JP3220859U - Gas turbine and air turbine combined power generation facilities - Google Patents

Gas turbine and air turbine combined power generation facilities Download PDF

Info

Publication number
JP3220859U
JP3220859U JP2018005161U JP2018005161U JP3220859U JP 3220859 U JP3220859 U JP 3220859U JP 2018005161 U JP2018005161 U JP 2018005161U JP 2018005161 U JP2018005161 U JP 2018005161U JP 3220859 U JP3220859 U JP 3220859U
Authority
JP
Japan
Prior art keywords
air
turbine
exhaust
gas
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018005161U
Other languages
Japanese (ja)
Inventor
信義 三島
信義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018005161U priority Critical patent/JP3220859U/en
Application granted granted Critical
Publication of JP3220859U publication Critical patent/JP3220859U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】化石燃料を燃焼してガスタービンを駆動して発電するガスタービン発電設備と、その排熱を回収して得られる高温空気で空気タービンを駆動して発電する空気タービン発電設備を効率的かつ経済的に組み合わせて発電する複合発電設備を提供する。【解決手段】ガスタービン5の排気エネルギにより空気を加熱しその加圧高温空気により空気タービン24を駆動する複合発電設備であって、ガスタービン5の排気系統出口部に妥当な高さを持ったガスタービン排気塔13と、空気タービン24の排気系統出口部に空気タービン排気塔26または排気誘引塔を設置して両タービン排気塔入口部を負圧にして、各タービンの排気圧力を下げて効率的かつ経済的に発電する複合発電設備である。【選択図】図1A gas turbine power generation facility that generates power by burning a fossil fuel and driving a gas turbine, and an air turbine power generation facility that generates power by driving the air turbine with high-temperature air obtained by recovering the exhaust heat are efficiently provided. A combined power generation facility that generates power in an economical combination is provided. A combined power generation facility in which air is heated by the exhaust energy of a gas turbine 5 and the air turbine 24 is driven by the pressurized high-temperature air, and has an appropriate height at the outlet of the exhaust system of the gas turbine 5. Efficiency is achieved by lowering the exhaust pressure of each turbine by setting an air turbine exhaust tower 26 or an exhaust induction tower at the gas turbine exhaust tower 13 and the exhaust system outlet of the air turbine 24 to make the inlets of both turbine exhaust towers negative. It is a combined power generation facility that generates electricity efficiently and economically. [Selection] Figure 1

Description

本考案は、液化天然ガスまたは軽油等の流体燃料を燃焼してガスタービンを駆動しガスタービン発電機により発電すると同時に、該ガスタービンの排熱を回収して加熱された空気で空気タービンを駆動し空気タービン発電機により発電する経済的なガスタービンと空気タービンの複合発電設備に関する。  The present invention burns fluid fuel such as liquefied natural gas or light oil to drive a gas turbine and generate power by a gas turbine generator, and simultaneously recovers exhaust heat from the gas turbine and drives an air turbine with heated air. The present invention relates to an economical gas turbine and air turbine combined power generation facility that generates electric power with an air turbine generator.

ガスタービンの排気系統にあるガスタービン排熱回収装置出口に誘引通風機を設ける事によりコンバインド発電の熱サイクル効率を高めた設備について、先行特許文献、特開2004−190558号では、誘引通風機の駆動装置として電動機または蒸気タービン軸動力を用いた設備を開示している。また、先行特許文献、特開2013−40567号ではガスタービンの排熱回収設備例として蒸気タービンを用いた例が開示されている。  In the prior patent document, Japanese Patent Application Laid-Open No. 2004-190558, for an equipment that has improved the heat cycle efficiency of combined power generation by providing an induction fan at the outlet of the gas turbine exhaust heat recovery device in the exhaust system of the gas turbine, An installation using an electric motor or steam turbine shaft power as a driving device is disclosed. Further, in the prior patent document, Japanese Patent Application Laid-Open No. 2013-40567, an example using a steam turbine is disclosed as an example of exhaust heat recovery equipment of a gas turbine.

特開2004−190558号 公報JP 2004-190558 A 特開2013−40567号 公報JP 2013-40567 A

先行例、特開2004−190558号では誘引通風機の吸い込み圧力や吐出圧力や風圧の具体的数値が開示されていない。また、蒸気タービン発生動力から誘引通風機への駆動動力数値に関する記載がない。さらに、誘引通風機出口ダクトに設置された煙突のドラフト効果の具体的な数値の説明がなされていない。さらに、先行例、特開2013−40567号ではガスタービンの排気ガス系統に排熱回収ボイラを用いてその発生蒸気により蒸気タービンを駆動して蒸気タービン発電機を回転して発電させる設備の例が開示されている。  In the preceding example, Japanese Patent Application Laid-Open No. 2004-190558, specific numerical values of suction pressure, discharge pressure, and wind pressure of the induction fan are not disclosed. Moreover, there is no description regarding the driving power numerical value from the steam turbine generating power to the induction fan. Furthermore, specific numerical values of the draft effect of the chimney installed in the induction fan outlet duct are not described. Furthermore, in the preceding example, Japanese Patent Application Laid-Open No. 2013-40567, there is an example of equipment that uses a heat recovery steam generator in the exhaust gas system of a gas turbine to drive the steam turbine with the generated steam and rotate the steam turbine generator to generate power. It is disclosed.

