JP4895414B2 - Combustion synthesizer - Google Patents

Combustion synthesizer Download PDF

Info

Publication number
JP4895414B2
JP4895414B2 JP18944098A JP18944098A JP4895414B2 JP 4895414 B2 JP4895414 B2 JP 4895414B2 JP 18944098 A JP18944098 A JP 18944098A JP 18944098 A JP18944098 A JP 18944098A JP 4895414 B2 JP4895414 B2 JP 4895414B2
Authority
JP
Japan
Prior art keywords
reaction
pressure vessel
pressure
raw material
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18944098A
Other languages
Japanese (ja)
Other versions
JP2000016804A (en
Inventor
利隆 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP18944098A priority Critical patent/JP4895414B2/en
Publication of JP2000016804A publication Critical patent/JP2000016804A/en
Application granted granted Critical
Publication of JP4895414B2 publication Critical patent/JP4895414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼合成方法によって窒化アルミニウム等の化合物を生成する燃焼合成装置に関する。
【0002】
【従来の技術】
燃焼合成方法とは、化合物を合成する際の元素間の化学反応が、強い発熱反応であることを積極的に利用した化合物生成方法である。即ち、通常、反応ガス雰囲気中における原料粉体層の一端において化学反応を励起させ、この一端における化学反応による発熱を利用して前記化学反応を前記原料粉体層中に自己伝播させる方法である。斯かる燃焼合成反応を行う為の装置は、例えば、特開平7-309611号公報に開示されている。
【0003】
しかしながら、該公報に記載の装置は、反応ガスが供給される圧力容器内に原料粉体を筒状に保持し、該原料粉体の下端面から化学反応を励起させて、該化学反応を前記原料粉体の下部から上部に向かって垂直上方に進行させる構成であるために、以下の不都合を有していた。
【0004】
即ち、原料粉体を筒状に保持する構成においては、その自重によって下方の見かけ密度が大きくなり、反応ガスが原料粉体の下方まで十分に浸透し難くなる。従って、原料粉体の下方においては、未反応の原料粉体が残留し易くなり、高純度の化合物を効率良く生成させることができなかった。
【0005】
また、斯かる従来の構成においては、反応時の発熱が原料粉体内にこもってしまい、蓄熱量が大きくなり、過加熱になる恐れもあった。この過加熱は、一旦合成された化合物の再分解や再結晶化、或いは生成化合物の異常硬化を招く原因となるものである。さらに、この過加熱は、装置の破損や寿命の低下を招くと共に、大事故につながる恐れがあり、好ましいものではない。
【0006】
【発明が解決しようとする課題】
本発明は、前記問題点を解決するためになされたもので、高純度の化合物を効率良く生成させることができ、且つ、装置の耐久性を向上し得る燃焼合成装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、前記目的を達成するために、内部圧力を一定圧に保持する圧力容器と、反応ガス供給源と、前記圧力容器及び反応ガス供給源を連結する反応ガス供給ラインと、前記反応ガス供給ラインに設けられ、前記圧力容器内の圧力を調整する圧力調整手段と、前記圧力容器内に備えられ、粉体からなる反応原料を保持する収容手段と、前記収容手段内の反応原料に着火する着火手段と、前記圧力容器を強制的に冷却する冷却手段と、前記収容手段を水平状態に載置可能なベースプレートとを備え、前記圧力容器内に反応ガスを供給することにより反応ガスと反応原料とを燃焼合成反応させる燃焼合成装置であって、前記収容手段は、前記着火手段による着火によって励起される反応ガスと反応原料との燃焼合成反応が、その反応熱によって連鎖的に実質的に水平方向に進行するように、反応原料を保持するものであり、前記圧力容器は、前記反応ガス供給源からの反応ガスの供給を前記圧力調整手段により調整することで、反応ガスのガス圧を一定の加圧状態に保持可能であり、前記冷却手段は、前記圧力容器の底壁と前記ベースプレートとの間に配設され、前記燃焼合成反応の進行中、常時作動して前記圧力容器を冷却する燃焼合成装置を提供する。
【0008】
好ましくは、前記圧力容器内を所望圧力に減圧する減圧手段をさらに備えることができ、前記圧力容器は、前記減圧手段により減圧された後、反応ガスの供給により加圧されるように構成することができる。
【0009】
好ましくは、前記収容手段は、反応原料を厚さが10mm以上80mm以下である横長直方体状に保持するものとすることができる。
【0010】
【発明の実施の形態】
以下に、本発明に係る燃焼合成装置の好ましい実施の形態につき、添付図面を参照しつつ説明する。図1は、本実施の形態に係る燃焼合成装置の概略図である。
【0011】
本実施の形態に係る燃焼合成装置は、AlN,Si34,TiN,ZrN,BN,AlON,SiAlON,FexN,SiC,WC,TiC等の燃焼合成方法によって生成される種々の化合物を製造する際に用いられる。なお、以下の説明においては、該燃焼合成装置を、反応式 Al+1/2N2→AlNで示される窒化アルミニウム生成用として用いる場合を例に説明する。
【0012】
前記燃焼合成装置は、図に示すように、内部圧力を維持する圧力容器1と、反応ガス供給源2と、該圧力容器1及び反応ガス供給源2を連結する反応ガス供給ライン3と、該反応ガス供給ライン3中に設けられ、圧力容器1内の圧力を調整する圧力調整手段4と、前記圧力容器1内に備えられ、反応原料30を保持する収容手段5と、前記収容手段5に収容される反応原料に着火する着火手段10と、前記圧力容器1を強制的に冷却する冷却手段6とを備えている。
