JP3219186U - Solar air power generation equipment - Google Patents

Solar air power generation equipment Download PDF

Info

Publication number
JP3219186U
JP3219186U JP2018003821U JP2018003821U JP3219186U JP 3219186 U JP3219186 U JP 3219186U JP 2018003821 U JP2018003821 U JP 2018003821U JP 2018003821 U JP2018003821 U JP 2018003821U JP 3219186 U JP3219186 U JP 3219186U
Authority
JP
Japan
Prior art keywords
air
turbine
solar
power generation
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018003821U
Other languages
Japanese (ja)
Inventor
信義 三島
信義 三島
Original Assignee
信義 三島
信義 三島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信義 三島, 信義 三島 filed Critical 信義 三島
Priority to JP2018003821U priority Critical patent/JP3219186U/en
Application granted granted Critical
Publication of JP3219186U publication Critical patent/JP3219186U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

【課題】化石燃料を燃焼させず、太陽熱エネルギを集熱して空気を加熱し、この加熱空気で空気タービン、空気圧縮機及び発電機を効果的に駆動して発電することができる太陽熱空気発電設備を提供する。【解決手段】起動用電動機14と太陽熱エネルギを集熱して生み出した高温空気を空気タービン6に導入して、発電機13の回転数を引き上げ系統に発電機を同期併入させる太陽熱空気発電設備である。かつ本発電設備を経済的にする、空気タービンの空気条件は約0.5MPa/600℃程度にする。【選択図】図1A solar air power generation facility capable of collecting solar thermal energy to heat air without burning fossil fuel and generating electric power by effectively driving an air turbine, an air compressor and a generator with the heated air. I will provide a. SOLUTION: A solar air power generation facility in which high-temperature air generated by collecting solar heat energy with a starting motor 14 is introduced into an air turbine 6 and the number of revolutions of a generator 13 is increased so that the generator is synchronously inserted into the system. is there. The air condition of the air turbine, which makes the power generation facility economical, is about 0.5 MPa / 600 ° C. [Selection] Figure 1

Description

本発明は、化石燃料を用いず、太陽熱エネルギを電気エネルギに変換する太陽熱空気発電設備に関する。  The present invention relates to a solar air power generation facility that converts solar thermal energy into electric energy without using fossil fuels.

太陽熱エネルギを電気エネルギに変換する装置について、先行特許文献1、特開2014−1641号では、1塔の太陽熱集光タワ−が集熱した太陽熱エネルギ−によって二酸化炭素ガスを加熱し、該二酸化炭素ガスで二酸化炭素ガスタービンを駆動して、同軸の圧縮機動力と発電機動力両方を発生させた太陽熱ガスタ−ビン発電システムを開示している。また、同先行例の図14では、空気温度/圧力:650℃/1.0MPaの条件下で空気タービンを駆動して、発電動力を発生するオープンサイクルガスタービン系統が開示されている。  Regarding a device for converting solar thermal energy into electrical energy, in Patent Document 1 and Japanese Patent Application Laid-Open No. 2014-1641, carbon dioxide gas is heated by solar thermal energy collected by one tower of solar heat collecting tower, and the carbon dioxide A solar gas turbine power generation system is disclosed in which a carbon dioxide gas turbine is driven with gas to generate both coaxial compressor power and generator power. Further, FIG. 14 of the preceding example discloses an open cycle gas turbine system that generates power by driving an air turbine under conditions of air temperature / pressure: 650 ° C./1.0 MPa.

特開2014−1641号 公報JP, 2014-1641, A

先行例、特開2014−1641号の図9では太陽熱集熱器塔1塔で、二酸化炭素ガスを加熱し1台の二酸化炭素ガスタービンを駆動し、同軸に直結した3台の圧縮機と1台の発電機を駆動する太陽熱発電装置が提案されているが、該太陽熱集熱器で生み出す二酸化炭素ガスの温度/圧力が650℃/20MPaと高温/高圧であり、この条件に耐える合金鋼が発電装置の広範囲に必要となるため発電設備費用が高騰するという課題がある。さらに先行例の図9の構成では、軸構成が長くなり、かつ圧縮機3台と発電機とタービンを合計した重量が増加するのでこの装置の起動停止装置が大型化複雑化するという課題がある。  In the preceding example, FIG. 9 of Japanese Patent Application Laid-Open No. 2014-1641, in one solar heat collector tower, carbon dioxide gas is heated to drive one carbon dioxide gas turbine, and three compressors directly connected coaxially and 1 A solar power generation device that drives a generator is proposed. The temperature / pressure of carbon dioxide gas produced by the solar heat collector is 650 ° C./20 MPa, which is a high temperature / high pressure. There is a problem that the cost of power generation equipment increases because it is necessary for a wide range of power generation devices. Furthermore, in the configuration of FIG. 9 of the preceding example, the shaft configuration becomes long, and the total weight of the three compressors, the generator, and the turbine increases, so that there is a problem that the start / stop device of this device becomes larger and complicated. .