課題を解決する手段Means to solve the problem

ガスタービン及び空気タービンの排気塔の入口部を負圧にして各タービンの出力を増加する設備を考案した。すなわち、ある妥当な高さを持ったガスタービン排気塔及び、空気タービン排気塔または空気タービン排気誘引塔を各タービンの排気系統の排気ダクト出口に設置することにより、各排気塔が生み出す排気誘引力(別名:ドラフト誘引力)を活用して各タービンの排気系統の排気圧力を設備費用の経済性を考慮して妥当な程度に下げることが可能となる。さらに、該空気タービン排気系統出口部に空気タービン排気誘引塔を設け空気タービン圧縮機出口の圧縮空気の一部を分岐して空気タービン排気誘引塔下部に注入して、空気タービン排気塔下部の圧力を下げる設備を考案した。  A facility has been devised to increase the output of each turbine by making the inlet of the exhaust tower of the gas turbine and air turbine negative pressure. In other words, by installing a gas turbine exhaust tower having a certain height and an air turbine exhaust tower or an air turbine exhaust induction tower at the exhaust duct outlet of the exhaust system of each turbine, the exhaust attraction generated by each exhaust tower It is possible to reduce the exhaust pressure of the exhaust system of each turbine to an appropriate level in consideration of the economics of the equipment cost by utilizing (aka: draft attraction). Further, an air turbine exhaust induction tower is provided at the outlet of the air turbine exhaust system, and a part of the compressed air at the outlet of the air turbine compressor is branched and injected into the lower part of the air turbine exhaust induction tower. Devised equipment to lower

考案の効果Effect of device

本考察によるガスタービンと空気タービンの複合発電設備により、経済的で高効率な空気条件(=空気タービン入口の計画温度/計画圧力条件)のみならず、妥当な各タービン排気系統計画圧力と温度を明確にした。すなわち、ガスタービンと空気タービンの高効率かつ経済的な複合発電設備により安定した電力を生みだす効果がある。  The combined power generation facilities of gas turbine and air turbine according to this study not only provide economical and highly efficient air conditions (= planned temperature of air turbine inlet / planned pressure condition) but also reasonable planned pressure and temperature of each turbine exhaust system. Clarified. That is, there is an effect of generating stable electric power by a highly efficient and economical combined power generation facility of a gas turbine and an air turbine.

さらに、ガスタービンの排熱を排熱回収ボイラで熱回収し蒸気タービンを駆動して発電する従来の複合発電設備ではなく、本考案は、ガスタービンの排熱を空気で回収して空気タービンを駆動して発電する設備である。蒸気タービン方式の場合、蒸気タービンサイクル水や、蒸気タービン用復水器冷却水が多量に必要となる。これに対し、本考案の複合発電設備は乾燥し水資源そのものが貴重で入手困難な高温乾燥地域において安価で安定した電力を供給することができる。  Furthermore, the present invention is not a conventional combined power generation facility that recovers the exhaust heat of the gas turbine with an exhaust heat recovery boiler and drives the steam turbine to generate electricity, but the present invention recovers the exhaust heat of the gas turbine with air to It is equipment that drives to generate electricity. In the case of the steam turbine system, a large amount of steam turbine cycle water and steam turbine condenser cooling water is required. On the other hand, the combined power generation facility of the present invention can supply inexpensive and stable power in a high temperature dry area where the water resources themselves are valuable and difficult to obtain.

ガスタービンと空気タービンからなる複合発電設備全体構成を示す。1 shows an overall configuration of a combined power generation facility including a gas turbine and an air turbine. 空気タービン排気誘引塔を設置した複合発電設備全体構成を示す。The overall structure of a combined power generation facility with an air turbine exhaust induction tower is shown. ガスタービンの空気ガス温度対エントロピ線図(ガスのT−s線図)上にガスタービンの熱サイクルを示す。The thermal cycle of the gas turbine is shown on the gas turbine air gas temperature versus entropy diagram (Ts diagram of the gas). 空気タービンの空気温度−エントロピ線図(T−s線図)上に空気タービンの熱サイクルを示す。The thermal cycle of the air turbine is shown on the air temperature-entropy diagram (Ts diagram) of the air turbine. 本考案のガスタービン空気タービン複合発電設備の計画圧力/温度を示す。The plan pressure / temperature of the gas turbine air turbine combined power generation equipment of this invention is shown. 空気タービン排気塔入口温度対ドラフト誘引圧力変化を示す。Figure 6 shows the air turbine exhaust tower inlet temperature versus draft induced pressure change. 空気タービン排気誘引塔入口温度対空気タービン排気誘引塔静圧変化を示す。Fig. 6 shows the air turbine exhaust induction tower inlet temperature versus the air turbine exhaust induction tower static pressure change.

ガスタービンと空気タービンからなる複合発電設備の両タービンの排出部にそれぞれ妥当な高さを持った排気塔を設けて、両タービン排気塔入口部を若干の負圧にして両タービンの出力を増加させる複合発電設備と、空気タービン出口部に空気タービン排気誘引塔を設けた複合発電設備の実施例を以下、図1〜図7に従い説明する。  Exhaust towers with reasonable heights are installed at the discharge parts of both turbines of a combined power generation facility consisting of a gas turbine and air turbine, and the output of both turbines is increased by making the inlets of both turbine exhaust towers slightly negative. Examples of a combined power generation facility to be used and a combined power generation facility in which an air turbine exhaust induction tower is provided at an outlet portion of an air turbine will be described below with reference to FIGS.

図1は気体または液体燃料を燃焼させてガスタービン5を駆動して発電するガスタービン発電設備と、空気タービン24を駆動して発電する空気タービン発電設備を示す。さらに、図1は、ガスタービン5の排気ガス熱エネルギを圧縮空気で熱回収する空気加熱器29と、ある高さを持つガスタービン排気塔13を有するガスタービン発電設備と、ガスタービン5の排熱を空気加熱器29により回収して得られる加圧高温空気により駆動される空気タービン24と空気タービン排気塔26を有する複合発電設備の基本構成を示す。  FIG. 1 shows a gas turbine power generation facility that generates power by burning a gas or liquid fuel to drive a gas turbine 5 and an air turbine power generation facility that generates power by driving an air turbine 24. Further, FIG. 1 shows an air heater 29 that recovers heat energy of the exhaust gas of the gas turbine 5 with compressed air, a gas turbine power generation facility having a gas turbine exhaust tower 13 having a certain height, and an exhaust of the gas turbine 5. A basic configuration of a combined power generation facility having an air turbine 24 and an air turbine exhaust tower 26 driven by pressurized high-temperature air obtained by collecting heat with an air heater 29 is shown.

