JP4610866B2 - Energy recovery system and control method, and multiple turbine generator system and operation control method - Google Patents

Energy recovery system and control method, and multiple turbine generator system and operation control method Download PDF

Info

Publication number
JP4610866B2
JP4610866B2 JP2003166576A JP2003166576A JP4610866B2 JP 4610866 B2 JP4610866 B2 JP 4610866B2 JP 2003166576 A JP2003166576 A JP 2003166576A JP 2003166576 A JP2003166576 A JP 2003166576A JP 4610866 B2 JP4610866 B2 JP 4610866B2
Authority
JP
Japan
Prior art keywords
energy recovery
flow rate
water
turbine
fluid flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003166576A
Other languages
Japanese (ja)
Other versions
JP2005002871A (en
Inventor
幸央 藤田
幸一 佐藤
雄司 田中
英治 高山
伸一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2003166576A priority Critical patent/JP4610866B2/en
Publication of JP2005002871A publication Critical patent/JP2005002871A/en
Application granted granted Critical
Publication of JP4610866B2 publication Critical patent/JP4610866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Water Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エネルギー回収システムと制御方法及び複数水車発電機システムと運転制御方法であり、水車を用いた発電を行ってエネルギーを回収する技術に関する。
【0002】
【従来技術】
ビルの空調システムとして、安価な深夜電力を利用して熱源機を運転し、製造した熱を蓄熱槽に貯めておき、空調負荷が発生する昼間に貯めていた熱を汲み出して負荷である空調機に送って空調する蓄熱式空調システムが広く採用されている。このうち、熱を製造する一次側システムでは、従来は参考例の特許文献1(液体循環式空気調和設備におけるポンプへの動力回収)に示すように一次側冷温水ポンプを駆動する電動機を両軸にして、反ポンプ側に水車を直結して熱源機から出た水を前記水車で受けて、この落差で水車を運転し、水車が発生したトルクを前記電動機に伝達し、この電動機の負荷(この場合、一次冷温水ポンプ)を軽減している。同装置は、建物の高さ(水車の落差)、建物内空調負荷(流量)によって一品ごとに設計、製造するのは不合理である。一般には汎用の同装置を数種類、予め用意しておき、建物あるいは負荷設備仕様に合わせて、複数台並列運転している。これは、水車と発電機を軸でつなぎ、水車が水力エネルギーを回収することによって発生するトルクを発電機に伝達し、その発電機によって発電を行う水車発電機についても同様のことが言える。
【0003】
水車発電機を並列に設置するにあたって、設置する配管系の水量にあわせて、水車発電機を複数台並列に設置し運転を行う。このとき並列の台数は最大水量に合わせて決定する為、水量変化がある配管系の場合、水量が減少した時、台数制御を行わない場合は水車設置台数よりも少ない台数であれば発電できる水量の場合でも、全台数にほぼ均等に水が流れる為に、全ての水車が発電停止水量に達してしまい発電出来なくなってしまう。
【0004】
このような現象を改善すべく、参考例では流量が変化するに従って、水車の出口側に設けた電磁開閉弁が自動的に切替制御されて、その流量に適する台数の水車のみを運転する制御方法が開発されている。
【0005】
【特許文献1】
特公昭48−419号公報
【0006】
【発明が解決しようとする課題】
上記のごとき電磁開閉弁を用いた水車運転台数制御の場合、水車設置台数分だけ、水車出口側に電磁開閉弁を設ける必要があり、水車台数が増えれば増えるほど、コストアップの要因となってしまう。
【0007】
本発明は、上記のような実情に鑑みてなされたもので、複数の水車による運転において、流量に対応する水車台数で発電運転を行うエネルギー回収システムと制御方法及び複数水車発電機システムと運転制御方法を提供することを目的としている。
【0008】
【課題を解決する手段】
上記目的を達成するために、本発明は、遠心形の水車を用いることにより、上記配管系の水量が減少した場合には、遠心形水車の特徴を生かし、流量に適した水車台数以外の水車を無拘束運転させ、水車による抵抗が上昇するように水車回転数を変化させ、発電運転したい水車の方へ、より多くの水が流れるように制御を行うことを特徴とするものである。
【0009】
すなわち、本発明は、流体が流れてくる配管系の配管を複数本の配管に分岐し、その分岐経路に設置して該分岐経路を流れる流体の有するエネルギーを回収するエネルギー回収装置と、前記配管系を流れる流体の流量を検出する流量検出装置とを備え、前記エネルギー回収装置を並列運転するエネルギー回収システムにおいて、前記エネルギー回収装置は、回転数が上昇すると水流抵抗が増加する遠心型水車と、該遠心型水車の回転により発電する発電機とを有し、前記流量検出装置により検出された前記配管系を流れる流体の流量が所定の値以下になった場合に、複数台の運転している前記エネルギー回収装置のうち、所定のエネルギー回収装置の発電機の運転を中止させ、該発電機に接続された前記遠心型水車を無拘束運転させて、前記配管系を流れる流体の流量のうち前記無拘束状態とされた前記遠心型水車を流れる減少した流量以外の多くの流量が、前記無拘束状態とされた前記遠心型水車を有する前記エネルギー回収装置以外の前記エネルギー回収装置に流れることを特徴とするエネルギー回収システムである。
【0010】
また、本発明は、このエネルギー回収システムにおいて、前記流量検出装置は、前記配管系を流れる流体について検出した流体速度又は流体圧力から前記配管系を流れる流体の流量を推定することができる。
更に、このエネルギー回収システムにおいて、前記エネルギー回収装置が有するそれぞれの前記発電機についてその発電運転停止を制御する個別コントローラと、前記流量検出装置により検出された前記配管系を流れる流体の前記流量に基づいて前記個別コントローラを制御する上位コントローラとを備えることができる。
個別コントローラと上位コントローラとを備えるエネルギー回収システムにおいて、前記上位コントローラは、前記流量検出装置から得た流量情報により前記エネルギー回収装置の最適な運転台数を算出して最適な運転台数を超える台数分の個別コントローラに発電機運転中止指令を出すことができ、上記上位コントローラは、上記流量検出装置から得た流量情報により算出した最適な運転台数が稼働中の運転台数以下のときに、稼働中のうちの1台の個別コントローラに発電機運転中止指令を出すことができる。
【0011】
そして、本発明は、流体が流れてくる配管系の配管を複数本の配管に分岐し、その分岐経路に前記流体の有するエネルギーを回収するよう回転数が上昇すると水流抵抗が増加する水車と該水車の回転により発電する発電機とを有するエネルギー回収装置を設置し、該エネルギー回収装置の発電機に個別コントローラを取付けて並列運転させ、前記配管系の流量が減少した場合には、流量に適した運転台数を超える台数分のエネルギー回収装置の発電運転を停止させることにより、前記配管系の流量に適した運転台数のエネルギー回収装置への流入量が多くなるように制御し、配管系の流量の変化に応じてエネルギー回収装置への流量配分を最適に制御するエネルギー回収システムの制御方法であって、予め測定しておいた各発電運転台数における発電停止合計水量Qsに対してある係数kを掛けて、製品バラツキや流量測定誤差,制御タイムラグを考慮して算出した台数切替タイミング水量Qにおいて発電運転と無拘束運転の切替制御を行うエネルギー回収システムの制御方法である。
【0012】
更に、本発明は、水力エネルギーを持った水が流れてくる配管系の配管を複数本の配管に分岐し、その分岐経路に前記未利用水力エネルギーを回収するよう設置された水車発電機と、該水車発電機を並列運転させるよう設けた個別コントローラと、前記配管系の流量を検出する検出装置と、該検出装置から得た流量情報により前記水車発電機の最適な運転台数を算出し前記個別コントローラに運転指令を出す上位コントローラとを設け、前記配管系の流量の変化に伴い、発電運転する水車発電機と発電停止する水車発電機を順次制御する複数水車発電機システムである。
【0013】
また、本発明は、水力エネルギーを持った水が流れてくる配管系の配管を複数本の配管に分岐し、その分岐経路に前記水力エネルギーを回収することの出来る水車発電機を設置し、該水車発電機にコントローラを設置し発電運転を行う水車発電機の並列運転させ、前記配管系の流量が減少した場合には、流量に適した運転台数以外の前記水車発電機の発電運転を停止させることにより該水車発電機の回転数を上昇させ、該水車発電機における流体抵抗が大きくなるように回転数を変化させ、前記配管系の流量に適した運転台数の水車発電機への流入量が多くなるように制御し、配管系の流量の変化に応じて水車発電機への流量配分を最適に制御する複数水車発電機システムの運転制御方法において、予め測定しておいた各発電運転台数における発電停止合計水量Qsに対してある係数kを掛けて、製品バラツキや流量測定誤差,制御タイムラグを考慮して算出した台数切替タイミング水量Qにおいて発電運転と無拘束運転の切替制御を行う複数水車発電機システムの運転制御方法である。
【0014】
上記のような特徴構成を有する本発明によれば、電磁開閉弁による水車の台数制御を行うことなく、配管系の水量変化に応じた最適な水車運転台数制御を行うことが可能である。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明のエネルギー回収システムと制御方法及び複数水車発電機システムと運転制御方法の実施例について、図1〜図3を用いて説明する。図1は、実施例のエネルギー回収システムの概略構成図である。図2は、実施例における遠心形水車の3台並列運転時の発電電力特性の説明図である。図3は、実施例における遠心形水車の無拘束運転時と自動運転時の落差特性の説明図である。
【0016】
実施例を説明する。図1は、開ループの蓄熱式空調システムに水車発電機を並列に設置したエネルギー回収システムの構成図である。1は蓄熱槽16の水を汲み上げて送水管3aを介して熱源機3に送水する揚水ポンプ、2は該揚水ポンプ駆動用電動機である。4は前記熱源機が製造する熱量を調整する二方弁、3bは前述した熱源機と分流器6とを結ぶ送水管、5は同送水管に備わる膨張タンクである。また、膨張タンクの代わりに真空破壊弁を設けることもある。また、分流器6を介して複数本の分岐経路6a,6b,6cを形成し、水車12A,12B,12Cのそれぞれに送水する。水車を出た水は集流器7を介して、蓄熱槽に戻すための送水管7aを通り、前記蓄熱槽16へ戻される。送水管7aの途中には、システム停止後の管内落水防止のために、電磁開閉弁8を設ける。
【0017】
この空調システム配管内には予め水が充満されており、空調システムが運転を始めると、前記開閉弁8を開けて揚水ポンプ1を運転させ熱源機3へ水が送られると同時に、前記分流器6で各落液分岐経路6a,6b,6cに分配され、各水車12A,12B,12Cが起動される。それと同時に前記水車12と軸で直結された発電機13A,13B,13Cも回転を始める。その後個別コントローラ14A,14B,14Cにより自動発電運転を行い、発電した電力を、送電線15を介して電力供給先へ送電する。そしてこのときは各水車12には充分に運転できる水が供給されていて、高い発電効率で運転を行っている。従って、電力供給先では、水車発電機13より送られた電力分だけ消費電力が減ることになり経済的である。
【0018】
そして時間が経過して、前記二方弁4が絞られ水量が減少し、発電運転台数3台の運転停止合計水量QC3=QS3×k3(QS3=水車発電機1台の運転停止水量QS1×3、k3は制御係数)に達したら、前記送水管3bの途中に設けられた落液量検出装置9がそれを検出して、上位コントローラ10へ伝え、この上位コントローラ10が個別コントローラ14Cに発電運転停止指令を出し、個別コントローラ14Cは自動発電運転を停止し、水車12Cは無拘束回転状態となる。その後更に水量が減少し、発電運転台数2台の運転停止合計水量QC2=QS2×k2(QS2=水車発電機1台の運転停止水量QS1×2+その時の無拘束運転水車発電機の水量Qm2、k2は制御係数)に達したら、上位コントローラ10が個別コントローラ14Bに発電運転停止指令を出し、個別コントローラ14Bは自動発電運転を停止し、水車12Bは無拘束回転状態となる。その時の総水量と総発電量の関係を図2に示す。
【0019】
図3には遠心形水車の落差特性を示す。図3に示すように、無拘束運転時と自動発電運転時では、同じ水量での落差が、無拘束運転時の方が高くなる特徴がある。換言すると、同じ落差では、自家発電運転での流量に比べて、無拘束運転での流量は十分少なくなることが解る。つまり、遠心型水車では無拘束運転にすると羽根車の回転数が増加することで、流入してくる水に対して作用する遠心力が大きくなること、即ち、回転水車による水流抵抗が増える事を意味し、発電運転を行っている水車12Aに比べ、無拘束運転状態の水車12B,12Cには水が流れにくくなる。これにより、水量に適した運転台数の水車にだけ水量を多く流すように制御でき、水量が減少するに従って順々に水車を無拘束運転させることにより、水量に適した台数の水車に水量を片寄らせることができ、最後の1台が運転できなくなる水量まで効率良く発電運転を行うことが可能となる。
【0020】
尚、前記送水管3bを経て流れくる水量に応じて無拘束運転する水車台数を制御するに当たって、前記実施例では直接水量を感知する構成を採用したが、流水速度又は流水圧を検出することにより、水量を間接的に感知する様に構成しても構わない。例えば、前記落液流量検出装置9を落液速度計、又は落液圧力計に置き換える事が出来る。
【0021】
以上のように、本発明に基づく実施例によれば、遠心形水車の特性である無拘束時の落差増加特性を利用して、水量に適した水車台数で運転を行う水車運転台数制御を行うことができ、水車出口側に水車台数分だけ電磁開閉弁を設けなくても効率良く未利用水力エネルギーを回収することが可能となり、その分だけコスト削減ができるという効果を奏する。
【0022】
なお、上述の実施例では、蓄熱式空調システムの使用済みの未利用の水力エネルギーを回収するシステムを例に説明を行った。しかしながら、上述の実施例のような未利用の水力エネルギーを回収するシステムに実施形態が限定されるものではなく、複数の水車を有する等のエネルギー回収を行うものにおいても、上記実施例は有効なものである。
【0023】
【発明の効果】
本発明によれば、複数の水車による運転において、流量に対応する水車台数で発電運転を行うエネルギー回収システムを得ることができる。即ち、運転を中止させた所定のエネルギー回収装置の発電機に接続された遠心型水車は無拘束運転されることになり、遠心型水車の回転数が上昇すると水流抵抗が増加するという特性によって水流抵抗が増えて、電磁開閉弁を用いなくても、結果的に発電運転を行っている遠心型水車と比べて水流が流れにくくなり、その分、水量に適した運転台数の水車にだけ水量を多く流すように制御でき、順次、こうした運転制御を繰り返すことで、最後の1台が運転できなくなる水量まで効率良く発電運転を行うことが可能となる。また、電磁開閉弁を必要としない分だけエネルギー回収システムのコストを削減することができる。
【図面の簡単な説明】
【図1】実施例のエネルギー回収システムの概略構成図。
【図2】実施例における遠心形水車の3台並列運転時の発電電力特性の説明図。
【図3】実施例における遠心形水車の無拘束運転時と自動運転時の落差特性の説明図。
【符号の説明】
1 揚水ポンプ
2 電動機
3 熱源機
3a、3b 送水管
4 二方弁
5 膨張タンク
6 分流器
6a、6b、6c 分岐経路
7 集流器
7a 送水管
8 電磁開閉弁
9 液量検出装置
10 上位コントローラ
12A、12B、12C 水車
13A、13B、13C 発電機
14A、14B、14C 個別コントローラ
15 送電線
16 蓄熱槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy recovery system, a control method, a multi-turbine power generator system, and an operation control method, and relates to a technique for recovering energy by performing power generation using a water turbine.
[0002]
[Prior art]
As a building air conditioning system, heat source equipment is operated using inexpensive late-night electricity, the heat produced is stored in a heat storage tank, and the heat stored in the daytime when the air conditioning load is generated is pumped out. A regenerative air conditioning system is widely used for air conditioning. Among these, in the primary side system for producing heat, conventionally, as shown in Patent Document 1 (power recovery to the pump in the liquid circulation type air-conditioning equipment) of the reference example, an electric motor that drives the primary side cold / hot water pump is provided on both shafts. Then, the water turbine is directly connected to the non-pump side, and the water from the heat source device is received by the water turbine, the water turbine is driven by this head, the torque generated by the water turbine is transmitted to the motor, and the load ( In this case, the primary cold / hot water pump) is reduced. It is unreasonable to design and manufacture each device according to the height of the building (head of the turbine) and the air conditioning load (flow rate) in the building. In general, several types of general-purpose devices are prepared in advance, and a plurality of units are operated in parallel according to the building or load equipment specifications. The same can be said for the turbine generator that connects the turbine and the generator with the shaft, transmits the torque generated by the turbine collecting hydraulic energy to the generator, and generates power by the generator.
[0003]
When installing the turbine generators in parallel, the turbine generators are installed in parallel according to the amount of water in the installed piping system. At this time, the number of units in parallel is determined according to the maximum amount of water, so in the case of a piping system with a change in the amount of water, the amount of water that can be generated if the number of units is less than the number of installed turbines when the number of units is not controlled when the amount of water decreases. Even in this case, since water flows almost evenly in all units, all the turbines reach the power generation stoppage amount and cannot generate power.
[0004]
In order to improve such a phenomenon, in the reference example, as the flow rate changes, the electromagnetic on-off valve provided on the outlet side of the turbine is automatically switched and controlled so that only the number of turbines suitable for the flow rate is operated. Has been developed.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 48-419 [0006]
[Problems to be solved by the invention]
In the case of controlling the number of turbines operated using electromagnetic on / off valves as described above, it is necessary to provide an electromagnetic on / off valve on the outlet side of the turbine as many as the number of installed turbines. As the number of turbines increases, the cost increases. End up.
[0007]
The present invention has been made in view of the above circumstances, and in operation with a plurality of turbines, an energy recovery system and a control method for performing a power generation operation with the number of turbines corresponding to the flow rate, a plurality of turbine generator systems, and an operation control It aims to provide a method.
[0008]
[Means for solving the problems]
In order to achieve the above object, the present invention uses centrifugal water turbines, and when the amount of water in the piping system decreases, the water turbines other than the number of water turbines suitable for the flow rate are utilized by utilizing the characteristics of the centrifugal water turbines. Is controlled in such a manner that more water flows to a water turbine that is desired to perform a power generation operation by changing the number of rotations of the water turbine so that the resistance by the water wheel increases.
[0009]
That is, the present invention includes an energy recovery device for branching a pipe of a piping system through which a fluid flows into a plurality of pipes, and recovering energy possessed by the fluid flowing through the branch path, and the pipe A flow rate detection device that detects a flow rate of fluid flowing through the system, and in the energy recovery system that operates the energy recovery device in parallel, the energy recovery device includes a centrifugal water turbine that increases water flow resistance when the number of rotations increases; A plurality of generators operating when the flow rate of the fluid flowing through the piping system detected by the flow rate detection device falls below a predetermined value. Among the energy recovery devices, the operation of the generator of the predetermined energy recovery device is stopped, the centrifugal water turbine connected to the generator is operated without restraint, Many of the flow rate of non-reduced flow rate through the centrifugal hydraulic turbine wherein is an unrestrained among the flow rate of the fluid flowing through the pipe system, the non-energy recovery device having a centrifugal water turbine wherein is an unrestrained The energy recovery system flows to the energy recovery device.
[0010]
The present invention, in the energy recovery system, the flow rate detecting apparatus can estimate the flow rate of the fluid flowing through the pipeline from the fluid velocity or fluid pressure has been detected for the fluid flowing through the piping system.
Furthermore, in this energy recovery system, based on the individual controller for controlling the power generation operation stop of each generator included in the energy recovery device, and the flow rate of the fluid flowing through the piping system detected by the flow rate detection device. And a host controller for controlling the individual controller.
In an energy recovery system including an individual controller and a host controller, the host controller calculates the optimum number of operating energy recovery devices based on the flow rate information obtained from the flow rate detection device and exceeds the optimal number of operations. It is possible to issue a generator operation stop command to the individual controller, and the upper controller is in operation when the optimum operation number calculated from the flow rate information obtained from the flow rate detection device is equal to or less than the number of operation units in operation. It is possible to issue a generator operation stop command to one of the individual controllers.
[0011]
And this invention branches the piping of the piping system through which the fluid flows into a plurality of piping, and the water turbine that increases the water flow resistance when the rotational speed increases so as to recover the energy of the fluid in the branch path, Install an energy recovery device that has a generator that generates electricity by rotating the water turbine, and attach an individual controller to the generator of the energy recovery device for parallel operation, and if the flow rate of the piping system decreases, it is suitable for the flow rate By stopping the power generation operation of the energy recovery devices that exceed the number of operating units, the flow rate of the piping system is controlled so that the amount of inflow to the energy recovery devices of the operating number suitable for the flow rate of the piping system increases. This is a control method for an energy recovery system that optimally controls the flow distribution to the energy recovery device in accordance with changes in the That is multiplied by the coefficient k with respect to the power generation stop total water Qs, product variation and flow rate measurement error, the energy for switching control of the power generation operation and unrestricted operation at number switch timing water Q C calculated in consideration of the control time lag This is a control method of the recovery system.
[0012]
Furthermore, the present invention is a turbine generator installed so as to branch a pipe of a piping system through which water having hydraulic energy flows into a plurality of pipes, and to collect the unused hydraulic energy in the branch path; An individual controller provided to operate the water turbine generators in parallel, a detection device for detecting the flow rate of the piping system, and an optimum operation number of the water turbine generators is calculated from the flow rate information obtained from the detection device. A multi-turbine power generator system that includes a host controller that issues an operation command to the controller and sequentially controls the water turbine generator that performs power generation operation and the water turbine generator that stops power generation as the flow rate of the piping system changes.
[0013]
Further, the present invention branches a pipe of a piping system through which water having hydraulic energy flows into a plurality of pipes, and installs a turbine generator capable of recovering the hydraulic energy in the branch path, Install a controller in the turbine generator to run the turbine generator in parallel, and when the flow rate of the piping system decreases, stop the generator operation of the turbine generator other than the number of units suitable for the flow rate Thus, the rotational speed of the water turbine generator is increased, the rotational speed is changed so that the fluid resistance in the water turbine generator is increased, and the inflow amount to the water turbine generator of the number of operation suitable for the flow rate of the piping system is In the operation control method of the multiple turbine generator system that controls the flow rate to the turbine generator optimally according to the change in the flow rate of the piping system, the number of generator operation units measured in advance is Oke Is multiplied by the coefficient k with respect to the power generation stop total water Qs, product variation and flow rate measurement error, several water wheels which performs switching control of the power generation operation and unrestricted operation at number switch timing water Q C calculated in consideration of the control time lag This is an operation control method for a generator system.
[0014]
According to the present invention having the above-described characteristic configuration, it is possible to perform optimum control of the number of operated turbines according to a change in the amount of water in the piping system without performing the number control of the number of turbines by the electromagnetic on-off valve.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
Embodiments of the energy recovery system and control method, and the multiple turbine generator system and operation control method of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of an energy recovery system according to an embodiment. FIG. 2 is an explanatory diagram of generated power characteristics when three centrifugal turbines in the embodiment are operated in parallel. FIG. 3 is an explanatory diagram of the head characteristics during unconstrained operation and automatic operation of the centrifugal water turbine in the embodiment.
[0016]
Examples will be described. FIG. 1 is a configuration diagram of an energy recovery system in which a turbine generator is installed in parallel in an open-loop regenerative air conditioning system. Reference numeral 1 denotes a pump for pumping water from the heat storage tank 16 and supplies it to the heat source unit 3 through a water supply pipe 3a. Reference numeral 2 denotes an electric motor for driving the pump. 4 is a two-way valve for adjusting the amount of heat produced by the heat source device, 3b is a water supply pipe connecting the heat source device and the flow divider 6, and 5 is an expansion tank provided in the water supply tube. A vacuum break valve may be provided instead of the expansion tank. Further, a plurality of branch paths 6a, 6b, 6c are formed via the flow divider 6, and water is supplied to each of the water turbines 12A, 12B, 12C. The water exiting the water turbine is returned to the heat storage tank 16 through the current collector 7 through the water supply pipe 7a for returning to the heat storage tank. An electromagnetic on-off valve 8 is provided in the middle of the water supply pipe 7a to prevent water falling in the pipe after the system is stopped.
[0017]
The air conditioning system pipe is filled with water in advance, and when the air conditioning system starts operation, the on-off valve 8 is opened to operate the pump 1 and water is sent to the heat source unit 3 at the same time. 6 is distributed to the falling liquid branch paths 6a, 6b, 6c, and the water turbines 12A, 12B, 12C are activated. At the same time, the generators 13A, 13B, and 13C directly connected to the water turbine 12 through the shaft also start to rotate. Thereafter, automatic power generation operation is performed by the individual controllers 14 </ b> A, 14 </ b> B, and 14 </ b> C, and the generated power is transmitted to the power supply destination via the transmission line 15. At this time, water that can be sufficiently operated is supplied to each of the water turbines 12 and is operated with high power generation efficiency. Therefore, at the power supply destination, the power consumption is reduced by the amount of power sent from the water turbine generator 13, which is economical.
[0018]
Then, as time elapses, the two-way valve 4 is throttled to reduce the amount of water, and the total amount of operation stoppage for three power generation operation units Q C3 = Q S3 × k3 (Q S3 = operation stop water amount for one turbine generator When Q S1 × 3, k3 is the control coefficient), the falling liquid amount detection device 9 provided in the middle of the water supply pipe 3b detects it and transmits it to the host controller 10, and the host controller 10 The power generation operation stop command is issued to 14C, the individual controller 14C stops the automatic power generation operation, and the water turbine 12C enters the unconstrained rotation state. Thereafter, the amount of water further decreases, and the total amount of water outage for two power generation operation units Q C2 = Q S2 × k2 (Q S2 = the amount of operation stop water of one turbine generator Q S1 × 2 + the unrestricted operation of the turbine generator at that time When the amount of water Q m2 and k2 reaches the control coefficient), the host controller 10 issues a power generation operation stop command to the individual controller 14B, the individual controller 14B stops the automatic power generation operation, and the water wheel 12B enters the unrestricted rotation state. The relationship between the total water volume and the total power generation at that time is shown in FIG.
[0019]
FIG. 3 shows the head characteristics of the centrifugal water turbine. As shown in FIG. 3, there is a feature that a head with the same amount of water becomes higher during unconstrained operation and during automatic power generation operation. In other words, with the same head, it can be understood that the flow rate in the unconstrained operation is sufficiently smaller than the flow rate in the private power generation operation. In other words, in the centrifugal turbine, when the unrestricted operation is performed, the rotational speed of the impeller increases, so that the centrifugal force acting on the incoming water increases, that is, the water flow resistance by the rotating turbine increases. This means that water is less likely to flow through the turbines 12B and 12C in the unconstrained operation state as compared to the turbine 12A performing the power generation operation. As a result, it is possible to control so that a large amount of water flows only to the number of water turbines that are suitable for the amount of water. Therefore, it is possible to efficiently perform the power generation operation up to the amount of water in which the last one cannot be operated.
[0020]
Incidentally, in controlling the number of turbines that are operated without restraint in accordance with the amount of water flowing through the water pipe 3b, in the above embodiment, a configuration in which the amount of water is directly sensed is adopted. Alternatively, it may be configured to sense the amount of water indirectly. For example, the falling liquid flow rate detection device 9 can be replaced with a falling liquid speed meter or a falling pressure gauge.
[0021]
As described above, according to the embodiment based on the present invention, the operation number control of the turbines that perform the operation with the number of turbines suitable for the amount of water is performed by using the unrestricted head increase characteristic that is a characteristic of the centrifugal turbine. Therefore, it is possible to efficiently recover unused hydraulic energy without providing as many solenoid opening / closing valves as the number of turbines on the outlet side of the turbines, and the cost can be reduced accordingly.
[0022]
In addition, in the above-mentioned Example, it demonstrated taking the case of the system which collect | recovers the used unused hydraulic energy of a thermal storage type | formula air conditioning system. However, the embodiment is not limited to the system for recovering unused hydraulic energy as in the above-described example, and the above example is effective even in the case of performing energy recovery such as having a plurality of water turbines. Is.
[0023]
【The invention's effect】
According to the present invention, in operation with a plurality of water wheels, it is possible to obtain the energy recovery system which performs power generation operation in hydraulic turbine number corresponding to the flow rate. That is, the centrifugal turbine connected to the generator of the predetermined energy recovery device that has been stopped is operated without restraint, and the water flow resistance increases as the rotational speed of the centrifugal turbine increases. As a result, the flow of water is less likely to flow compared to a centrifugal turbine that generates electricity without using an electromagnetic on-off valve, and the amount of water is only supplied to the number of turbines that are suitable for the amount of water. It can be controlled to flow a lot, and by sequentially repeating such operation control, it is possible to efficiently perform the power generation operation up to the amount of water that the last one cannot operate. In addition, the cost of the energy recovery system can be reduced by the amount that does not require an electromagnetic on-off valve.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an energy recovery system according to an embodiment.
FIG. 2 is an explanatory diagram of generated power characteristics when three centrifugal turbines in the embodiment are operated in parallel.
FIG. 3 is an explanatory diagram of head characteristics during unconstrained operation and automatic operation of a centrifugal water turbine in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pumping pump 2 Electric motor 3 Heat source machine 3a, 3b Water supply pipe 4 Two-way valve 5 Expansion tank 6 Divider 6a, 6b, 6c Branching path 7 Current collector 7a Water supply pipe 8 Electromagnetic switching valve 9 Liquid quantity detection apparatus 10 Upper level controller 12A , 12B, 12C Water turbines 13A, 13B, 13C Generators 14A, 14B, 14C Individual controller 15 Transmission line 16 Thermal storage tank

Claims (3)

流体が流れてくる配管系の配管を複数本の配管に分岐し、その分岐経路に設置して該分岐経路を流れる流体の有するエネルギーを回収するエネルギー回収装置と、前記配管系を流れる流体の流量を検出する流量検出装置とを備え、前記エネルギー回収装置を並列運転するエネルギー回収システムにおいて、
前記エネルギー回収装置は、回転数が上昇すると水流抵抗が増加する遠心型水車と、該遠心型水車の回転により発電する発電機とを有し、
前記流量検出装置により検出された前記配管系を流れる流体の流量が所定の値以下になった場合に、複数台の運転している前記エネルギー回収装置のうち、所定のエネルギー回収装置の発電機の運転を中止させ、該発電機に接続された前記遠心型水車を無拘束運転させて、
前記配管系を流れる流体の流量のうち前記無拘束状態とされた前記遠心型水車を流れる減少した流量以外の多くの流量が、前記無拘束状態とされた前記遠心型水車を有する前記エネルギー回収装置以外の前記エネルギー回収装置に流れることを特徴とするエネルギー回収システム。
An energy recovery device that branches the piping of the piping system through which the fluid flows into a plurality of piping, and is installed in the branching path to recover the energy of the fluid flowing through the branching path, and the flow rate of the fluid flowing through the piping system In an energy recovery system comprising a flow rate detection device for detecting the energy recovery device and operating the energy recovery devices in parallel,
The energy recovery device has a centrifugal water turbine whose water flow resistance increases when the rotational speed increases, and a generator that generates electric power by the rotation of the centrifugal water turbine,
When the flow rate of the fluid flowing through the piping system detected by the flow rate detection device is equal to or lower than a predetermined value, among the plurality of operating energy recovery devices, the generator of the predetermined energy recovery device Stop operation, let the centrifugal water turbine connected to the generator run without restraint,
The energy recovery device having the centrifugal turbine in which the flow rate of the fluid flowing through the piping system other than the reduced flow rate flowing in the centrifugal turbine in the unconstrained state is in the unconstrained state. An energy recovery system that flows to the energy recovery device other than the above.
請求項1記載のエネルギー回収システムにおいて、
前記流量検出装置は、前記配管系を流れる流体について検出した流体速度又は流体圧力から前記配管系を流れる流体の流量を推定することを特徴とするエネルギー回収システム。
The energy recovery system according to claim 1,
The flow rate detecting device, an energy recovery system, characterized by estimating the flow amount of the fluid flowing through the pipeline from the fluid velocity or fluid pressure has been detected for the fluid flowing through the piping system.
請求項1又は2記載のエネルギー回収システムにおいて、
前記エネルギー回収装置が有するそれぞれの前記発電機についてその発電運転停止を制御する個別コントローラと、前記流量検出装置により検出された前記配管系を流れる流体の前記流量に基づいて前記個別コントローラを制御する上位コントローラとを備えていることを特徴とするエネルギー回収システム。
The energy recovery system according to claim 1 or 2,
An individual controller that controls the stop of power generation operation for each of the generators included in the energy recovery device, and a host that controls the individual controller based on the flow rate of the fluid flowing through the piping system detected by the flow rate detection device An energy recovery system comprising a controller.
JP2003166576A 2003-06-11 2003-06-11 Energy recovery system and control method, and multiple turbine generator system and operation control method Expired - Lifetime JP4610866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166576A JP4610866B2 (en) 2003-06-11 2003-06-11 Energy recovery system and control method, and multiple turbine generator system and operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166576A JP4610866B2 (en) 2003-06-11 2003-06-11 Energy recovery system and control method, and multiple turbine generator system and operation control method

Publications (2)

Publication Number Publication Date
JP2005002871A JP2005002871A (en) 2005-01-06
JP4610866B2 true JP4610866B2 (en) 2011-01-12

Family

ID=34092698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166576A Expired - Lifetime JP4610866B2 (en) 2003-06-11 2003-06-11 Energy recovery system and control method, and multiple turbine generator system and operation control method

Country Status (1)

Country Link
JP (1) JP4610866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223047A (en) * 2005-02-10 2006-08-24 Meidensha Corp Variable speed power supply device
WO2019058764A1 (en) * 2017-09-22 2019-03-28 株式会社日立産機システム Hydroelectric power system interconnection system

Also Published As

Publication number Publication date
JP2005002871A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
CN201436513U (en) Household air-conditioning heat pump water-heating system
US7818973B2 (en) Air-conditioning system and method of installing energy recovery apparatus
CN104848540A (en) Primary heating type heat pump water heater and control method thereof
CN102654097B (en) Industrial circulating water Intelligent residual pressure recycling device and using method thereof
US20160341191A1 (en) Transportable fluid pipeline system and control
JP5041889B2 (en) Energy recovery system
JP2009168037A (en) Energy recovery system and storage pump
CN104879925A (en) Control device for direct-heating heat pump water heater and control method of control device
KR100967132B1 (en) Energy saving and high efficient heat pump cooling and heating system using water source
AU2018203597A1 (en) Heat Pump
CN104296372A (en) Domestic normal pressure heat pump water heater and control method thereof
JP4610866B2 (en) Energy recovery system and control method, and multiple turbine generator system and operation control method
KR101369780B1 (en) Sensorless variable flow rate control apparatus of pump using context aware algorithm and cotrol method thereof
JP2023038673A (en) Compressed air storage power generation device
EP3540324B1 (en) Heating medium circulation system
CN204678683U (en) An a kind of heating type heat pump hot water
CN101995071A (en) Remote valve control method
JP2004019626A (en) Wind power generator
CN206930009U (en) Ultra-low temperature hot water air conditioner all-in-one
CN204739735U (en) Constant temperature of earth source heat pump, energy -saving control system
KR101142098B1 (en) Pressurizing device of partial area in mass energy system
CN201982231U (en) Device for recovering excess pressure of circulating fluid
KR101445266B1 (en) Central Control Association Management System of New Renewable Energy for Air Conditioning and Heating
RU2239752C1 (en) Excessive pressure recuperation system for water and heat supply mains
CN203068688U (en) Mixed type air conditioning system water power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term