【0013】
さらに、該燃焼合成装置は圧力容器内を減圧する減圧手段20を備えている。該減圧手段20は、例えば、真空ポンプ21と該真空ポンプ21及び圧力容器1間を接続する減圧ライン22とを有するものとすることができる。前記減圧ライン22には、前記圧力調整手段4を介在させることができ、これにより、圧力容器1内の減圧調整が可能となる。該減圧手段20は、圧力容器1内の酸素濃度を低下させるために、反応ガスとなる窒素含有ガスを圧力容器1内に供給する前に、該圧力容器1内を脱気するのに使用される。燃焼合成時の圧力容器1内の酸素濃度は通常10ppm以下が好ましく、さらに好ましくは1ppm以下がよい。従って、前記圧力容器1内の脱気は、0.01気圧以下まで減圧させるのがよい。なお、前記窒素含有ガスは高純度窒素ガス単体であってもよいし、少量のArやHe等の不活性ガス等を含んでいてもよい。
【0014】
前記圧力容器1は、反応ガス供給源2から反応ガスライン3を介して供給される窒素含有ガスの加圧状態を、維持し得るようになっている。該加圧状態とは、2気圧〜30気圧である。窒素含有ガスが2気圧未満では、窒化反応が遅く、燃焼温度が十分に上がらず、窒化反応率が低下する恐れがあるからであり、一方、30気圧を越えると燃焼温度が高くなりすぎて、生成化合物の一部が再分解し、これによって生成物中の金属アルミニウム量が増加する他、装置の耐久性を悪化させることにもなるからである。
【0015】
前記着火手段10は、圧力容器1の外部に備えられる電源11と、一端が前記電源11に電気的に接続され且つ他端が圧力容器1内に延びる電極12と、該電極12に接続され、着火に必要な熱量をアルミニウム粉体に供給する着火ヒーター13と、該着火ヒーター13を保持する位置調整可能なヒーターホルダー14とを備えている。着火ヒーター13は種々のものを用いることができるが、例えばカーボン通電ヒーター等の消耗電極を用いることが好ましい。
【0016】
前記収容手段5は、圧力容器1内に設けられたベースプレート7上に載置されている。該収容手段5は、アルミニウム粉体30を厚さ10mm以上80mm以下で且つ長さが少なくとも前記厚さよりも長い横長直方体状に保持し得るようなパン型とされている。収容手段5を斯かる構成とすることにより、前記着火手段10によって励起されるAlN合成反応を、アルミニウム粉体の長手方向に沿う水平方向に進行させることができ、これによって、燃焼合成反応が垂直方向に進行する従来の装置に比して、高純度の窒化アルミニウムを効率良く製造でき、且つ、装置の耐久性を向上させることができる。即ち、アルミニウム粉体の厚さが80mmを越えると、窒素含有ガスが原料粉体30の下部まで浸透し難くなって窒化反応率の低下を招く恐れがあると共に、原料粉体30内の蓄熱量が大きくなりすぎて過加熱を招くことになるが、本実施の形態においては、斯かる不都合は生じない。なお、アルミニウム粉体の厚さを10mm以上にしているのは、10mm未満では、放熱量が大きくなりすぎて燃焼温度が低下してしまい、窒化反応率が低下する恐れがあるからである。
【0017】
前記冷却手段6は、前記圧力容器の底壁及びベースプレート間に配設されており、圧力容器1を強制的に冷却し得るようになっている。該冷却手段6は、反応熱による装置の破損又は劣化を防止する為のものである。
【0018】
以下に、このように構成された燃焼合成装置を用いた窒化アルミニウムの製造方法について説明する。
【0019】
前記収容手段5によって厚さ10mm以上80mm以下の横長直方体状に保持されたアルミニウム粉体30をベースプレート7上に載置し、ヒーターホルダー14によって着火ヒーター13を着火最適位置に配置する。この状態で、圧力容器1を密閉し、減圧手段20によって、容器1内の圧力を0.01気圧以下に減圧する。減圧完了後、ガス供給源2からガス供給ライン3を介して圧力容器1内に窒素含有ガスを供給する。この際の窒素含有ガス圧力は、前述のように、2気圧〜30気圧である。
【0020】
窒素含有ガスが前記所定圧まで供給されたら、前記電極12を介して電源11から前記着火ヒーター13に電力を供給して、着火ヒータ13を発熱させる。該着火ヒータ13によってアルミニウム粉体30の着火、即ち、反応開始が確認されたら、直ちに電力供給を停止する。この通電時間は、通常、数秒〜数十秒である。
【0021】
このようにして、反応が開始されると、その後は、自らの反応熱によって燃焼合成反応が自然に水平方向に進行する。即ち、本実施の形態においては、収容手段5によって反応原料となるアルミニウム粉体30を厚さ10mm以上80mm以下で且つ長さが少なくとも前記厚さよりも長い横長直方体状に保持しているので、燃焼波を水平方向に進行させることができ、これにより、従来の燃焼合成装置に比して、反応による蓄熱量を低減させて、装置の損傷又は劣化を防止することができる。また、窒素含有ガスをアルミニウム粉体全域に効率良く浸透させることができ、これにより、高純度の窒化アルミニウムを効率良く製造することが可能になる。
【0022】
さらに、本実施の形態においては、前記反応により窒素含有ガスが消費されて、窒素含有ガス圧が低下すると、圧力調整手段4が作動して、窒素含有ガスが補充される構成となっている。従って、圧力容器1内の窒素含有ガス圧は、常に、一定に保持され、これにより、反応進行中における反応不全が防止される。なお、反応進行中は、常に、冷却手段6を作動させておくのが好ましい。これにより、反応熱による装置の破損又は劣化を防止できるからである。
【0023】
【実施例】
本実施の形態に係る燃焼合成装置を用いて、窒化アルミニウムの燃焼合成を行い、未反応金属アルミニウムの残存量を測定した。
【0024】
実施例1
反応原料30として、純度99.7重量%,平均粒子径40μmの純アルミニウム粉(アトマイズ粉)を用いた。該反応原料をカーボン製の収容手段5に厚さ50mmとなるように充填した。反応原料の充填量は、500g及び5000gの2通りで行った。減圧脱気は0.01気圧以下、窒素ガス充填圧は8気圧とし、着火ヒータ13へは2.5KWの電力を10秒間供給した。
【0025】
本実施例1の結果を表1に示す。なお、表中における未反応金属アルミニウム量の測定は、試料1gを濃度20%の水酸化ナトリウム水溶液が収容された容器に入れて分解を行い、発生する水素量を測定し、該測定値と予め作成しておいた検量線とに基づいて行った。
【0026】
【表1】

Figure 0004895414
【0027】
実施例2
反応原料30として、純度99.7重量%,平均粒子径40μmの純アルミニウム粉(アトマイズ粉)を50重量%含み、希釈剤となる平均粒子径5μmの窒化アルミニウム粉を50重量%含む混合粉体を用いた。その他の条件は、前記実施例1と同様にして行った。本実施例2の結果を表1に付せて示す。
【0028】
実施例3
反応原料30として、純度99.7重量%,平均粒子径40μmの純アルミニウム粉(アトマイズ粉)を30重量%含み、希釈剤となる平均粒子径5μmの窒化アルミニウム粉を70重量%含む混合粉体を用いた。その他の条件は、前記実施例1と同様にして行った。本実施例3の結果を表1に付せて示す。
【0029】
【比較例】
比較例として、特開平7-309611号公報に記載の従来装置を用いて、前記実施例1〜3のそれぞれの条件で窒化アルミニウムの燃焼合成を行い、未反応金属アルミニウムの残存量を測定した。それらの結果を比較例1〜3として、表1に付せて示す。
【0030】
【検討】
表1に示すように、従来装置においては、未反応の金属アルミニウムが大量に残存した。これは、燃焼合成反応が有効に進行していないことを示している。
【0031】
これに対し、本実施の形態に係る燃焼合成装置においては、何れの条件下においても、未反応の金属アルミニウムが殆ど残存せず、効率良く燃焼合成反応が行われた。特に、希釈剤を使用しない場合に、その差は歴然であった。
【0032】
【発明の効果】
以上のように、本発明に係る燃焼合成装置によれば、反応原料を収容する収容手段を、前記着火手段による着火によって励起される前記反応ガスと反応原料との燃焼合成反応が、その反応熱によって連鎖的に実質的に水平方向に進行するように、前記反応原料を保持し得る構成としたので、反応原料全域中への反応ガスの浸透を容易に行うことができ、これにより、希釈剤を用いることなく、高純度の化合物を効率良く得ることができる。また、燃焼合成反応時における蓄熱量を低減させることができ、これにより、装置の損傷及び劣化を抑えることができる。さらに、本発明に係る燃焼合成装置によれば、圧力容器を強制的に冷却する冷却手段を備えるようにしたので、反応熱による装置の破損又は劣化を有効に抑えることができる。
【0033】
また、圧力容器内を所望圧力に減圧する減圧手段を備えるようにすれば、燃焼合成反応に必要な反応ガス雰囲気を容易に得ることができる。
【0034】
さらに、反応原料を厚さ10mm以上80mm以下に保持するようにすれば、燃焼温度の低下を抑えつつ、反応ガスの反応原料中への浸透性向上及び装置の劣化防止をさらに有効に図ることができる。
【図面の簡単な説明】
【図l】本発明に係る燃焼合成装置の好ましい実施の形態の概略図である。
【符号の説明】
1 圧力容器
2 反応ガス供給源
4 圧力調整手段
5 収容手段
6 冷却手段
10 着火手段
20 減圧手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion synthesis apparatus that generates a compound such as aluminum nitride by a combustion synthesis method.
[0002]
[Prior art]
The combustion synthesis method is a compound generation method that positively utilizes the fact that the chemical reaction between elements when synthesizing a compound is a strong exothermic reaction. That is, usually, a chemical reaction is excited at one end of the raw material powder layer in the reaction gas atmosphere, and the chemical reaction is self-propagated into the raw material powder layer by utilizing heat generated by the chemical reaction at this one end. . An apparatus for performing such combustion synthesis reaction is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-309611.
[0003]
However, the apparatus described in the publication holds the raw material powder in a cylindrical shape in a pressure vessel to which a reaction gas is supplied, excites the chemical reaction from the lower end surface of the raw material powder, Since the configuration is such that the raw material powder proceeds vertically upward from the lower part to the upper part, it has the following disadvantages.
[0004]
That is, in the configuration in which the raw material powder is held in a cylindrical shape, the apparent density below increases due to its own weight, and the reaction gas does not easily penetrate to the lower part of the raw material powder. Accordingly, unreacted raw material powder tends to remain below the raw material powder, and a high-purity compound could not be efficiently generated.
[0005]
Further, in such a conventional configuration, heat generated during the reaction is trapped in the raw material powder, and the amount of heat storage increases, which may cause overheating. This overheating causes re-decomposition and recrystallization of the compound once synthesized, or abnormal curing of the generated compound. Further, this overheating is not preferable because it may cause damage to the apparatus and a decrease in the service life, and may lead to a major accident.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a combustion synthesis apparatus that can efficiently produce a high-purity compound and can improve the durability of the apparatus. To do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a pressure vessel that maintains an internal pressure at a constant pressure, a reaction gas supply source, a reaction gas supply line that connects the pressure vessel and the reaction gas supply source, and the reaction gas. Pressure adjusting means provided in the supply line for adjusting the pressure in the pressure vessel, storage means provided in the pressure vessel for holding the reaction raw material made of powder, and the reaction raw material in the storage means are ignited An igniting means for cooling, a cooling means for forcibly cooling the pressure vessel , and a base plate on which the accommodating means can be placed in a horizontal state, and reacting with the reaction gas by supplying the reaction gas into the pressure vessel. a combustion synthesis apparatus for combustion synthesis reaction and raw material, the housing means, the combustion synthesis reaction of the reactive gas and a reactive material which is excited by the ignition by the ignition means, by its reaction heat Chain manner to proceed in a substantially horizontal direction, which holds the reactants, the pressure vessel, the supply of the reaction gas from the reaction gas supply source by adjusting by the pressure adjusting means, The gas pressure of the reaction gas can be maintained in a constant pressurized state, and the cooling means is disposed between the bottom wall of the pressure vessel and the base plate, and operates constantly during the progress of the combustion synthesis reaction. And a combustion synthesis apparatus for cooling the pressure vessel .
[0008]
Preferably, the pressure vessel may further include a decompression unit that decompresses the inside of the pressure vessel to a desired pressure, and the pressure vessel is configured to be pressurized by supplying a reaction gas after being decompressed by the decompression unit. Can do.
[0009]
Preferably, the housing means has a thickness and the reaction raw material Ru can be made to hold the Horizontal parallelepiped shape is 10mm or more 80mm or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a combustion synthesis apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a combustion synthesis apparatus according to the present embodiment.
[0011]
Combustion synthesis apparatus according to the present embodiment, AlN, Si 3 N 4, TiN, ZrN, BN, AlON, SiAlON, Fe x N, SiC, WC, a variety of compounds produced by combustion synthesis method of TiC etc. Used in manufacturing. In the following description, the case where the combustion synthesis apparatus is used for generating aluminum nitride represented by the reaction formula Al + 1 / 2N 2 → AlN will be described as an example.
[0012]
As shown in the figure, the combustion synthesizer includes a pressure vessel 1 that maintains an internal pressure, a reaction gas supply source 2, a reaction gas supply line 3 that connects the pressure vessel 1 and the reaction gas supply source 2, and the Pressure adjusting means 4 provided in the reaction gas supply line 3 for adjusting the pressure in the pressure vessel 1, storage means 5 provided in the pressure vessel 1 for holding the reaction raw material 30, and the storage means 5 An ignition means 10 for igniting the reaction raw material accommodated and a cooling means 6 for forcibly cooling the pressure vessel 1 are provided.
[0013]
Further, the combustion synthesizer includes a pressure reducing means 20 for reducing the pressure in the pressure vessel. The decompression means 20 may include, for example, a vacuum pump 21 and a decompression line 22 that connects the vacuum pump 21 and the pressure vessel 1. The pressure adjusting means 4 can be interposed in the pressure reducing line 22, thereby enabling pressure reducing adjustment in the pressure vessel 1. The pressure reducing means 20 is used to deaerate the inside of the pressure vessel 1 before supplying the nitrogen-containing gas as a reaction gas into the pressure vessel 1 in order to reduce the oxygen concentration in the pressure vessel 1. The The oxygen concentration in the pressure vessel 1 during combustion synthesis is usually preferably 10 ppm or less, more preferably 1 ppm or less. Therefore, the deaeration in the pressure vessel 1 is preferably reduced to 0.01 atm or less. The nitrogen-containing gas may be a single high-purity nitrogen gas, or may contain a small amount of an inert gas such as Ar or He.
[0014]
The pressure vessel 1 can maintain the pressurized state of the nitrogen-containing gas supplied from the reaction gas supply source 2 via the reaction gas line 3. The pressurized state is 2 to 30 atmospheres. If the nitrogen-containing gas is less than 2 atm, the nitriding reaction is slow, the combustion temperature is not sufficiently increased, and the nitriding reaction rate may be reduced. On the other hand, if it exceeds 30 atm, the combustion temperature becomes too high, This is because a part of the product compound is re-decomposed, thereby increasing the amount of metallic aluminum in the product and deteriorating the durability of the apparatus.
[0015]
The ignition means 10 includes a power source 11 provided outside the pressure vessel 1, an electrode 12 having one end electrically connected to the power source 11 and the other end extending into the pressure vessel 1, and the electrode 12. An ignition heater 13 that supplies an amount of heat necessary for ignition to the aluminum powder and a heater holder 14 that can adjust the position of the ignition heater 13 are provided. Although various types of ignition heaters 13 can be used, it is preferable to use a consumable electrode such as a carbon energizing heater.
[0016]
The accommodating means 5 is placed on a base plate 7 provided in the pressure vessel 1. The accommodating means 5 has a pan shape that can hold the aluminum powder 30 in a horizontally long rectangular parallelepiped shape having a thickness of 10 mm to 80 mm and a length that is at least longer than the thickness. By adopting such a configuration for the storage means 5, the AlN synthesis reaction excited by the ignition means 10 can be advanced in the horizontal direction along the longitudinal direction of the aluminum powder, whereby the combustion synthesis reaction is vertical. Compared with a conventional device that progresses in the direction, high-purity aluminum nitride can be produced efficiently, and the durability of the device can be improved. That is, when the thickness of the aluminum powder exceeds 80 mm, it is difficult for the nitrogen-containing gas to penetrate to the lower part of the raw material powder 30, which may cause a decrease in the nitriding reaction rate, and the amount of heat stored in the raw material powder 30. However, in the present embodiment, such inconvenience does not occur. The reason why the thickness of the aluminum powder is set to 10 mm or more is that if the thickness is less than 10 mm, the heat radiation amount becomes too large, the combustion temperature is lowered, and the nitriding reaction rate may be lowered.
[0017]
The cooling means 6 is disposed between the bottom wall of the pressure vessel and the base plate so that the pressure vessel 1 can be forcibly cooled. The cooling means 6 is for preventing damage or deterioration of the apparatus due to reaction heat.
[0018]
Below, the manufacturing method of the aluminum nitride using the combustion synthesis apparatus comprised in this way is demonstrated.
[0019]
The aluminum powder 30 held in a horizontally long rectangular parallelepiped shape having a thickness of 10 mm or more and 80 mm or less by the housing means 5 is placed on the base plate 7, and the ignition heater 13 is arranged at the optimum ignition position by the heater holder 14. In this state, the pressure vessel 1 is sealed, and the pressure inside the vessel 1 is reduced to 0.01 atm or less by the pressure reducing means 20. After completion of the decompression, a nitrogen-containing gas is supplied from the gas supply source 2 into the pressure vessel 1 through the gas supply line 3. The nitrogen-containing gas pressure at this time is 2 to 30 atmospheres as described above.
[0020]
When the nitrogen-containing gas is supplied up to the predetermined pressure, power is supplied from the power source 11 to the ignition heater 13 via the electrode 12 to cause the ignition heater 13 to generate heat. When the ignition heater 13 confirms that the aluminum powder 30 is ignited, that is, the start of the reaction, the power supply is immediately stopped. This energization time is usually several seconds to several tens of seconds.
[0021]
In this way, when the reaction is started, thereafter, the combustion synthesis reaction naturally proceeds in the horizontal direction by its own reaction heat. That is, in the present embodiment, the aluminum powder 30 serving as a reaction raw material is held in the shape of a horizontally long rectangular parallelepiped having a thickness of 10 mm or more and 80 mm or less and a length that is at least longer than the thickness by the containing means 5. The wave can be made to travel in the horizontal direction, thereby reducing the amount of heat stored by the reaction and preventing damage or deterioration of the apparatus as compared with the conventional combustion synthesis apparatus. Further, the nitrogen-containing gas can be efficiently infiltrated into the entire area of the aluminum powder, which makes it possible to efficiently produce high-purity aluminum nitride.
[0022]
Further, in the present embodiment, when the nitrogen-containing gas is consumed by the reaction and the nitrogen-containing gas pressure is lowered, the pressure adjusting means 4 is operated to replenish the nitrogen-containing gas. Therefore, the nitrogen-containing gas pressure in the pressure vessel 1 is always kept constant, thereby preventing reaction failure during the progress of the reaction. In addition, it is preferable to always operate the cooling means 6 during the progress of the reaction. This is because damage or deterioration of the apparatus due to reaction heat can be prevented.
[0023]
【Example】
Using the combustion synthesis apparatus according to the present embodiment, combustion synthesis of aluminum nitride was performed, and the remaining amount of unreacted metallic aluminum was measured.
[0024]
Example 1
As the reaction raw material 30, pure aluminum powder (atomized powder) having a purity of 99.7% by weight and an average particle diameter of 40 μm was used. The reaction raw material was filled in the carbon containing means 5 to a thickness of 50 mm. The filling amount of the reaction raw material was 500 g and 5000 g. The vacuum degassing was 0.01 atm or less, the nitrogen gas filling pressure was 8 atm, and 2.5 KW of power was supplied to the ignition heater 13 for 10 seconds.
[0025]
The results of Example 1 are shown in Table 1. The amount of unreacted metallic aluminum in the table is measured by putting 1 g of a sample into a container containing a 20% sodium hydroxide aqueous solution and decomposing it, measuring the amount of hydrogen generated, This was performed based on the calibration curve prepared.
[0026]
[Table 1]
Figure 0004895414
[0027]
Example 2
As the reaction raw material 30, a mixed powder containing 50% by weight of pure aluminum powder (atomized powder) having a purity of 99.7% by weight and an average particle diameter of 40 μm and 50% by weight of aluminum nitride powder having an average particle diameter of 5 μm as a diluent. Was used. The other conditions were the same as in Example 1. The results of Example 2 are shown in Table 1.
[0028]
Example 3
A mixed powder containing 30% by weight of pure aluminum powder (atomized powder) having a purity of 99.7% by weight and an average particle size of 40 μm as reaction raw material 30 and 70% by weight of aluminum nitride powder having an average particle size of 5 μm as a diluent. Was used. The other conditions were the same as in Example 1. The results of Example 3 are shown in Table 1.
[0029]
[Comparative example]
As a comparative example, using a conventional apparatus described in JP-A-7-309611, combustion synthesis of aluminum nitride was performed under the conditions of Examples 1 to 3, and the remaining amount of unreacted metallic aluminum was measured. The results are shown in Table 1 as Comparative Examples 1 to 3.
[0030]
【Consideration】
As shown in Table 1, a large amount of unreacted metallic aluminum remained in the conventional apparatus. This indicates that the combustion synthesis reaction does not proceed effectively.
[0031]
On the other hand, in the combustion synthesis apparatus according to the present embodiment, almost no unreacted metallic aluminum remained under any condition, and the combustion synthesis reaction was performed efficiently. In particular, the difference was evident when no diluent was used.
[0032]
【Effect of the invention】
As described above, according to the combustion synthesis apparatus of the present invention, the combustion synthesis reaction between the reaction gas excited by the ignition by the ignition means and the reaction raw material is performed as the reaction heat. The reaction raw material can be held so as to proceed in a substantially horizontal direction in a chain, so that the reaction gas can easily penetrate into the entire reaction raw material. A highly pure compound can be obtained efficiently without using. In addition, the amount of heat stored during the combustion synthesis reaction can be reduced, and thereby damage and deterioration of the apparatus can be suppressed. Furthermore, according to the combustion synthesis apparatus according to the present invention, since the cooling means for forcibly cooling the pressure vessel is provided, damage or deterioration of the apparatus due to reaction heat can be effectively suppressed.
[0033]
If a pressure reducing means for reducing the pressure vessel to a desired pressure is provided, a reaction gas atmosphere necessary for the combustion synthesis reaction can be easily obtained.
[0034]
Furthermore, if the reaction raw material is maintained at a thickness of 10 mm or more and 80 mm or less, it is possible to further effectively improve the permeability of the reaction gas into the reaction raw material and prevent the deterioration of the apparatus while suppressing a decrease in the combustion temperature. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view of a preferred embodiment of a combustion synthesis apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Reactive gas supply source 4 Pressure adjusting means 5 Storage means 6 Cooling means 10 Ignition means 20 Depressurizing means

Claims (3)

内部圧力を一定圧に保持する圧力容器と、
反応ガス供給源と、
前記圧力容器及び反応ガス供給源を連結する反応ガス供給ラインと、
前記反応ガス供給ラインに設けられ、前記圧力容器内の圧力を調整する圧力調整手段と、
前記圧力容器内に備えられ、粉体からなる反応原料を保持する収容手段と、
前記収容手段内の反応原料に着火する着火手段と、
前記圧力容器を強制的に冷却する冷却手段と、
前記収容手段を水平状態に載置可能なベースプレートとを備え、
前記圧力容器内に反応ガスを供給することにより反応ガスと反応原料とを燃焼合成反応させる燃焼合成装置であって、
前記収容手段は、前記着火手段による着火によって励起される反応ガスと反応原料との燃焼合成反応が、その反応熱によって連鎖的に実質的に水平方向に進行するように、反応原料を保持するものであり、
前記圧力容器は、前記反応ガス供給源からの反応ガスの供給を前記圧力調整手段により調整することで、反応ガスのガス圧を一定の加圧状態に保持可能であり、
前記冷却手段は、前記圧力容器の底壁と前記ベースプレートとの間に配設され、前記燃焼合成反応の進行中、常時作動して前記圧力容器を冷却する燃焼合成装置。
A pressure vessel that maintains a constant internal pressure;
A reactive gas source;
A reaction gas supply line connecting the pressure vessel and a reaction gas supply source;
A pressure adjusting means provided in the reaction gas supply line for adjusting the pressure in the pressure vessel;
A storage means provided in the pressure vessel for holding a reaction raw material made of powder ;
Ignition means for igniting the reaction raw material in the storage means;
Cooling means for forcibly cooling the pressure vessel;
A base plate capable of placing the storage means in a horizontal state ;
A combustion synthesis apparatus for performing a combustion synthesis reaction between a reaction gas and a reaction raw material by supplying the reaction gas into the pressure vessel,
The storage means holds the reaction raw material so that the combustion synthesis reaction between the reaction gas excited by the ignition by the ignition means and the reaction raw material proceeds in a substantially horizontal direction in a chain manner by the reaction heat. And
The pressure vessel can maintain the gas pressure of the reaction gas in a constant pressurized state by adjusting the supply of the reaction gas from the reaction gas supply source by the pressure adjusting means,
The cooling means is disposed between the bottom wall of the pressure vessel and the base plate, and is always operated during the progress of the combustion synthesis reaction to cool the pressure vessel .
前記圧力容器内を所望圧力に減圧する減圧手段をさらに備え、
前記圧力容器は、前記減圧手段により減圧された後、反応ガスの供給により加圧される請求項1に記載の燃焼合成装置。
A pressure reducing means for reducing the pressure vessel to a desired pressure;
The combustion synthesis apparatus according to claim 1, wherein the pressure vessel is depressurized by the depressurization means and then pressurized by supply of a reaction gas.
前記収容手段は、反応原料を厚さが10mm以上80mm以下である横長直方体状に保持するものである請求項1または2に記載の燃焼合成装置。The housing means, the combustion synthesis apparatus according to claim 1 or 2 thick reaction raw material is intended to hold the Horizontal parallelepiped shape is 10mm or more 80mm or less.
JP18944098A 1998-07-03 1998-07-03 Combustion synthesizer Expired - Lifetime JP4895414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18944098A JP4895414B2 (en) 1998-07-03 1998-07-03 Combustion synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18944098A JP4895414B2 (en) 1998-07-03 1998-07-03 Combustion synthesizer

Publications (2)

Publication Number Publication Date
JP2000016804A JP2000016804A (en) 2000-01-18
JP4895414B2 true JP4895414B2 (en) 2012-03-14

Family

ID=16241294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18944098A Expired - Lifetime JP4895414B2 (en) 1998-07-03 1998-07-03 Combustion synthesizer

Country Status (1)

Country Link
JP (1) JP4895414B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2188298B1 (en) * 1999-06-15 2004-08-16 Fundacion Inasmet CONTINUOUS PROCEDURE FOR THE MANUFACTURE OF POWDERED MATERIALS BY COMBUSTION AND REACTOR FOR PUTTING INTO THE SAME PRACTICE.
WO2006103930A1 (en) * 2005-03-29 2006-10-05 Tama-Tlo Ltd. Method for producing material containing aluminum nitride
CN103453234B (en) * 2013-07-22 2015-04-01 南通大学 Structure for increasing strength of centrifugal self-propagating ceramic lined composite steel pipe and production method of structure
JP7185865B2 (en) * 2019-01-09 2022-12-08 株式会社燃焼合成 Method for producing spherical AlN particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717373B2 (en) * 1990-08-29 1995-03-01 科学技術庁金属材料技術研究所長 Method for producing oxide superconducting material
JP3185151B2 (en) * 1991-03-18 2001-07-09 日本電池株式会社 Hydrogen storage alloy for hydrogen storage electrode and method for producing hydrogen storage electrode
JP2680988B2 (en) * 1994-04-12 1997-11-19 大阪大学長 Method for producing aluminum nitride powder

Also Published As

Publication number Publication date
JP2000016804A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
US8444765B2 (en) Process and apparatus for large-scale manufacturing of bulk monocrystalline gallium-containing nitride
TW486744B (en) Growth method of III-IV nitride semiconductors and gas phase growth apparatus
JP2004519400A (en) Portable hydrogen source
JP4895414B2 (en) Combustion synthesizer
TW201037107A (en) Apparatus and method of manufacturing polysilicon
US11939217B2 (en) Hydrogen generation system, power generation system, hydrogen generation method, and power generation method
JP3702121B2 (en) Power generator
JP4256012B2 (en) Method for producing BN, AlN or Si3N4 by combustion synthesis reaction
RU2157864C2 (en) Method of production of silicon-carbide singe crystals
TWI401206B (en) Manufacturing method for aln
JP6445283B2 (en) Method for producing gallium nitride crystal
JP3891076B2 (en) Method for producing aluminum nitride
JP2024023988A (en) Sodium borohydride manufacturing method and sodium borohydride manufacturing device
US7998454B2 (en) Method of producing magnesium-based hydrides and apparatus for producing magnesium-based hydrides
JPWO2006095536A1 (en) Method for growing single crystal and single crystal growing apparatus
JP2000016805A (en) Production of aluminum nitride
JPH0756905B2 (en) Excimer laser device
TWI253437B (en) Method and apparatus for preparing aluminum nitride
JP2007246343A (en) Crystal production apparatus
TW200301316A (en) Apparatus for generating fluorine gas and method for generating fluorine gas, and fluorine gas
CN114901414B (en) Method for manufacturing oxide-removed member and oxide removal device
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
US6423287B1 (en) Method for production of aluminum nitride power
JP4068935B2 (en) Method for producing hydrogen
JP5284691B2 (en) Method for producing polycrystal of group 14 element of periodic table

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100405

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term