大気中の空気は、図1のガスタービン圧縮機入口ダクト8を経て、ガスタービン圧縮機吸込フィルタ−9を通過してガスタービン空気圧縮機4にて昇圧される。ガスタービン性能の基準となる条件として、吸い込み大気の空気圧力は0.1013MPa、温度は15℃(288K)、相対湿度は60%である。ガスタービンの機種によって圧縮機4の圧力比は変化するが、例えば一般的な値として圧力比を14とすると、圧縮機4出口の空気圧力すなわちガスタービン5の入口圧力は大気圧0.1013MPaの14倍の圧力1.4MPa程度となる。  Air in the atmosphere passes through the gas turbine compressor inlet duct 8 of FIG. 1, passes through the gas turbine compressor suction filter 9, and is pressurized by the gas turbine air compressor 4. As conditions for gas turbine performance, the air pressure in the suction atmosphere is 0.1013 MPa, the temperature is 15 ° C. (288 K), and the relative humidity is 60%. Although the pressure ratio of the compressor 4 varies depending on the type of the gas turbine, for example, if the pressure ratio is 14 as a general value, the air pressure at the outlet of the compressor 4, that is, the inlet pressure of the gas turbine 5, is an atmospheric pressure of 0.1013 MPa. The pressure is about 14 times 1.4 MPa.

ガスタービンの燃焼器3の平均燃焼温度はガスタービン5入口部の公称ガスタービン燃焼温度とした。この温度はガスタービンの出力や機種によって代表数値が決まるが、本考案では代表的な温度1100℃(1373K)を採用した。ガスタービン排気系統に設置される機器、例えば、空気加熱器29や高温脱硝装置11や空気タービン24等の入口出口温度はこの温度とガスタービン5の熱効率と各排ガスダクトから系外へ出る熱損失による温度差で決まる。図5にこれら各機器の計画温度圧力例を示す。  The average combustion temperature of the combustor 3 of the gas turbine was the nominal gas turbine combustion temperature at the inlet of the gas turbine 5. The representative value of this temperature is determined by the output and model of the gas turbine. In the present invention, a representative temperature of 1100 ° C. (1373 K) is adopted. Equipment installed in the gas turbine exhaust system, for example, the inlet / outlet temperature of the air heater 29, the high-temperature denitration apparatus 11, the air turbine 24, etc. is the temperature, the thermal efficiency of the gas turbine 5, and the heat loss that goes out of the system from each exhaust gas duct. Determined by temperature difference due to FIG. 5 shows an example of the planned temperature and pressure of these devices.

燃料配管2を通過したガスタービン燃料は燃料調整弁1を経緯して燃焼器3へ送られる。燃焼器3内で発生した燃焼ガスはガスタービン圧縮機4で圧縮された約1.4MPaの空気と混合されガスタービン5に流入してガスタービン空気圧縮機4とガスタービン発電機6を駆動する。ガスタービン起動用電動機7は、ガスタービン5を起動する際用いる。ガスタービン5を出たガスタービン排気ガスは空気加熱器29と高温脱硝装置11を通過してガスタービン排気塔13のドラフト誘引圧力により系外に排出される。  The gas turbine fuel that has passed through the fuel pipe 2 passes through the fuel adjustment valve 1 and is sent to the combustor 3. Combustion gas generated in the combustor 3 is mixed with about 1.4 MPa air compressed by the gas turbine compressor 4 and flows into the gas turbine 5 to drive the gas turbine air compressor 4 and the gas turbine generator 6. . The gas turbine starting electric motor 7 is used when starting the gas turbine 5. The gas turbine exhaust gas exiting the gas turbine 5 passes through the air heater 29 and the high temperature denitration device 11 and is discharged out of the system by the draft attraction pressure of the gas turbine exhaust tower 13.

ガスタービン排気塔13に入る排気ガスは約330℃程度の温度を持っており、この温度に対応するドラフト誘引圧力がガスタービン排気塔13内において生じる。この圧力と温度を図5にて示す。  The exhaust gas entering the gas turbine exhaust tower 13 has a temperature of about 330 ° C., and a draft attraction pressure corresponding to this temperature is generated in the gas turbine exhaust tower 13. This pressure and temperature are shown in FIG.

図1のガスタービン排気ダクト28内を通過した約605℃の高温ガスは空気加熱器29に流入して、空気タービン圧縮機23で基準大気圧0.1013MPaから0.5MPa程度(圧力比約5)に圧縮された圧縮空気を加熱する。高温ガスは空気加熱管16の外側を流れて圧縮空気を昇温し、昇温された圧縮空気は空気加熱器出口管17、空気タービン調整弁18、空気タービン入口管19を通過し空気タービン24に流入する。その圧力は約0.5MPa、温度は600℃である。この加圧高温空気が空気タービン圧縮機23と空気タービン発電機14を駆動して空気を圧縮し、かつ発電する。なお、空気タービン起動用電動機27は空気タービン24を起動する際に用いられる。  The high-temperature gas of about 605 ° C. that has passed through the gas turbine exhaust duct 28 of FIG. 1 flows into the air heater 29, and the air turbine compressor 23 uses a reference atmospheric pressure of about 0.1013 MPa to about 0.5 MPa (pressure ratio of about 5 The compressed air compressed in (1) is heated. The hot gas flows outside the air heating pipe 16 to raise the temperature of the compressed air, and the heated compressed air passes through the air heater outlet pipe 17, the air turbine adjustment valve 18, and the air turbine inlet pipe 19 and passes through the air turbine 24. Flow into. The pressure is about 0.5 MPa and the temperature is 600 ° C. The pressurized hot air drives the air turbine compressor 23 and the air turbine generator 14 to compress the air and generate electric power. The air turbine starting motor 27 is used when starting the air turbine 24.

空気タービン24を出た約310℃の空気が、空気タービン排気塔26に流下する。空気タービン排気ダクト25での排空気の温度降下を5℃とすると空気タービン排気塔26に入る空気の温度は、約305℃程度の温度を持っており、この温度により発生するドラフト誘引圧力が生じる。  About 310 ° C. air leaving the air turbine 24 flows down to the air turbine exhaust tower 26. If the temperature drop of the exhaust air in the air turbine exhaust duct 25 is 5 ° C., the temperature of the air entering the air turbine exhaust tower 26 has a temperature of about 305 ° C., and the draft attraction pressure generated by this temperature is generated. .

図2は図1の空気タービン排気塔26入口の負圧力を増す為に、図1の空気タービン排気塔26の代わりに、空気タービン排気誘引塔34を設置した設備を示す。図2の空気タービン圧縮機出口管15から圧縮空気を一部取り出し、この圧縮空気は空気タービン圧縮機分岐管30と圧縮空気調整装置31を通過し圧縮空気調整装置出口ダクト32を経由して圧縮空気導入ダクト33に送られる。圧縮空気導入ダクト33を通過してきた圧縮空気は、空気タービン排気ダクト25を通過してきた空気タービン24の排気空気と合流することにより空気タービン排気誘引塔34内を流れる排気空気の動圧を上げて静圧を下げる。空気タービン排気誘引塔34の静圧を下げることにより、空気タービン排気誘引塔34の誘引圧力が増加して空気タービン24の出力が増加する。  FIG. 2 shows an installation in which an air turbine exhaust induction tower 34 is installed in place of the air turbine exhaust tower 26 of FIG. 1 in order to increase the negative pressure at the inlet of the air turbine exhaust tower 26 of FIG. A part of the compressed air is taken out from the air turbine compressor outlet pipe 15 in FIG. 2, and this compressed air passes through the air turbine compressor branch pipe 30 and the compressed air adjusting device 31 and is compressed through the compressed air adjusting device outlet duct 32. It is sent to the air introduction duct 33. The compressed air that has passed through the compressed air introduction duct 33 is combined with the exhaust air of the air turbine 24 that has passed through the air turbine exhaust duct 25, thereby increasing the dynamic pressure of the exhaust air flowing in the air turbine exhaust induction tower 34. Reduce static pressure. By reducing the static pressure of the air turbine exhaust attraction tower 34, the attraction pressure of the air turbine exhaust attraction tower 34 increases and the output of the air turbine 24 increases.

図3は、ガスタービン空気ガス温度対エントロピ線図(ガスのT−s線図)上にガスタービンの熱サイクル4点E点→F点→G点→H点を示す。図3において、ガスタービン5の入口空気大気圧力/温度(0.1013MPa/15℃)から空気がガスタービン圧縮機4により圧縮され、約1.4MPa/370℃程度に昇圧昇温している状態をE点からF点にて示す。次に、燃焼器にて燃料を燃やしてガス温度が上昇し、代表的な燃焼温度を1100℃(1373K)とする点をG点で示す。次に、ガスタービン5を出たガスタービン排気ガスは空気加熱器29と空気加熱器出口ダクト10と高温脱硝装置11と高温脱硝装置出口ダクト12を通過してガスタービン排気塔13に流れる。この際に排ガスに圧力損失が生まれる。これらの圧力損失の合計をΔP1とすると、ガスタービン5の排気圧力は基準大気圧力0.1013MPa+ΔP1となり図3の点Hまでしか膨張できず、点E→点H→点Iの3点で囲まれた分のエネルギが回収できなくなり損失エネルギとなる。  FIG. 3 shows a gas turbine thermal cycle 4 point E → F point → G point → H point on a gas turbine air gas temperature vs. entropy diagram (Ts diagram of gas). In FIG. 3, the air is compressed by the gas turbine compressor 4 from the inlet air atmospheric pressure / temperature (0.1013 MPa / 15 ° C.) of the gas turbine 5 and is increased in pressure to about 1.4 MPa / 370 ° C. Is shown from point E to point F. Next, the point at which the fuel temperature is increased by burning the fuel in the combustor and the typical combustion temperature is 1100 ° C. (1373 K) is indicated by the G point. Next, the gas turbine exhaust gas leaving the gas turbine 5 passes through the air heater 29, the air heater outlet duct 10, the high temperature denitration device 11, and the high temperature denitration device outlet duct 12 and flows to the gas turbine exhaust tower 13. At this time, pressure loss is generated in the exhaust gas. Assuming that the total of these pressure losses is ΔP1, the exhaust pressure of the gas turbine 5 becomes the reference atmospheric pressure 0.1013 MPa + ΔP1, and can only expand up to point H in FIG. 3, and is surrounded by three points, point E → point H → point I. The amount of energy that cannot be recovered becomes lost energy.

ガスタービンの排ガス系統には何らかの排ガス機器が設置され、ΔP1を「0」にすることは不可能であるが、できるだけ、外気基準圧力0.1013MPaまで圧力を下げた図3のI点に近くなるガスタービン排気圧力を得ること、例えば排気塔高さを、経済性を考慮した妥当な高さにすることが、ガスタービン効率を向上させる有効な手段の一つである。  Some kind of exhaust gas equipment is installed in the exhaust system of the gas turbine, and it is impossible to set ΔP1 to “0”, but it is as close as possible to the point I in FIG. 3 where the pressure is reduced to the outside air reference pressure of 0.1013 MPa. Obtaining the gas turbine exhaust pressure, for example, setting the height of the exhaust tower to an appropriate height in consideration of economy is one of effective means for improving the gas turbine efficiency.