さらに同先行例の図14では、圧縮機と発電機と同軸の空気タービンが太陽熱で加熱された空気で駆動され発電機出力5.8MWeを得ることが提示されているが、本装置のタービン起動停止装置と制御装置に関する説明がない。すなわち、圧縮機の入口、大気圧力約0.1MPaから10倍の1.0MPa程度に加圧する圧縮機を起動するための空気タービン動力発生装置と制御装置の説明がない。また、発電機を電力系統に同期並列させ、無負荷定格回転数まで発電機の回転数を持ち上げる動力源の出所の説明がない。  Further, in FIG. 14 of the preceding example, it is proposed that an air turbine coaxial with the compressor and the generator is driven by air heated by solar heat to obtain a generator output of 5.8 MWe. There is no explanation about the stop device and the control device. In other words, there is no description of the air turbine power generation device and the control device for starting the compressor that pressurizes the compressor at the inlet and the atmospheric pressure of about 0.1 MPa to about 1.0 MPa. Further, there is no description of the source of the power source that synchronously parallels the generator to the power system and raises the generator speed to the no-load rated speed.

また、同先行例の図9では、タービン軸シール部分からの高圧高温の二酸化炭素ガスが外部へリークするのを防ぐために、軸受シール部の構造が複雑化し大がかりな軸受シール装置が必要になる課題もある。  Further, in FIG. 9 of the preceding example, in order to prevent the high-pressure and high-temperature carbon dioxide gas from the turbine shaft seal portion from leaking outside, the structure of the bearing seal portion is complicated and a large-scale bearing seal device is required. There is also.

課題を解決する手段Means to solve the problem

一般的な大気圧力0.1MPa程度の大気を約0.5MPa程度の5倍の圧力に圧縮する空気圧縮機と、電力系統に同期並列する発電機と、太陽熱空気加熱装置から送られてくる高温空気で駆動する空気タービンを同軸構成にして起動停止運転と発電運転が可能となる起動停止制御装置と負荷運用制御装置を有する太陽熱空気発電設備を考案した。  A general air pressure of about 0.1 MPa, an air compressor that compresses the air to about five times the pressure of about 0.5 MPa, a generator that is synchronously parallel to the power system, and a high temperature that is sent from a solar air heater A solar thermal air power generation facility having a start / stop control device and a load operation control device capable of start / stop operation and power generation operation with a coaxial air turbine driven by air has been devised.

発電機と空気圧縮機を駆動する空気タービンと、太陽光を集光して圧縮空気を加熱する太陽熱加熱装置から成る太陽熱空気発電装置の発電負荷を最大に得られるように負荷運用して、起動停止する起動停止制御装置と負荷運転制御装置を考案した。  Start up by operating the load so that the power generation load of the solar air power generation device consisting of an air turbine that drives the generator and air compressor and a solar heating device that concentrates sunlight and heats the compressed air can be obtained to the maximum A start / stop control device and a load operation control device were devised.

本考案では発電機の負荷遮断発生時、空気タービンへの空気流入を遮断する遮断装置と、空気加熱器装置内に残留した高温高圧の空気を大気へ逃がす装置と、太陽熱空気発電の緊急停止制御装置を有する。  In the present invention, when a load interruption of the generator occurs, a shut-off device that shuts off the inflow of air into the air turbine, a device that releases high-temperature and high-pressure air remaining in the air heater device to the atmosphere, and emergency stop control of solar thermal air power generation Have the device.

考案の効果Effect of device

本考察による負荷運転制御装置により、空気条件(=空気タービン入口の計画温度/計画圧力条件)が一定に制御されて、発電機出力が安定し、安価でクリーンな電力が連続して長期に得られる効果が生まれる。  The load operation control device according to this study controls the air condition (= planned temperature at the inlet of the air turbine / planned pressure condition) to a constant level, stabilizing the generator output, and obtaining cheap and clean power continuously over a long period of time. The effect is born.

さらに、起動停止制御装置と緊急停止制御装置により、本太陽熱空気発電装置を起動したり停止したりする運転や、緊急に安全に停止する運転ができる。  Furthermore, the start / stop control device and the emergency stop control device can perform an operation for starting and stopping the solar thermal air power generation device and an operation for safely and urgently stopping the solar thermal air power generation device.

さらに、本考案は、蒸気タービン発電方式でなく空気タービン発電方式なので、蒸気タービン復水器冷却用の多量の冷却水が必要なくなる効果がある。  Furthermore, since the present invention is an air turbine power generation system rather than a steam turbine power generation system, a large amount of cooling water for cooling the steam turbine condenser is not required.

この考案の実施の形態の太陽熱空気発電装置と同左装置の制御装置の全体基本構成を示す。The whole basic structure of the control apparatus of the left-side apparatus same as the solar thermal power generation apparatus of embodiment of this invention is shown. 本装置を起動する時の直達日射強度と発電機回転数と発電負荷の変化を示す。Changes in direct solar radiation intensity, generator rotational speed, and power generation load when starting this device are shown. 本装置を停止する時の直達日射強度と発電機回転数と発電負荷の変化を示す。Changes in direct solar radiation intensity, generator speed, and power generation load when this equipment is stopped are shown. 空気の温度−エントロピ線図(T−s線図)上に本考案に係る発電サイクルを示す。The power generation cycle according to the present invention is shown on an air temperature-entropy diagram (Ts diagram). タービン入口温度を一定にした時の発電可能動力の変化を示す。The change in power that can be generated when the turbine inlet temperature is kept constant is shown. タービン入口圧力を一定にした時の発電可能動力の変化を示す。The change in power that can be generated when the turbine inlet pressure is constant is shown.

太陽熱を集熱して空気を加熱し空気タービンを駆動して発電機を回転させ発電する各装置と、同装置を起動停止運転または定常負荷運転または緊急停止運転する際の各制御装置間との形態を以下実施例に従い説明する。  Forms between each device that collects solar heat and heats the air to drive the air turbine to rotate the generator to generate electricity, and between each control device when the device is in start / stop operation, steady load operation or emergency stop operation Will be described in accordance with the following examples.

以下、添付図面に従って実施例を説明する。図1では、太陽1の太陽光を太陽熱集熱装置2で集め集熱塔3の上部に設置された太陽熱加熱装置4に集光して空気圧縮機5から太陽熱集熱装置入口管24を通過して送られてくる圧縮空気を加熱する。その後、加熱された圧縮空気は太陽熱集熱装置出口管25を経て空気タービン6に流れ、空気圧縮機5と発電機13を駆動し、空気を圧縮する動力と発電機を駆動する動力を発生する。空気タービン6を駆動した空気は空気タービン出口ダクト27を通過して系外に排出される。  Embodiments will be described below with reference to the accompanying drawings. In FIG. 1, the sunlight from the sun 1 is collected by the solar heat collector 2 and concentrated on the solar heat heater 4 installed at the top of the heat collection tower 3, and then passes from the air compressor 5 through the solar heat collector inlet pipe 24. The compressed air sent is heated. Thereafter, the heated compressed air flows to the air turbine 6 through the solar heat collector outlet pipe 25, drives the air compressor 5 and the generator 13, and generates power for compressing air and power for driving the generator. . The air that has driven the air turbine 6 passes through the air turbine outlet duct 27 and is discharged out of the system.

本発電装置に外部系統から来る計画の発電指令を、図1の系統負荷指令90に示す。さらに、計画の発電機回転数を図1の発電機回転数91に示す。また、計画の発電機出力を計画発電機出力92に示す。現状の発電機回転数や出力と系統負荷指令90との偏差を図1の偏差93に示す。本発電装置はこの偏差値に基づいて、この偏差が無くなるような方向に制御される。  A power generation command planned to come from an external system to the power generation apparatus is shown as a system load command 90 in FIG. Further, the planned generator rotational speed is indicated by a generator rotational speed 91 in FIG. The planned generator output is shown in the planned generator output 92. The deviation between the current generator speed and output and the system load command 90 is shown as deviation 93 in FIG. Based on this deviation value, the power generator is controlled in such a direction that the deviation disappears.

図2はある晴天時に午前中太陽が昇り始め11時頃に本太陽熱空気発電設備が定格負荷100%負荷運転に達した様子を示す。図2の時間帯Aにおいて、図1にある起動用電動機14に、外部電力を導入して起動用電動機14を駆動して空気圧縮機5と空気タービン6と発電機13の共通軸17の回転数を30%程度に上昇させる。起動用電動機の回転数は起動用電動機回転数計50で検出されその信号は、タービン回転数・負荷制御装置94に伝えられ調整弁7の開度を調整して圧縮機5出口流量、すなわち空気タービン6入口空気流量が制御される。  FIG. 2 shows a state in which the solar hot-air power generation facility reaches a rated load 100% load operation around 11:00 in the morning when the sun starts to rise in a certain sunny day. In the time zone A of FIG. 2, rotation of the common shaft 17 of the air compressor 5, the air turbine 6, and the generator 13 is performed by introducing external power to the starting motor 14 shown in FIG. 1 and driving the starting motor 14. Increase the number to about 30%. The number of revolutions of the starting motor is detected by the starting motor speed meter 50, and the signal is transmitted to the turbine speed / load control device 94 to adjust the opening of the adjusting valve 7 to adjust the flow rate at the outlet of the compressor 5, that is, the air. The turbine 6 inlet air flow rate is controlled.

次に徐々に時間経過とともに太陽から来る直達日射の強度が上昇する様子を直達日射強度計55が検出して、太陽熱集熱量制御装置95に送る。本制御信号を太陽熱集熱装置2に送り、太陽熱エネルギを集熱して高温空気を生み出しタービン6を駆動してタービンの回転数を約95%回転数程度まで上げて行く。この過程でクラッチ30を切り離し、起動用電動機14を停止する。次に、太陽熱加熱装置4から送られて来る加熱空気を空気タービン6に送り、発電機13の回転数を100%回転数に持ち上げ系統に同期並列させると同時に並列負荷約10%程度を発電し送電する。この様子を図2の時間帯Bに示す。  Next, the direct solar radiation intensity meter 55 detects a state in which the intensity of the direct solar radiation coming from the sun gradually increases with time, and sends it to the solar heat collecting amount control device 95. This control signal is sent to the solar heat collecting device 2 to collect solar heat energy to generate high-temperature air and drive the turbine 6 to increase the rotational speed of the turbine to about 95%. In this process, the clutch 30 is disconnected and the starting motor 14 is stopped. Next, the heated air sent from the solar heating device 4 is sent to the air turbine 6 to increase the number of revolutions of the generator 13 to 100% and synchronously parallel to the system, and at the same time generate about 10% of the parallel load. Power transmission. This is shown in time zone B of FIG.

次に直達日射強度の上昇を待って、時間帯Cに示す如く直達日射強度計55からの信号を太陽熱集熱量制御装置95に送り、太陽熱集熱装置2を動かし、発電機13の負荷を約10%並列負荷から定格100%負荷に上昇させる。発電機13の発電出力は発電機出力計52が検出し、発電量はタービン回転数・負荷制御装置94に常に伝達される。以下、直達日射強度が約900W/m程度に達したあとは、直達日射強度の急激な低下がない限り、時間帯Dに示す如く定格100%負荷発電運転を数時間継続できる。Next, as the direct solar radiation intensity rises, a signal from the direct solar radiation intensity meter 55 is sent to the solar heat collection amount control device 95 as shown in time zone C, the solar heat collection device 2 is moved, and the load on the generator 13 is reduced. Increase from 10% parallel load to rated 100% load. The power generation output of the power generator 13 is detected by a power generator output meter 52, and the power generation amount is always transmitted to the turbine speed / load control device 94. Hereinafter, after the direct solar radiation intensity reaches about 900 W / m 2 , the rated 100% load power generation operation can be continued for several hours as shown in the time zone D as long as the direct solar radiation intensity does not rapidly decrease.

図3は、連続負荷運転を数時間連続運転した後で、ある晴天の午後に太陽高度が下り始め、17時頃に本太陽熱空気発電設備が発電を停止した様子を示す。負荷100%を示す時間帯Dに続き、図3の時間帯Eにおいて、発電機負荷を100%負荷から徐々に下げ解列負荷約10%まで調整弁7の開度を絞り、発電機13の負荷を10%負荷程度まで下げる。次に図3の時間帯Fにおいて、発電機13を送電発電機運転モードから受電電動機運転モードに切り替える。次に図3の時間帯Gにおいて、図1にあるクラッチ30を連結して、起動用電動機14を外部電力を導入して運転して空気圧縮機5と空気タービン6と発電機13の共通軸17の回転数を30%程度に保持する。次に、太陽熱集熱量制御装置95から太陽熱を集熱する動作を停止する信号が太陽熱集熱装置2に出され、高温空気の温度が下がり空気タービン6の空気タービン入口温度計56の信号がタービン回転数・負荷制御装置94に伝えられる。次に、同左制御装置から調整弁7へ全閉信号が出され、図1にあるクラッチ30が解放され共通軸17の回転数は共通軸回転数計51で検出されタービン回転数・負荷制御装置94に伝えられ発電機13の回転数が停止状態になる。  FIG. 3 shows a state in which the solar altitude begins to fall on a fine sunny afternoon after the continuous load operation is continued for several hours, and the solar hot air power generation facility stops generating power at around 17:00. Following time zone D indicating 100% load, in time zone E of FIG. 3, the generator load is gradually reduced from 100% load to reduce the opening of regulating valve 7 to about 10% disconnection load. Reduce the load to about 10% load. Next, in the time zone F of FIG. 3, the generator 13 is switched from the power transmission generator operation mode to the power receiving motor operation mode. Next, in the time zone G of FIG. 3, the clutch 30 shown in FIG. 1 is connected, and the starter motor 14 is operated by introducing external power to operate the common shaft of the air compressor 5, the air turbine 6, and the generator 13. The rotational speed of 17 is kept at about 30%. Next, a signal for stopping the operation of collecting solar heat is output from the solar heat collecting amount control device 95 to the solar heat collecting device 2, and the temperature of the high-temperature air falls, and the signal of the air turbine inlet thermometer 56 of the air turbine 6 is sent to the turbine. This is transmitted to the rotation speed / load control device 94. Next, a full-close signal is output from the left control device to the regulating valve 7, the clutch 30 shown in FIG. 1 is released, and the rotational speed of the common shaft 17 is detected by the common shaft rotational speed meter 51, and the turbine rotational speed / load control device. 94, the rotational speed of the generator 13 is stopped.

図4では、本装置が定格負荷運転時の各装置の計画状態値を空気温度−エントロピ線図(T−s線図)上に示した図である。すなわち、空気温度−エントロピ線図上に、空気タービン入口圧力を0.5MPa、温度を873K(600℃)とした場合の熱サイクル(圧縮:▲1▼→▲2▼、加熱:▲2▼→▲3▼、膨張:▲3▼→▲4▼、排気:▲4▼→▲1▼)を示した図である。  FIG. 4 is a diagram showing on the air temperature-entropy diagram (Ts diagram) the planned state values of each device when the present device is operated at the rated load. That is, on the air temperature-entropy diagram, the heat cycle (compression: (1) → (2), heating: (2) → when the air turbine inlet pressure is 0.5 MPa and the temperature is 873 K (600 ° C.). (3), expansion: (3) → (4), exhaust: (4) → (1)).

空気圧縮機5の入口空気の温度は常温で約15℃(=288K)程度である。かつ圧力は約0.1MPa程度である。本基準点は、図4の▲1▼点で示される。吸い込まれた空気は圧縮機で圧縮され約0.5MPaに昇圧される。図4の▲2▼点が該当する。The temperature of the inlet air of the air compressor 5 is about 15 ° C. (= 288 K) at room temperature. The pressure is about 0.1 MPa. This reference point is indicated by point (1) in FIG. The sucked air is compressed by a compressor and the pressure is increased to about 0.5 MPa. This corresponds to point (2) in FIG.

圧縮された空気は約280℃に上昇するが、太陽熱でさらに空気を加熱し空気タービン入口温度を約600℃(=873℃)に上げる。この点を図4の▲3▼点で示す。この▲3▼の空気を0.1MPaまで膨張させて空気タービン6を駆動して圧縮動力と発電動力を得る。この点を図4の▲4▼点で示す  The compressed air rises to about 280 ° C., but further heats the air with solar heat to raise the air turbine inlet temperature to about 600 ° C. (= 873 ° C.). This point is indicated by point (3) in FIG. The air of (3) is expanded to 0.1 MPa and the air turbine 6 is driven to obtain compression power and power generation power. This point is indicated by point (4) in FIG.

図5では空気タービン入口温度を600℃一定として、空気タービン入口圧力を増加させた場合の圧縮機動力とタービン動力と発電可能動力の各変化特性を試算した結果である。圧縮機動力は空気タービン入口圧力が増加すると増加する。しかし、得られるタービン動力の増加割合は減少し、空気タービン入口圧力が約1.8MPa付近で圧縮機動力を下回り発電可能動力が得られなくなる。発電可能動力は空気タービン発生動力から圧縮機必要動力を差し引いた値である。空気タービン入口圧力が下がると、発電可能動力は0.5MPa付近から急激に増加するが、空気の比容積も増加するので、実現可能な各機器の大きさ制限から、空気タービン入口圧力は0.5MPa付近が妥当な圧力である。  FIG. 5 shows the results of trial calculation of the change characteristics of the compressor power, turbine power, and power that can be generated when the air turbine inlet temperature is kept constant at 600 ° C. and the air turbine inlet pressure is increased. Compressor power increases as the air turbine inlet pressure increases. However, the increase rate of the obtained turbine power decreases, and when the air turbine inlet pressure is about 1.8 MPa, the compressor power becomes less than the power that can be generated. The power that can be generated is a value obtained by subtracting the power necessary for the compressor from the power generated by the air turbine. When the air turbine inlet pressure decreases, the power that can be generated increases rapidly from around 0.5 MPa, but the specific volume of air also increases. Therefore, the air turbine inlet pressure is reduced to 0. A reasonable pressure is around 5 MPa.

すなわち、関係する配管や熱交換器や調整弁7の圧力損失を考慮して、妥当な空気タービン入口空気圧力は0.5MPa付近である。  That is, considering the pressure loss of the related piping, heat exchanger, and regulating valve 7, a reasonable air turbine inlet air pressure is around 0.5 MPa.

図6では空気タービン入口圧力を0.5MPa一定として、空気タービン入口温度を増加させた場合の圧縮機動力とタービン動力と発電可能動力の変化特性を試算した結果である。空気タービン入口圧力が0.5MPa一定であるので、空気圧縮機5に供給される空気タービン6からの圧縮機動力は、空気タービン入口温度に影響されず一定である。発電可能動力とは空気タービン発生動力から圧縮機の空気圧縮動力分を差し引いた動力である。空気タービン入口温度が、増加すると発電可能動力も増加するが、空気タービン入口温度が約600℃付近で空気タービン6が発生する動力の増加割合は少なくなり、発電可能動力の増加割合も同じく少なくなる。したがって、空気タービン入口温度が約600℃付近に妥当な空気タービン入口温度が存在する。  FIG. 6 shows the results of trial calculation of change characteristics of compressor power, turbine power, and power that can be generated when the air turbine inlet pressure is kept constant at 0.5 MPa and the air turbine inlet temperature is increased. Since the air turbine inlet pressure is constant at 0.5 MPa, the compressor power supplied from the air turbine 6 to the air compressor 5 is constant regardless of the air turbine inlet temperature. The power that can be generated is power obtained by subtracting the air compression power of the compressor from the power generated by the air turbine. When the air turbine inlet temperature increases, the power that can be generated increases. However, when the air turbine inlet temperature is about 600 ° C., the rate of increase in power generated by the air turbine 6 decreases, and the rate of increase in power that can be generated also decreases. . Therefore, there is a reasonable air turbine inlet temperature around the air turbine inlet temperature of about 600 ° C.

すなわち、関係する配管や各換器の材料はこの温度が低いほど合金鋼を使わないですみ、合金鋼に比較して安価な炭素鋼の使用可能範囲が広がる。できるだけ高価な合金鋼の使用範囲を減らすことが、経済的な発電設備を可能とする。  In other words, the lower the temperature, the lower the temperature required to use the alloy steel for the pipes and the materials of the respective exchangers, and the usable range of the carbon steel cheaper than the alloy steel is expanded. Reducing the range of use of expensive alloy steel as much as possible enables an economical power generation facility.

また、空気タービン入口空気圧力と温度の選定は発電可能動力の大小に影響すると同時に、関係する配管や熱交換器や各装置の設備費用に影響するので、経済性を考慮した空気タービン入口空気圧力と温度条件を選定する必要がある。  In addition, the selection of air turbine inlet air pressure and temperature affects the power generation power, and at the same time, affects the equipment costs of related piping, heat exchangers, and devices. It is necessary to select the temperature conditions.

緊急に発電停止する場合は、図1にある調整弁7を全閉して、かつ遮断装置10を全閉して空気の流れを緊急に遮断する。同時に、大気放出装置11を開けて空気加熱系統に残った高温空気を排出し圧力を下げる。すなわち、遮断装置10と太陽熱加熱装置4と各配管内に残留している高温圧縮空気を大気放出装置11を通じて大気に排出して空気タービン6への流入空気を遮断して発電機13の加速防止対策を行う。  When the power generation is urgently stopped, the regulating valve 7 shown in FIG. 1 is fully closed and the shut-off device 10 is fully closed to interrupt the air flow urgently. At the same time, the atmospheric discharge device 11 is opened to discharge the high-temperature air remaining in the air heating system and reduce the pressure. That is, the high-temperature compressed air remaining in the shut-off device 10, the solar heating device 4, and each pipe is discharged to the atmosphere through the atmospheric discharge device 11 to block the air flowing into the air turbine 6 to prevent acceleration of the generator 13. Take measures.

緊急に発電負荷遮断する時は、タービン回転数・負荷制御装置94からの緊急停止信号が遮断装置10に送信され、高温空気が空気タービン6へ流入する流れが遮断される。同時に、タービン回転数・負荷制御装置94から大気放出装置11に緊急解放信号が送られ、機器内部に残留した高温空気が大気に放出される。  When the power generation load is cut off urgently, an emergency stop signal from the turbine speed / load control device 94 is transmitted to the cut-off device 10, and the flow of hot air flowing into the air turbine 6 is cut off. At the same time, an emergency release signal is sent from the turbine speed / load control device 94 to the atmospheric discharge device 11, and the high-temperature air remaining inside the equipment is released to the atmosphere.

図5や図6で説明した最適圧力/温度の試算例は、調整弁7での空気絞り損失や各機器の圧力損失や、各機器の熱放散損失を考慮しないで試算しており、これらの損失を考慮すると発電可能量は図5や図6で説明した出力より若干低下する。しかし、これらの損失は空気タービン6が発生する動力に比較して小さく本試算図5、図6で示す妥当な温度/圧力(600℃/0.5MPa)の結論は変わらない。  The optimum pressure / temperature trial calculation examples described in FIG. 5 and FIG. 6 are calculated without considering the air throttle loss at the regulating valve 7, the pressure loss of each device, and the heat dissipation loss of each device. Considering the loss, the power generation possible amount is slightly lower than the output described with reference to FIGS. However, these losses are small compared to the power generated by the air turbine 6, and the reasonable temperature / pressure (600 ° C./0.5 MPa) conclusion shown in FIGS. 5 and 6 is not changed.

本試算は、空気1kg/s当たりの試算例であり、実際の一般的なガスタービンでは吸い込み空気量がガスタービンの出力と燃焼ガス温度により変化するが、数十〜数百kg/sであることから本装置の製造可能な大きさから考えて1設備当たり約数千kWから数万kWの発電量が期待できる。  This trial calculation is a trial calculation example per 1 kg / s of air. In an actual general gas turbine, the intake air amount varies depending on the output of the gas turbine and the combustion gas temperature, but it is several tens to several hundreds kg / s. Therefore, it is possible to expect a power generation amount of about several thousand kW to several tens of thousands kW per facility in consideration of the size that can be manufactured by this apparatus.

発電原価の内訳はおおきく分けて燃料費と発電設備費との合計である。太陽熱発電は燃料費が必要ない利点が大きい。さらに、発電原価を下げるために発電設備費を安くする必要がある。その為に、空気タービン入口計画温度と圧力を妥当な値までに下げると、安価な電気出力が得られ、かつ経済的な発電設備となる。  The breakdown of power generation costs is roughly divided into the total of fuel costs and power generation equipment costs. Solar thermal power generation has the advantage of not requiring fuel costs. Furthermore, it is necessary to reduce the power generation equipment cost in order to reduce the power generation cost. Therefore, when the planned temperature and pressure at the inlet of the air turbine are lowered to reasonable values, an inexpensive electrical output can be obtained and an economical power generation facility can be obtained.

1 太陽
2 太陽熱集熱装置
3 集熱塔
4 太陽熱加熱装置
5 空気圧縮機
6 空気タービン
7 調整弁
10 遮断装置
11 大気放出装置
13 発電機
14 起動用電動機
15 圧縮機入口フィルタ−
16 圧縮機入口ダクト
17 共通軸
24 太陽熱加熱装置入口管
25 太陽熱加熱装置出口管
27 空気タービン出口ダクト
30 クラッチ
50 起動用電動機回転数計
51 圧縮機軸回転数計
52 発電機出力計
53 空気タービン入口圧力計
54 圧縮機出口圧力計
55 直達日射強度計
56 空気タービン入口温度計
90 系統負荷指令
91 発電機回転数
92 計画発電機出力
93 偏差
94 タービン回転数・負荷制御装置
95 太陽熱集熱量制御装置
DESCRIPTION OF SYMBOLS 1 Solar 2 Solar heat collecting device 3 Heat collecting tower 4 Solar heating device 5 Air compressor 6 Air turbine 7 Control valve 10 Shut-off device 11 Atmospheric discharge device 13 Generator 14 Starter motor 15 Compressor inlet filter
16 Compressor inlet duct 17 Common shaft 24 Solar heating device inlet tube 25 Solar heating device outlet tube 27 Air turbine outlet duct 30 Clutch 50 Start-up motor speed meter 51 Compressor shaft speed meter 52 Generator output meter 53 Air turbine inlet pressure Total 54 Compressor outlet pressure gauge 55 Direct solar radiation intensity meter 56 Air turbine inlet thermometer 90 System load command 91 Generator rotation speed 92 Planned generator output 93 Deviation 94 Turbine rotation speed / load control device 95 Solar heat collection control device

Claims (3)

起動用電動機と、該電動機とクラッチを介して連結された空気圧縮機と、該空気圧縮機と同軸に連結された空気タービンと、該空気タービンによって駆動される発電機と、空気を加熱する太陽熱加熱装置と、上記空気圧縮機と上記太陽熱加熱装置を連通させる第一の空気流路と、上記太陽熱加熱装置と上記空気タービンを連通させる第二の空気流路と、起動時に上記電動機によって上記空気圧縮機を所定の回転数まで駆動させるとともに上記太陽熱加熱装置から上記第二の空気流路によって供給される加熱空気によって上記空気タービン及び上記圧縮機を定格回転数まで駆動させるタービン回転数・負荷制御装置と、を有することを特徴とする太陽熱空気発電設備。  Starter motor, air compressor connected to the motor via a clutch, an air turbine connected coaxially to the air compressor, a generator driven by the air turbine, and solar heat to heat the air A heating device, a first air passage for communicating the air compressor and the solar heating device, a second air passage for communicating the solar heating device and the air turbine, and the air by the motor at start-up. Turbine rotational speed / load control for driving the compressor to a predetermined rotational speed and driving the air turbine and the compressor to a rated rotational speed by the heated air supplied from the solar heating device through the second air flow path. And a solar air power generation facility. 上記タービン回転数・負荷制御装置は、上記空気タービンの定格運転時にタービン入口における空気圧力をほぼ0.5MPa、空気温度をほぼ600℃に制御する請求項1記載の太陽熱空気発電設備。  The solar air / air power generation facility according to claim 1, wherein the turbine rotation speed / load control device controls the air pressure at the turbine inlet to approximately 0.5 MPa and the air temperature to approximately 600 ° C during rated operation of the air turbine. 上記第二の空気流路に設置され、上記発電機の緊急負荷遮断発生時に上記空気タービンに流入する空気を遮断して発電機の加速度事故を予防する空気遮断装置と、圧縮空気系統に留まった高温圧縮空気を即時に大気へ逃がす大気放出装置とを有する請求項1記載の太陽熱空気発電設備。  Installed in the second air flow path, stayed in the compressed air system, and an air shut-off device that prevents the generator acceleration accident by shutting off the air flowing into the air turbine when an emergency load shut-off of the generator occurs The solar thermal air power generation facility according to claim 1, further comprising an atmospheric discharge device that immediately releases the high-temperature compressed air to the atmosphere.
JP2018003821U 2018-09-12 2018-09-12 Solar air power generation equipment Expired - Fee Related JP3219186U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003821U JP3219186U (en) 2018-09-12 2018-09-12 Solar air power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003821U JP3219186U (en) 2018-09-12 2018-09-12 Solar air power generation equipment

Publications (1)

Publication Number Publication Date
JP3219186U true JP3219186U (en) 2018-12-06

Family

ID=64560630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003821U Expired - Fee Related JP3219186U (en) 2018-09-12 2018-09-12 Solar air power generation equipment

Country Status (1)

Country Link
JP (1) JP3219186U (en)

Similar Documents

Publication Publication Date Title
JP5232916B2 (en) Solar gas turbine and solar gas turbine power generator
US8015812B1 (en) Power conversion systems
US9239007B2 (en) Gas turbine compressor inlet pressurization having a torque converter system
WO2010147003A1 (en) Solar thermal gas turbine power plant
EP2669492A2 (en) Gas turbine compressor inlet pressurization and flow control system
US20130318965A1 (en) Supercharged Combined Cycle System With Air Flow Bypass To HRSG And Hydraulically Coupled Fan
WO2015054834A1 (en) Gas turbine system and method of operation
US9957954B2 (en) Solar thermal power generation system
EP2189637A2 (en) A method of controlling an air preheating system of a gas turbine
CN101545404A (en) A system for extending the turndown range of a turbomachine
CA2894926C (en) Solar/air turbine generator system
JP5291541B2 (en) Solar gas turbine and solar gas turbine power generator
WO2013141201A1 (en) Solar-thermal power-generating facility, and method for starting-up same
JP2010275997A (en) Solar heat gas turbine and solar heat gas turbine power generation device
JP3219186U (en) Solar air power generation equipment
JP6613176B2 (en) Power generation system
JP3605141B2 (en) Compressed air storage type power plant
JP2016528430A (en) Operation method of combined cycle power plant
JP4509815B2 (en) Extracted back-pressure steam turbine equipment and operation method thereof
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JP5321340B2 (en) Steam injection gas turbine generator
EP3728959B1 (en) Cogeneration system for a boiler
KR20220090562A (en) Method and system for starting and stopping closed cycle turbomachines
JP3220859U (en) Gas turbine and air turbine combined power generation facilities
JP7472035B2 (en) Cogeneration system for boilers

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3219186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees