JP2680988B2 - Method for producing aluminum nitride powder - Google Patents

Method for producing aluminum nitride powder

Info

Publication number
JP2680988B2
JP2680988B2 JP6073090A JP7309094A JP2680988B2 JP 2680988 B2 JP2680988 B2 JP 2680988B2 JP 6073090 A JP6073090 A JP 6073090A JP 7309094 A JP7309094 A JP 7309094A JP 2680988 B2 JP2680988 B2 JP 2680988B2
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
weight
aluminum
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6073090A
Other languages
Japanese (ja)
Other versions
JPH07309611A (en
Inventor
欽生 宮本
光恵 小泉
仁之 坂上
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6073090A priority Critical patent/JP2680988B2/en
Publication of JPH07309611A publication Critical patent/JPH07309611A/en
Application granted granted Critical
Publication of JP2680988B2 publication Critical patent/JP2680988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は窒化アルミニウム粉末の
製造方法に関するものであり、特に高熱伝導性、高電気
絶縁性、耐熱耐食性等を必要とする、電子回路部材、耐
熱部材に用いられる窒化アルミニウム焼結体の原料粉末
として、高純度で粒径の小さい窒化アルミニウム粉末の
製造方法に関するものである。 【0002】 【従来の技術】従来窒化アルミニウム粉末の製造方法と
しては、(1)金属アルミニウムの粉末または薄片を窒素
またはアンモニアガス中で加熱し、直接窒化する方法、
あるいは(2)酸化アルミニウム粉末に炭素粉末を混合
し、窒素またはアンモニアガス中で加熱し、還元窒化す
る方法、(3)金属アルミニウムを溶融し窒素ガス中でア
トマイズにより霧状にして窒化する方法、(4)アミニウ
ムのハロゲン化物とアンモニアガスとを反応させる方
法、(5)アルミニウム塩化アンモニウムを熱分解する方
法等が知られている。 【0003】しかし上記(1)の方法では、金属アルミニ
ウム粉末の融解、凝集による窒化率低下防止のために、
金属アルミニウムの融点以下の温度から窒化の完了する
1300〜1600℃まで長時間緩慢な加熱を行いある
いは窒化反応の途中で粉末を粉砕して再び窒化反応を行
い、さらに窒化完了した粉末を粉砕して粒径の調整を行
う必要があった。このため製造工程が煩雑で長時間を要
し、また熱エネルギー消費も大であった。 【0004】上記(2)の方法においても製造された窒化
アルミニウムの窒化率を向上させるために、カーボンを
過剰に添加し、窒素含有雰囲気中で1700℃〜200
0℃の高温で還元窒化後、残存カーボンを酸素含有雰囲
気中600℃〜800℃で除去する必要があり、(1)の
方法と同様に製造に長時間を要し、多大な熱エネルギー
が必要であった。上記(3)の方法においては生成される
窒化アルミニウム粉末の粒径が最小でも約10μm程度
と粗粒である粒度分布も広いものであった。上記(4)(5)
の方法は、工業的規模で窒化アルミニウムを作るのには
適していない。 【0005】 【発明が解決しようとする課題】本発明は、上記した従
来の窒化アルミニウム粉末製造の欠点に鑑み、高純度で
微粒な粉末を短時間でエネルギー効率よく製造する方法
を提供するものである。 【0006】 【課題を解決するための手段】本発明は平均粒径が30
μm以下、酸素含有量が2重量%以下および酸素を除く
不純物の量が0.5重量%以下の金属アルミニウム粉末
と、平均粒径が8μm以下、酸素含有量が3重量%以下
および酸素を除く不純物の量が0.2重量%以下の窒化
アルミニウム粉末とを、それらの重量比で金属アルミニ
ウム:窒化アルミニウム=1:0.05〜1:2.0の
範囲となるように混合して混合粉末とし、1気圧以上の
高圧窒素含有雰囲気中で、その混合粉末又は同混合粉末
の成形体の一部を加熱して窒化反応を開始し、反応に際
して生じる発熱により隣接する部分の窒化反応を連鎖的
に順次進行させ、短時間に系全体の窒化反応を終了させ
る窒化アルミニウム粉末の製造方法である。窒化アルミ
ニウムの標準生成熱は、−△H°298K=320KJ
/molであり、金属アルミニウムの窒化時に大量の熱
を発生する。この発熱を窒化反応のエネルギーとして利
用して、連鎖的に窒化発熱反応を進行させることによ
り、金属アルミニウム粉末から窒化アルミニウム粉末を
合成する方法が本発明の要旨である。 【0007】金属アルミニウム粉末の連鎖的反応を進行
させるためには、反応が進行する部分にある粉末の表面
に反応に必要な十分の窒素源が存在する必要があり、こ
のため窒素含有雰囲気を1.0気圧以上に加圧する。窒
素含有雰囲気としては窒素又はアンモニアあるいは、そ
れらを含有する非酸化性ガスが工業的に使用できる。但
し圧力が1.0気圧未満であると、窒素存在量が小とな
り、連鎖的窒化反応が進行しない。 【0008】さらに金属アルミニウム粉末に窒化アルミ
ニウム粉末を添加し、適当な比率で混合することにより
窒化反応の制御が可能であり、その比率は金属アルミニ
ウム粉末、1重量部に対して窒化アルミニウム粉末が
0.05〜2.0重量部とする。窒化アルミニウム粉末
が0.05重量部未満では窒化反応時の発熱により金属
アルミニウム粉末が融解・凝集して窒化されないアルミ
ニウムが残存し、2.0重量部を越えると発熱量が不足
して反応が進行しない。金属アルミニウム粉末と窒化ア
ルミニウム粉末との混合方法としてはボール・ミル、振
動ミル等の公知の方法でよい。また粉末および成形体の
1部を加熱する方法は特に限定はなく、カーボン等の抵
抗体加熱、電子ビーム、レーザー等を用いることが出来
る。 【0009】原料金属アルミニウム粉末は、平均粒径が
30μm以下、酸素含有量が2重量%以下および酸素を
除く不純物量が0.5重量%以下とする。平均粒径が3
0μmを越えると未窒化アルミニウムの残存や、中空の
窒化アルミニウム粉末の生成が生じる。また酸素含有量
が2重量%を、酸素を除く不純物が0.5重量%を越え
ると、生成された窒化アルミニウム粉末中の酸素および
不純物含有量が増大し、この窒化アルミニウム粉末を用
いた窒化アルミニウム焼結体の特性、特に熱伝導率を低
下させる。 【0010】添加する窒化アルミニウム粉末は平均粒径
が8μm以下、酸素含有量が3重量%以下および酸素を
除く不純物量が0.2重量%以下とする。平均粒径が8
μmを越えると生成された窒化アルミニウム粉末の粒径
が大となる。また酸素含有量が2重量%を、酸素を除く
不純物が0.2重量%を越えると、添加された窒化アル
ミニウムの割合に応じて生成された窒化アルミニウム粉
末中の酸素および不純物含有量が増大し、この窒化アル
ミニウム粉末を用いた窒化アルミニウム焼結体の特性、
特に熱伝導率を低下させる。 【0011】 【実施例】 (実施例1) 平均粒径8μm、酸素含有量0.8重量
%、酸素を除く不純物量0.3重量%の金属アルミニウ
ム粉末と平均粒径1.0μm、酸素含有量1.2重量
%、酸素を除く不純物量(0.01)重量%の窒化アル
ミニウム粉末を金属アルミニウム粉末1重量部に対して
1重量部の割合で添加し、エタノールを媒液として内面
をナイロンでライニングしたボール・ミル・ポットと外
面をナイロンでライニングしたボールとにより8時間混
合し、窒素ガス中で加熱乾燥し、混合粉末を作製した。
この混合粉末をφ11×φ5×15mmのペレット状に
金型成形して試料として図1に示す反応装置内にセット
した。圧力容器5内にガス供給管4より窒素を導入して
50気圧の圧力とし、試料1の底部をリボンヒーター2
に700Wの電力を約3秒間通電して加熱し、窒化反応
を開始し、反応は底部から上部へ進行して約1.5秒で
完了した。この反応完了したぺレットを解砕して粉末と
し、X線回析パターンを測定した所、窒化アルミニウム
のみのピークを示した。酸素および窒素の分析値はそれ
ぞれ1.0重量%、33.4重量%であった。 【0012】(実施例2) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を0.05重量部
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0013】 【表1】 【0014】(実施例3) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を0.20重量部
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0015】(実施例4) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を0.35重量部
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0016】(実施例5) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を2.0重量部と
した以外はすべて実施例1と同一条件で合成を行った。
その結果を表1に示した。 【0017】(実施例6) 窒素圧力ガスを1.5気圧
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0018】(実施例7) 窒素圧力ガスを8.0気圧
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0019】(実施例8) 窒素圧力ガスを20気圧と
した以外はすべて実施例1と同一条件で合成を行った。
その結果を表1に示した。 【0020】(実施例9) 窒素圧力ガスを100気圧
とした以外はすべて実施例1と同一条件で合成を行っ
た。その結果を表1に示した。 【0021】(実施例10) 実施例1で合成された窒
化アルミニウム粉末に酸化イットリウム粉末5重量%添
加し、エタノールを媒液として、内面をナイロンでライ
ニングしたボール・ミル・ポットに窒素ガスを封入し、
外面をナイロンでライニングしたボールとにより24時
間混合後、窒素ガス中で加熱乾燥して混合粉末を作製し
た。この混合粉末をφ12.5×3.5の寸法のペレッ
ト状に成形し、窒素雰囲気中1900℃で焼結した。焼
結体の密度および熱伝導率とアルキメデス法およびレー
ザー・フラッシュ法で測定したところ、それぞれ3.2
8g/cm3,165W/mKを示し、緻密で高熱伝導
性を有する多結晶窒化アルミニウム焼結体となってい
た。 【0022】(実施例11) 金属アルミニウム粉末の
酸素含有量が1.1重量%、窒化アルミニウム粉末の酸
素含有量が1.8重量%以外はすべて実施例1と同一条
件で合成を行い、合成された窒化アルミニウム粉末より
実施例10と同一条件で焼結体を作製した。その結果を
表2に示した。 【0023】 【表2】 【0024】(実施例12) 金属アルミニウム粉末の
酸素含有量が1.1重量%、窒化アルミニウム粉末の酸
素含有量が2.6重量%以外はすべて実施例1と同一条
件で合成を行い、合成された窒化アルミニウム粉末より
実施例10と同一条件で焼結体を作製した。その結果を
表2に示した。 【0025】(実施例13) 金属アルミニウム粉末の
酸素を除く不純物量が0.4重量%、窒化アルミニウム
粉末の酸素を除く不純物量が0.10重量%以外はすべ
て実施例1と同一条件で合成を行い、合成された窒化ア
ルミニウム粉末より実施例10と同一条件で焼結体を作
製した。その結果を表2に示した。 【0026】(比較例1) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を0.03重量部
添加した以外はすべて実施例1と同一条件で合成を行っ
た。生成された粉末のX線回析パターンを測定した所、
窒化アルミニウムのピークに他、アルミニウムのピーク
が認められた。 【0027】(比較例2) 金属アルミニウム粉末1重
量部に対して、窒化アルミニウム粉末を2.5重量部添
加した以外はすべて実施例1と同一条件で合成を行った
が、窒化反応の進行が起こらなかった。また、圧力容器
内の窒素圧力を0.1気圧とした以外はすべて実施例1
と同一条件で合成を行ったが、窒化反応の進行が起こら
なかった。 【0028】(比較例3) 金属アルミニウム粉末の平
均粒径が80μm以外はすべて実施例1と同一条件で合
成を行った。生成された粉末の窒素含有量は30.8重
量%であった。 【0029】(比較例4) 金属アルミニウムの酸素含
有量が2.5重量%、窒化アルミニウムの酸素含有量が
2.5重量%以外はすべて実施例1と同一条件で合成を
行い、合成された窒化アルミニウム粉末より実施例10
と同一条件で焼結体を作製した。この焼結体の密度は
3.26g/cm3,熱伝導率は73W/mKであっ
た。 【0030】(比較例5) 金属アルミニウム粉末の酸
素を除く不純物量が0.7重量%、窒化アルミニウム粉
末の酸素を除く不純物が0.3重量%以外はすべて実施
例1と同一条件で合成を行い、合成された窒化アルミニ
ウム粉末より実施例10と同一条件で焼結体を作製し
た。この焼結体の密度は3.31g/cm3,熱伝導率
は81W/mKであった。 【0031】 【発明の効果】以上説明したように窒素含有雰囲気中で
金属アルミニウム粉末および窒化アルミニウム粉末より
成る混合粉末および又は成形体の1部を加熱し、窒化反
応を開始し、反応に際して生じる発熱により隣接する部
分の窒化反応を連鎖的に進行させ、短時間に系全体の窒
化反応を終了させることにより、高純度で微粒な窒化ア
ルミニウム粉末を短時間でエネルギー効率よく製造する
ことが出来る。この窒化アルミニウム粉末組成物に用い
た窒化アルミニウム焼結体は、緻密で高熱伝導性を有
し、電子回路部材等に好適に用いることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum nitride powder, which is particularly required to have high thermal conductivity, high electrical insulation and heat and corrosion resistance. The present invention relates to a method for producing an aluminum nitride powder having a high purity and a small particle size as a raw material powder of an aluminum nitride sintered body used for a circuit member and a heat resistant member. [0002] Conventionally, as a method for producing aluminum nitride powder, (1) a method for directly nitriding metal aluminum powder or flakes by heating in nitrogen or ammonia gas,
Alternatively (2) a method of mixing carbon powder with aluminum oxide powder, heating in nitrogen or ammonia gas, and reducing and nitriding, (3) a method of melting metal aluminum and atomizing it by atomizing in nitrogen gas by atomization, Known are (4) a method of reacting a halide of aminium and ammonia gas, (5) a method of thermally decomposing aluminum ammonium chloride, and the like. However, in the above method (1), in order to prevent the reduction of the nitriding rate due to melting and aggregation of the metal aluminum powder,
Slow heating for a long time from the temperature below the melting point of metallic aluminum to 1300 to 1600 ° C. at which nitriding is completed, or pulverizing the powder during the nitriding reaction and performing the nitriding reaction again, and further pulverizing the powder that has been nitrided It was necessary to adjust the particle size. Therefore, the manufacturing process is complicated and requires a long time, and the heat energy consumption is large. In order to improve the nitriding rate of the aluminum nitride produced by the above method (2), too much carbon is added, and the nitrogen content in the atmosphere is 1700 ° C. to 200 ° C.
After reducing and nitriding at a high temperature of 0 ° C., it is necessary to remove residual carbon at 600 ° C. to 800 ° C. in an oxygen-containing atmosphere. As with the method (1), it takes a long time to manufacture and a large amount of heat energy is required. Met. In the above method (3), the particle size of the aluminum nitride powder produced was about 10 μm at the minimum, and the particle size distribution of coarse particles was wide. Above (4) (5)
Is not suitable for making aluminum nitride on an industrial scale. In view of the above-mentioned drawbacks of conventional aluminum nitride powder production, the present invention provides a method for producing highly pure and fine powder in a short time and with energy efficiency. is there. The present invention has an average particle size of 30.
Metal aluminum powder with a particle size of less than μm, an oxygen content of less than 2% by weight and an amount of impurities other than oxygen of less than 0.5% by weight, and an average particle size of less than 8 μm, an oxygen content of less than 3% by weight and excluding oxygen. Mixed powder with aluminum nitride powder having an amount of impurities of 0.2% by weight or less in a weight ratio of metallic aluminum: aluminum nitride = 1: 0.05 to 1: 2.0. In a high-pressure nitrogen-containing atmosphere of 1 atm or more, the mixed powder or a part of the molded body of the mixed powder is heated to start the nitriding reaction, and the nitriding reaction of adjacent portions is chained due to the heat generated during the reaction. Is a method for producing an aluminum nitride powder in which the nitriding reaction of the entire system is completed in a short time. The standard heat of formation of aluminum nitride is -ΔH ° 298K = 320KJ
/ Mol, which generates a large amount of heat when nitriding metallic aluminum. The gist of the present invention is a method of synthesizing aluminum nitride powder from metal aluminum powder by utilizing this heat generation as energy of the nitriding reaction to proceed the nitriding exothermic reaction in a chain. In order for the chain reaction of the metal aluminum powder to proceed, it is necessary that a sufficient nitrogen source for the reaction is present on the surface of the powder in the portion where the reaction proceeds, and therefore, the nitrogen-containing atmosphere is kept at 1 Pressurize to 0 atmosphere or more. As the nitrogen-containing atmosphere, nitrogen, ammonia, or a non-oxidizing gas containing them can be industrially used. However, if the pressure is less than 1.0 atm, the amount of nitrogen present becomes small and the chain nitriding reaction does not proceed. Further, the nitriding reaction can be controlled by adding aluminum nitride powder to the metal aluminum powder and mixing them at an appropriate ratio. The ratio is such that the metal aluminum powder is 1 part by weight and the aluminum nitride powder is 0%. 0.05 to 2.0 parts by weight. If the amount of aluminum nitride powder is less than 0.05 parts by weight, the heat generated during the nitriding reaction causes the metal aluminum powder to melt and agglomerate, leaving aluminum that is not nitrided. If it exceeds 2.0 parts by weight, the calorific value is insufficient and the reaction proceeds. do not do. As a method for mixing the metal aluminum powder and the aluminum nitride powder, a known method such as a ball mill or a vibration mill may be used. The method of heating the powder and a part of the molded body is not particularly limited, and heating of a resistor such as carbon, electron beam, laser or the like can be used. The raw material metal aluminum powder has an average particle size of 30 μm or less, an oxygen content of 2% by weight or less, and an impurity content other than oxygen of 0.5% by weight or less. Average particle size is 3
If it exceeds 0 μm, unnitrided aluminum remains and hollow aluminum nitride powder is produced. When the oxygen content exceeds 2% by weight and the impurities other than oxygen exceed 0.5% by weight, the content of oxygen and impurities in the produced aluminum nitride powder increases, and the aluminum nitride powder using this aluminum nitride powder is increased. It reduces the properties of the sintered body, especially the thermal conductivity. The aluminum nitride powder to be added has an average particle size of 8 μm or less, an oxygen content of 3% by weight or less, and an impurity content other than oxygen of 0.2% by weight or less. Average particle size is 8
When it exceeds μm, the particle size of the produced aluminum nitride powder becomes large. When the oxygen content exceeds 2% by weight and the impurities other than oxygen exceed 0.2% by weight, the oxygen and impurity contents in the aluminum nitride powder produced according to the ratio of the added aluminum nitride increase. , Characteristics of an aluminum nitride sintered body using this aluminum nitride powder,
In particular, it reduces the thermal conductivity. Example 1 Metal aluminum powder having an average particle size of 8 μm, oxygen content of 0.8% by weight, and an impurity amount excluding oxygen of 0.3% by weight, and an average particle size of 1.0 μm, containing oxygen An aluminum nitride powder having an amount of 1.2% by weight and an impurity amount (0.01)% by weight except oxygen is added at a ratio of 1 part by weight to 1 part by weight of metallic aluminum powder, and ethanol is used as a liquid medium for the inner surface of nylon. Was mixed for 8 hours with a ball mill pot lined with and a ball lined with nylon on the outer surface, and dried by heating in nitrogen gas to prepare a mixed powder.
This mixed powder was die-molded into pellets of φ11 × φ5 × 15 mm and set as a sample in the reaction apparatus shown in FIG. Nitrogen is introduced into the pressure vessel 5 from the gas supply pipe 4 to a pressure of 50 atm, and the bottom of the sample 1 is attached to the ribbon heater 2
Then, a power of 700 W was applied for about 3 seconds to heat the nitriding reaction to start the nitriding reaction. This reaction-completed pellet was disintegrated into a powder, and the X-ray diffraction pattern was measured. As a result, only a peak of aluminum nitride was shown. The analytical values of oxygen and nitrogen were 1.0% by weight and 33.4% by weight, respectively. Example 2 Synthesis was performed under the same conditions as in Example 1 except that the aluminum nitride powder was 0.05 part by weight with respect to 1 part by weight of the metallic aluminum powder. The results are shown in Table 1. [Table 1] Example 3 Synthesis was performed under the same conditions as in Example 1 except that 0.20 part by weight of aluminum nitride powder was used for 1 part by weight of metallic aluminum powder. The results are shown in Table 1. Example 4 Synthesis was performed under the same conditions as in Example 1 except that 0.35 part by weight of aluminum nitride powder was used with respect to 1 part by weight of metallic aluminum powder. The results are shown in Table 1. Example 5 Synthesis was performed under the same conditions as in Example 1 except that 2.0 parts by weight of aluminum nitride powder was used with respect to 1 part by weight of metallic aluminum powder.
The results are shown in Table 1. Example 6 Synthesis was carried out under the same conditions as in Example 1 except that the nitrogen pressure gas was 1.5 atm. The results are shown in Table 1. Example 7 Synthesis was carried out under the same conditions as in Example 1 except that the nitrogen pressure gas was 8.0 atm. The results are shown in Table 1. (Example 8) Synthesis was carried out under the same conditions as in Example 1 except that the nitrogen pressure gas was changed to 20 atm.
The results are shown in Table 1. Example 9 The synthesis was carried out under the same conditions as in Example 1 except that the nitrogen pressure gas was 100 atm. The results are shown in Table 1. Example 10 5% by weight of yttrium oxide powder was added to the aluminum nitride powder synthesized in Example 1, and nitrogen gas was filled in a ball mill pot whose inner surface was lined with nylon using ethanol as a medium. Then
After mixing for 24 hours with a ball having an outer surface lined with nylon, it was heated and dried in nitrogen gas to prepare a mixed powder. This mixed powder was formed into pellets having a size of φ12.5 × 3.5 and sintered at 1900 ° C. in a nitrogen atmosphere. The density and the thermal conductivity of the sintered body were measured by the Archimedes method and the laser flash method, respectively.
It was 8 g / cm 3 and 165 W / mK, and it was a polycrystalline aluminum nitride sintered body that was dense and had high thermal conductivity. (Example 11) The synthesis was performed under the same conditions as in Example 1 except that the oxygen content of the metallic aluminum powder was 1.1% by weight and the oxygen content of the aluminum nitride powder was 1.8% by weight. A sintered body was produced from the aluminum nitride powder thus prepared under the same conditions as in Example 10. The results are shown in Table 2. [Table 2] Example 12 Synthesis was performed under the same conditions as in Example 1 except that the oxygen content of the aluminum metal powder was 1.1% by weight and the oxygen content of the aluminum nitride powder was 2.6% by weight. A sintered body was produced from the aluminum nitride powder thus prepared under the same conditions as in Example 10. The results are shown in Table 2. Example 13 All were synthesized under the same conditions as in Example 1 except that the amount of impurities excluding oxygen in the metal aluminum powder was 0.4% by weight and the amount of impurities excluding oxygen in the aluminum nitride powder was 0.10% by weight. Then, a sintered body was produced from the synthesized aluminum nitride powder under the same conditions as in Example 10. The results are shown in Table 2. Comparative Example 1 Synthesis was carried out under the same conditions as in Example 1 except that 0.03 parts by weight of aluminum nitride powder was added to 1 part by weight of metallic aluminum powder. When the X-ray diffraction pattern of the produced powder was measured,
In addition to the peak of aluminum nitride, a peak of aluminum was recognized. Comparative Example 2 Synthesis was performed under the same conditions as in Example 1 except that 2.5 parts by weight of aluminum nitride powder was added to 1 part by weight of metallic aluminum powder, but the nitriding reaction proceeded. It didn't happen. In addition, except that the pressure of nitrogen in the pressure vessel was set to 0.1 atm, Example 1 was performed.
Although the synthesis was performed under the same conditions as above, the nitriding reaction did not proceed. Comparative Example 3 Synthesis was performed under the same conditions as in Example 1 except that the average particle size of the metallic aluminum powder was 80 μm. The nitrogen content of the powder produced was 30.8% by weight. (Comparative Example 4) Synthesis was performed under the same conditions as in Example 1 except that the oxygen content of metallic aluminum was 2.5% by weight and the oxygen content of aluminum nitride was 2.5% by weight. Example 10 from aluminum nitride powder
A sintered body was produced under the same conditions as above. This sintered body had a density of 3.26 g / cm 3 and a thermal conductivity of 73 W / mK. (Comparative Example 5) Synthesis was carried out under the same conditions as in Example 1 except that the amount of impurities excluding oxygen in the metallic aluminum powder was 0.7% by weight and the amount of impurities excluding oxygen in the aluminum nitride powder was 0.3% by weight. Then, a sintered body was produced from the synthesized aluminum nitride powder under the same conditions as in Example 10. The density of this sintered body was 3.31 g / cm 3 , and the thermal conductivity was 81 W / mK. As described above, in the nitrogen-containing atmosphere, a part of the powder mixture and / or the compact made of the aluminum metal powder and the aluminum nitride powder is heated to start the nitriding reaction and generate heat during the reaction. Thus, the nitriding reaction of the adjacent portions is caused to proceed in a chain manner, and the nitriding reaction of the entire system is completed in a short time, so that high-purity and fine-grained aluminum nitride powder can be produced in a short time with energy efficiency. The aluminum nitride sintered body used for this aluminum nitride powder composition is dense and has high thermal conductivity, and can be suitably used for electronic circuit members and the like.

【図面の簡単な説明】 【図1】本発明の製造法を説明するための概念図であ
る。 【符号の説明】 1:混合粉末又は成型体 2:加熱リボンヒーター 3:通電加熱用電極 3’:通電加熱用電極 4:ガス供給管 5:圧力容器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram for explaining a manufacturing method of the present invention. [Explanation of Codes] 1: Mixed powder or molded body 2: Heating ribbon heater 3: Electrode for electric heating 3 ': Electrode for electric heating 4: Gas supply pipe 5: Pressure vessel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲田 博彦 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭63−274606(JP,A) 特公 昭36−21164(JP,B1) 特公 昭47−40640(JP,B1)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hirohiko Nakata               1-1 1-1 Koyokita, Itami City, Hyogo Prefecture               Tomo Denki Kogyo Co., Ltd. Itami Works                (56) References JP-A-63-274606 (JP, A)                 Japanese Patent Publication Sho 36-21164 (JP, B1)                 Japanese Patent Publication Sho 47-40640 (JP, B1)

Claims (1)

(57)【特許請求の範囲】 1.平均粒径が30μm以下、酸素含有量が2重量%未
満および酸素を除く不純物の量が0.5重量%以下の金
属アルミニウム粉末と、平均粒径が8μm以下、酸素含
有量が3重量%以下および酸素を除く不純物の量が0.
2重量%以下の窒化アルミニウム粉末とを、それらの重
量比で金属アルミニウム:窒化アルミニウム=1:0.
05〜1:2.0の範囲となるように混合して混合粉末
とし、1気圧以上の高圧窒素含有雰囲気中で、該混合粉
末又はその成形体の一部を加熱して窒化反応を開始し、
反応に際して生じる発熱により隣接する部分の窒化反応
を連鎖的に順次進行させ、短時間に系全体の窒化反応を
終了させることを特徴とする窒化アルミニウム粉末の製
造方法。 2.該窒素含有雰囲気が窒素ガス、アンモニアガス、又
は加熱により窒素含有雰囲気ガスと成る化合物の少なく
とも1種であることを特徴とする特許請求の範囲第1項
記載の窒化アルミニウム粉末の製造方法。
(57) [Claims] Metal aluminum powder having an average particle size of 30 μm or less, an oxygen content of less than 2% by weight and an amount of impurities other than oxygen of 0.5% by weight or less, and an average particle size of 8 μm or less and an oxygen content of 3% by weight or less. And the amount of impurities excluding oxygen is 0.
2% by weight or less of aluminum nitride powder and metal aluminum: aluminum nitride = 1: 0.
The mixed powder or a part of the molded body thereof is heated in a high-pressure nitrogen-containing atmosphere at 1 atm or more to start the nitriding reaction. ,
A method for producing an aluminum nitride powder, characterized in that the nitriding reaction of adjacent portions is sequentially and sequentially progressed by the heat generated during the reaction, and the nitriding reaction of the entire system is completed in a short time. 2. The method for producing an aluminum nitride powder according to claim 1, wherein the nitrogen-containing atmosphere is at least one of nitrogen gas, ammonia gas, and a compound that becomes a nitrogen-containing atmosphere gas by heating.
JP6073090A 1994-04-12 1994-04-12 Method for producing aluminum nitride powder Expired - Lifetime JP2680988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073090A JP2680988B2 (en) 1994-04-12 1994-04-12 Method for producing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073090A JP2680988B2 (en) 1994-04-12 1994-04-12 Method for producing aluminum nitride powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62108467A Division JPS63274606A (en) 1987-04-30 1987-04-30 Production of aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPH07309611A JPH07309611A (en) 1995-11-28
JP2680988B2 true JP2680988B2 (en) 1997-11-19

Family

ID=13508302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073090A Expired - Lifetime JP2680988B2 (en) 1994-04-12 1994-04-12 Method for producing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JP2680988B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69636580T2 (en) * 1996-12-26 2007-08-23 Toyota Jidosha Kabushiki Kaisha, Toyota PROCESS FOR PREPARING ALUMINUM NITRIDE
JP4895414B2 (en) * 1998-07-03 2012-03-14 東洋アルミニウム株式会社 Combustion synthesizer
KR100386510B1 (en) * 2000-09-23 2003-06-02 주식회사 캄테크놀로지 Method for Preparing Aluminum Nitride Powder by Self-propagating High-temperature Synthesis
KR100394523B1 (en) * 2001-06-28 2003-08-14 동부전자 주식회사 Method For Manufacturing AlN Powder
JP4639363B2 (en) * 2003-06-09 2011-02-23 独立行政法人産業技術総合研究所 Method for producing non-oxide particles
JP5082213B2 (en) * 2004-08-20 2012-11-28 三菱化学株式会社 Metal nitride and method for producing metal nitride
JP5586018B2 (en) * 2010-08-23 2014-09-10 国立大学法人東北大学 Aluminum nitride particle manufacturing method and aluminum nitride particle manufacturing apparatus
JP5627515B2 (en) * 2011-03-15 2014-11-19 株式会社トクヤマ Aluminum nitride powder and method for producing the same
WO2021157388A1 (en) * 2020-02-06 2021-08-12 株式会社トクヤマ Method for producing aluminum nitride powder, aluminum nitride powder, and package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274606A (en) * 1987-04-30 1988-11-11 Univ Osaka Production of aluminum nitride powder

Also Published As

Publication number Publication date
JPH07309611A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US4243621A (en) β'-Sialon sintered body and a method for manufacturing the same
US5069868A (en) Method for producing thermoelectric elements
JP2009527640A (en) High density molybdenum metal powder and method for producing the same
JP2680988B2 (en) Method for producing aluminum nitride powder
TW201829299A (en) Method for producing high-purity silicon nitride powder
US3307908A (en) Preparation of aluminum nitride
JP2000016805A (en) Production of aluminum nitride
JP2005162555A (en) Spherical aluminum nitride and its manufacturing method
JP2004124257A (en) Metal copper particulate, and production method therefor
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
JP5008377B2 (en) Method for producing true spherical tin fine powder
JP3698664B2 (en) Method for producing high purity silicon nitride powder
JPH0535681B2 (en)
JPH10298613A (en) Phosphorus-containing iron powder
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
JP2007045670A (en) Manufacturing method of metal carbide
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPH0542363B2 (en)
Zhang et al. Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activative additive
JP2958851B2 (en) Method for producing fine chromium carbide
JPH10291811A (en) Production method of aluminum nitride powder
JPS623007A (en) Production of aluminum nitride powder
JPH05279002A (en) Production of al nitride powder
Sato et al. Synthesis of titanium nitride by a spark-discharge method in liquid ammonia
JPH09111363A (en) Production of sintered alloy containing ta and si

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term