図4は空気温度−空気エントロピ線図(空気のT−s線図)上に本考案における空気タービン発電サイクルをA→B→C→D各点で示した図である。空気タービン圧縮機入口大気圧力を0.1013MPa、温度15℃、相対湿度60%としこれを基準状態として、この状態を図4の記号Aで示し空気タービン空気圧縮機23入口の状態とする。この該圧縮機23の入口空気条件はその地域の気象条件による。以下、該圧縮機23により該圧縮機出口圧力を約0.5MPaに圧縮させる。代表的な圧縮効率を約82%とすると、圧縮空気温度は約207℃程度となる。この状態を図4の記号Bで示す。次にこの空気を空気加熱器29で約600℃程度にガスタービン排ガスで加熱する。この状態を図4の記号Cで示す。次にこの空気を大気圧0.1013MPa程度まで空気タービン24内で膨張させて発電動力と空気圧縮動力を生み出す。該タービン効率を代表的な値約88%程度とした場合該タービン出口空気温度は約310℃程度となる。この状態を図4の記号Dで示す。次にDを出た空気タービン排気空気は空気タービン排気ダクト25を通過して空気タービン排気塔26の誘引圧力により空気が吸い出され系外に排出される。  FIG. 4 is a diagram showing the air turbine power generation cycle according to the present invention at points A → B → C → D on an air temperature-air entropy diagram (Ts diagram of air). The atmospheric pressure at the inlet of the air turbine compressor is 0.1013 MPa, the temperature is 15 ° C., the relative humidity is 60%, and this is a reference state. This state is indicated by symbol A in FIG. 4 and is the state at the inlet of the air turbine air compressor 23. The inlet air condition of the compressor 23 depends on the local weather conditions. Thereafter, the compressor outlet pressure is compressed to about 0.5 MPa by the compressor 23. If the typical compression efficiency is about 82%, the compressed air temperature is about 207 ° C. This state is indicated by symbol B in FIG. Next, this air is heated by an air heater 29 to about 600 ° C. with gas turbine exhaust gas. This state is indicated by symbol C in FIG. Next, this air is expanded in the air turbine 24 to an atmospheric pressure of about 0.1013 MPa to generate power generation and air compression power. When the turbine efficiency is a typical value of about 88%, the turbine outlet air temperature is about 310 ° C. This state is indicated by symbol D in FIG. Next, the air turbine exhaust air that has exited D passes through the air turbine exhaust duct 25 and is sucked out by the attraction pressure of the air turbine exhaust tower 26 and discharged out of the system.

図5はガスタービンと空気タービンの複合発電設備を計画する際、妥当な各機器の計画圧力/計画温度例を示す。ガスタービン5出口排気部からガスタービン排気塔13入口部間に設置された空気加熱器29や高温脱硝装置11やガスタービン排気ダクト28や空気加熱器出口ダクト10や高温脱硝装置出口ダクト12の各圧力損失の合計値をΔP1とすると、ガスタービン5排気圧力は大気圧力+ΔP1となる。一方ガスタービン排気塔13入口部の圧力は大気圧−ガスタービン排気塔誘引圧力ΔP3となる。  FIG. 5 shows an example of an appropriate planned pressure / planned temperature for each device when planning a combined power generation facility of a gas turbine and an air turbine. Each of the air heater 29, the high temperature denitration device 11, the gas turbine exhaust duct 28, the air heater outlet duct 10 and the high temperature denitration device outlet duct 12 installed between the gas turbine 5 outlet exhaust portion and the gas turbine exhaust tower 13 inlet portion. Assuming that the total value of pressure loss is ΔP1, the exhaust pressure of the gas turbine 5 is atmospheric pressure + ΔP1. On the other hand, the pressure at the inlet of the gas turbine exhaust tower 13 is the atmospheric pressure-attraction pressure ΔP3 of the gas turbine exhaust tower.

図5で示すように、一般的なガスタービンの燃焼温度を1100℃とすると、ガスタービン5出口温度はその効率によるが、約605℃程度に下がる。この排ガスを空気加熱器29に導入し、排ガスの熱エネルギによって約600℃程度の高温空気を生み出す。この空気を空気タービン24に導入して空気タービン24を駆動して、空気タービン排ガス温度を約310℃まで下げて、空気タービン排気塔26に導く。この温度に対応する空気タービン排気塔ドラフト誘引圧力は、図6より、0.61mAqである。空気タービン排気塔の高さを10mとすると、空気タービン排気塔26の誘引圧力ΔP4は約6.1mAq程度発生する。空気タービン排気ダクト25の計画圧力損失ΔP2は内部構造と内部の大きさに左右される。一般的な空気ダクトの圧損実績値から判断して、空気タービン排気ダクト25の計画圧力損失ΔP2は、空気タービン誘引圧力ΔP4約6.1mAq以下に収まるように設計が可能である。  As shown in FIG. 5, when the combustion temperature of a general gas turbine is 1100 ° C., the gas turbine 5 outlet temperature is reduced to about 605 ° C. depending on the efficiency. This exhaust gas is introduced into the air heater 29, and high-temperature air of about 600 ° C. is generated by the heat energy of the exhaust gas. This air is introduced into the air turbine 24 to drive the air turbine 24, lowering the air turbine exhaust gas temperature to about 310 ° C. and guiding it to the air turbine exhaust tower 26. The air turbine exhaust tower draft attraction pressure corresponding to this temperature is 0.61 mAq from FIG. If the height of the air turbine exhaust tower is 10 m, an attractive pressure ΔP4 of the air turbine exhaust tower 26 is generated about 6.1 mAq. The planned pressure loss ΔP2 of the air turbine exhaust duct 25 depends on the internal structure and the internal size. Judging from the actual pressure loss value of the air duct, the design pressure loss ΔP2 of the air turbine exhaust duct 25 can be designed to be less than about 6.1 mAq of the air turbine induced pressure ΔP4.

図6は空気タービン排気塔26の入口部の空気温度変化に対応した空気タービンドラフト誘引圧力の変化を示す。誘引圧力の具体的な数値は大気温度15℃、圧力0.1013MPa、相対湿度60%時の空気の比重と空気タービン排気塔26の入口部の排気空気温度の比重との比重差を計算して算出した。大気圧力が標準気圧0.1013MPa時の湿り空気の飽和温度は100℃であるので、図6で示すように空気タービン排気温度が15℃〜100℃の間のドラフト誘引圧力は排気温度が上昇すると急に上昇して約0.5mAq程度に上昇する。水の飽和温度100℃を超えた以降は湿り水蒸気が乾き水蒸気に変わるので、そのドラフト誘引圧力の上昇勾配は緩やかな増加傾向となり、その圧力増加量は、排気空気温度が100℃〜500℃に増加してもドラフト誘引圧力の変化は最少0.5〜最大0.7mAq、増加幅0.2mAq程度と変化幅が少なくなる。  FIG. 6 shows a change in air turbine draft attraction pressure corresponding to a change in air temperature at the inlet of the air turbine exhaust tower 26. The specific value of the attraction pressure is calculated by calculating the difference in specific gravity between the specific gravity of air at an atmospheric temperature of 15 ° C., a pressure of 0.1013 MPa and a relative humidity of 60%, and the specific gravity of the exhaust air temperature at the inlet of the air turbine exhaust tower. Calculated. Since the saturation temperature of the humid air when the atmospheric pressure is a standard pressure of 0.1013 MPa is 100 ° C., as shown in FIG. 6, the draft attraction pressure between 15 ° C. and 100 ° C. when the exhaust temperature rises as shown in FIG. It suddenly rises to about 0.5 mAq. After the water saturation temperature exceeds 100 ° C., the wet steam changes to dry steam, so that the draft of the draft attraction pressure tends to increase gradually, and the pressure increase amount increases the exhaust air temperature from 100 ° C. to 500 ° C. Even if it is increased, the change in draft attraction pressure is as small as 0.5 to 0.7 mAq and the range of increase is about 0.2 mAq.

空気タービン排気塔26入口部におけるドラフト誘引圧力は、空気タービン排気塔26の空気温度305℃における、空気の比重約0.615kg/m、外部の基準大圧力/温度/湿度条件(0.1013MPa/15℃/60%)での比重は1.222kg/m両者の差は0.607kg/mである。よって空気タービン排気塔1mあたりのドラフト誘引圧力は両者の差となり0.605mAqとなる。The draft attraction pressure at the inlet of the air turbine exhaust tower 26 is approximately 0.615 kg / m 3 of the specific gravity of air at an air temperature of 305 ° C. of the air turbine exhaust tower 26, external reference large pressure / temperature / humidity conditions (0.1013 MPa). The specific gravity at / 15 ° C./60%) is 1.222 kg / m 3 , and the difference between the two is 0.607 kg / m 3 . Therefore, the draft attraction pressure per 1 m of the air turbine exhaust tower is the difference between the two and becomes 0.605 mAq.

空気加熱器29を出たガスタービン排気ガスは、空気加熱器出口ダクト10、高温脱硝装置11、高温脱硝装置出口ダクト12を通過しガスタービン排気塔13に流下する。このガスの温度は約330℃程度である。このガス比重の変化は、ガスタービンの燃焼温度、機種別、燃料の種類、大気条件によって変化するので一概に決められない。しかし、図6に示した空気用のドラフト誘引圧力特性図は、ガスタービン排ガス用のドラフト誘引圧力特性図と類似している。すなわち、大まかなガスタービン排気塔1mあたりのドラフト誘引圧力を推定できる。  The gas turbine exhaust gas that has exited the air heater 29 passes through the air heater outlet duct 10, the high-temperature denitration device 11, and the high-temperature denitration device outlet duct 12 and flows down to the gas turbine exhaust tower 13. The temperature of this gas is about 330 ° C. This change in gas specific gravity cannot be determined unconditionally because it varies depending on the combustion temperature of the gas turbine, the type of machine, the type of fuel, and the atmospheric conditions. However, the draft drawing pressure characteristic chart for air shown in FIG. 6 is similar to the draft drawing pressure characteristic chart for gas turbine exhaust gas. That is, a rough draft attraction pressure per 1 m of the gas turbine exhaust tower can be estimated.

本考案で取り上げたガスタービンの燃焼温度は一般的な温度1100℃である。ガスタービン排ガス温度は、図3より、約605℃程度となる。また空気加熱器でのガス温度降下幅を275℃程度とすると、ガスタービン排気塔13の入口ガス温度は約330℃程度となる。よって、図6からはガスタービン排気塔13の高さ1m当たりのドラフト誘引圧力は約0.62mAq程度と推定できる。  The combustion temperature of the gas turbine taken up in the present invention is a general temperature of 1100 ° C. From FIG. 3, the gas turbine exhaust gas temperature is about 605.degree. If the gas temperature drop width in the air heater is about 275 ° C., the inlet gas temperature of the gas turbine exhaust tower 13 is about 330 ° C. Therefore, from FIG. 6, it can be estimated that the draft attraction pressure per 1 m of the gas turbine exhaust tower 13 is about 0.62 mAq.

ガスタービン排気塔の高さを代表的に10mとすると、ガスタービン排気塔13の誘引圧力は、約6.2mAq程度と推定できる。図5で示すガスタービン排気部圧損ΔP1は主として空気加熱器29や高温脱硝装置11の内部構造と内部の大きさや各装置の長さに左右される。同種の実績のある各機器の実績値から判断して、ガスタービン排気部圧損ΔP1は誘引圧力約6.2mAq以下に収まるように設計が可能である。  If the height of the gas turbine exhaust tower is typically 10 m, the attraction pressure of the gas turbine exhaust tower 13 can be estimated to be about 6.2 mAq. The gas turbine exhaust part pressure loss ΔP1 shown in FIG. 5 mainly depends on the internal structure and size of the air heater 29 and the high-temperature denitration device 11 and the length of each device. Judging from the actual value of each device having the same type of results, the gas turbine exhaust section pressure loss ΔP1 can be designed to be less than or equal to the attractive pressure of about 6.2 mAq.

図7に空気タービン排気誘引塔34入口排気空気温度の変化に対する空気タービン排気誘引塔34の高さ1m当たりの空気タービン排気誘引塔34の静圧変化を、空気タービン排気誘引塔34内の流速をパラメータにして示す。  FIG. 7 shows changes in static pressure of the air turbine exhaust attraction tower 34 per 1 m height of the air turbine exhaust attraction tower 34 with respect to changes in the exhaust air temperature at the inlet of the air turbine exhaust attraction tower 34, and the flow velocity in the air turbine exhaust attraction tower 34. Shown as a parameter.

図7の空気タービン排気誘引塔34の入口温度が0℃〜100℃まで上昇すると空気タービン排気誘引塔34の静圧が上昇するが、該温度が100℃〜500℃まで上昇すると空気タービン排気誘引塔34の静圧の上昇幅は減少する。しかし、空気タービン排気誘引塔34の平均流速を1.11m/sから1.6m/sに上げると、空気タービン排気誘引塔34の静圧は減少し、空気タービン排気圧力の負圧程度が増すので空気タービン24の出力が増加する。  When the inlet temperature of the air turbine exhaust attraction tower 34 in FIG. 7 rises to 0 ° C. to 100 ° C., the static pressure of the air turbine exhaust attraction tower 34 increases, but when the temperature rises to 100 ° C. to 500 ° C., the air turbine exhaust attraction is induced. The increase in the static pressure of the tower 34 decreases. However, when the average flow velocity of the air turbine exhaust attraction tower 34 is increased from 1.11 m / s to 1.6 m / s, the static pressure of the air turbine exhaust attraction tower 34 decreases and the negative pressure of the air turbine exhaust pressure increases. As a result, the output of the air turbine 24 increases.

ガスタービン5または空気タービン24の排気圧力が下がることによるガスまたは空気タービン出力増加は期待できるが、ガスまたは空気タービンと各空気圧縮機は空気流路で大気と繋がっており、大気圧以下の負圧領域にするのはガスまたは空気タービン排気部出口部からガスまたは空気タービン排気塔入口部までであり、ガスまたは空気タービン排気部出口部から上流側は大気圧より高い正圧の運転領域になるように、各排気塔や排気誘引塔の経済性を考慮して各塔の高さを計画する必要がある。  Although an increase in gas or air turbine output due to a decrease in the exhaust pressure of the gas turbine 5 or the air turbine 24 can be expected, the gas or air turbine and each air compressor are connected to the atmosphere through an air flow path, and negative pressure below atmospheric pressure is detected. The pressure region is from the gas or air turbine exhaust part outlet to the gas or air turbine exhaust tower inlet, and the upstream side from the gas or air turbine exhaust part outlet is a positive pressure operating region higher than atmospheric pressure. Thus, it is necessary to plan the height of each tower in consideration of the economics of each exhaust tower and exhaust attraction tower.

1 燃料調整弁
2 燃料配管
3 燃焼器
4 ガスタービン空気圧縮機
5 ガスタービン
6 ガスタービン発電機
7 ガスタービン起動用電動機
8 ガスタービン圧縮機入口ダクト
9 ガスタービン圧縮機吸込フィルタ−
10 空気加熱器出口ダクト
11 高温脱硝装置
12 高温脱硝装置出口ダクト
13 ガスタービン排気塔
14 空気タービン発電機
15 空気タービン圧縮機出口管
16 空気加熱管
17 空気加熱器出口管
18 空気タービン調整弁
19 空気タービン入口管
20 空気タービン圧縮機入口ダクト
21 空気タービン圧縮機吸込フィルタ−
22 空気タービン入口ダクト
23 空気タービン圧縮機
24 空気タービン
25 空気タービン排気ダクト
26 空気タービン排気塔
27 空気タービン起動用電動機
28 ガスタービン排気ダクト
29 空気加熱器
30 空気タービン圧縮機分岐管
31 圧縮空気調整装置
32 圧縮空気調整装置出口ダクト
33 圧縮空気導入ダクト
34 空気タービン排気誘引塔
DESCRIPTION OF SYMBOLS 1 Fuel regulating valve 2 Fuel piping 3 Combustor 4 Gas turbine air compressor 5 Gas turbine 6 Gas turbine generator 7 Gas turbine starting electric motor 8 Gas turbine compressor inlet duct 9 Gas turbine compressor suction filter
DESCRIPTION OF SYMBOLS 10 Air heater exit duct 11 High temperature denitration apparatus 12 High temperature denitration apparatus exit duct 13 Gas turbine exhaust tower 14 Air turbine generator 15 Air turbine compressor exit pipe 16 Air heating pipe 17 Air heater outlet pipe 18 Air turbine adjustment valve 19 Air Turbine inlet pipe 20 Air turbine compressor inlet duct 21 Air turbine compressor suction filter
22 Air turbine inlet duct 23 Air turbine compressor 24 Air turbine 25 Air turbine exhaust duct 26 Air turbine exhaust tower 27 Air turbine starter motor 28 Gas turbine exhaust duct 29 Air heater 30 Air turbine compressor branch pipe 31 Compressed air adjustment device 32 Compressed air conditioner outlet duct 33 Compressed air introduction duct 34 Air turbine exhaust induction tower

Claims (2)

液化天然ガスまたは軽油等の流体燃料を燃焼する燃焼器と、燃焼ガスにより駆動されるガスタービンと、該ガスタービンで駆動されるガスタービン発電機と、該ガスタービンの排ガスで空気を加熱する空気加熱器と、該空気加熱器により加熱された加圧高温空気で駆動される空気タービンと、該空気タービンで駆動される空気タービン発電機と、該空気加熱器出口ダクトに連なるように設けたガスタービン排気塔と、空気タービン出口ダクトに連なるように設けた空気タービン排気塔を有し、該ガスタービン排気塔入口部と該空気タービン排気塔入口部圧力とを、各排気塔のドラフト誘引圧力により負圧状態にして各タービンの排気圧力を下げて各タービン出力を増加することを特徴とするガスタービンと空気タービンを用いた複合発電設備。  Combustor for burning fluid fuel such as liquefied natural gas or light oil, gas turbine driven by combustion gas, gas turbine generator driven by the gas turbine, and air for heating air with the exhaust gas of the gas turbine A heater, an air turbine driven by pressurized high-temperature air heated by the air heater, an air turbine generator driven by the air turbine, and a gas provided to be connected to the air heater outlet duct A turbine exhaust tower and an air turbine exhaust tower provided so as to be connected to an air turbine outlet duct. The gas turbine exhaust tower inlet and the air turbine exhaust tower inlet pressure are determined by a draft attraction pressure of each exhaust tower. A combined power generation facility using a gas turbine and an air turbine, wherein the turbine output is increased by lowering the exhaust pressure of each turbine in a negative pressure state 液化天然ガスまたは軽油等の流体燃料を燃焼するガスタービンと、該ガスタービンで駆動されるガスタービン発電機と、同上ガスタービンの排ガスで空気を加熱する空気加熱器と、該空気加熱器にて加熱された加圧高温空気で駆動される空気タービンと、該空気タービンで駆動される空気タービン発電機と、該空気加熱器出口ダクトの排ガスダクト出口に設けたガスタービン排気塔と、空気タービン圧縮機の圧縮機から圧縮空気の一部を分岐して空気タービン排気誘引塔へ圧縮空気を送る管路と、分岐した圧縮空気を調整する圧縮空気調整装置と、空気タービン排気ダクトの出口部に設けた空気タービン排気誘引塔により、該ガスタービン排気塔入口部と、該空気タービン排気塔入口部圧力とを、各排気塔のドラフト誘引圧力により負圧状態にして各タービンの排気圧力を下げて各タービン出力を増加することを特徴とするガスタービンと空気タービン複合発電設備。  A gas turbine that burns fluid fuel such as liquefied natural gas or light oil, a gas turbine generator that is driven by the gas turbine, an air heater that heats air using the exhaust gas of the gas turbine, and the air heater An air turbine driven by heated pressurized hot air, an air turbine generator driven by the air turbine, a gas turbine exhaust tower provided at the exhaust duct outlet of the air heater outlet duct, and an air turbine compression A pipe that branches a part of the compressed air from the compressor of the compressor and sends the compressed air to the air turbine exhaust induction tower, a compressed air adjustment device that adjusts the branched compressed air, and an outlet of the air turbine exhaust duct By the air turbine exhaust induction tower, the gas turbine exhaust tower inlet and the air turbine exhaust tower inlet pressure are in a negative pressure state due to the draft induction pressure of each exhaust tower. Gas turbine and air turbine combined power generation facility, characterized by increasing the turbine output by lowering the exhaust pressure of the turbine to.
JP2018005161U 2018-12-18 2018-12-18 Gas turbine and air turbine combined power generation facilities Expired - Fee Related JP3220859U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018005161U JP3220859U (en) 2018-12-18 2018-12-18 Gas turbine and air turbine combined power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018005161U JP3220859U (en) 2018-12-18 2018-12-18 Gas turbine and air turbine combined power generation facilities

Publications (1)

Publication Number Publication Date
JP3220859U true JP3220859U (en) 2019-04-11

Family

ID=66092414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018005161U Expired - Fee Related JP3220859U (en) 2018-12-18 2018-12-18 Gas turbine and air turbine combined power generation facilities

Country Status (1)

Country Link
JP (1) JP3220859U (en)

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US8689566B1 (en) Compressed air energy system integrated with gas turbine
US9410451B2 (en) Gas turbine engine with integrated bottoming cycle system
US9567913B2 (en) Systems and methods to extend gas turbine hot gas path parts with supercharged air flow bypass
US9140184B2 (en) Supercharged combined cycle system with air flow bypass to HRSG and fan
US8833051B2 (en) Method for operation of an integrated solar combined-cycle power station, and a solar combined-cycle power station for carrying out this method
WO2010147003A1 (en) Solar thermal gas turbine power plant
US20130318965A1 (en) Supercharged Combined Cycle System With Air Flow Bypass To HRSG And Hydraulically Coupled Fan
CN104251143B (en) Start control unit for steam turbine plant
US20130318941A1 (en) Supercharged Combined Cycle System With Air Flow Bypass
CN104160131A (en) Gas turbine engine configured to shape power output
US20130199202A1 (en) System and method for gas turbine inlet air heating
De Paepe et al. Exhaust gas recirculation on humidified flexible micro gas turbines for carbon capture applications
JP2010281272A (en) Solar heat gas turbine and solar heat gas turbine generator
US5906094A (en) Partial oxidation power plants and methods thereof
JP6244099B2 (en) Combined cycle power plant and operation method thereof
JP3220859U (en) Gas turbine and air turbine combined power generation facilities
JP2016528430A (en) Operation method of combined cycle power plant
RU2605878C1 (en) Turbo-expansion system of heat utilization of circulating water on condensation units of steam turbines of thermal power station
US20160040558A1 (en) Thermal power plant with a steam turbine
RU2656769C1 (en) Thermal power plant gas turboexpander power unit operation method
RU2330977C1 (en) Gas turbine plant output control method
EP2746554A2 (en) Supercharged combined cycle system with air flow bypass to HRSG
JP4131951B2 (en) Micro gas turbine power generation equipment
JP3219186U (en) Solar air power generation equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

R150 Certificate of patent or registration of utility model

Ref document number: 3220859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees