JP4896623B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4896623B2
JP4896623B2 JP2006222016A JP2006222016A JP4896623B2 JP 4896623 B2 JP4896623 B2 JP 4896623B2 JP 2006222016 A JP2006222016 A JP 2006222016A JP 2006222016 A JP2006222016 A JP 2006222016A JP 4896623 B2 JP4896623 B2 JP 4896623B2
Authority
JP
Japan
Prior art keywords
water
heat source
air conditioning
pipe
source water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006222016A
Other languages
Japanese (ja)
Other versions
JP2008064321A (en
Inventor
惇 高橋
英之 岡本
淳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2006222016A priority Critical patent/JP4896623B2/en
Publication of JP2008064321A publication Critical patent/JP2008064321A/en
Application granted granted Critical
Publication of JP4896623B2 publication Critical patent/JP4896623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物内の空調負荷から蓄熱槽に戻される熱源水の運動エネルギーを電力に変換して回収することが可能な空調システムに関する。   The present invention relates to an air conditioning system capable of converting and recovering kinetic energy of heat source water returned from an air conditioning load in a building to a heat storage tank.

従来より、ビル、工場など建物の空調システムとして、安価な深夜電力を利用して加熱もしくは冷却した熱源水を蓄熱槽に貯めておき、空調負荷が発生する昼間に、貯めておいた熱源水を空調負荷である空調機に循環供給して空調する蓄熱式の空調システムが採用されている。かような空調システムでは、ビル内で揚水された熱源水は、空調負荷に供された後、還水管を通ってビル下方の蓄熱槽まで戻される。この場合、特にビルの高層階まで揚水された熱源水が還水管内を高速で落下することを防止するために、蓄熱槽に近い位置で還水管に落水防止弁が設けられている。また、還水管内が負圧になることを回避するために、ビル屋上にサージタンクなどを設けている。   Conventionally, as an air conditioning system for buildings, factories, etc., heat source water heated or cooled using inexpensive late-night electricity is stored in a heat storage tank, and the stored heat source water is stored during the daytime when air conditioning loads occur. A regenerative air conditioning system that circulates and supplies air conditioning to an air conditioner that is an air conditioning load is employed. In such an air conditioning system, the heat source water pumped up in the building is supplied to the air conditioning load and then returned to the heat storage tank below the building through the return pipe. In this case, in order to prevent the heat source water pumped up to the high floor of the building from falling at high speed in the return water pipe, a water fall prevention valve is provided in the return water pipe at a position close to the heat storage tank. In order to avoid negative pressure in the return water pipe, a surge tank is provided on the roof of the building.

また、このような蓄熱式の空調システムにおいて、例えば特許文献1〜3に示されるように、空調負荷から蓄熱槽に戻される熱源水の運動エネルギーを、還水管に設けた水車によって電力に変換して回収することも知られている。即ち、特許文献1、2には、水車によって回収した電力を、揚水ポンプの駆動電力として活用する空調システムが開示されている。また、特許文献3には、還水管に設けた落水防止弁の上流から蓄熱槽へ分岐して熱源水を導く分岐管を設け、この分岐管の途中にエネルギー回収装置を取付けたシステムが開示されている。   In such a heat storage type air conditioning system, for example, as shown in Patent Documents 1 to 3, the kinetic energy of heat source water returned from the air conditioning load to the heat storage tank is converted into electric power by a water wheel provided in the return water pipe. It is also known to be recovered. That is, Patent Documents 1 and 2 disclose an air conditioning system that uses the power collected by a water turbine as driving power for a pump. Further, Patent Document 3 discloses a system in which a branch pipe that branches from an upstream of a water fall prevention valve provided in a return water pipe to a heat storage tank and leads heat source water is provided, and an energy recovery device is attached in the middle of the branch pipe. ing.

特願2004−3437号公報Japanese Patent Application No. 2004-3437 特願2004−3414号公報Japanese Patent Application No. 2004-3414 特願2004−340446号公報Japanese Patent Application No. 2004-340446

しかしながら、熱源水を蓄熱槽に戻す還水管内における動圧は非常に高くなり、かつ落水防止弁等の弁構造体があるがゆえに、狭隘部などにおいて局所的な低圧部が生じ、熱源水温度に相応する蒸気圧以下でキャビテーションが生ずる。これらの相乗的な作用が原因となり、比較的高い頻度で激しい浸食を受け、落水防止弁など故障させる場合がある。   However, the dynamic pressure in the return water pipe that returns the heat source water to the heat storage tank is very high, and there is a valve structure such as a water fall prevention valve. Cavitation occurs below the vapor pressure corresponding to. Due to these synergistic effects, there is a case where severe erosion is caused at a relatively high frequency, and the water fall prevention valve is broken.

本発明の目的は、蓄熱槽に戻す熱源水を、還水管内においてキャビテーションを発生させることなく流すことができ、熱源水のもつポテンシャルエネルギーを効率よく電力に変換して回収可能な空調システムを提供することにある。   An object of the present invention is to provide an air conditioning system that can flow heat source water returned to a heat storage tank without causing cavitation in the return water pipe, and efficiently convert potential energy of the heat source water into electric power and recover it. There is to do.

かかる課題を解決するために、本発明によれば、建物の下方に配置された蓄熱槽から、建物内の空調負荷に熱源水を循環供給する空調システムにおいて、前記空調負荷から前記蓄熱槽に熱源水を戻す還水管に、空調負荷から落下してくる熱源水の流れを水平方向に変換させる屈曲部と、熱源水を水平方向に流す水平部を設け、前記水平部に、熱源水の運動エネルギーを回収する水車と圧力調整弁を熱源水の流れに順に配置し、前記屈曲部の曲率半径を、前記還水管の配管径Dの1.5倍以上とし、前記水平部の始端部から前記水車までの距離を、前記還水管の配管径Dの6倍以上とし、前記水車に加わる熱源水の静水頭を検出する水頭検出器を備え、この検出された静水頭が制御目標値になるように前記圧力調節弁の開度が制御されることを特徴とする、空調システムが提供される。 In order to solve this problem, according to the present invention, in an air conditioning system that circulates heat source water from a heat storage tank disposed below a building to an air conditioning load in the building, the heat source is supplied from the air conditioning load to the heat storage tank. The return pipe for returning water is provided with a bent portion for converting the flow of the heat source water falling from the air conditioning load in the horizontal direction and a horizontal portion for flowing the heat source water in the horizontal direction, and the kinetic energy of the heat source water is provided in the horizontal portion. A water turbine and a pressure regulating valve are sequentially arranged in the flow of the heat source water, the radius of curvature of the bent portion is 1.5 times or more the pipe diameter D of the return water pipe, and the water wheel is started from the start end of the horizontal portion. And a water head detector that detects the hydrostatic head of the heat source water applied to the water turbine, and the detected hydrostatic head is set to a control target value. that opening of the pressure regulating valve is controlled The symptom, the air conditioning system is provided.

この空調システムにあっては、建物内の空調負荷から落下してくる熱源水の流れが、還水管の配管径Dの1.5倍以上の曲率半径を有する屈曲部で水平方向に変換させ、その後、水平部において配管径Dの6倍以上の距離を流れてから、熱源水が水車に供給される。   In this air conditioning system, the flow of the heat source water falling from the air conditioning load in the building is converted into a horizontal direction at a bent portion having a curvature radius of 1.5 times or more of the pipe diameter D of the return water pipe, Thereafter, the heat source water is supplied to the water turbine after flowing a distance of 6 times or more the pipe diameter D in the horizontal portion.

この空調システムにおいて、前記水車の上流に、配管径Dを縮径させるノズル部を設けても良い。また、前記水車として、設計計算によって選定される能力よりも定格能力の小さい水車を採用しても良い。また、前記水車を迂回して前記蓄熱槽に熱源水を戻すバイパス管を設け、このバイパス管に流量調整弁を設けても良い。また、前記水車の上流側と下流側との差圧もしくは前記水車の回転数に基づいて前記流量調整弁を制御する制御装置を設けても良い。   In this air conditioning system, a nozzle portion for reducing the pipe diameter D may be provided upstream of the water wheel. Further, as the water wheel, a water wheel having a smaller rated capacity than the capacity selected by design calculation may be adopted. Further, a bypass pipe that bypasses the water wheel and returns the heat source water to the heat storage tank may be provided, and a flow rate adjusting valve may be provided in the bypass pipe. Moreover, you may provide the control apparatus which controls the said flow regulating valve based on the differential pressure | voltage of the upstream and downstream of the said water turbine, or the rotation speed of the said water turbine.

本発明によれば、還水管中でのキャビテーションの発生を防止し、水車に対して渦流れを発生させることなく熱源水を供給することができ、熱源水のもつポテンシャルエネルギーを効率よく回収できるようになる。なお、水車の上流に、配管径Dを縮径させるノズル部やポンプを設けることにより、熱源水の速度を増大させて水車に供給できるようになる。また、水車を迂回して蓄熱槽に還水管を戻すバイパス管を設けて、このバイパス管に流量調整弁を設ければ、流量調整弁を適宜制御することによって、水車のメンテナンス性等を向上させることができるようになる。   According to the present invention, it is possible to prevent the occurrence of cavitation in the return water pipe, supply the heat source water without generating vortex flow to the water turbine, and efficiently recover the potential energy of the heat source water. become. In addition, by providing a nozzle part and a pump for reducing the pipe diameter D upstream of the water wheel, the speed of the heat source water can be increased and supplied to the water wheel. Also, if a bypass pipe is provided that bypasses the water turbine and returns the return water pipe to the heat storage tank, and the flow adjustment valve is provided in the bypass pipe, the maintenance performance of the water turbine is improved by appropriately controlling the flow adjustment valve. Will be able to.

以下、本発明の実施の形態を、図面を参照にして説明する。図1は、本発明の実施の形態にかかる空調システムの全体図である。図2は、空調システムの要部の拡大図である。図3は、ノズル部21の説明図である。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of an air conditioning system according to an embodiment of the present invention. FIG. 2 is an enlarged view of a main part of the air conditioning system. FIG. 3 is an explanatory diagram of the nozzle unit 21. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図1に示すように、蓄熱槽1が、ビルなどの図示しない建物の下方に設けられている。この蓄熱槽1には、図示しないヒートポンプなどの熱源装置により安価な深夜電力を利用して加熱もしくは冷却された熱源水aが貯められている。   As shown in FIG. 1, a heat storage tank 1 is provided below a building (not shown) such as a building. The heat storage tank 1 stores heat source water a that is heated or cooled by using inexpensive late-night power by a heat source device such as a heat pump (not shown).

この蓄熱槽1から、建物内に設けられた空調負荷である空調機2に熱源水aを供給する往水管3には、蓄熱槽1から熱源水aを汲み上げて空調機2まで送水する揚水ポンプ5と、往水管3内における熱源水aの逆流を防ぐ逆止弁6が設けられている。なお、実際には、空調機2は、建物内において、各階ごとに配置され、また、方位や空調付加に応じて、それぞれの階に適宜複数台ずつ設けられている。そして、それら複数の空調機2から出た熱源水aが合流し、主管としての還水管10を通じて蓄熱槽1に戻されるようになっている。   From the heat storage tank 1, a pumping pump that pumps the heat source water a from the heat storage tank 1 to the air conditioner 2 and supplies the heat source water a to the air conditioner 2 that is an air conditioning load provided in the building. 5 and a check valve 6 for preventing the back flow of the heat source water a in the outgoing water pipe 3. Actually, the air conditioner 2 is arranged for each floor in the building, and a plurality of air conditioners 2 are appropriately provided on each floor according to the direction and the addition of air conditioning. And the heat source water a which came out of these several air conditioners 2 merges, and is returned to the thermal storage tank 1 through the return water pipe 10 as a main pipe.

また、空調機2から蓄熱槽1に熱源水aを戻す還水管10には、還水管10内を流れる熱源水aの運動エネルギーを回収する水車11が設けられている。なお、図示はしないが、還水管10内が負圧になることを回避するためのサージタンクを建物屋上などに備えている。   The return water pipe 10 that returns the heat source water a from the air conditioner 2 to the heat storage tank 1 is provided with a water turbine 11 that recovers the kinetic energy of the heat source water a flowing in the return water pipe 10. Although not shown, a surge tank for avoiding negative pressure in the return water pipe 10 is provided on the roof of the building.

後述するノズル部21を除き、還水管10はいずれも配管径Dの円管で構成されている。また、還水管10には、水車11を迂回して熱源水aを流すことができるバイパス管12が接続してある。バイパス管12には、流量調整弁13が設けられている。この流量調整弁13は、いわゆるノーマルクローズの弁であり、後述するように、通常は閉じているが、制御装置からの指令によって、適宜開かれて開度が調整されるようになっている。   All of the return water pipes 10 are constituted by circular pipes having a pipe diameter D except for a nozzle portion 21 described later. Further, the return water pipe 10 is connected to a bypass pipe 12 that can bypass the water wheel 11 and flow the heat source water a. The bypass pipe 12 is provided with a flow rate adjustment valve 13. The flow rate adjusting valve 13 is a so-called normally closed valve, which is normally closed as will be described later. However, the flow rate adjusting valve 13 is appropriately opened and the opening degree is adjusted by a command from the control device.

図2に示すように、還水管10の下流部分には、空調負荷2から落下してきた熱源水aの流れを水平方向に変換させる屈曲部10aと、熱源水aを水平方向に流す水平部10bと、熱源水aを蓄熱槽1に流下させる流下部10cが形成されている。バイパス管12の上流端12aは、水平部10bの始端部(屈曲部10aと水平部10bの接続位置)よりも下流側に分岐接続されている。バイパス管12の下流端は、流下部10cに合流接続されている。   As shown in FIG. 2, a bent portion 10a for converting the flow of the heat source water a falling from the air conditioning load 2 in the horizontal direction and a horizontal portion 10b for flowing the heat source water a in the horizontal direction are provided in the downstream portion of the return water pipe 10. And the lower part 10c which makes the heat-source water a flow down to the thermal storage tank 1 is formed. The upstream end 12a of the bypass pipe 12 is branched and connected to the downstream side of the start end of the horizontal portion 10b (connection position between the bent portion 10a and the horizontal portion 10b). The downstream end of the bypass pipe 12 is joined and connected to the flow lower part 10c.

屈曲部10aは、配管径Dの1.5倍以上の曲率半径ρを有しており、空調機2から還水管10内を流下してきた熱源水aは、この屈曲部10a内を流れる間に徐々に流れ方向を水平方向に変換させられるようになっている。なお、屈曲部10aの曲率半径ρは、屈曲部10aの中心線を基準に定められる。この屈曲部10aには、例えば配管部品の一種であるエルボ(Elbow)、ベンド(Bend)が用いられる。これらエルボ、ベンドは、その曲がり角度によって45°、90°、180°に分類されるが、空調機2から垂直に流下してきた熱源水aの流れ方向を水平方向に変換させる場合であれば、曲がり角度が90°のエルボ、ベンドを用いればよい。また、エルボ、ベンドには、曲率半径ρの大小により,それぞれショートエルボ、ロングエルボ、ショートベンド、ロングベンドがある。それらの曲率半径ρは、ショートエルボでは配管径Dの約1倍、ロングエルボでは配管径Dの約1.5倍、ショートベンドでは配管径Dの約4倍、ロングベンドでは配管径Dの約5倍である。従って,本発明では,屈曲部10aには、ロングエルボ、ショートベンド、ロングベンドのいずれかを使用すればよい。   The bent portion 10a has a curvature radius ρ that is 1.5 times or more of the pipe diameter D, and the heat source water a flowing down from the air conditioner 2 through the return pipe 10 flows through the bent portion 10a. The flow direction can be gradually changed to the horizontal direction. The radius of curvature ρ of the bent portion 10a is determined based on the center line of the bent portion 10a. For example, an elbow or bend which is a kind of piping component is used for the bent portion 10a. These elbows and bends are classified into 45 °, 90 °, and 180 ° depending on the bending angle, but if the flow direction of the heat source water a that has flowed vertically from the air conditioner 2 is converted to the horizontal direction, An elbow or bend with a bending angle of 90 ° may be used. The elbow and the bend include a short elbow, a long elbow, a short bend, and a long bend, respectively, depending on the curvature radius ρ. The radius of curvature ρ is about 1 times the pipe diameter D for short elbows, about 1.5 times the pipe diameter D for long elbows, about 4 times the pipe diameter D for short bends, and about the pipe diameter D for long bends. 5 times. Therefore, in the present invention, any one of a long elbow, a short bend, and a long bend may be used for the bent portion 10a.

水平部10bの始端部から水車11までの距離Lは、配管径Dの6倍以上に設定されている。なお、配管径Dは、還水管10の内径で定義される。ただし、肉厚を考慮しなければ、還水管10の外径で近似しても良い。   The distance L from the starting end of the horizontal portion 10b to the water wheel 11 is set to be 6 times or more the pipe diameter D. The pipe diameter D is defined by the inner diameter of the return water pipe 10. However, if the thickness is not taken into consideration, the outer diameter of the return water pipe 10 may be approximated.

また、還水管10の水平部10bには、バイパス管12の上流端12aの分岐取出位置よりも下流側において、熱源水aの流れ方向の順に、開閉弁20、ノズル部21、水車11、圧力調整弁22および開閉弁23が設けられている。開閉弁20および開閉弁23は、通常は開いており、例えば水車11の点検や修理などの場合に、これら開閉弁20および開閉弁23が閉じられる。   Further, the horizontal portion 10b of the return water pipe 10 has an on-off valve 20, a nozzle portion 21, a water wheel 11, a pressure in the order of the flow direction of the heat source water a on the downstream side of the branch extraction position of the upstream end 12a of the bypass pipe 12. An adjustment valve 22 and an on-off valve 23 are provided. The on-off valve 20 and the on-off valve 23 are normally open. For example, when the water turbine 11 is inspected or repaired, the on-off valve 20 and the on-off valve 23 are closed.

図3、4に示すように、ノズル部21は、入り口側の直径は配管径Dであるが、出口側は配管径Dよりも小さい直径dとなっている。このため、ノズル部21では、入り口側から出口側に流れる間に、熱源水aの流速が次第に高められるようになっている。なお、ノズル部21の内部は、図3に示すように、内径の中心高さを水平にして縮径する形状でも良いし、図4に示すように、底部の高さを水平にし、内径の中心高さを下流に向かって下降するような形状でも良い。   As shown in FIGS. 3 and 4, the nozzle portion 21 has a pipe diameter D on the inlet side, but has a diameter d smaller than the pipe diameter D on the outlet side. For this reason, in the nozzle part 21, the flow rate of the heat source water a is gradually increased while flowing from the inlet side to the outlet side. As shown in FIG. 3, the inside of the nozzle portion 21 may have a shape in which the center height of the inner diameter is horizontal and the diameter is reduced, or as shown in FIG. The shape may be such that the center height descends downstream.

水車11には、熱源水aの流れによって回転させられるインペラが内蔵され、熱源水aの運動エネルギーが、水車11によって回収されるようになっている。なお、水車11の接続は、内蔵されているインペラに対して熱源水aの流れが法線方向になるようにしてトルクを確保する。そして、水車11によって回収された運動エネルギーにより、発電機25で交流電力を発生させる。発電機25には、発生した交流電力の周波数を任意に変換可能な周波数変換装置26が接続してあり、この周波数変換装置26によって適当な周波数にインバータ変換させられた交流電力が、配電盤27を経由して、建物内に設けられた各種機器に供給されるようになっている。   The water turbine 11 incorporates an impeller that is rotated by the flow of the heat source water a, and the kinetic energy of the heat source water a is recovered by the water wheel 11. In addition, the connection of the water turbine 11 ensures a torque so that the flow of the heat source water a is in a normal direction with respect to the built-in impeller. Then, AC power is generated by the generator 25 using the kinetic energy recovered by the water turbine 11. A frequency converter 26 capable of arbitrarily converting the frequency of the generated AC power is connected to the generator 25, and the AC power inverter-converted to an appropriate frequency by the frequency converter 26 is used to convert the power distribution board 27. Via, it is supplied to various devices provided in the building.

なお、発電機25には、誘電発電機ではなく、同期交流発電機が用いられる。誘電発電機は、励磁コイルの電流制御ができず、発電した電力の行き場がなくなく焼損するために系統連係が必須である。系統連係すると、各種機器に供給する電力について電圧と周波数を保障するよう、電力会社から要求される。これに対して、同期交流発電機であれば、励磁コイルに流す電流を調節して電圧を一定に制御でき、系統連係が不要となる。この場合、電力を供給する機器として照明設備や空調機器(空調・換気用のモータ動力等)などに対象を限定することで、系統連係を不要とし、過剰な設備投資が防げることになる。   The generator 25 is not a dielectric generator but a synchronous AC generator. The dielectric generator cannot control the current of the exciting coil, and there is no place for the generated electric power, so it is necessary to link the grid to burn out. When the grid is linked, electric power companies are required to guarantee the voltage and frequency of power supplied to various devices. On the other hand, if it is a synchronous alternating current generator, the electric current sent through an exciting coil can be adjusted and a voltage can be controlled to be constant, and a system linkage becomes unnecessary. In this case, by limiting the target to lighting equipment or air conditioning equipment (motor power for air conditioning / ventilation, etc.) as equipment for supplying electric power, system linkage becomes unnecessary, and excessive capital investment can be prevented.

圧力調整弁22は、いわゆるノーマルオープンの弁であり、後述するように、通常は開放された状態になっているが、制御装置からの指令によって、圧力調整弁22は適宜開度が調整されるようになっている。   The pressure adjustment valve 22 is a so-called normally open valve, and is normally in an open state as will be described later. However, the opening degree of the pressure adjustment valve 22 is appropriately adjusted by a command from the control device. It is like that.

以上のように構成された本発明の実施の形態にかかる空調システムにおいて、空調運転を行う場合、揚水ポンプ5の稼動により、蓄熱槽1に貯められた熱源水aを汲み上げて空調機2に送水し、適宜冷房もしくは暖房を行う。こうして、建物内の空調負荷によって熱を消費した熱源水aは、空調機2から還水管10内を落下して、建物下方の蓄熱槽1に戻され、その際、還水管10内を流れる熱源水aの運動エネルギーが水車11で回収される。ここで水車11の上流で管内が満水状態であると、発電効率を確保するのに好ましい。こうして、回収した運動エネルギーによって発電機25で交流電力を発生させ、周波数変換装置26で適当な周波数に変換させられた交流電力が、配電盤27を経由して建物内の各種機器に供給される。   In the air conditioning system according to the embodiment of the present invention configured as described above, when the air conditioning operation is performed, the heat source water a stored in the heat storage tank 1 is pumped up and supplied to the air conditioner 2 by the operation of the pump 5. Then, cool or heat appropriately. Thus, the heat source water a that has consumed heat due to the air conditioning load in the building falls from the air conditioner 2 into the return water pipe 10 and is returned to the heat storage tank 1 below the building, at which time the heat source flowing in the return water pipe 10 The kinetic energy of the water a is recovered by the water turbine 11. Here, when the inside of the pipe is full of water upstream of the water turbine 11, it is preferable to ensure power generation efficiency. In this way, AC power is generated by the generator 25 by the recovered kinetic energy, and the AC power converted to an appropriate frequency by the frequency converter 26 is supplied to various devices in the building via the switchboard 27.

この場合、還水管10に設けられている屈曲部10aが配管径Dの1.5倍以上の曲率半径ρを有し、かつ、水平部10bの始端部から水車11までの距離Lが配管径Dの6倍以上に設定されているので、還水管10内において空調機2から落下してくる熱源水aの流れを緩やかに水平流れに方向変換して、キャビテーションや渦流れを発生させることなく水車11に流すことができ、熱源水aのもつポテンシャルエネルギーを効率よく電力として回収できるようになる。また、還水管10に設けられた各弁20,22,23等の破損も防止できる。加えて、水平部10bでは、垂直配管よりも静圧を高めることができ、空気混入のリスクを低減し、常時満水状態でエネルギー回収できるようになる。   In this case, the bent portion 10a provided in the return water pipe 10 has a curvature radius ρ that is 1.5 times or more of the pipe diameter D, and the distance L from the start end of the horizontal portion 10b to the water turbine 11 is the pipe diameter. Since it is set to be 6 times or more of D, the flow of the heat source water a falling from the air conditioner 2 in the return water pipe 10 is gently changed into a horizontal flow without causing cavitation or vortex flow. Thus, the potential energy of the heat source water a can be efficiently recovered as electric power. Moreover, damage to each valve 20, 22, 23 etc. provided in the return water pipe 10 can also be prevented. In addition, in the horizontal portion 10b, the static pressure can be increased as compared with the vertical piping, the risk of air mixing can be reduced, and energy can be recovered in a constantly full water state.

また、水車11の上流に、配管径Dを直径dまで縮径させるノズル部21を設けていることにより、ノズル部21において熱源水aの速度を増大させて水車11に供給でき、水車11の回転数不足を回避できる。この場合、水車11の上流側では常に満水状態を維持することができるようになる。   Further, by providing the nozzle portion 21 for reducing the pipe diameter D to the diameter d upstream of the water turbine 11, the nozzle portion 21 can increase the speed of the heat source water a and supply it to the water turbine 11. Insufficient rotation speed can be avoided. In this case, a full water state can always be maintained on the upstream side of the water turbine 11.

次に、この空調システムの制御装置は次のように構成される。先ず、水車11に加わる熱源水aの静水頭Hが水頭検出器30で検出されている。そして、この検出された静水頭Hが制御目標値になるように圧力調節弁22の開度を比例積分動作で制御している。この場合、圧力調節弁22は、最大静水頭以下を制御目標値に設定して開度を閉塞側に調節する。これにより、水車11と圧力調節弁22は落水防止弁の機能を兼ね、しかも還水管10内を常時満水にしてキャビテーションの発生を防止している。なお、水車11と圧力調節弁22が従前の落水防止弁の機能を兼ねるために、落水防止弁を省略できる。なお、圧力調節弁22は、無制御信号電流ないし無通電時に開放するノーマルオープン型を用いているので、異常時でも空調システムの機能停止を防止することができる。   Next, the control device of the air conditioning system is configured as follows. First, the hydrostatic head H of the heat source water a applied to the water turbine 11 is detected by the water head detector 30. And the opening degree of the pressure control valve 22 is controlled by the proportional integration operation so that the detected hydrostatic head H becomes the control target value. In this case, the pressure control valve 22 adjusts the opening degree to the closed side by setting the maximum hydrostatic head or less as the control target value. As a result, the water wheel 11 and the pressure control valve 22 also function as a water fall prevention valve, and the inside of the return water pipe 10 is always full to prevent cavitation. In addition, since the water wheel 11 and the pressure control valve 22 also function as a conventional water fall prevention valve, the water fall prevention valve can be omitted. Since the pressure control valve 22 uses a normally open type that opens when no control signal current or no current is applied, it is possible to prevent the air conditioning system from functioning even when there is an abnormality.

また、還水管10の水平部10bにおいて、これら水車11と圧力調節弁22の前後にかかる熱源水aの差圧が差圧検出器31で検出されている。そして、この検出された差圧ΔPに基づいて、流量調整弁13が制御される。   Further, in the horizontal portion 10 b of the return water pipe 10, the differential pressure of the heat source water a applied before and after the water turbine 11 and the pressure control valve 22 is detected by the differential pressure detector 31. Then, the flow rate adjustment valve 13 is controlled based on the detected differential pressure ΔP.

即ち、差圧ΔPが許容範囲内にある場合は、ノーマルクローズの流量調整弁13は、そのまま閉じられた状態を維持する。このため、熱源水aは、バイパス管12には流れない。   That is, when the differential pressure ΔP is within the allowable range, the normally closed flow rate adjustment valve 13 remains closed as it is. For this reason, the heat source water a does not flow into the bypass pipe 12.

一方、差圧ΔPが許容範囲を超えた場合は、流量調整弁13の開度が比例制御によって開かれる。これにより、還水管10内を流れる熱源水aの一部がバイパス管12に流れて、水平部10bに流れる熱源水aが減り、水車11と圧力調節弁22に過度の水圧がかかることを防止することができる。これにより、キャビテーションや渦流れの発生を回避できる。この場合、差圧ΔPが許容範囲を超えたことを検出して表示ランプの点灯等を行っても良い。   On the other hand, when the differential pressure ΔP exceeds the allowable range, the opening degree of the flow regulating valve 13 is opened by proportional control. Thereby, a part of the heat source water a flowing in the return water pipe 10 flows to the bypass pipe 12, and the heat source water a flowing to the horizontal portion 10b is reduced, thereby preventing excessive water pressure from being applied to the water wheel 11 and the pressure control valve 22. can do. Thereby, generation | occurrence | production of a cavitation and a vortex flow can be avoided. In this case, the display lamp may be turned on by detecting that the differential pressure ΔP exceeds the allowable range.

また、水車11の回転数が、例えば発電機25(同期交流発電機)の極数で決まる回転数の1.5倍以上になった場合に、発電機25が内蔵している周波数検出用の発電機出力を制御信号として、流量調整弁13の開度を比例制御しても良い。この場合も同様に、還水管10内を流れる熱源水aの一部がバイパス管12に流れて、水平部10bに流れる熱源水aが減り、水車11の回転数異常を回避できる。   Further, when the rotational speed of the water turbine 11 is 1.5 times or more the rotational speed determined by the number of poles of the generator 25 (synchronous alternating current generator), for example, the frequency detection function incorporated in the generator 25 is used. The opening degree of the flow rate adjustment valve 13 may be proportionally controlled using the generator output as a control signal. In this case as well, a part of the heat source water a flowing in the return water pipe 10 flows to the bypass pipe 12, and the heat source water a flowing to the horizontal portion 10b is reduced, so that an abnormal rotation speed of the water turbine 11 can be avoided.

また、水車11や圧力調節弁22の点検、修理などの必要が生じた場合、流量調整弁13を開放し、水平部10bに設けた開閉弁20および開閉弁23を閉じる。これにより、空調システムの運転を止めることなく水車11や圧力調節弁22の点検、修理などが可能となり、メンテナンス性等を向上させることができる。   Moreover, when the necessity of inspection, repair, etc. of the water wheel 11 or the pressure control valve 22 arises, the flow volume adjustment valve 13 is open | released and the on-off valve 20 and the on-off valve 23 provided in the horizontal part 10b are closed. As a result, the water turbine 11 and the pressure control valve 22 can be inspected and repaired without stopping the operation of the air conditioning system, and the maintainability and the like can be improved.

以上、本発明の好ましい実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば、水車11の直前にノズル部21を設けた例を示したが、水車11の回転数不足が発生しないのであれば、ノズル部21を省略しても良い。なお、ノズル部21を設ける場合、入り口側の直径(配管径D)に対する出口側の直径dの比d/Dは0.4以下とすることが好ましい。   As mentioned above, although an example of preferable embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. For example, although the example which provided the nozzle part 21 just before the water wheel 11 was shown, if the rotation speed shortage of the water wheel 11 does not generate | occur | produce, you may abbreviate | omit the nozzle part 21. In addition, when providing the nozzle part 21, it is preferable that ratio d / D of the diameter d of the exit side with respect to the diameter (piping diameter D) of an entrance side shall be 0.4 or less.

また、ノズル部21を設ける代わりに、水車11の回転数をより高速にするために、水車11として標準よりも小型の水車を採用することで、コスト的な不利益を回避できる。なお、水車11として採用される標準よりも小型の水車とは、設計計算によって選定される能力よりも定格能力の小さい水車である。この水車としては、例えば汎用のポンプで番手を1番下げたものを利用できる。かかるポンプはトルクは小さいが、インペラが小さいため回転速度を上げることができる。このポンプの上流側では、ポンプの吸い込み開口に合わせてノズル部21等の手段によって配管が縮径されると熱源水aの流れがスムーズになるが、必ずしもポンプ吸い込み側にノズル部21等の手段を設ける必要はない。また、屈曲部10aは、1個の90°エルボでも良いが、2個の45°エルボを用いて構成しても良い。   Moreover, in order to make the rotation speed of the water turbine 11 faster, instead of providing the nozzle portion 21, a disadvantage of cost can be avoided by adopting a water turbine smaller than the standard as the water turbine 11. The turbine smaller than the standard adopted as the turbine 11 is a turbine having a rated capacity smaller than the capacity selected by design calculation. As this water wheel, for example, a general-purpose pump whose count is lowered by 1 can be used. Such a pump has a small torque, but the impeller is small, so that the rotational speed can be increased. On the upstream side of this pump, when the diameter of the pipe is reduced by means such as the nozzle portion 21 in accordance with the suction opening of the pump, the flow of the heat source water a becomes smooth, but the means such as the nozzle portion 21 is not necessarily provided on the pump suction side. There is no need to provide. Further, the bent portion 10a may be one 90 ° elbow, but may be constituted by using two 45 ° elbows.

本発明は、蓄熱槽を有する空調システムに適用できる。   The present invention can be applied to an air conditioning system having a heat storage tank.

本発明の実施の形態にかかる空調システムの全体図である。1 is an overall view of an air conditioning system according to an embodiment of the present invention. 空調システムの要部の拡大図である。It is an enlarged view of the principal part of an air conditioning system. ノズル部の説明図である。It is explanatory drawing of a nozzle part. ノズル部の説明図である。It is explanatory drawing of a nozzle part.

符号の説明Explanation of symbols

a 熱源水
1 蓄熱槽
2 空調機
3 往水管
5 揚水ポンプ
10 還水管
10a 屈曲部
10b 水平部
10c 流下部
11 水車
12 バイパス管
13 流量調整弁(ノーマルクローズ)
22 圧力調整弁
25 発電機
30 水頭検出器
31 差圧検出器
a Heat source water 1 Heat storage tank 2 Air conditioner 3 Outgoing pipe 5 Pumping pump 10 Return water pipe 10a Bending part 10b Horizontal part 10c Flowing part 11 Water wheel 12 Bypass pipe 13 Flow control valve (normally closed)
22 Pressure adjustment valve 25 Generator 30 Water head detector 31 Differential pressure detector

Claims (5)

建物の下方に配置された蓄熱槽から、建物内の空調負荷に熱源水を循環供給する空調システムにおいて、
前記空調負荷から前記蓄熱槽に熱源水を戻す還水管に、空調負荷から落下してくる熱源水の流れを水平方向に変換させる屈曲部と、熱源水を水平方向に流す水平部を設け、
前記水平部に、熱源水の運動エネルギーを回収する水車と圧力調整弁を熱源水の流れに順に配置し、
前記屈曲部の曲率半径を、前記還水管の配管径Dの1.5倍以上とし、
前記水平部の始端部から前記水車までの距離を、前記還水管の配管径Dの6倍以上とし
前記水車に加わる熱源水の静水頭を検出する水頭検出器を備え、この検出された静水頭が制御目標値になるように前記圧力調節弁の開度が制御されることを特徴とする、空調システム。
In the air conditioning system that circulates heat source water from the heat storage tank located below the building to the air conditioning load in the building,
A return pipe that returns the heat source water from the air conditioning load to the heat storage tank is provided with a bent portion that horizontally converts the flow of the heat source water falling from the air conditioning load, and a horizontal portion that causes the heat source water to flow in the horizontal direction,
In the horizontal portion, a water wheel for collecting the kinetic energy of the heat source water and a pressure regulating valve are sequentially arranged in the flow of the heat source water,
The radius of curvature of the bent portion is 1.5 times or more the piping diameter D of the return water pipe,
The distance from the start end of the horizontal portion to the water wheel is at least 6 times the pipe diameter D of the return water pipe ,
An air conditioner comprising a water head detector for detecting a hydrostatic head of heat source water applied to the water turbine, and the opening of the pressure control valve is controlled so that the detected hydrostatic head becomes a control target value. system.
前記水車の上流に、配管径Dを縮径させるノズル部を設けたことを特徴とする、請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein a nozzle portion for reducing the pipe diameter D is provided upstream of the water wheel. 前記水車として、設計計算によって選定される能力よりも定格能力の小さい水車を採用することを特徴とする、請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein a water turbine having a rated capacity smaller than a capacity selected by design calculation is adopted as the water wheel. 前記水車を迂回して前記蓄熱槽に熱源水を戻すバイパス管を設け、このバイパス管に流量調整弁を設けたことを特徴とする、請求項1〜3のいずれかに記載の空調システム。 The air conditioning system according to any one of claims 1 to 3, wherein a bypass pipe that bypasses the water turbine and returns heat source water to the heat storage tank is provided, and a flow rate adjusting valve is provided in the bypass pipe. 前記水車の上流側と下流側との差圧もしくは前記水車の回転数に基づいて前記流量調整弁を制御する制御装置を設けたことを特徴とする、請求項4に記載の空調システム。 5. The air conditioning system according to claim 4, further comprising a control device that controls the flow rate adjusting valve based on a differential pressure between an upstream side and a downstream side of the water turbine or a rotation speed of the water turbine.
JP2006222016A 2006-08-08 2006-08-16 Air conditioning system Expired - Fee Related JP4896623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222016A JP4896623B2 (en) 2006-08-08 2006-08-16 Air conditioning system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006216140 2006-08-08
JP2006216140 2006-08-08
JP2006222016A JP4896623B2 (en) 2006-08-08 2006-08-16 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2008064321A JP2008064321A (en) 2008-03-21
JP4896623B2 true JP4896623B2 (en) 2012-03-14

Family

ID=39287194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222016A Expired - Fee Related JP4896623B2 (en) 2006-08-08 2006-08-16 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4896623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963124B (en) * 2009-07-25 2012-09-19 汪健 Electricity-generating and air conditioning all-in-one machine of ground source energy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111642A (en) * 1974-07-18 1976-01-29 Kajima Corp Kochisuisooyobi suiryobunbaisochito kumiawaseta gendokinashi yosuisochi
US4352025A (en) * 1980-11-17 1982-09-28 Troyen Harry D System for generation of electrical power
JPS63297949A (en) * 1987-05-28 1988-12-05 Tokai Eng Kk Recovering method for surplus energy in air conditioning equipment utilizing heat accumulating tank
JP2003021043A (en) * 2001-07-10 2003-01-24 Toshiba Corp Reaction type water turbine and operating and controlling method therefor
JP4332357B2 (en) * 2002-03-27 2009-09-16 株式会社日立産機システム Operation method of energy recovery equipment
JP4069010B2 (en) * 2003-05-14 2008-03-26 株式会社日立産機システム Air conditioning equipment and energy recovery device mounting method

Also Published As

Publication number Publication date
JP2008064321A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
US7081688B2 (en) Energy recovery apparatus and method of operating energy recovering apparatus
JP6343587B2 (en) Compressed air storage power generation method and compressed air storage power generation apparatus
JP6510876B2 (en) Compressed air storage power generation method and compressed air storage power generation device
JP2009168037A (en) Energy recovery system and storage pump
JP4896623B2 (en) Air conditioning system
US11118558B2 (en) Hydroelectric power generation system
JP2009007995A (en) Energy recovery system
CN109882422A (en) A kind of double flow moves feed pump turbine recirculation pipe road device and its control method
JP4742121B2 (en) Power generation / air conditioning system
JP4046735B2 (en) Snow melting equipment using high temperature heat medium
KR20170134127A (en) Combined heat and power system with multiple expanders
CN111244984A (en) Black-start energy storage system and method
JP5126861B2 (en) Energy-saving system, energy-saving device, and energy-saving air compressor
JP2020084913A (en) Compression air storage power generation device and compression air storage power generation method
WO2016170653A1 (en) Steam turbine system
JP2018050357A (en) Hydraulic power generating system
KR20180017752A (en) Combined heat and power system with multiple expanders
JP6965221B2 (en) Gas turbine system
JP4610866B2 (en) Energy recovery system and control method, and multiple turbine generator system and operation control method
JP3219186U (en) Solar air power generation equipment
JP2009106151A (en) Energy recovery apparatus
JP4597257B1 (en) Hydroelectric power generation system
CN102654096B (en) Circulation of fluid Intelligent residual pressure utilized device and using method thereof
CN110109487A (en) A kind of Intelligence Cooling System
KR101205617B1 (en) Steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees