JP4897459B2 - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP4897459B2
JP4897459B2 JP2006334856A JP2006334856A JP4897459B2 JP 4897459 B2 JP4897459 B2 JP 4897459B2 JP 2006334856 A JP2006334856 A JP 2006334856A JP 2006334856 A JP2006334856 A JP 2006334856A JP 4897459 B2 JP4897459 B2 JP 4897459B2
Authority
JP
Japan
Prior art keywords
reception
polynomial
transmission
combined
ultrasonic diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006334856A
Other languages
Japanese (ja)
Other versions
JP2008142413A (en
Inventor
太 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2006334856A priority Critical patent/JP4897459B2/en
Publication of JP2008142413A publication Critical patent/JP2008142413A/en
Application granted granted Critical
Publication of JP4897459B2 publication Critical patent/JP4897459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波診断装置に関し、特に複数の送受信態様で超音波を送受波する超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that transmits and receives ultrasonic waves in a plurality of transmission / reception modes.

超音波診断装置において、複数の送受信態様で超音波を送受波する技術として、時分割の多段焦点送信や同時複数焦点送信の技術が知られている。例えば、多段焦点送信では、1送受信方位あたり複数回の送受信が実行され、互いに異なる複数の深さに送信の焦点が設定される。そして、複数回の送受信で得られた複数の受信信号が合成されて1送受信方位についての受信ビームが形成され、さらに、複数の送受信方位についての受信ビームから超音波画像が形成される。   In the ultrasonic diagnostic apparatus, as a technique for transmitting and receiving ultrasonic waves in a plurality of transmission / reception modes, a technique of time-division multi-stage focus transmission and simultaneous multi-focus transmission is known. For example, in multistage focus transmission, transmission / reception is performed a plurality of times per transmission / reception direction, and the transmission focus is set at a plurality of different depths. A plurality of reception signals obtained by a plurality of transmissions / receptions are combined to form a reception beam for one transmission / reception direction, and an ultrasound image is formed from the reception beams for a plurality of transmission / reception directions.

このように、多段焦点送信では、複数の受信信号を合成して受信ビームを形成するため、例えば、受信信号と受信信号の合成部分に継ぎ目が現れる可能性がある。こうした背景において、画像上の継ぎ目などを緩和するために、複数の受信信号を重み付け加算する技術が提案されている(特許文献1参照)。   As described above, in multi-stage focus transmission, a reception beam is formed by combining a plurality of reception signals. For example, there is a possibility that a seam appears in a combined portion of the reception signal and the reception signal. Against this background, a technique for weighted addition of a plurality of received signals has been proposed in order to reduce seams on images (see Patent Document 1).

特開2002−58671号公報JP 2002-58671 A

上述のような重み付け加算により、画像上の継ぎ目などが緩和される。ところが、その継ぎ目などの緩和具合について、従来は、人による評価が必要であった。人による評価では、例えば、評価者の主観に依存することや多くの調整時間を必要とすることなどの問題があった。   By the weighted addition as described above, the joints on the image are alleviated. However, in the past, it has been necessary to evaluate the degree of relaxation of the joints and the like by humans. In human evaluation, for example, there are problems such as depending on the evaluator's subjectivity and requiring a lot of adjustment time.

このような状況のもと、本願の発明者は、複数の受信信号の合成処理に関する評価について研究を重ねてきた。   Under such circumstances, the inventor of the present application has conducted research on evaluation relating to the synthesis processing of a plurality of received signals.

本発明は、その研究の過程において成されたものであり、その目的は、複数の受信信号の合成処理に関する評価技術を提供することにある。   The present invention has been made in the course of its research, and an object thereof is to provide an evaluation technique relating to a synthesis process of a plurality of received signals.

上記目的を達成するために、本発明の好適な態様である超音波診断装置は、複数の送受信態様で超音波を送受波することにより各送受信態様ごとに受信信号を得る送受波部と、複数の合成パターンの各々に基づいて複数の送受信態様に対応した複数の受信信号を合成処理することにより、各合成パターンごとに合成受信信号を得る受信信号合成部と、複数の合成パターンに対応した複数の合成受信信号の各々をN次の多項式で近似することにより、複数の合成受信信号に対応した複数の多項式を得る多項式演算部と、各多項式に含まれる1又は複数の次数の係数に基づいて複数の多項式を比較することにより、複数の多項式に対応した複数の合成パターンを評価する合成パターン評価部と、を有することを特徴とする。   In order to achieve the above object, an ultrasonic diagnostic apparatus according to a preferred aspect of the present invention includes: a transmission / reception unit that obtains a reception signal for each transmission / reception mode by transmitting / receiving ultrasonic waves in a plurality of transmission / reception modes; A received signal combining unit that obtains a combined received signal for each combined pattern by combining a plurality of received signals corresponding to a plurality of transmission / reception modes based on each of the combined patterns; and a plurality of received signals that correspond to the combined patterns Each of the received composite signals is approximated by an Nth order polynomial to obtain a plurality of polynomials corresponding to the plurality of received composite signals, and based on one or more order coefficients included in each polynomial. And a synthesis pattern evaluation unit that evaluates a plurality of synthesis patterns corresponding to the plurality of polynomials by comparing the plurality of polynomials.

上記構成において、複数の送受信態様とは、例えば、焦点を複数に設定して超音波を送波する時分割の多段焦点送信や同時複数焦点送信などである。また、合成処理される受信信号は、例えばRF信号や検波処理後の信号や対数圧縮処理後の信号などである。上記構成によれば、複数の多項式の比較から合成パターンを評価することが可能になる。そのため、例えば、複数の多項式の比較に基づいて合成処理を定量的に評価することが可能になる。   In the above-described configuration, the plurality of transmission / reception modes include, for example, time-division multistage focal transmission, simultaneous multiple focal transmission, and the like in which ultrasonic waves are transmitted with a plurality of focal points. The reception signal to be combined is, for example, an RF signal, a signal after detection processing, a signal after logarithmic compression processing, or the like. According to the above configuration, it is possible to evaluate a composite pattern by comparing a plurality of polynomials. Therefore, for example, the synthesis process can be quantitatively evaluated based on comparison of a plurality of polynomials.

望ましい態様において、前記送受波部は、多段焦点送信方式で超音波を送受波することにより、多段焦点送信方式の各焦点ごとに受信信号を取得し、前記受信信号合成部は、各合成パターンに対応した重み係数データに基づいて、多段焦点送信方式の複数の焦点に対応した複数の受信信号を合成処理することにより、複数の重み係数データに対応した複数の合成受信信号を取得し、前記多項式演算部は、複数の重み係数データに対応した複数の合成受信信号の各々をN次の多項式で近似することを特徴とする。   In a desirable aspect, the transmission / reception unit acquires a reception signal for each focus of the multi-stage focus transmission method by transmitting and receiving ultrasonic waves by a multi-stage focus transmission method, and the reception signal synthesizing unit applies each combination pattern to each synthesis pattern. Based on the corresponding weight coefficient data, a plurality of reception signals corresponding to a plurality of focal points of the multi-stage focal point transmission method are combined to obtain a plurality of combined reception signals corresponding to the plurality of weight coefficient data, and the polynomial The computing unit is characterized by approximating each of a plurality of combined reception signals corresponding to a plurality of weight coefficient data with an Nth order polynomial.

望ましい態様において、前記合成パターン評価部は、各多項式に含まれる2次以上の次数の係数に基づいて複数の多項式を比較することを特徴とする。望ましい態様において、前記合成パターン評価部は、各多項式に含まれる2次以上の次数の係数に基づいて各多項式の係数の大きさに対応した評価値を算出し、各多項式の評価値に基づいて複数の多項式の係数の大きさを比較することにより最適な合成パターンを選定することを特徴とする。   In a preferred aspect, the composite pattern evaluation unit compares a plurality of polynomials based on a second-order or higher-order coefficient included in each polynomial. In a desirable mode, the synthetic pattern evaluation unit calculates an evaluation value corresponding to the coefficient size of each polynomial based on a coefficient of the second or higher order included in each polynomial, and based on the evaluation value of each polynomial An optimum synthesis pattern is selected by comparing the magnitudes of coefficients of a plurality of polynomials.

本発明により、複数の受信信号の合成処理に関する評価技術が提供される。例えば、本発明の好適な態様により、複数の多項式の比較に基づいて合成処理を定量的に評価することが可能になる。   According to the present invention, an evaluation technique related to a combination process of a plurality of received signals is provided. For example, a preferred aspect of the present invention allows quantitative evaluation of a synthesis process based on a comparison of a plurality of polynomials.

以下、本発明の好適な実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

図1には、本発明に係る超音波診断装置の好適な実施形態が示されており、図1はその全体構成を示す機能ブロック図である。   FIG. 1 shows a preferred embodiment of an ultrasonic diagnostic apparatus according to the present invention, and FIG. 1 is a functional block diagram showing the overall configuration thereof.

プローブ10は、超音波を送受波する超音波探触子であり、複数の振動素子を備えている。複数の振動素子は、例えば、1列に配列されて電子的に制御されることにより、2次元平面内で超音波を送受波する。また、複数の振動素子が格子状に2次元的に配列されて電子的に制御されることにより、3次元的に超音波を送受波してもよい。   The probe 10 is an ultrasonic probe that transmits and receives ultrasonic waves, and includes a plurality of vibration elements. For example, the plurality of vibration elements are arranged in a line and electronically controlled to transmit and receive ultrasonic waves in a two-dimensional plane. In addition, ultrasonic waves may be transmitted and received three-dimensionally by arranging a plurality of vibration elements in a two-dimensional manner in a lattice form and being electronically controlled.

送信ビームフォーマ14は、プローブ10が備える複数の振動素子の各々に対応した送信信号を出力する。送信ビームフォーマ14は、各振動素子の送信信号に対してその振動素子に応じた遅延処理などを施す。送信ビームフォーマ14から出力された送信信号は、送信器12を介してプローブ10の各振動素子へ供給される。こうして、各振動素子が送信ビームフォーマ14で形成された送信信号に応じて駆動され、超音波の送信ビームが形成されてその送信ビームが走査制御される。   The transmission beam former 14 outputs a transmission signal corresponding to each of the plurality of vibration elements included in the probe 10. The transmission beamformer 14 applies a delay process or the like corresponding to the vibration element to the transmission signal of each vibration element. The transmission signal output from the transmission beam former 14 is supplied to each vibration element of the probe 10 via the transmitter 12. In this way, each vibration element is driven in accordance with the transmission signal formed by the transmission beam former 14, and an ultrasonic transmission beam is formed, and the transmission beam is subjected to scanning control.

受信ビームフォーマ18は、プローブ10が備える複数の振動素子の受信信号に基づいて受信ビームを形成する。プローブ10の複数の振動素子から出力される受信信号は、受信器16を介して、受信ビームフォーマ18へ供給される。受信ビームフォーマ18は、各振動素子の受信信号に対してその振動素子に応じた遅延処理などを施し、そして複数の振動素子から得られる受信信号を加算処理する。つまり、受信ビームフォーマ18は、複数の振動素子から出力される受信信号を整相加算処理する。受信ビームフォーマ18から出力される整相加算後の受信信号は、受信信号合成部20へ供給される。   The reception beam former 18 forms a reception beam based on reception signals of a plurality of vibration elements included in the probe 10. Reception signals output from the plurality of vibration elements of the probe 10 are supplied to the reception beamformer 18 via the receiver 16. The reception beamformer 18 applies a delay process or the like corresponding to the vibration element to the reception signal of each vibration element, and adds the reception signals obtained from the plurality of vibration elements. That is, the reception beamformer 18 performs phasing addition processing on reception signals output from a plurality of vibration elements. The reception signal after the phasing addition output from the reception beam former 18 is supplied to the reception signal synthesis unit 20.

本実施形態において、超音波の送受波は、多段焦点送信方式で行われる。つまり、送信ビームフォーマ14は、各ビーム送信方向に対して、互いに送信焦点が異なる複数回の超音波の送波を行う。例えば、プローブ10から比較的近い位置に焦点を設定した近距離焦点による送波と、プローブ10から比較的遠い位置に焦点を設定した遠距離焦点による送波を行う。もちろん、近距離と遠距離の2つの焦点に限らず、3つ以上の焦点が設定されてもよい。   In the present embodiment, transmission / reception of ultrasonic waves is performed by a multi-stage focus transmission method. That is, the transmission beamformer 14 transmits ultrasonic waves multiple times with different transmission focal points in each beam transmission direction. For example, transmission is performed using a short-distance focus with a focus set at a position relatively close to the probe 10 and transmission with a long-range focus set with a focus set at a position relatively far from the probe 10. Of course, not only the two focal points of the short distance and the long distance but also three or more focal points may be set.

多段焦点送信方式において、受信ビームフォーマ18は、各ビーム送信方向ごとに、複数の焦点の各々に対応した複数の受信信号を形成する。例えば、近距離焦点による送波に対応した受信信号と、遠距離焦点による送波に対応した受信信号を形成する。こうして、各ビーム送信方向ごとに、近距離焦点と遠距離焦点に対応した2つの受信信号が形成され、受信信号合成部20によって、これら2つの受信信号が合成されることにより、各ビーム送信方向に対応した受信ビームデータが形成される。   In the multistage focus transmission method, the reception beamformer 18 forms a plurality of reception signals corresponding to each of a plurality of focal points for each beam transmission direction. For example, a reception signal corresponding to transmission by a short-distance focus and a reception signal corresponding to transmission by a long-distance focus are formed. Thus, for each beam transmission direction, two reception signals corresponding to the short-distance focus and the long-distance focus are formed, and these two reception signals are combined by the reception signal combining unit 20, whereby each beam transmission direction Received beam data corresponding to is formed.

図2は、近距離焦点と遠距離焦点に対応した2つの対数圧縮後の受信信号を示す図である。図2において、横軸はビーム方向の深さを示しており、縦軸は受信信号の大きさ(輝度)を示している。近距離焦点の受信信号は、近距離焦点の位置(深さ)の付近で輝度がピークとなっており、一方、遠距離焦点の受信信号は、遠距離焦点の位置(深さ)の付近で輝度がピークとなっている。このように、近距離焦点の受信信号と遠距離焦点の受信信号は、互いにピーク輝度の位置やプロファイルの曲線が異なっている。そこで、これら2つの受信信号を合成処理する際に、各受信信号に対応した重み付け係数が利用される。   FIG. 2 is a diagram illustrating two received signals after logarithm compression corresponding to the short-distance focus and the long-distance focus. In FIG. 2, the horizontal axis indicates the depth in the beam direction, and the vertical axis indicates the magnitude (luminance) of the received signal. The near-focus received signal has a peak luminance near the near-focus position (depth), while the far-focus received signal is near the far-focus position (depth). The brightness is at its peak. In this way, the near-focus received signal and the far-focus received signal have different peak luminance positions and profile curves. Therefore, when combining these two received signals, a weighting coefficient corresponding to each received signal is used.

図3は、2つの受信信号に対する重み付け係数を説明するための図である。図3において、横軸はビーム方向の深さを示しており、縦軸は係数の大きさを示している。近距離焦点用の重み付け係数は、深さ0から例えば近距離焦点の位置まで、係数値が1となっている。そして、近距離焦点の位置を超えると、近距離焦点用の重み付け係数は、深さが増加するにつれて直線的に減少して係数値が0となる。   FIG. 3 is a diagram for explaining weighting coefficients for two received signals. In FIG. 3, the horizontal axis indicates the depth in the beam direction, and the vertical axis indicates the magnitude of the coefficient. The weighting coefficient for the short distance focus has a coefficient value of 1 from the depth 0 to the position of the short distance focus, for example. When the position of the near focal point is exceeded, the weighting coefficient for the short distance focal point decreases linearly as the depth increases, and the coefficient value becomes zero.

一方、遠距離焦点用の重み付け係数は、例えば近距離焦点の位置まで係数値が0となっており、そして、近距離焦点の位置から深さが増加するにつれて直線的に増加し、例えば遠距離焦点の位置で係数値が1となる。その後、深さが増加しても遠距離焦点用の重み付け係数は、係数値1を維持している。   On the other hand, the weighting coefficient for the long-distance focus has a coefficient value of 0 to the position of the short-distance focal point, for example, and increases linearly as the depth increases from the position of the short-distance focal point. The coefficient value is 1 at the position of the focal point. Thereafter, the weighting coefficient for the long distance focus maintains the coefficient value 1 even if the depth increases.

図4は、2つの受信信号を合成した合成受信信号を示す図である。図4において、横軸はビーム方向の深さを示しており、縦軸は受信信号の大きさ(輝度)を示している。図4に示す合成受信信号は、図2に示す近距離焦点と遠距離焦点に対応した2つの受信信号を、図3に示す重み付け係数によって合成処理したものである。   FIG. 4 is a diagram illustrating a combined received signal obtained by combining two received signals. In FIG. 4, the horizontal axis indicates the depth in the beam direction, and the vertical axis indicates the magnitude (luminance) of the received signal. The synthesized received signal shown in FIG. 4 is obtained by synthesizing two received signals corresponding to the short-distance focus and the far-distance focus shown in FIG. 2 using the weighting coefficients shown in FIG.

図4に示すように、重み付け係数が利用された結果、近距離焦点と遠距離焦点に対応した2つの受信信号が比較的滑らかに繋ぎ合わされて合成受信信号が形成されている。但し、合成受信信号は、微視的に捉えると細かく輝度値が変動しているため、合成受信信号そのものからその滑らかさを定量的に評価することが難しい。そこで、本実施形態では、N次の多項式を利用して、合成受信信号の滑らかさを評価する。   As shown in FIG. 4, as a result of using the weighting coefficient, two reception signals corresponding to the short distance focus and the long distance focus are connected relatively smoothly to form a combined reception signal. However, since the luminance value of the synthesized received signal varies finely when viewed microscopically, it is difficult to quantitatively evaluate the smoothness of the synthesized received signal itself. Therefore, in this embodiment, the smoothness of the combined received signal is evaluated using an Nth order polynomial.

図5は、合成受信信号の多項式による近似曲線を示す図である。図5は、合成受信信号を示す図4に対して、合成受信信号の多項式近似曲線を重ねて表示したものである。   FIG. 5 is a diagram showing an approximate curve by a polynomial of the combined received signal. FIG. 5 is a graph in which a polynomial approximation curve of the combined received signal is superimposed on FIG. 4 showing the combined received signal.

N次の多項式は、例えば、5次の多項式であれば、次式のように表現される。   For example, if the Nth order polynomial is a fifth order polynomial, it is expressed as follows.

Figure 0004897459
Figure 0004897459

この近似式の数学的な意味を考えた場合、この曲線が滑らかであれば、多項式の変極点の数が少なくなる。例えば、3次以上の次数の係数値が0に近いほど、近似曲線のうねりの度合いは小さくなり、滑らかな曲線になる。さらに、2次の係数が小さければ、近似曲線の凹凸の度合いが緩やかになる。つまり、数1に示す多項式の2次以上の次数の係数(a,b,c,d)の大小が曲線の滑らかさを表す評価指標のひとつになると考えられる。   Considering the mathematical meaning of this approximate expression, if this curve is smooth, the number of inflection points of the polynomial is reduced. For example, as the coefficient value of the third or higher order is closer to 0, the degree of undulation of the approximate curve becomes smaller and the curve becomes smoother. Furthermore, if the secondary coefficient is small, the degree of unevenness of the approximate curve becomes gentle. That is, it is considered that the magnitude of the second-order or higher-order coefficients (a, b, c, d) of the polynomial shown in Equation 1 is one of the evaluation indexes representing the smoothness of the curve.

図6は、重み係数を5段階(A〜E)に変化させた場合の合成受信信号の多項式近似曲線を示している。また、図7は、図6の5段階(A〜E)の多項式近似曲線の2次の係数の大きさを示す図である。図7から、近似曲線Cの2次の係数が最も小さいことがわかる。そして、図6における5段階(A〜E)の近似曲線を比較すると、近似曲線Cの凹凸の度合いが比較的緩やかであることがわかる。   FIG. 6 shows a polynomial approximation curve of the combined received signal when the weighting coefficient is changed in five stages (A to E). FIG. 7 is a diagram showing the magnitudes of the second-order coefficients of the polynomial approximation curve of the five stages (A to E) in FIG. FIG. 7 shows that the quadratic coefficient of the approximate curve C is the smallest. Then, comparing the approximate curves of the five stages (A to E) in FIG. 6, it can be seen that the degree of unevenness of the approximate curve C is relatively gentle.

本実施形態では、複数の受信信号の重み付け係数などの合成パラメータを変化させた場合に、それに応じて、合成受信信号の多項式近似の係数を算出し、その係数に基づいて合成処理の滑らかさを評価する。   In this embodiment, when a synthesis parameter such as a weighting coefficient of a plurality of received signals is changed, a polynomial approximation coefficient of the synthesized received signal is calculated accordingly, and the smoothness of the synthesis process is calculated based on the coefficient. evaluate.

図8は、本実施形態における合成処理の評価方法を説明するためのフローチャートである。まず、合成処理のパラメータα[i]を変化させ(S801)、各パラメータごとに合成受信信号(輝度プロファイル)が求められる(S802)。つまり、受信信号の重み付け係数などの合成パラメータを変化させて、各合成パラメータごとに、受信信号合成部(図1の符号20)において合成受信信号が算出される。   FIG. 8 is a flowchart for explaining a synthesis processing evaluation method according to this embodiment. First, the parameter α [i] of the synthesis process is changed (S801), and a synthesized reception signal (luminance profile) is obtained for each parameter (S802). In other words, a composite reception signal is calculated in the reception signal synthesis unit (reference numeral 20 in FIG. 1) for each synthesis parameter by changing a synthesis parameter such as a weighting coefficient of the reception signal.

次に、各合成受信信号(輝度プロファイル)をN次の多項式で近似する(S803)。つまり、多項式演算部(図1の符号22)によって、各合成受信信号ごとにN次の多項式が算出される。こうして、各多項式近似ごとに2〜5次までの次数の係数が算出される。   Next, each composite received signal (luminance profile) is approximated by an Nth order polynomial (S803). That is, an Nth order polynomial is calculated for each combined received signal by the polynomial calculation unit (reference numeral 22 in FIG. 1). In this way, the coefficients of the order of 2 to 5 are calculated for each polynomial approximation.

図9は、各合成パラメータごとに得られる多項式の各次数の係数を示す図である。図9には、各合成パラメータα[i](i=0〜M−1)に対応した多項式の2〜5次までの次数の係数a,b,c,dが示されている。さらに、図9には、各次数ごとの係数の最大値aMax,bMax,cMax,dMaxが示されている。 FIG. 9 is a diagram showing coefficients of respective orders of the polynomial obtained for each synthesis parameter. FIG. 9 shows coefficients a, b, c, and d of the order up to the second to fifth orders of the polynomial corresponding to each synthesis parameter α [i] (i = 0 to M−1). Further, FIG. 9 shows maximum values a Max , b Max , c Max , and d Max of the coefficients for each order.

図8に戻り、各多項式近似ごとに2〜5次までの次数の係数が算出されると、合成処理評価部(図1の符号24)において、各多項式近似ごとに2〜5次までの次数の係数がパラメータの可変範囲内で正規化される(S804)。そして、各パラメータごとに、正規化後の2〜5次までの次数の係数の総和が算出される(S805)。こうして、合成処理評価部(図1の符号24)は、各パラメータごとに算出される総和に基づいて、複数のパラメータを比較し、最も総和の小さいパラメータを選定する。   Returning to FIG. 8, when the coefficients of the order of 2 to 5 are calculated for each polynomial approximation, the synthesis process evaluation unit (reference numeral 24 in FIG. 1) orders 2 to 5 for each polynomial approximation. Are normalized within the variable range of the parameters (S804). Then, for each parameter, the sum of the order coefficients up to the second to fifth orders after normalization is calculated (S805). In this way, the synthesis processing evaluation unit (reference numeral 24 in FIG. 1) compares a plurality of parameters based on the sum calculated for each parameter, and selects the parameter with the smallest sum.

図10は、係数の正規化と総和を説明するための図である。図10には、各合成パラメータα[i](i=0〜M−1)に対応した多項式の2〜5次までの次数の係数が示されている。図10において、各係数は、その係数の最大値(aMax,bMax,cMax,dMax)によって正規化されている。 FIG. 10 is a diagram for explaining normalization and summation of coefficients. FIG. 10 shows coefficients of orders up to the second to fifth orders of the polynomial corresponding to each synthesis parameter α [i] (i = 0 to M−1). In FIG. 10, each coefficient is normalized by the maximum value (a Max , b Max , c Max , d Max ) of the coefficient.

さらに、図10には、各合成パラメータα[i]ごとに、5次から2次までの正規化後の係数の総和β[i](i=0〜M−1)が示されている。本実施形態では、複数の総和β[i]のうちから最も小さいβ[i]が選ばれ、そのβ[i]に対応した合成パラメータ(例えば合成処理の重み係数)が最適なパラメータと判断される。   Furthermore, FIG. 10 shows the sum β [i] (i = 0 to M−1) of coefficients after normalization from the fifth order to the second order for each synthesis parameter α [i]. In the present embodiment, the smallest β [i] is selected from the plurality of sums β [i], and a synthesis parameter (for example, a weighting factor of the synthesis process) corresponding to the β [i] is determined as the optimum parameter. The

こうして、図1において、合成処理評価部24によって最適な合成パラメータが選定されると、その選定結果が受信信号合成部20に供給される。受信信号合成部20は、最適な合成パラメータによって、各ビーム方向ごとに、近距離焦点と遠距離焦点に対応した2つの受信信号の合成処理を実行して受信ビームデータを形成する。   Thus, in FIG. 1, when the optimum synthesis parameter is selected by the synthesis processing evaluation unit 24, the selection result is supplied to the received signal synthesis unit 20. The reception signal combining unit 20 forms reception beam data by executing a combination process of two reception signals corresponding to the short-distance focus and the long-distance focus for each beam direction according to the optimal combination parameter.

そして、超音波画像形成部26は、複数のビーム方向についての受信ビームデータに基づいて超音波画像を形成する。例えば、2次元のBモード画像などが形成され、形成された画像が表示器28に表示される。   Then, the ultrasonic image forming unit 26 forms an ultrasonic image based on the received beam data for a plurality of beam directions. For example, a two-dimensional B-mode image or the like is formed, and the formed image is displayed on the display 28.

以上、本発明の好適な実施形態を説明した。上述した実施形態により、正規化後の係数の総和に基づいて合成処理のパラメータを定量的に評価することが可能になる。なお、上述した実施形態やその効果は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。   The preferred embodiment of the present invention has been described above. According to the above-described embodiment, it is possible to quantitatively evaluate the parameters of the synthesis process based on the sum of the normalized coefficients. In addition, embodiment mentioned above and its effect are only illustrations in all the points, and do not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.

本発明に係る超音波診断装置の全体構成を示す機能ブロック図である。1 is a functional block diagram showing an overall configuration of an ultrasonic diagnostic apparatus according to the present invention. 近距離焦点と遠距離焦点に対応した2つの受信信号を示す図である。It is a figure which shows two received signals corresponding to a short distance focus and a long distance focus. 2つの受信信号に対する重み付け係数を説明するための図である。It is a figure for demonstrating the weighting coefficient with respect to two received signals. 2つの受信信号を合成した合成受信信号を示す図である。It is a figure which shows the synthetic | combination reception signal which synthesize | combined two reception signals. 合成受信信号の多項式による近似曲線を示す図である。It is a figure which shows the approximated curve by the polynomial of a synthetic | combination received signal. 重み係数を変化させた場合の合成受信信号の近似曲線を示す図である。It is a figure which shows the approximated curve of the synthetic | combination received signal at the time of changing a weighting coefficient. 多項式近似曲線の2次の係数の大きさを示す図である。It is a figure which shows the magnitude | size of the secondary coefficient of a polynomial approximated curve. 本実施形態における合成処理の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the synthetic | combination process in this embodiment. 各合成パラメータごとに得られる多項式の各次数の係数を示す図である。It is a figure which shows the coefficient of each degree of the polynomial obtained for every synthetic | combination parameter. 係数の正規化と総和を説明するための図である。It is a figure for demonstrating the normalization and sum total of a coefficient.

符号の説明Explanation of symbols

10 プローブ、14 送信ビームフォーマ、18 受信ビームフォーマ、20 受信信号合成部、22 多項式演算部、24 合成処理評価部。   10 probe, 14 transmission beamformer, 18 reception beamformer, 20 reception signal synthesis unit, 22 polynomial arithmetic unit, 24 synthesis processing evaluation unit.

Claims (4)

複数の送受信態様で超音波を送受波することにより各送受信態様ごとに受信信号を得る送受波部と、
複数の合成パターンの各々に基づいて複数の送受信態様に対応した複数の受信信号を合成処理することにより、各合成パターンごとに合成受信信号を得る受信信号合成部と、
複数の合成パターンに対応した複数の合成受信信号の各々を2次以上の多項式で近似することにより、複数の合成受信信号に対応した複数の多項式を得る多項式演算部と、
各多項式に含まれる1又は複数の次数の係数に基づいて複数の多項式を比較することにより、複数の多項式に対応した複数の合成パターンを評価する合成パターン評価部と、
を有する、
ことを特徴とする超音波診断装置。
A transmission / reception unit that obtains a reception signal for each transmission / reception mode by transmitting / receiving ultrasonic waves in a plurality of transmission / reception modes;
A received signal combining unit that obtains a combined received signal for each combined pattern by combining a plurality of received signals corresponding to a plurality of transmission / reception modes based on each of the combined patterns;
A polynomial arithmetic unit that obtains a plurality of polynomials corresponding to the plurality of combined received signals by approximating each of the plurality of combined received signals corresponding to the plurality of combined patterns with a second-order or higher order polynomial;
A composite pattern evaluation unit that evaluates a plurality of composite patterns corresponding to the plurality of polynomials by comparing the plurality of polynomials based on one or a plurality of degree coefficients included in each polynomial;
Having
An ultrasonic diagnostic apparatus.
請求項1に記載の超音波診断装置において、
前記送受波部は、多段焦点送信方式で超音波を送受波することにより、多段焦点送信方式の各焦点ごとに受信信号を取得し、
前記受信信号合成部は、各合成パターンに対応した重み係数データに基づいて、多段焦点送信方式の複数の焦点に対応した複数の受信信号を合成処理することにより、複数の重み係数データに対応した複数の合成受信信号を取得し、
前記多項式演算部は、複数の重み係数データに対応した複数の合成受信信号の各々を2次以上の多項式で近似する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 1,
The transmission / reception unit obtains a reception signal for each focus of the multistage focus transmission method by transmitting and receiving ultrasonic waves by the multistage focus transmission method,
The reception signal combining unit supports a plurality of weight coefficient data by combining a plurality of reception signals corresponding to a plurality of focal points of the multistage focus transmission method based on the weight coefficient data corresponding to each combination pattern. Obtain multiple composite received signals,
The polynomial calculation unit approximates each of a plurality of combined reception signals corresponding to a plurality of weight coefficient data with a second-order or higher-order polynomial.
An ultrasonic diagnostic apparatus.
請求項2に記載の超音波診断装置において、
前記合成パターン評価部は、各多項式に含まれる2次以上の次数の係数に基づいて複数の多項式を比較する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 2,
The composite pattern evaluation unit compares a plurality of polynomials based on a second-order or higher-order coefficient included in each polynomial.
An ultrasonic diagnostic apparatus.
請求項3に記載の超音波診断装置において、
前記合成パターン評価部は、各多項式に含まれる2次以上の次数の係数に基づいて各多項式の係数の大きさに対応した評価値を算出し、各多項式の評価値に基づいて複数の多項式の係数の大きさを比較することにより、最適な合成パターンを選定する、
ことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 3.
The composite pattern evaluation unit calculates an evaluation value corresponding to the coefficient size of each polynomial based on the coefficients of the second or higher order included in each polynomial, and the plurality of polynomials based on the evaluation value of each polynomial. Select the optimal composite pattern by comparing the magnitudes of the coefficients.
An ultrasonic diagnostic apparatus.
JP2006334856A 2006-12-12 2006-12-12 Ultrasonic diagnostic equipment Expired - Fee Related JP4897459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334856A JP4897459B2 (en) 2006-12-12 2006-12-12 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334856A JP4897459B2 (en) 2006-12-12 2006-12-12 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2008142413A JP2008142413A (en) 2008-06-26
JP4897459B2 true JP4897459B2 (en) 2012-03-14

Family

ID=39603242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334856A Expired - Fee Related JP4897459B2 (en) 2006-12-12 2006-12-12 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4897459B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430203B2 (en) 2009-03-31 2014-02-26 キヤノン株式会社 Image processing apparatus and image processing method
JP5560134B2 (en) 2010-08-03 2014-07-23 富士フイルム株式会社 Ultrasonic image generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960378A (en) * 1982-09-30 1984-04-06 Yokogawa Hokushin Electric Corp Reception system of reflected wave signal
JPH0614926A (en) * 1992-07-01 1994-01-25 Toshiba Corp Ultrasonic diagnostic device
JPH06205773A (en) * 1992-07-27 1994-07-26 Terumo Corp Ultrasonic diagnostic system
JPH06114056A (en) * 1992-10-07 1994-04-26 Shimadzu Corp Ultrasonic diagnostic apparatus
JP2000132663A (en) * 1998-10-23 2000-05-12 Canon Inc Image processor, image processing method, and computer- readable storage medium
JP3993795B2 (en) * 2002-06-28 2007-10-17 アロカ株式会社 Ultrasonic diagnostic apparatus and ultrasonic data processing method
EP1467226B1 (en) * 2003-04-10 2008-08-06 Agfa HealthCare NV Method for creating a contiguous image using multiple x-ray imagers
JP5422095B2 (en) * 2005-11-25 2014-02-19 株式会社東芝 Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control program

Also Published As

Publication number Publication date
JP2008142413A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US10295509B2 (en) Ultrasonic apparatus
CN104203110A (en) Systems and methods for improving ultrasound image quality by applying weighting factors
CN101897600B (en) System and method for automatic ultrasound image optimization
US7608044B2 (en) Ultrasonic image display method and ultrasonic diagnosis apparatus
KR101323330B1 (en) Ultrasound system and method for providing vector doppler image based on decision data
US20040144176A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
WO2012029287A1 (en) Ultrasound diagnostic device
US9232932B2 (en) Providing motion mode image in ultrasound system
US20130172747A1 (en) Estimating motion of particle based on vector doppler in ultrasound system
EP2610638B1 (en) Forming vector information based on vector doppler in ultrasound system
EP2620103B1 (en) Ultrasound diagnostic equipment and ultrasound image display method
JP4897459B2 (en) Ultrasonic diagnostic equipment
JP5677757B2 (en) Ultrasonic diagnostic equipment
JP6393824B2 (en) Ultrasonic imaging apparatus and ultrasonic signal processing method
JP4778325B2 (en) Ultrasonic diagnostic equipment
JP4494089B2 (en) Ultrasonic transceiver
CN110537936B (en) Blood flow image processing device and method, and computer-readable storage medium
US20130172744A1 (en) Providing particle flow image in ultrasound system
JP5602914B1 (en) Ultrasonic diagnostic equipment
JP6492230B2 (en) SPECTRUM ANALYZER, SPECTRUM ANALYSIS METHOD, AND ULTRASONIC IMAGING DEVICE
JP2009022656A (en) Ultrasonic diagnostic equipment
JP6780415B2 (en) Ultrasound diagnostic equipment and image composition method
JP4785936B2 (en) Ultrasonic image display method and ultrasonic diagnostic apparatus
JP6396590B2 (en) Method and system for adjusting image gain
KR101341092B1 (en) Apparatus and method For Providing Ultrasonic Diagnostic by Using Variable Inductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees