations, gravity, etc., and this deflection causes the measurement unit to be inclined with respect to the direction of light projection. There is.
FIG. 9 is a diagram schematically showing the path of light rays when the light projection direction R1 with respect to the measurement object and the front and back surfaces of the measurement unit in the measurement object are parallel in the light projection measurement method. These are the figures which represented typically the path | route of the light ray in case the inclination has arisen in the projection direction R1 with respect to a measuring object and each front and back surface of the measurement part in a measuring object in the said light projection measuring method. 9 and 10 are views of a cross section at an end portion (measurement portion) of the disk-shaped wafer 1 that is a measurement object as viewed from a direction perpendicular to the cross section (radial direction of the wafer 1).
As shown in FIG. 9, when the front and back surfaces of the measurement unit are along the light projecting direction R <b> 1 (parallel), the projected image captured by the camera correctly represents the cross-sectional shape of the measurement unit. On the other hand, as shown in FIG. 10, when the light projection direction R1 and the surface of the measurement object are inclined, the influence of diffraction of light after passing around the measurement object becomes large. As a result, the degree of image blur of the projected image picked up increases, and the shape of the projected image does not represent the original cross-sectional shape of the measurement unit.
Therefore, the present invention has been made in view of the above circumstances, and its object is to measure the shape of the end of a disk-shaped measuring object such as a semiconductor wafer based on the projected image. An object of the present invention is to provide a shape measuring apparatus capable of performing correct shape measurement by adjusting a light projecting direction and a measurement object in parallel.

上記目的を達成するために本発明に係る形状測定装置は,例えば半導体ウェーハ等の円盤状の測定対象物の端部(一般に,面取り加工された部分)の投影像に基づいて前記測定対象物の端面の形状を測定する装置であり,次の(1)〜(6)に示す各構成要素を備えている。
(1)前記測定対象物の端部に対し平行光を投光する投光手段。
(2)前記投光手段による投光方向に対向する方向から前記測定対象物の端部の投影像を撮像する撮像手段。
(3)前記投光手段及び前記撮像手段を保持する光学系保持部材。
(4)前記光学系保持部材を駆動して前記測定対象物の表面に対する前記投光方向の傾きを変化させる光学系駆動手段。
(5)前記投光方向に対する前記測定対象物の傾き度合いの指標を検出する傾き指標検出手段。
(6)前記傾き度合いの指標の検出結果に応じて前記光学系駆動手段を制御することにより前記測定対象物の表面に対する前記投光方向の傾きを調節する第1の傾き調節手段。
図10に示したように,前記測定対象物の撓み等に起因して,投光方向と測定対象物との平行度が十分でない(傾きが生じている)状態になり得る。そして,前記光投影測定法においては,平行光の投光方向と前記測定対象物との平行度が十分でなければ,正しい形状測定を行うことができない。
しかしながら,本発明に係る形状測定装置においては,前記第1の傾き調節手段が,前記投光方向に対する前記測定対象物の表面の傾きを修正する(無くす)ように(即ち,前記投光方向と前記測定対象物の表面とが平行になるように)前前記光学系保持部材の傾き(即ち,前記測定対象物の表面に対する前記投光方向の傾き)を調節する。従って,本発明に係る形状測定装置によれば,投光方向と測定対象物との平行状態を確保して正しい形状測定を行うことができる。
In order to achieve the above object, a shape measuring apparatus according to the present invention is based on a projected image of an end portion (generally, a chamfered portion) of a disk-shaped measuring object such as a semiconductor wafer. This is a device for measuring the shape of the end face, and includes the following components (1) to (6).
(1) Projection means for projecting parallel light to the end of the measurement object.
(2) Image pickup means for picking up a projected image of the end of the measurement object from a direction opposite to the light projecting direction by the light projecting means.
(3) An optical system holding member that holds the light projecting unit and the imaging unit.
(4) An optical system driving unit that drives the optical system holding member to change the inclination of the projection direction with respect to the surface of the measurement object.
(5) An inclination index detection unit that detects an index of the degree of inclination of the measurement object with respect to the light projection direction.
(6) First inclination adjusting means for adjusting the inclination of the light projection direction with respect to the surface of the measurement object by controlling the optical system driving means in accordance with the detection result of the inclination degree index.
As shown in FIG. 10, due to the bending of the measurement object, the parallelism between the light projecting direction and the measurement object may be insufficient (inclination occurs). And in the said light projection measuring method, if the parallelism of the projection direction of parallel light and the said measuring object is not enough, correct shape measurement cannot be performed.
However, in the shape measuring apparatus according to the present invention, the first inclination adjusting means corrects (eliminates) the inclination of the surface of the measurement object with respect to the light projecting direction (that is, the light projecting direction and the light projecting direction). The inclination of the optical system holding member (that is, the inclination of the light projecting direction with respect to the surface of the measurement object) is adjusted in advance so that the surface of the measurement object is parallel to the measurement object. Therefore, according to the shape measuring apparatus according to the present invention, a correct shape measurement can be performed while ensuring a parallel state between the light projecting direction and the measurement object.

記傾き指標検出手段及び前記第1の傾き調節手段は,次の(2−1)及び(2−2)に示す構成を有している例が考えられる
(2−1)前記傾き指標検出手段が,前記光学系保持部材に対して保持された状態で,前記投光方向に沿った複数の観測位置において前記投光方向に直交する方向における前記測定対象物の表面の位置を検出する変位検出手段である。
(2−2)前記第1の傾き調節手段が,前記複数の観測位置での前記投光方向に直交する方向における前記測定対象物の表面の位置の関係が予め設定された目標の位置関係に近づく方向に前記投光方向の傾きを調節する。
なお,前記目標の位置関係は,前記投光方向と前記測定対象物の表面とが平行であるときの位置関係である。
前記光学系保持部材に対して保持された前記変位検出手段は,前記投光方向に対する相対位置が固定されている。そのため,その変位検出手段により検出される前記測定対象物の表面の位置の分布(位置関係)と前記目標の位置関係との差が,前記投光方向に対する前記測定対象物の傾きと一意に対応する指標値となる。
また,前記光学系駆動手段の駆動量に対する前記光学系保持部材の傾きの変化量の関係は既知である。そのため,前記変位検出手段により検出される前記測定対象物の表面の位置の分布(位置関係)と前記目標の位置関係との差から,前記投光方向と前記測定対象物とを平行にするための前記光学系駆動手段の駆動量を求めることができる。従って,前記第1の傾き調節手段は,前記変位検出手段による1回の検出に応じた前記光学系駆動手段のオープン制御により,前記投光方向と前記測定対象物とが平行となるように,前記光学系保持部材の傾きを速やかに調節できる。
Before SL gradient index detecting means and said first inclination adjusting means, examples having a structure shown in the following (2-1) and (2-2) can be considered.
(2-1) The measurement object in a direction orthogonal to the light projecting direction at a plurality of observation positions along the light projecting direction in a state where the tilt index detecting unit is held by the optical system holding member. Displacement detecting means for detecting the position of the surface of the object.
(2-2) The first inclination adjusting unit has a target positional relationship in which a positional relationship of the surface of the measurement object in a direction orthogonal to the light projecting direction at the plurality of observation positions is set in advance. The inclination of the light projecting direction is adjusted toward the approaching direction.
The target positional relationship is a positional relationship when the light projecting direction and the surface of the measurement object are parallel.
The relative position of the displacement detecting means held by the optical system holding member with respect to the light projecting direction is fixed. Therefore, the difference between the surface position distribution (positional relationship) detected by the displacement detection means and the target positional relationship uniquely corresponds to the inclination of the measurement object with respect to the light projection direction. The index value to be used.
The relationship between the amount of change in the inclination of the optical system holding member with respect to the drive amount of the optical system drive means is already known. Therefore, in order to make the light projection direction parallel to the measurement object from the difference between the surface position distribution (positional relationship) detected by the displacement detection means and the target positional relationship. The driving amount of the optical system driving means can be obtained. Therefore, the first inclination adjusting means is configured so that the light projecting direction and the measurement object are parallel by the open control of the optical system driving means according to one detection by the displacement detecting means. The inclination of the optical system holding member can be quickly adjusted.

ところで,前記目標の位置関係は,前記投光方向と前記測定対象物とが平行な状態で前記変位検出手段による検出を行うことにより得られるが,前記投光方向と前記測定対象物とが平行な状態であることを確認する作業は手間である。
そこで,本発明に係る形状測定装置が,さらに,次の(2−3)〜(2−5)に示す各構成要素を備える
(2−3)板状の部材である校正用部材を前記投光手段及び前記撮像手段で測定して得られる前記校正用部材の投影像に対する画像処理を行ってその投影像の輪郭の画像ボケの程度を検出する校正用画像処理手段。
(2−4)前記校正用部材の投影像の輪郭の画像ボケの程度が最小化するよう前記光学系駆動手段を制御することにより前記光学系保持部材の傾きを調節する第2の傾き調節手段。
(2−5)前記第2の傾き調節手段により前記光学系保持部材の傾きが調節された状態で前記変位検出手段により検出された前記複数の観測位置での前記校正用部材の表面の位置の関係を,前記目標の位置関係に設定する目標位置関係設定手段。
これにより,前記目標の位置関係の設定を自動化できる。尚、前記板状の部材である校正用部材には、所定の前記測定対象物が含まれる。
また,前記変位検出手段が,前記測定対象物の表面の位置を非接触で検出するものであれば,前記測定対象物の表面に傷が付くことを防止でき好適である。
By the way, the positional relationship of the target can be obtained by performing detection by the displacement detecting means in a state where the light projection direction and the measurement object are parallel, but the light projection direction and the measurement object are parallel. It is troublesome to confirm that the state is correct.
Therefore, the shape measuring apparatus according to the present invention, further, obtain Preparations each component shown in the following (2-3) - (2-5).
(2-3 ) Image processing is performed on the projected image of the calibration member obtained by measuring the calibration member, which is a plate- shaped member, with the light projecting unit and the imaging unit, and the outline of the projected image is blurred. An image processing means for calibration for detecting the degree of.
(2-4) Second inclination adjusting means for adjusting the inclination of the optical system holding member by controlling the optical system driving means so as to minimize the degree of image blurring of the contour of the projection image of the calibration member. .
(2-5) The position of the surface of the calibration member at the plurality of observation positions detected by the displacement detecting means in a state where the inclination of the optical system holding member is adjusted by the second inclination adjusting means. Target position relationship setting means for setting a relationship to the target position relationship.
Thereby, the setting of the positional relationship of the target can be automated. The calibration member that is the plate-like member includes the predetermined measurement object.
Further, it is preferable that the displacement detection means can prevent the surface of the measurement object from being damaged if it detects the position of the surface of the measurement object in a non-contact manner.

本発明によれば,半導体ウェーハなどの円盤状の測定対象物の端面の形状をその投影像に基づいて測定する場合に,投光方向と測定対象物の表面との平行状態を確保して正しい形状測定を行うことができる。また,本発明によれば,測定対象物の端部に対して非接触で前記平行状態の調整を行うことが可能となり,測定対象物の表面の損傷を防止できる。   According to the present invention, when measuring the shape of the end face of a disk-shaped measurement object such as a semiconductor wafer based on the projected image, it is possible to ensure a parallel state between the light projection direction and the surface of the measurement object. Shape measurement can be performed. In addition, according to the present invention, it is possible to adjust the parallel state in a non-contact manner with respect to the end portion of the measurement object, and it is possible to prevent damage to the surface of the measurement object.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る形状測定装置Xの概略平面図,図2は形状測定装置Xの概略側面図,図3は形状測定装置Xが備える光学系回動支持機構の構成を表した図,図4は形状測定装置Xにおける投光方向とウェーハとの関係を説明するための模式図,図5は形状測定装置Xが備えるカメラにより撮像されたウェーハの投影像の一例を模式的に表した図,図6は形状測定装置Xにおいて投光方向とウェーハ1の表面とが平行となるよう調節された状態を表した図,図7は形状測定装置Xにおいて変位センサによりウェーハの傾きを検出する様子を表した図,図8は形状測定装置Xにおいて変位センサにより検出されたウェーハの傾きに応じて投光方向と測定対象物の表面とが平行となるよう調節された状態を表した図,図9は光投影測定法において投光方向と測定対象物の表面とが平行である場合の光線の経路を模式的に表した図,図10光投影測定法において測定対象物に対する投光方向と測定対象物の表面とに傾きが生じている場合の光線の経路を模式的に表した図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
1 is a schematic plan view of the shape measuring apparatus X according to the embodiment of the present invention, FIG. 2 is a schematic side view of the shape measuring apparatus X, and FIG. 3 is an optical system rotation support mechanism provided in the shape measuring apparatus X. FIG. 4 is a schematic diagram for explaining the relationship between the light projection direction and the wafer in the shape measuring apparatus X, and FIG. 5 is an example of a projected image of the wafer imaged by the camera included in the shape measuring apparatus X. FIG. 6 is a diagram showing a state in which the light projecting direction and the surface of the wafer 1 are adjusted to be parallel in the shape measuring apparatus X, and FIG. FIG. 8 is a diagram showing how the tilt of the wafer is detected. FIG. 8 is adjusted so that the light projection direction and the surface of the object to be measured are parallel according to the tilt of the wafer detected by the displacement sensor in the shape measuring apparatus X. Fig. 9 shows the state. FIG. 10 is a diagram schematically showing the path of a light beam when the projection direction is parallel to the surface of the measurement object in the projection measurement method, and FIG. 10 is the projection direction of the measurement object and the measurement object in the light projection measurement method. It is the figure which represented typically the path | route of the light ray in case the inclination has arisen with the surface.

本発明に係る形状測定装置Xは,円盤状の測定対象物であるウェーハ1(半導体ウェーハ)の端部(面取り加工された端面を含む部分)に対し,そのウェーハ1の表裏各面に平行な方向から投光部によって光を投光するとともに,その投光方向に対向する方向からカメラによってウェーハ1の端部(以下,測定部という)の投影像を撮像し,その投影像に基づいてウェーハ1の端面の形状や厚みを測定する装置である。
ウェーハ1は,例えば,半径150[mm]程度,厚み0.8[mm]程度の半導体からなり,その外周端(周面)部分が面取り加工されている。
以下,図1に示す平面図及び図2に示す側面図を参照しつつ,形状測定装置Xの構成について説明する。なお,図2において,図1に示す構成要素のうちの一部が省略されている。
図1及び図2に示すように,形状測定装置Xは,投光用の光学系(投光手段の一例)である投光部として点光源2と,その点光源2の光を平行光とするコリメータレンズ3と,マスク8とを備えている。
前記点光源2は,例えば白色LEDの光を300μm〜400μm程度の直径のピンホールを通じて出射する光源等である。この点光源2の光の出射部(ピンホール)は,コリメータレンズ3の焦点位置に配置されている。
前記コリメータレンズ3は,前記点光源2の出射光を通過させつつ,ウェーハ1の前記測定部に向かう方向であって,その測定部おける表裏両面に平行な方向(投光方向)においてコリメート(平行光化)するレンズである。
前記マスク8は,開口部8oが形成された板状の部材であり,その開口部8oの外側の範囲の光束の通過を制限することにより,前記コリメータレンズ3からウェーハ1側へ向かう光束のうち,前記投光方向R1から見た前記カメラの撮像範囲の外側の範囲の光の通過を遮断する。このマスク8により,前記コリメータレンズ3からウェーハ1に至る過程において,ウェーハ1の投影像の範囲から比較的大きく外れた位置での光の通過が遮断されるので,ウェーハ1に投光される光束に非平行光成分が極力含まれないようにできる。なお,図1及び図2には,2つのマスク8が設けられた例を示しているが,前記マスク8が1つ或いは3つ以上設けられた実施例や,前記マスク8が設けられない実施例も考えられる。
前記マスク8(ウェーハ1に最も近いもの)と前記第1のレンズ4との間隔(距離)は,例えば200[mm]程度に設定され,ウェーハ1の縁部は,それらの間の光束(平行光)の光路中に配置されている。
そして,前記マスク8を通過後の平行光の光束Lpは,ウェーハ1の表裏各面に平行な方向R1からウェーハ1の端面を含む測定部(縁部)に対して投光される。
The shape measuring apparatus X according to the present invention is parallel to the front and back surfaces of the wafer 1 with respect to the end of the wafer 1 (semiconductor wafer), which is a disc-shaped measurement object (including the chamfered end surface). The light is projected from the direction by the light projecting unit, and a projected image of the end portion of the wafer 1 (hereinafter referred to as a measuring unit) is captured by the camera from the direction facing the light projecting direction, and the wafer is based on the projected image. 1 is an apparatus for measuring the shape and thickness of one end face.
The wafer 1 is made of, for example, a semiconductor having a radius of about 150 [mm] and a thickness of about 0.8 [mm], and its outer peripheral end (peripheral surface) is chamfered.
The configuration of the shape measuring apparatus X will be described below with reference to the plan view shown in FIG. 1 and the side view shown in FIG. In FIG. 2, some of the components shown in FIG. 1 are omitted.
As shown in FIGS. 1 and 2, the shape measuring apparatus X includes a point light source 2 as a light projecting unit, which is a light projecting optical system (an example of a light projecting unit), and converts the light from the point light source 2 into parallel light. A collimator lens 3 and a mask 8 are provided.
The point light source 2 is, for example, a light source that emits white LED light through a pinhole having a diameter of about 300 μm to 400 μm. The light emitting portion (pinhole) of the point light source 2 is disposed at the focal position of the collimator lens 3.
The collimator lens 3 is collimated (parallel) in a direction (light projecting direction) parallel to both the front and back surfaces of the measurement unit while passing the light emitted from the point light source 2 and traveling toward the measurement unit. It is a lens to be lightened.
The mask 8 is a plate-like member in which an opening 8o is formed. By restricting the passage of a light beam in a range outside the opening 8o, the mask 8 is a portion of the light beam traveling from the collimator lens 3 toward the wafer 1 side. , The passage of light outside the imaging range of the camera viewed from the light projecting direction R1 is blocked. The mask 8 blocks the passage of light at a position that is relatively far from the range of the projected image of the wafer 1 in the process from the collimator lens 3 to the wafer 1. Therefore, it is possible to prevent the non-parallel light component from being contained as much as possible. 1 and 2 show an example in which two masks 8 are provided, but an embodiment in which one or three or more of the masks 8 are provided, or an implementation in which the mask 8 is not provided. Examples are also possible.
An interval (distance) between the mask 8 (closest to the wafer 1) and the first lens 4 is set to about 200 [mm], for example, and the edge of the wafer 1 has a light flux (parallel) between them. (Light) in the optical path.
Then, the parallel light beam Lp after passing through the mask 8 is projected from the direction R1 parallel to the front and back surfaces of the wafer 1 to the measurement portion (edge portion) including the end surface of the wafer 1.

さらに,形状測定装置Xは,ウェーハ1に対する投光方向R1に対向する方向R2からウェーハ1の端面を含む測定部(縁部)の投影像を撮像するカメラ(撮像手段に相当)として,第1のレンズ4と,絞り5と,第2のレンズ6と,イメージセンサ7(CCD等)とを備えている。
前記第1のレンズ4,前記絞り5及び前記第2のレンズ6は,テレセントリックレンズを構成し,それを通過した光がイメージセンサ7に入力されることにより,イメージセンサ7によってウェーハ1の測定部(端部)の投影像が撮像される。
このように,形状測定装置Xは,平行光をウェーハ1に投光することにより,ウェーハ1が,その平行光の光軸方向(投光方向R1)の奥行き長さが長いものであっても,イメージセンサ7において,輪郭のボケの程度が小さい良好な投影像を得ることができる。また,干渉性の強い単波長光ではなく,多波長成分を有する白色LEDを用いた点光源2を採用することにより,ウェーハ1が,投光方向R1の奥行き長さが長いものであっても,イメージセンサ7において投影像の輪郭の近傍に発生する回折縞が少ない良好な撮像画像を得ることができる。
Furthermore, the shape measuring apparatus X is a first camera as a camera (corresponding to an imaging unit) that captures a projection image of a measurement unit (edge) including an end face of the wafer 1 from a direction R2 facing the light projection direction R1 with respect to the wafer 1. Lens 4, aperture 5, second lens 6, and image sensor 7 (CCD or the like).
The first lens 4, the diaphragm 5 and the second lens 6 constitute a telecentric lens, and light passing through the first lens 4 is input to the image sensor 7. A projected image of (edge) is captured.
As described above, the shape measuring apparatus X projects parallel light onto the wafer 1, so that the wafer 1 has a long depth length in the optical axis direction (projection direction R1) of the parallel light. In the image sensor 7, it is possible to obtain a good projection image with a small outline blur. Further, by adopting a point light source 2 using a white LED having a multi-wavelength component instead of a strong single-wavelength light, even if the wafer 1 has a long depth in the light projecting direction R1, In the image sensor 7, a good captured image with few diffraction fringes generated in the vicinity of the contour of the projected image can be obtained.

形状測定装置Xは,さらに,中央吸着支持機構9と,画像処理装置10と,制御装置11と,光学系保持部材20と,光学系回動支持機構30〜32とを備えている。
画像処理装置10は,イメージセンサ7による撮像画像(ウェーハ1の投影像を含む画像)に基づく画像処理を実行する演算装置であり,例えば,予めその記憶部に記憶された所定のプログラムを実行するDSP(Digital Signal Processor)やパーソナルコンピュータ等である。この画像処理装置10は,イメージセンサ7による撮像画像(投影像)について予め定められた画像処理を実行することにより,ウェーハ1の端面形状の指標値を算出する。なお,画像処理装置10は,制御装置11からの制御指令に従って,イメージセンサ7による撮像画像(画像データ)の入力,及びその撮像画像に基づく画像処理を実行する。
また,中央吸着支持機構9は,円盤状のウェーハ1をその一方の面(例えば,下面)の中央部を真空吸着することにより支持する。さらに,中央吸着支持機構9は,ウェーハ1をその中央部(中心点Ow)を回転軸としてその周方向に回転駆動及び停止させることにより,ウェーハ1の周方向におけるいずれの位置の端部を前記測定部として光束の光路中に位置させるかを調節する装置でもある。
また,中央吸着支持機構9は,ウェーハ1の支持角度(回転角度)を検出する角度検出センサとして不図示の回転エンコーダを備え,その検出角度に基づいてウェーハ1の支持位置(支持角度)の位置決めを行う。なお,中央吸着支持機構9は,制御装置11からの制御指令に従って,ウェーハ1の支持位置の位置決めを行う。なお,中央吸着指示機構9は,後述する台座30に固定された基台部(本体部)と,ウェーハ1の中央部を吸着するとともに,前記基台部に対して回転可能に設けられた支持部とを有し,その支持部の回転角度が,前記エンコーダによって検出される。
制御装置11は,CPU及びその周辺装置を備えた計算機であり,そのCPUが,予めその記憶部に記憶された制御プログラムを実行することにより,画像処理装置10,中央吸着支持機構9及び前記光学系回動支持機構30〜32における駆動モータを制御する(制御指令を出力する)装置である。
The shape measuring device X further includes a central suction support mechanism 9, an image processing device 10, a control device 11, an optical system holding member 20, and optical system rotation support mechanisms 30 to 32.
The image processing apparatus 10 is an arithmetic unit that executes image processing based on an image captured by the image sensor 7 (an image including a projected image of the wafer 1), and executes, for example, a predetermined program stored in the storage unit in advance. A DSP (Digital Signal Processor), a personal computer, or the like. The image processing apparatus 10 calculates an index value of the end face shape of the wafer 1 by executing predetermined image processing on a captured image (projected image) by the image sensor 7. The image processing apparatus 10 executes input of a captured image (image data) by the image sensor 7 and image processing based on the captured image in accordance with a control command from the control device 11.
The central suction support mechanism 9 supports the disk-shaped wafer 1 by vacuum suction of the central portion of one surface (for example, the lower surface). Further, the central suction support mechanism 9 rotates and stops the wafer 1 in the circumferential direction around the central portion (center point Ow) of the wafer 1 as a rotation axis, so that the end portion at any position in the circumferential direction of the wafer 1 is It is also a device that adjusts whether it is positioned in the optical path of the light beam as a measurement unit.
The central suction support mechanism 9 includes a rotation encoder (not shown) as an angle detection sensor for detecting the support angle (rotation angle) of the wafer 1, and positioning of the support position (support angle) of the wafer 1 based on the detection angle. I do. The central suction support mechanism 9 positions the support position of the wafer 1 in accordance with a control command from the control device 11. The central suction instruction mechanism 9 supports a base portion (main body portion) fixed to a pedestal 30 described later and a central portion of the wafer 1 and is provided so as to be rotatable with respect to the base portion. And the rotation angle of the support portion is detected by the encoder.
The control device 11 is a computer including a CPU and its peripheral devices, and the CPU executes a control program stored in advance in the storage unit, whereby the image processing device 10, the central suction support mechanism 9, and the optical device. It is a device that controls a drive motor (outputs a control command) in the system rotation support mechanisms 30 to 32.

前記光学系保持部材20は,前記投光部(前記点光源2,前記コリメータレンズ3及び前記マスク8)と,前記カメラ(前記第1のレンズ4,前記絞り5,前記第2のレンズ6及び前記イメージセンサ7)とを含む光学機器を,それらの相対的な位置関係が固定した状態で保持する部材である。図1及び図2に示す例では,前記光学系保持部材20は,断面が概ねL字状であって,光束Lpの投光方向に沿って伸びて形成された金属製部材(剛体)である。なお,図1及び図2において,前記光学系保持部材20と各光学機器とを連結する連結部の記載は省略されている。
また,前記光学系回動支持機構30〜32は,前記光学系保持部材20を,投光方向R1に直交する支持軸31で軸支するとともに,その支持軸31で軸支された前記光学系保持部材20をその支持軸31を中心として回動駆動させるものである。
The optical system holding member 20 includes the light projecting unit (the point light source 2, the collimator lens 3 and the mask 8), the camera (the first lens 4, the diaphragm 5, the second lens 6 and the like). It is a member that holds an optical device including the image sensor 7) in a state where their relative positional relationship is fixed. In the example shown in FIGS. 1 and 2, the optical system holding member 20 is a metal member (rigid body) having a substantially L-shaped cross section and extending along the light projecting direction of the light beam Lp. . In FIG. 1 and FIG. 2, description of a connecting portion that connects the optical system holding member 20 and each optical device is omitted.
The optical system rotation support mechanisms 30 to 32 support the optical system holding member 20 with a support shaft 31 orthogonal to the light projecting direction R1 and the optical system supported by the support shaft 31. The holding member 20 is driven to rotate about the support shaft 31.

次に,図3を参照しつつ,前記光学系回動支持機構30〜32について説明する。
前記光学系回動支持機構は,投光方向R1に直交する方向に突設されて前記光学系保持部材20を回動自在に軸支する支持軸31と,その支持軸31を保持する台座30と,その支持軸31で軸支された前記光学系保持部材20を回動駆動させる回動駆動部32(前記回動駆動手段の一例)とを備えている。このように,前記光学系保持部材20を軸支する前記支持軸31,及びウェーハ1を支持する前記中央吸着指示機構9は,いずれも前記台座30に保持されている。
また,前記回動駆動部32は,前記台座30に保持されたサーボモータ32aと,そのサーボモータ32aの回転軸に設けられたウォーム32bと,前記光学系保持部材20に固定されたウォームホイール32cとを備えている。前記ウォーム32bと前記ウォームホイール32cとは,相互にギアが噛み合うウォームギアを構成している。
そして,前記制御装置11は,前記サーボモータ32aに対して制御指令を出力することによって前記ウォーム32bを必要な角度だけ回転させることにより,前記支持軸31に軸支された前記光学系保持部材20の傾き(前記中央吸着指示機構9により支持されたウェーハ1に対する傾き)を調節する。これにより,前記ウェーハ1の表面(表裏各面)に対する前記投光方向R1の傾きが調節される。
なお,図3に示す前記回動駆動部32は,ウォームギアによって前記光学系保持部材20を回動駆動するものであるが,その他,タンジェントスクリュー等の他の駆動機構によって前記光学系保持部材20を回動駆動する構成も考えられる。
Next, the optical system rotation support mechanisms 30 to 32 will be described with reference to FIG.
The optical system rotation support mechanism protrudes in a direction orthogonal to the light projecting direction R1, and supports a support shaft 31 that pivotally supports the optical system holding member 20, and a pedestal 30 that holds the support shaft 31. And a rotation drive unit 32 (an example of the rotation drive means) that rotates the optical system holding member 20 that is pivotally supported by the support shaft 31. Thus, the support shaft 31 that supports the optical system holding member 20 and the central suction instruction mechanism 9 that supports the wafer 1 are both held by the pedestal 30.
The rotation drive unit 32 includes a servo motor 32a held on the pedestal 30, a worm 32b provided on a rotation shaft of the servo motor 32a, and a worm wheel 32c fixed to the optical system holding member 20. And. The worm 32b and the worm wheel 32c constitute a worm gear in which gears mesh with each other.
Then, the control device 11 outputs a control command to the servo motor 32a to rotate the worm 32b by a necessary angle so that the optical system holding member 20 supported by the support shaft 31 is supported. (The inclination with respect to the wafer 1 supported by the central suction instruction mechanism 9) is adjusted. Thereby, the inclination of the light projection direction R1 with respect to the front surface (front and back surfaces) of the wafer 1 is adjusted.
Incidentally, the rotation drive unit 32 shown in FIG. 3, but is intended to drive rotating the optical system holding member 20 by the worm gear, other, the optical system holding member 20 by other drive mechanisms such as tangent screw A configuration for rotational driving is also conceivable.

図4は,形状測定装置Xにおける投光方向とウェーハ1との関係を説明するための模式図である。
ここで,前記中央吸着指示機構9に支持されたウェーハ1の表面(被支持面)に沿う平面をウェーハ被支持平面Fpと称し,そのウェーハ被支持平面Fpに垂直な方向をZ軸方向(Rz)と称する。
また,前記ウェーハ支持平面Fp上において,前記Z軸方向(Rz)から見てウェーハ1の中心Owと前記測定部の先端位置Ptとを通る直線の方向をY軸方向(Ry),そのY軸方向(Ry)に直交する方向をX軸方向(Rx)と称する。
形状測定装置Xにおいて,前記中央吸着指示機構9は,ウェーハ1を前記ウェーハ被支持平面Fp内において回転させる。
また,前記光学系保持部材20を軸支する前記支持軸31は,投光方向R1に直交し,かつ,前記Y軸方向(Ry)に平行な軸である。
従って,前記光学系回動支持機構30〜32が,前記光学系保持部材20を,前記支持軸31を中心としてその周囲方向Rcに回動させることにより,前記投光方向R1の前記ウェーハ被支持平面Fpに対する傾き(前記X軸方向(Rx)及び前記Z軸方向(Rz)に対する傾き)が調整される。また,その調整の際,前記投光方向R1は,前記Y軸方向(Ry)に直交する状態が維持される。
なお,前記支持軸31は,その軸心が前記Z軸方向(Rz)から見てウェーハ1の中心Owと前記測定部の先端位置Ptとを通る直線上に位置するよう配置されてもよい。また,前記支持軸31は,その軸心が前記Y軸方向(Ry)方向から見て前記測定部の先端位置Ptと重なる位置に配置されてもよい。
FIG. 4 is a schematic diagram for explaining the relationship between the light projecting direction and the wafer 1 in the shape measuring apparatus X.
Here, a plane along the surface (supported surface) of the wafer 1 supported by the central suction instruction mechanism 9 is referred to as a wafer supported plane Fp, and a direction perpendicular to the wafer supported plane Fp is a Z-axis direction (Rz ).
Further, on the wafer support plane Fp, the direction of the straight line passing through the center Ow of the wafer 1 and the tip position Pt of the measurement unit when viewed from the Z-axis direction (Rz) is the Y-axis direction (Ry), and the Y-axis A direction orthogonal to the direction (Ry) is referred to as an X-axis direction (Rx).
In the shape measuring apparatus X, the central suction instruction mechanism 9 rotates the wafer 1 in the wafer supported plane Fp.
The support shaft 31 that pivotally supports the optical system holding member 20 is an axis that is orthogonal to the light projecting direction R1 and parallel to the Y-axis direction (Ry).
Therefore, the optical system rotation support mechanisms 30 to 32 rotate the optical system holding member 20 around the support shaft 31 in the peripheral direction Rc, thereby supporting the wafer supported in the light projecting direction R1. The inclination with respect to the plane Fp (the inclination with respect to the X-axis direction (Rx) and the Z-axis direction (Rz)) is adjusted. Further, during the adjustment, the light projecting direction R1 is maintained in a state orthogonal to the Y-axis direction (Ry).
The support shaft 31 may be arranged such that its axis is located on a straight line passing through the center Ow of the wafer 1 and the tip position Pt of the measurement unit when viewed from the Z-axis direction (Rz). Further, the support shaft 31 may be disposed at a position where the axis of the support shaft 31 overlaps the tip position Pt of the measurement unit when viewed from the Y-axis direction (Ry) direction.

形状測定装置Xにより,ウェーハ1の周方向における複数箇所の前記測定部について形状測定を行う場合,前記中央吸着支持機構9により,ウェーハ1の中央部を吸着支持した状態で回転させ,これによりウェーハ1の位置決めを行えば効率的な測定を行うことができる。
しかしながら,図10に示したように,ウェーハ1の撓み等に起因して,前記投光方向R1と前記測定部の表面との平行度が十分でない状態になった場合,正しい形状測定を行うことができない。
そこで,前記制御装置11は,ウェーハ1の形状測定が行われる前に,前記回動駆動部32のサーボモータ32aを制御することにより,前記光学系保持部材20の傾き(即ち,ウェーハ1の表面に対する前記投光方向R1の傾き)を調節する傾き調節処理を実行する(前記第1の傾き調節手段の一例)。その傾き調節処理の際,前記中央吸着支持機構9により支持されたウェーハ1の端部の前記投光方向R1に対する傾き度合いの指標が検出され,その検出結果に応じて前記回動駆動部32のサーボモータ32aが制御される。
以下,前記投光方向R1に対するウェーハ1の傾き度合いの指標を検出する傾き検出処理の具体例(第1実施例及び第2実施例)について説明する。
When the shape measurement apparatus X performs shape measurement on a plurality of measurement portions in the circumferential direction of the wafer 1, the central suction support mechanism 9 rotates the wafer 1 while the central portion of the wafer 1 is sucked and supported. If positioning of 1 is performed, efficient measurement can be performed.
However, as shown in FIG. 10, when the parallelism between the light projecting direction R1 and the surface of the measurement unit is not sufficient due to the bending of the wafer 1, the correct shape measurement is performed. I can't.
Therefore, the controller 11 controls the servo motor 32a of the rotation drive unit 32 before measuring the shape of the wafer 1, thereby tilting the optical system holding member 20 (that is, the surface of the wafer 1). Tilt adjustment processing for adjusting the tilt of the light projection direction R1 with respect to (an example of the first tilt adjustment means). During the tilt adjustment processing, an index of the tilt degree of the end portion of the wafer 1 supported by the central suction support mechanism 9 with respect to the light projecting direction R1 is detected, and the rotation drive unit 32 is controlled according to the detection result. The servo motor 32a is controlled.
Hereinafter, specific examples (first embodiment and second embodiment) of the tilt detection process for detecting the index of the tilt degree of the wafer 1 with respect to the light projecting direction R1 will be described.

まず,図5を参照しつつ,前記傾き検出処理の第1実施例について説明する。
図5は,前記カメラ4〜7により撮像されたウェーハ1の投影像1’の一例を模式的に表した図であり,図5(a)は,前記投光方向R1に対して前記測定部(ウェーハ1の端部)の表面が傾いている場合,図5(b)は,前記投光方向R1と前記測定部の表面とがほぼ平行である場合を表す。
図5に示すように,投光方向R1に対するウェーハ1の傾きが大きいほど,投影像1’の輪郭の画像ボケの程度が大きくなり,投光方向R1とウェーハ1とが平行な状態であるときに投影像1’の輪郭の画像ボケの程度が最も小さくなる。
そこで,前記傾き検出処理の第1実施例では,前記画像処理装置10が,ウェーハ1の端部の投影像1’に対する画像処理によってその投影像1’の画像ボケの程度を,投光方向R1に対するウェーハ1の傾き度合いの指標値として検出する。例えば,前記画像処理装置10は,前記投影像1’における所定の基準線J(例えば,ウェーハ1の厚み方向の線)に沿った輝度の単位距離当たりの最大変化量(以下,輝度最大傾き量という)を投影像1’の輪郭の画像ボケの程度を表す指標値として算出する。投影像1’の輪郭の画像ボケの程度が大きいほど,前記輝度最大傾き量が小さくなり,投影像1’の輪郭の画像ボケの程度が小さいほど,前記輝度最大傾き量が大きくなる(急峻になる)。なお,前記輝度最大傾き量が,複数の前記基準線Jそれぞれについて算出された複数の単位距離当たりの輝度の最大変化量の平均値であることも考えられる。
この第1実施例においては,ウェーハ1の端面の形状検出を行うための前記画像処理装置10が,ウェーハ1の傾きの指標値を検出する装置として兼用される。
そして,前記制御装置11は,ウェーハ1の端部の投影像1’の輪郭の画像ボケの程度が最小化する方向に前記回動駆動部32のサーボモータ32aを制御する(前記第1の傾き調節手段の一例)。
なお,説明の便宜上,図5(a)には,現実よりも画像ボケを強調した投影像1’を示している。
First, a first embodiment of the tilt detection process will be described with reference to FIG.
FIG. 5 is a diagram schematically showing an example of a projected image 1 ′ of the wafer 1 taken by the cameras 4 to 7, and FIG. 5A shows the measurement unit with respect to the light projection direction R1. When the surface of (the end portion of the wafer 1) is tilted, FIG. 5B shows the case where the light projection direction R1 and the surface of the measurement unit are substantially parallel.
As shown in FIG. 5, the greater the inclination of the wafer 1 with respect to the light projection direction R1, the greater the degree of image blurring of the outline of the projected image 1 ′, and the light projection direction R1 and the wafer 1 are in a parallel state. In addition, the degree of image blur in the outline of the projected image 1 ′ is the smallest.
Therefore, in the first embodiment of the tilt detection process, the image processing apparatus 10 determines the degree of image blur of the projection image 1 ′ by the image processing on the projection image 1 ′ at the edge of the wafer 1, and the projection direction R1. Is detected as an index value of the degree of inclination of the wafer 1 with respect to. For example, the image processing apparatus 10 determines the maximum amount of change in luminance per unit distance (hereinafter referred to as the maximum luminance gradient amount) along a predetermined reference line J (for example, a line in the thickness direction of the wafer 1) in the projection image 1 ′. Is calculated as an index value representing the degree of image blurring of the contour of the projection image 1 ′. The larger the degree of image blur in the contour of the projected image 1 ′, the smaller the maximum luminance gradient amount, and the smaller the degree of image blur in the contour of the projected image 1 ′, the larger the maximum luminance gradient amount (steeply). Become). It is also conceivable that the maximum luminance inclination amount is an average value of the maximum luminance change amounts per unit distance calculated for each of the plurality of reference lines J.
In the first embodiment, the image processing apparatus 10 for detecting the shape of the end face of the wafer 1 is also used as an apparatus for detecting an index value of the tilt of the wafer 1.
Then, the control device 11 controls the servo motor 32a of the rotation drive unit 32 in a direction in which the degree of image blur of the contour of the projected image 1 ′ at the end of the wafer 1 is minimized (the first inclination). An example of adjusting means).
For convenience of explanation, FIG. 5A shows a projected image 1 ′ in which image blur is emphasized more than reality.

ところで,投影像1’の輪郭の画像ボケの程度は,ウェーハ1の端部の傾きと相関があるものの,ウェーハ1の端部(測定部位)やその周辺部分の表面の状態,或いはその端部の形状等の影響も受け,ウェーハ1の傾きのみによって定まるものではなく,測定部位が異なればその最小値も異なり得る。
そこで,前記制御装置11は,投影像1’の輪郭の画像ボケの程度の検出値(ここでは,前記輝度最大傾き量)をフィードバックしつつ前記光学系保持部材20の傾きを徐々に変化させ,その画像ボケの程度の検出結果が最小となるように前記光学系保持部材20の傾きを調節する。
図6は,形状測定装置Xにおいて,前記制御装置11により,投光方向R1とウェーハ1の表面とが平行となるよう調節された状態を表した図である。図6に示すように,形状測定装置Xにおいは,形状測定の前に投光方向R1(平行光Lpの方向)とウェーハ1とが平行となる状態に調節されるので,正しい(高精度での)形状測定を行うことができる。
By the way, although the degree of the image blur of the outline of the projected image 1 ′ has a correlation with the inclination of the end of the wafer 1, the state of the surface of the end of the wafer 1 (measurement site) and its peripheral part, or the end thereof The shape is not determined only by the inclination of the wafer 1, and the minimum value may be different if the measurement site is different.
Therefore, the control device 11 gradually changes the inclination of the optical system holding member 20 while feeding back a detection value (here, the luminance maximum inclination amount) of the degree of image blur of the outline of the projection image 1 ′. The inclination of the optical system holding member 20 is adjusted so that the detection result of the degree of image blur is minimized.
FIG. 6 is a view showing a state in which the light projecting direction R1 and the surface of the wafer 1 are adjusted to be parallel by the control device 11 in the shape measuring apparatus X. As shown in FIG. 6, in the shape measuring apparatus X, the projection direction R1 (direction of the parallel light Lp) and the wafer 1 are adjusted to be parallel before the shape measurement. Shape measurement can be performed.

次に,図7及び図8を参照しつつ,前記傾き検出処理の第2実施例について説明する。
この傾き検出処理(第2実施例)を実行する形状測定装置Xは,図5に示すように,前記光学系保持部材20に対して保持(固定)された2つの非接触型の変位センサ40を備えている。
これら2つの変位センサ40は,前記投光方向R1に沿って間隔Lrを隔てて配列され,投光方向R1に沿った2つの観測位置P1,P2において前記投光方向R1に直交する方向(ウェーハ1の表裏各面に交差する方向)におけるウェーハ1の表面の位置(高さ)を検出するセンサである(前記変位検出手段の一例)。例えば,前記変位センサ40として,反射型のレーザ変位センサや渦電流型変位センサ,超音波式の変位センサ等を採用することが考えられる。
そして,この第2実施例における前記制御装置11は,2つの前記観測位置P1,P2での前記投光方向R1に直交する方向におけるウェーハ1表面の位置(表面高さh1,h2)の関係が,予め設定された目標の位置関係に近づく方向に前記回動駆動部32のサーボモータ32aを制御することにより,ウェーハ1の表面に対する前記投光方向R1の傾きを調節する(前記第1の傾き調節手段の一例)。ここで,前記目標の位置関係は,前記投光方向R1とウェーハ1の表面とが平行であるときの位置関係であり,ここでは,一方の観測位置P1における変位センサ40の検出位置(検出高さh1)と,他方の観測位置P2における変位センサ40の検出位置(検出高さh2)との差がΔh0である関係が,前記目標の位置関係であるとする。
前記光学系保持部材20に対して保持された前記変位センサ40は,前記投光方向R1に対する相対位置が固定されている。そのため,その変位センサ40により検出されるウェーハ1の表面の位置h1,h2の分布(位置関係)と前記目標の位置関係との差α(h1−h2=Δh0+α)が,投光方向R1に対するウェーハ1の傾きθと一意に対応する指標値となる。即ち,2つの観測位置P1,P2の投光方向R1における間隔がLr(既知の値)である場合,傾きθはtan-1(α/Lr)である。
また,前記サーボモータ32aの回転角度に対する前記光学系保持部材20の傾きの変化量の関係は,前記ウオームギア32b,32cのギア比,前記支持軸31と前記ウォームギア32b,32cとの位置関係(距離)等に基づき定まる既知の関係である。
以上のことから,前記制御装置11は,前記変位検出センサ40による1回の検出により得られるウェーハ1表面の位置P1,P2の位置関係と前記目標の位置関係との差αから,投光方向R1とウェーハ1表面とを平行にするための前記サーボモータ32aの回転角度を算出し,算出した回転角度の分だけ前記サーボモータ32aを回転させる制御(オープン制御)を行う。これにより,前記投光方向R1とウェーハ1とが平行となるように,前記光学系保持部材20の傾きが速やかに調節される。
図8は,形状測定装置Xが,前記変位センサ40による傾き検出処理を行う場合において,前記制御装置11により,投光方向R1とウェーハ1の表面とが平行となるよう調節された状態を表した図である。図8に示すように,形状測定装置Xにおいは,形状測定の前に投光方向R1(平行光Lpの方向)とウェーハ1とが平行となる状態に調節されるので,正しい(高精度での)形状測定を行うことができる。
Next, a second embodiment of the tilt detection process will be described with reference to FIGS.
As shown in FIG. 5, the shape measuring apparatus X that executes this inclination detection process (second embodiment) has two non-contact type displacement sensors 40 held (fixed) to the optical system holding member 20. It has.
These two displacement sensors 40 are arranged at an interval Lr along the light projecting direction R1, and at two observation positions P1 and P2 along the light projecting direction R1, directions perpendicular to the light projecting direction R1 (wafer) 1 is a sensor that detects the position (height) of the surface of the wafer 1 in a direction that intersects the front and back surfaces of 1 (an example of the displacement detection means). For example, as the displacement sensor 40, a reflection type laser displacement sensor, an eddy current type displacement sensor, an ultrasonic displacement sensor, or the like may be employed.
The control device 11 in the second embodiment has the relationship between the positions of the wafer 1 surface (surface heights h1 and h2) in the direction orthogonal to the light projection direction R1 at the two observation positions P1 and P2. The inclination of the light projecting direction R1 with respect to the surface of the wafer 1 is adjusted by controlling the servo motor 32a of the rotation driving unit 32 in a direction approaching a preset target positional relationship (the first inclination). An example of adjusting means). Here, the target positional relationship is a positional relationship when the light projecting direction R1 and the surface of the wafer 1 are parallel, and here, the detection position (detection height) of the displacement sensor 40 at one observation position P1. It is assumed that a relationship in which the difference between the height h1) and the detection position (detection height h2) of the displacement sensor 40 at the other observation position P2 is Δh0 is the target positional relationship.
The relative position of the displacement sensor 40 held with respect to the optical system holding member 20 with respect to the light projecting direction R1 is fixed. Therefore, the difference α (h1−h2 = Δh0 + α) between the distribution (positional relationship) of the surface positions h1 and h2 on the surface of the wafer 1 detected by the displacement sensor 40 and the target positional relationship is the wafer relative to the light projecting direction R1. The index value uniquely corresponds to the inclination θ of 1. That is, when the interval between the two observation positions P1 and P2 in the light projecting direction R1 is Lr (known value), the inclination θ is tan −1 (α / Lr).
Further, the relationship between the change amount of the inclination of the optical system holding member 20 with respect to the rotation angle of the servo motor 32a is the gear ratio of the worm gears 32b and 32c, and the positional relationship (distance) between the support shaft 31 and the worm gears 32b and 32c. ) And the like.
From the above, the control device 11 determines the light projection direction from the difference α between the positional relationship between the positions P1, P2 on the surface of the wafer 1 and the target positional relationship obtained by one detection by the displacement detection sensor 40. A rotation angle of the servo motor 32a for making R1 and the surface of the wafer 1 parallel to each other is calculated, and control (open control) is performed to rotate the servo motor 32a by the calculated rotation angle. Thereby, the inclination of the optical system holding member 20 is quickly adjusted so that the light projection direction R1 and the wafer 1 are parallel to each other.
FIG. 8 shows a state in which the shape measuring device X is adjusted by the control device 11 so that the light projecting direction R1 and the surface of the wafer 1 are parallel when the tilt detection processing by the displacement sensor 40 is performed. FIG. As shown in FIG. 8, in the shape measuring apparatus X, the light projection direction R1 (the direction of the parallel light Lp) and the wafer 1 are adjusted to be parallel before the shape measurement. Shape measurement can be performed.

ところで,前記目標の位置関係(h1−h2=Δh0)を得るために,投光方向R1とウェーハ1表面とが平行な状態であることを確認する作業は手間である。
そこで,例えば,形状測定装置Xが,以下の手順に従って,前記目標の位置関係の設定処理を予め実行することが考えられる。
まず,所定の板状の部材を前記中央吸着支持機構9により支持した状態で,その板状の部材を前記投光部及び前記カメラにより測定することにより,その板状の部材の投影像を撮像する。ここで,前記板状の部材(前記校正用部材の一例)は,例えば,表裏各面が高い精度で平面状に,かつ平行に形成された板状の部材や,最初の測定対象であるウェーハ1等である。
次に,前記画像処理装置10が,その板状の部材の投影像に対する画像処理を行うことにより,その投影像の輪郭の画像ボケの程度を検出する(前記校正用画像処理手段の一例)。
さらに,前記制御装置11が,前記板状の部材の投影像の輪郭の画像ボケの程度が最小化するよう前記回動駆動部32のサーボモータ32aを制御することにより,前記光学系保持部材20の傾き(即ち,前記板状の部材(例えば、最初の測定対象物であるウェーハ1等)の表面に対する前記投光方向R1の傾き)を調節する(前記第2の傾き調節手段の一例9)。
なお,以上に示した処理は,前記傾き検出処理の第1実施例と同様の処理である。
そして,前記制御装置11が,前記画像ボケの程度に応じて前記光学系保持部材20の傾きを調節した状態で前記変位センサ40により検出された2つの観測位置P1,P2での前記板状の部材(例えば、最初の測定対象物であるウェーハ1等)の表面の位置h1,h2の関係を,以降に用いる前記目標の位置関係(h1−h2=Δh0)として不揮発性メモリへ記録(設定)する(前記目標位置関係設定手段の一例)。
これにより,前記目標の位置関係の設定を自動化できる。
By the way, in order to obtain the target positional relationship (h1−h2 = Δh0), it is troublesome to confirm that the light projecting direction R1 and the surface of the wafer 1 are parallel.
Therefore, for example, it is conceivable that the shape measuring apparatus X executes the target positional relationship setting process in advance according to the following procedure.
First, in a state where a predetermined plate-like member is supported by the central suction support mechanism 9, the plate-like member is measured by the light projecting unit and the camera, and a projected image of the plate-like member is captured. To do. Here, the plate-like member (an example of the calibration member) is, for example, a plate-like member in which the front and back surfaces are formed in a plane and in parallel with high accuracy, or the wafer to be measured first. 1st magnitude.
Next, the image processing device 10 performs image processing on the projection image of the plate-like member, thereby detecting the degree of image blurring of the outline of the projection image (an example of the calibration image processing means).
Further, the control device 11 controls the servo motor 32a of the rotation drive unit 32 so as to minimize the degree of image blurring of the outline of the projection image of the plate-like member, whereby the optical system holding member 20 is controlled. slope (i.e., the plate-like member (e.g., the slope of the light projection direction R1 with respect to the surface of the wafer 1, etc.) is the first measurement object) modulate (example 9 of the second inclination adjusting means) .
The processing described above is the same processing as that in the first embodiment of the tilt detection processing.
Then, the control device 11 adjusts the inclination of the optical system holding member 20 according to the degree of the image blur, and the plate-like shape at the two observation positions P1 and P2 detected by the displacement sensor 40 is detected . The relationship between the positions h1 and h2 on the surface of the member (for example, the wafer 1 as the first object to be measured ) is recorded (set) in the nonvolatile memory as the target positional relationship (h1−h2 = Δh0) to be used later. (An example of the target position relationship setting means).
Thereby, the setting of the positional relationship of the target can be automated.

ところで,図7及び図8に示した前記傾き処理の第2実施例では,2つの前記変位センサ40により,前記投光方向R1に沿った2箇所の観測位置P1,P2において,ウェーハ1の表面位置を計測する構成を示した。
しかしながら,3つ以上の前記変位センサ40により,前記投光方向R1に沿った3箇所以上の観測位置において,ウェーハ1の表面位置を計測する実施例も考えられる。
その場合,前記制御装置11が,例えば,3箇所以上の観測位置におけるウェーハ1の表面位置(表面高さ)の分布を直線近似し,その直線近似により得られる近似直線の傾きと予め設定された目標の傾き(前記目標の位置関係の一例)との差に応じて,前記光学系保持部材20の傾きを調節することが考えられる。
また,前記変位センサ40は,ウェーハ1表面に傷が付くことを防止するために非接触式の変位センサであることが望ましいが,接触式の変位センサを用いても前記傾き検出処理を実現できる。
また,前記形状測定装置Xにおいては,前記回動駆動部32が,軸支された前記光学系保持部材20を回動駆動するが,前記光学系保持部材20の傾き(即ち,ウェーハ1表面に対する前記投光方向R1の傾き)を変化させる機構は,アクチュエータを備えた他の機構であってもよい。
また,以上に示した実施形態の他,別途用意された計測器により,前記中央吸着支持機構9により支持されたウェーハ1の反りの状態(程度)を計測し,その計測結果を前記制御装置11に入力し,前記制御装置11が,その入力結果に基づいて前記回動駆動部32のサーボモータ32aを制御することにより,前記光学系保持部材20の傾きを調節することも考えられる。
By the way, in the second embodiment of the tilt process shown in FIGS. 7 and 8, the surface of the wafer 1 is observed at two observation positions P1 and P2 along the light projecting direction R1 by the two displacement sensors 40. A configuration for measuring the position is shown.
However, an embodiment in which the surface position of the wafer 1 is measured at three or more observation positions along the light projection direction R1 by three or more displacement sensors 40 is also conceivable.
In that case, for example, the control device 11 linearly approximates the distribution of the surface position (surface height) of the wafer 1 at three or more observation positions, and the inclination of the approximate straight line obtained by the linear approximation is preset. It is conceivable to adjust the inclination of the optical system holding member 20 in accordance with a difference from a target inclination (an example of the target positional relationship).
The displacement sensor 40 is preferably a non-contact type displacement sensor in order to prevent the surface of the wafer 1 from being scratched. However, the tilt detection process can be realized using a contact type displacement sensor. .
Further, in the shape measuring apparatus X, the rotation drive unit 32 drives to rotate the optical system holding member 20 that is pivotally supported, but the inclination of the optical system holding member 20 (that is, relative to the surface of the wafer 1). The mechanism for changing the inclination of the light projection direction R1 may be another mechanism including an actuator.
In addition to the embodiment described above, the state (degree) of warpage of the wafer 1 supported by the central suction support mechanism 9 is measured by a separately prepared measuring instrument, and the measurement result is measured by the control device 11. It is also conceivable that the control device 11 adjusts the inclination of the optical system holding member 20 by controlling the servo motor 32a of the rotation drive unit 32 based on the input result.

本発明は,主として半導体ウェーハ,その他,ハードディスク用のアルミサブストレートやガラスサブストレート等の円盤状の測定対象物の端面の形状測定への利用が可能である。   The present invention can be used mainly for measuring the shape of an end face of a disk-shaped measuring object such as an aluminum substrate or a glass substrate for a semiconductor wafer or other hard disk.

本発明の実施形態に係る形状測定装置Xの概略平面図。1 is a schematic plan view of a shape measuring device X according to an embodiment of the present invention. 形状測定装置Xの概略側面図。The schematic side view of the shape measuring apparatus X. 形状測定装置Xが備える光学系回動支持機構の構成を表した図。The figure showing the structure of the optical system rotation support mechanism with which the shape measuring apparatus X is provided. 形状測定装置Xにおける投光方向とウェーハとの関係を説明するための模式図。The schematic diagram for demonstrating the relationship between the light projection direction and the wafer in the shape measuring apparatus X. FIG. 形状測定装置Xが備えるカメラにより撮像されたウェーハの投影像の一例を模式的に表した図。The figure which represented typically an example of the projection image of the wafer imaged with the camera with which the shape measuring apparatus X is provided. 形状測定装置Xにおいて投光方向とウェーハ1の表面とが平行となるよう調節された状態を表した図。The figure showing the state adjusted in the shape measuring apparatus X so that a light projection direction and the surface of the wafer 1 may become parallel. 形状測定装置Xにおいて変位センサによりウェーハの傾きを検出する様子を表した図。The figure showing a mode that the inclination of a wafer was detected by the displacement sensor in the shape measuring apparatus X. 形状測定装置Xにおいて変位センサにより検出されたウェーハの傾きに応じて投光方向と測定対象物の表面とが平行となるよう調節された状態を表した図。The figure showing the state adjusted so that a light projection direction and the surface of a measurement object may become parallel according to the inclination of the wafer detected by the displacement sensor in the shape measuring apparatus X. 光投影測定法において投光方向と測定対象物の表面とが平行である場合の光線の経路を模式的に表した図。The figure which represented typically the path | route of the light ray in case a light projection direction and the surface of a measurement object are parallel in the light projection measurement method. 光投影測定法において測定対象物に対する投光方向と測定対象物の表面とに傾きが生じている場合の光線の経路を模式的に表した図。The figure which represented typically the path | route of the light ray in case the inclination has arisen in the light projection direction with respect to a measuring object and the surface of a measuring object in the light projection measurement method.

符号の説明Explanation of symbols

X :形状測定装置
1 :ウェーハ
2 :点光源
3 :コリメータレンズ
4 :第1のレンズ
5 :絞り
6 :第2のレンズ
7 :イメージセンサ
8 :マスク
9 :中央吸着支持機構
10:画像処理装置
11:制御装置
20:光学系保持部材
30:台座
31:支持軸
32:回動駆動部
32a:サーボモータ
32b:ウォーム
32c:ウォームホイール
40:変位センサ
X: Shape measuring device 1: Wafer 2: Point light source 3: Collimator lens 4: First lens 5: Aperture 6: Second lens 7: Image sensor 8: Mask 9: Central suction support mechanism 10: Image processing device 11 : Control device 20: Optical system holding member 30: Pedestal 31: Support shaft 32: Rotation drive part 32a: Servo motor 32b: Worm 32c: Worm wheel 40: Displacement sensor

Claims (5)

円盤状の測定対象物の端部に対し平行光を投光する投光手段と,
前記投光手段による投光方向に対向する方向から前記測定対象物の端部の投影像を撮像
する撮像手段と,
前記投光手段及び前記撮像手段を保持する光学系保持部材と,
前記光学系保持部材を駆動して前記測定対象物の表面に対する前記投光方向の傾きを変化させる光学系駆動手段と,
前記投光方向に対する前記測定対象物の傾き度合いの指標を検出する傾き指標検出手段
と,
前記傾き度合いの指標の検出結果に応じて前記光学系駆動手段を制御することにより前
記測定対象物の表面に対する前記投光方向の傾きを調節する第1の傾き調節手段と,を具
備し,
前記傾き指標検出手段は,前記光学系保持部材に対して保持された状態で,前記投光方向に沿った複数の観測位置において前記投光方向に直交する方向における前記測定対象物の表面の位置を検出する変位検出手段であり,
前記第1の傾き調節手段は,前記複数の観測位置での前記投光方向に直交する方向における前記測定対象物の表面の位置の関係が予め設定された目標の位置関係に近づく方向に前記投光方向の傾きを調節するものであり,
前記撮像手段により得られた前記投影像に基づいて前記測定対象物の端面の形状を測定することを特徴とする形状測定装置。
A light projecting means for projecting parallel light onto the edge of the disk-shaped object to be measured;
An imaging unit that captures a projected image of an end of the measurement object from a direction opposite to a light projecting direction by the light projecting unit;
An optical system holding member for holding the light projecting means and the imaging means;
An optical system driving means for driving the optical system holding member to change the inclination of the light projecting direction with respect to the surface of the measurement object;
An inclination index detecting means for detecting an index of the degree of inclination of the measurement object with respect to the light projecting direction;
First inclination adjusting means for adjusting the inclination of the light projecting direction with respect to the surface of the measurement object by controlling the optical system driving means according to the detection result of the index of the inclination degree,
The inclination index detection means is held on the optical system holding member, and the position of the surface of the measurement object in a direction orthogonal to the light projection direction at a plurality of observation positions along the light projection direction. Displacement detection means for detecting
The first inclination adjusting means is configured to project the projection in a direction in which a positional relationship of the surface of the measurement object in a direction orthogonal to the projection direction at the plurality of observation positions approaches a preset target positional relationship. To adjust the tilt of the light direction,
A shape measuring apparatus for measuring a shape of an end face of the measuring object based on the projected image obtained by the imaging means.
状の部材である校正用部材を前記投光手段及び前記撮像手段で測定して得られる前記校正用部材の投影像に対する画像処理を行って該投影像の輪郭の画像ボケの程度を検出する校正用画像処理手段と,
前記校正用部材の投影像の輪郭の画像ボケの程度が最小化するよう前記光学系駆動手段を制御して前記校正用部材の表面に対する前記投光方向の傾きを調節する第2の傾き調節手段と,
前記第2の傾き調節手段により前記投光方向の傾きが調節された状態で前記変位検出手段により検出された前記複数の観測位置での前記校正用部材の表面の位置の関係を,前記目標の位置関係に設定する目標位置関係設定手段と,を具備してなる請求項に記載の形状測定装置。
Image processing is performed on the projection image of the calibration member obtained by measuring the calibration member, which is a plate- shaped member, with the light projecting unit and the imaging unit, and the degree of image blur of the contour of the projection image is detected. Calibration image processing means;
Second inclination adjusting means for adjusting the inclination of the light projecting direction with respect to the surface of the calibration member by controlling the optical system driving means so as to minimize the degree of image blur of the projected image of the calibration member. When,
The relationship between the position of the surface of the calibration member at the plurality of observation positions detected by the displacement detection means in a state where the inclination of the light projection direction is adjusted by the second inclination adjustment means is calculated as the target. The shape measuring apparatus according to claim 1 , further comprising target positional relationship setting means for setting the positional relationship.
前記校正用部材には、所定の前記測定対象物が含まれる請求項1又は2のいずれかに記載の形状測定装置。The shape measuring apparatus according to claim 1, wherein the calibration member includes the predetermined measurement object. 前記変位検出手段が,前記測定対象物の表面の位置を非接触で検出するものである請求項1〜3のいずれかに記載の形状測定装置。 The shape measuring apparatus according to any one of claims 1 to 3 , wherein the displacement detecting means detects the position of the surface of the measurement object in a non-contact manner. 前記光学系駆動手段が,前記投光方向に直交する支持軸で軸支された前記光学系保持部材を回動駆動することにより前記測定対象物の表面に対する前記投光方向の傾きを変化させてなる請求項1〜のいずれかに記載の形状測定装置。 The optical system driving means changes the inclination of the light projecting direction with respect to the surface of the measurement object by rotationally driving the optical system holding member pivotally supported by a support shaft orthogonal to the light projecting direction. The shape measuring device according to any one of claims 1 to 4 .
JP2007320307A 2007-12-12 2007-12-12 Shape measuring device Expired - Fee Related JP4897658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007320307A JP4897658B2 (en) 2007-12-12 2007-12-12 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007320307A JP4897658B2 (en) 2007-12-12 2007-12-12 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2009145090A JP2009145090A (en) 2009-07-02
JP4897658B2 true JP4897658B2 (en) 2012-03-14

Family

ID=40915861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007320307A Expired - Fee Related JP4897658B2 (en) 2007-12-12 2007-12-12 Shape measuring device

Country Status (1)

Country Link
JP (1) JP4897658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250126A (en) * 2012-05-31 2013-12-12 Jfe Steel Corp Optical axis adjustment method in optical type screw element measuring device
CN114612474B (en) * 2022-05-11 2023-12-19 杭州众硅电子科技有限公司 Method and device for detecting state of wafer cleaning and drying module and flattening equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229638A (en) * 1996-02-26 1997-09-05 Daido Steel Co Ltd Method and device for measuring thickness and tilt angle of material having rectangular section
JP4500157B2 (en) * 2004-11-24 2010-07-14 株式会社神戸製鋼所 Optical system for shape measuring device

Also Published As

Publication number Publication date
JP2009145090A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
TWI292033B (en)
US9182357B2 (en) Semiconductor wafer inspection system and method
TWI402924B (en) Jointing device
JP4791118B2 (en) Image measuring machine offset calculation method
JP6020593B2 (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, recording medium recording program
JP2003282427A (en) Aligning apparatus of substrate
US8228509B2 (en) Shape measuring device
JP2013069986A5 (en)
JP6055970B2 (en) Surface hardness evaluation method using X-ray diffractometer and X-ray diffractometer
JP6288280B2 (en) Surface shape measuring device
JP2007095881A (en) Alignment device and visual inspection equipment
JP4469462B2 (en) Carrier shape measuring machine
JP4897658B2 (en) Shape measuring device
JP7145643B2 (en) Inspection jig and inspection method
JP2010256151A (en) Shape measuring method
JP2009043865A (en) Exposure equipment, exposure method, and manufacturing method of semiconductor device
WO2022004006A1 (en) Tilt measuring device and tilt measuring method
WO2013065418A1 (en) Light source unit adjustment device calibration method and standard
JP2007305696A (en) Accuracy measuring method of positioning apparatus
JP2007232629A (en) Lens shape measuring instrument
JP2008196855A (en) Method and device for positioning wafer
JP2007299805A (en) Calibration method of detected gap value
JP2009168634A (en) Shape measuring method, and shape measuring device
JP5079028B2 (en) Carrier shape measuring machine
WO2024022006A1 (en) Calibration system, measurement and calibration tool, and calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees