JP4894425B2 - Voltage source circuit - Google Patents

Voltage source circuit Download PDF

Info

Publication number
JP4894425B2
JP4894425B2 JP2006250288A JP2006250288A JP4894425B2 JP 4894425 B2 JP4894425 B2 JP 4894425B2 JP 2006250288 A JP2006250288 A JP 2006250288A JP 2006250288 A JP2006250288 A JP 2006250288A JP 4894425 B2 JP4894425 B2 JP 4894425B2
Authority
JP
Japan
Prior art keywords
voltage source
circuit
voltage
output capacitor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006250288A
Other languages
Japanese (ja)
Other versions
JP2008071218A (en
Inventor
善昭 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006250288A priority Critical patent/JP4894425B2/en
Publication of JP2008071218A publication Critical patent/JP2008071218A/en
Application granted granted Critical
Publication of JP4894425B2 publication Critical patent/JP4894425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、出力キャパシタを用いた電圧源回路に関し、特に出力キャパシタの端子電圧を一定時間で直線的にグランド電位まで降下させる電圧源回路に関する。   The present invention relates to a voltage source circuit using an output capacitor, and more particularly to a voltage source circuit that drops a terminal voltage of an output capacitor linearly to a ground potential in a certain time.

基準電圧源により充電された出力キャパシタの端子電圧を時間とともにグランド電位(0V)まで降下させる場合、例えば図9に示すような電圧源回路が用いられる。図9は従来の電圧源回路の構成を示す図であり、この電圧源回路では、基準電圧源101によりスイッチSW101を介して出力キャパシタC101に電荷を蓄えておき、初期電圧値を与える。そして、スイッチSW101を切断して電荷の供給を遮断し、抵抗R101により出力キャパシタC101の電荷を放電させることによってその端子電圧を降下させる。   When dropping the terminal voltage of the output capacitor charged by the reference voltage source to the ground potential (0 V) with time, for example, a voltage source circuit as shown in FIG. 9 is used. FIG. 9 is a diagram showing a configuration of a conventional voltage source circuit. In this voltage source circuit, charges are stored in the output capacitor C101 via the switch SW101 by the reference voltage source 101 to give an initial voltage value. Then, the switch SW101 is disconnected to cut off the supply of electric charge, and the terminal voltage is lowered by discharging the electric charge of the output capacitor C101 by the resistor R101.

ここで、出力キャパシタC101の容量値もC101(F)で表し、基準電圧源101の電圧値(初期電圧値)をV101(V)、抵抗R101に流れる電流値をI101(A)とすると、放電終了時間、すなわち出力キャパシタC101の端子電圧がグランド電位まで降下するまでの時間t101は、次式で表される。   Here, the capacitance value of the output capacitor C101 is also represented by C101 (F), the voltage value (initial voltage value) of the reference voltage source 101 is V101 (V), and the current value flowing through the resistor R101 is I101 (A). The end time, that is, the time t101 until the terminal voltage of the output capacitor C101 drops to the ground potential is expressed by the following equation.

t101=C101×V101/I101……(1)
なお、出力キャパシタC101の放電回路には、抵抗R101に代えて定電流回路が用いられることもある。
特開平10−322914号公報
t101 = C101 × V101 / I101 (1)
Note that a constant current circuit may be used instead of the resistor R101 for the discharge circuit of the output capacitor C101.
Japanese Patent Laid-Open No. 10-322914

ところで、上記のような従来の電圧源回路においては、出力キャパシタに蓄えられる初期電荷、つまり出力キャパシタの初期電圧値を決定する基準電圧源と、出力キャパシタの放電電流量を決定する抵抗(もしくは定電流回路)は、それぞれ異なる素子により構成されており、電源電圧の変化、温度変化、製造ばらつきなどによって各素子、回路の特性が変動した場合、それらの特性の変動の割合は互いに独立したものとなる。   By the way, in the conventional voltage source circuit as described above, the initial charge stored in the output capacitor, that is, the reference voltage source that determines the initial voltage value of the output capacitor, and the resistor (or constant) that determines the discharge current amount of the output capacitor. Current circuit) is composed of different elements, and when the characteristics of each element and circuit fluctuate due to changes in power supply voltage, temperature changes, manufacturing variations, etc., the rate of fluctuation of those characteristics is independent of each other. Become.

このため、例えば温度変化によって基準電圧源の電圧値、出力キャパシタの放電電流量及び容量値がそれぞれkv倍、ki倍、kc倍に変動した場合、上記(1)式から放電終了時間は(kc×kv/ki)倍になり、出力キャパシタの端子電圧の降下開始からグランド電位に達するまでの時間が変動するという問題点がある。   For this reason, for example, when the voltage value of the reference voltage source, the discharge current amount and the capacitance value of the output capacitor fluctuate to kv times, ki times, and kc times due to temperature changes, for example, the discharge end time is (kc Xkv / ki) times, and there is a problem that the time from the start of the drop of the terminal voltage of the output capacitor to the arrival at the ground potential varies.

本発明は、このような点に鑑みてなされたものであり、基準電圧源、出力キャパシタ及びその放電系統を構成する各素子、回路の特性に変動があっても、出力キャパシタの端子電圧を常に一定時間で直線的にグランド電位まで降下させることができ、信頼性の高い電圧源回路を提供することを目的とする。   The present invention has been made in view of these points, and the terminal voltage of the output capacitor is always maintained even if the characteristics of the reference voltage source, the output capacitor, each element constituting the discharge system, and the circuit vary. An object of the present invention is to provide a highly reliable voltage source circuit that can be lowered linearly to a ground potential in a certain time.

本発明では上記課題を解決するために、出力キャパシタを充電して初期電圧値を与える基準電圧源と、前記基準電圧源と同一特性を持つ第2、第3の電圧源、前記第2の電圧源から第1の倍率回路及び基準抵抗を介して駆動電流が供給される第1のトランジスタ、及び前記第3の電圧源から第2の倍率回路を介して反転入力端子に電圧が供給されるとともに前記基準抵抗と前記第1のトランジスタとの接続点の電圧が非反転入力端子に供給され、前記第1のトランジスタの駆動電流を制御する第1の演算増幅器を有する定電流回路と、前記出力キャパシタを前記定電流回路に流れる電流値と相関のある電流値で放電させる放電回路と、を備えたことを特徴とする電圧源回路が提供される。 In the present invention, in order to solve the above-described problem, a reference voltage source that charges an output capacitor to give an initial voltage value, second and third voltage sources having the same characteristics as the reference voltage source, and the second voltage A voltage is supplied to the inverting input terminal from the first transistor to which a driving current is supplied from a source through a first magnification circuit and a reference resistor, and from the third voltage source through a second magnification circuit. A constant current circuit having a first operational amplifier for supplying a voltage at a connection point between the reference resistor and the first transistor to a non-inverting input terminal and controlling a driving current of the first transistor, and the output capacitor There is provided a voltage source circuit comprising: a discharge circuit that discharges at a current value correlated with a current value flowing through the constant current circuit.

このような電圧源回路によれば、定電流回路が基準電圧源の特性変動と相関関係を持つ特性変動を有、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタを放電させるので、基準電圧源、出力キャパシタ及びその放電系統を構成する各素子、回路の特性に変動があっても、出力キャパシタの端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。 According to such a voltage source circuit, it has a characteristic variation with a correlation constant current circuit and characteristic variations of the reference voltage source, discharging the output capacitor with a current value having a correlation with the current value flowing to the constant current circuit Therefore, even if the characteristics of the reference voltage source, the output capacitor, each element constituting the discharge system, and the circuit vary, the terminal voltage of the output capacitor can always be lowered linearly to the ground potential in a certain time. .

本発明の電圧源回路は、基準電圧源の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタを放電させるので、基準電圧源、出力キャパシタ及びその放電系統を構成する各素子、回路の特性に変動があっても、出力キャパシタの端子電圧を常に一定時間で直線的にグランド電位まで降下させることができ、信頼性が向上するという利点がある。   The voltage source circuit of the present invention includes a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source, and discharges the output capacitor with a current value correlated with the current value flowing through the constant current circuit. Even if there are fluctuations in the characteristics of the reference voltage source, the output capacitor, each element constituting the discharge system, and the circuit, the terminal voltage of the output capacitor can always be lowered linearly to the ground potential in a certain time. There is an advantage of improving the performance.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明の第1の実施の形態の電圧源回路の構成を示す図である。この電圧源回路は、スイッチSW1を通して出力キャパシタC1を充電して初期電圧値を与える基準電圧源1と、基準電圧源1と同一特性を持つ二つの第2の電圧源2及び第3の電圧源3を備えており、第2の電圧源2及び第3の電圧源3、倍率回路4,5、基準抵抗R1、第2の電圧源2から倍率回路4及び基準抵抗R1を介して駆動電流が供給されるトランジスタ(MOSFET)Q1、及びトランジスタQ1の駆動電流を制御するオペアンプ(第1の演算増幅器)OP1により、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路が構成されている。また、出力キャパシタC1と並列にトランジスタQ1と同一のトランジスタQ2が放電回路として接続され、上記定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1が放電される。図1の回路では、定電流回路のトランジスタQ1と放電回路のトランジスタQ2によりカレントミラー回路が構成され、定電流回路に流れる電流値に比例した電流値で出力キャパシタC1が放電される。また、この電圧源回路は、1つの半導体基板上に集積して形成することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a voltage source circuit according to a first embodiment of the present invention. The voltage source circuit includes a reference voltage source 1 that charges an output capacitor C1 through a switch SW1 to give an initial voltage value, two second voltage sources 2 and a third voltage source having the same characteristics as the reference voltage source 1. 3, the second voltage source 2 and the third voltage source 3, the magnification circuits 4 and 5, the reference resistor R 1, and the drive current from the second voltage source 2 through the magnification circuit 4 and the reference resistor R 1. The supplied transistor (MOSFET) Q1 and the operational amplifier ( first operational amplifier) OP1 that controls the drive current of the transistor Q1 constitute a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1. Has been. Further, a transistor Q2 that is the same as the transistor Q1 is connected in parallel with the output capacitor C1 as a discharge circuit, and the output capacitor C1 is discharged with a current value that correlates with the current value flowing through the constant current circuit. In the circuit of FIG. 1, a current mirror circuit is constituted by the transistor Q1 of the constant current circuit and the transistor Q2 of the discharge circuit, and the output capacitor C1 is discharged at a current value proportional to the current value flowing through the constant current circuit. The voltage source circuit can be formed on a single semiconductor substrate.

上記のように構成された電圧源回路においては、初期値決定用の基準電圧源1によって出力キャパシタC1に初期電荷が蓄えられ、放電電流決定用の第2の電圧源2の電圧値が基準抵抗R1及びオペアンプOP1を用いた回路によって定電流に変換され、その定電流で出力キャパシタC1に蓄えられた電荷が放電される。そして、出力キャパシタC1の端子電圧が出力端子Toから出力され、直線降下型の電圧源として使用される。   In the voltage source circuit configured as described above, the initial charge is stored in the output capacitor C1 by the reference voltage source 1 for determining the initial value, and the voltage value of the second voltage source 2 for determining the discharge current is the reference resistance. A constant current is converted by a circuit using R1 and the operational amplifier OP1, and the electric charge stored in the output capacitor C1 is discharged by the constant current. Then, the terminal voltage of the output capacitor C1 is output from the output terminal To and used as a linear drop type voltage source.

詳細に説明すると、基準電圧源1で決定された初期電圧値に比例した電荷がスイッチSW1を介して出力キャパシタC1に蓄えられる。また、基準電圧源1と同一の回路構成の第2の電圧源2及び第3の電圧源3の電圧値が抵抗分圧などによる任意の倍率回路4,5で増倍あるいは減衰され、オペアンプOP1、基準抵抗R1及びトランジスタQ1とともに出力キャパシタC1の放電用の基準電流が作られる。   More specifically, a charge proportional to the initial voltage value determined by the reference voltage source 1 is stored in the output capacitor C1 via the switch SW1. Further, the voltage values of the second voltage source 2 and the third voltage source 3 having the same circuit configuration as that of the reference voltage source 1 are multiplied or attenuated by arbitrary multiplier circuits 4 and 5 by resistance voltage division or the like, and the operational amplifier OP1. A reference current for discharging the output capacitor C1 is generated together with the reference resistor R1 and the transistor Q1.

そして、図1のc点の電圧値はオペアンプOP1−トランジスタQ1のフィードバックループによりb点の電圧値と等しくなるため、基準抵抗R1の両端に印加される電圧値はa点とb点の電圧値の差分と等しくなる。このとき、第2の電圧源2と第3の電圧源3は基準電圧源1と同一回路構成であるため、a点とb点の差分電圧値は基準電圧源1から出力されたd点の電圧値に比例し、互いの電圧値の変動割合にも相関が生じる。基準電圧源1と第2の電圧源2及び第3の電圧源3を基板上で近接して配置しておけば、それらの特性はより近づき、変動割合の相関を強めることができる。   Since the voltage value at point c in FIG. 1 becomes equal to the voltage value at point b by the feedback loop of the operational amplifier OP1-transistor Q1, the voltage value applied across the reference resistor R1 is the voltage value at points a and b. Is equal to the difference. At this time, since the second voltage source 2 and the third voltage source 3 have the same circuit configuration as that of the reference voltage source 1, the differential voltage value at the point a and the point b is the point d output from the reference voltage source 1. In proportion to the voltage value, there is also a correlation in the fluctuation ratio of the voltage values. If the reference voltage source 1, the second voltage source 2, and the third voltage source 3 are arranged close to each other on the substrate, their characteristics are closer to each other, and the correlation of the fluctuation ratio can be strengthened.

ここで、基準抵抗R1としてばらつき、温度依存性の小さい高濃度のN型Poly−Si抵抗などを使用し、抵抗値の変動分を十分小さく抑えることによって、基準抵抗R1とトランジスタQ1に、d点の電圧値に比例し、かつ変動割合にも相関のある電流を流すことが可能となる。また、トランジスタQ1とトランジスタQ2はカレントミラー構成になっているため、出力キャパシタC1を放電させるトランジスタQ2の電流値はトランジスタQ1の電流値に比例し、同様の特性を持つ。そこで、トランジスタQ1とトランジスタQ2のミラー比の調整により、トランジスタQ2のインピーダンスを十分高くしておくことによって、トランジスタQ2が与えるd点の電圧値への影響を十分小さくすることができる。   Here, by using a high-concentration N-type Poly-Si resistor that varies as the reference resistor R1 and has a small temperature dependence, the fluctuation of the resistance value is suppressed to be sufficiently small, so that the reference resistor R1 and the transistor Q1 have d points. It is possible to pass a current that is proportional to the voltage value of and that has a correlation with the fluctuation rate. Since the transistors Q1 and Q2 have a current mirror configuration, the current value of the transistor Q2 that discharges the output capacitor C1 is proportional to the current value of the transistor Q1, and has similar characteristics. Therefore, by adjusting the mirror ratio of the transistors Q1 and Q2 to keep the impedance of the transistor Q2 sufficiently high, the influence on the voltage value at the point d given by the transistor Q2 can be sufficiently reduced.

上記の回路構成で、基準抵抗R1の抵抗値もR1と表し、d点の電圧値をVd、倍率回路4,5の倍率値をk1,k2、トランジスタQ1,Q2のミラー比をM1とすると、トランジスタQ2に流れる放電電流I1は、次式で表される。   In the above circuit configuration, the resistance value of the reference resistor R1 is also expressed as R1, the voltage value at the point d is Vd, the magnification values of the magnification circuits 4 and 5 are k1 and k2, and the mirror ratio of the transistors Q1 and Q2 is M1. The discharge current I1 flowing through the transistor Q2 is expressed by the following equation.

I1=M1×(k1−k2)×Vd/R1……(2)
そして、任意の時刻でスイッチSW1を切断することにより、出力キャパシタC1に供給される電荷が遮断され、トランジスタQ2による放電が始まるが、出力キャパシタC1の容量値もC1と表すと、式(2)により放電終了時間t1は、次式で表される。
I1 = M1 × (k1−k2) × Vd / R1 (2)
Then, by disconnecting the switch SW1 at an arbitrary time, the charge supplied to the output capacitor C1 is cut off, and the discharge by the transistor Q2 starts. When the capacitance value of the output capacitor C1 is also expressed as C1, Equation (2) Thus, the discharge end time t1 is expressed by the following equation.

t1=C1×R1/(M1×(k1−k2))……(3)
式(3)により、電源電圧の変化、温度変化、製造ばらつきなどにより基準電圧源1により決定される初期電圧値が変動した場合でも、放電電流も同様に変動し、両特性の変動分は相殺され、放電電流終了時間には影響しない。このため、出力キャパシタC1の端子電圧は、倍率回路4,5の倍率値、基準抵抗R1の抵抗値、トランジスタQ1,Q2のミラー比、出力キャパシタC1の容量値で決定される時間で直線的にグランド電位まで降下する。そして、これらの特性変動分は小さいので、出力端子Toの電圧値は常に安定した時間で直線的にグランド電位まで降下する。
t1 = C1 * R1 / (M1 * (k1-k2)) (3)
According to equation (3), even when the initial voltage value determined by the reference voltage source 1 fluctuates due to changes in power supply voltage, temperature changes, manufacturing variations, etc., the discharge current also fluctuates in the same way, and the fluctuations in both characteristics are offset. The discharge current end time is not affected. Therefore, the terminal voltage of the output capacitor C1 is linearly determined by the time determined by the magnification value of the magnification circuits 4 and 5, the resistance value of the reference resistor R1, the mirror ratio of the transistors Q1 and Q2, and the capacitance value of the output capacitor C1. Drops to ground potential. Since these characteristic fluctuations are small, the voltage value of the output terminal To always drops linearly to the ground potential in a stable time.

図2は実施の形態の温度変化による出力キャパシタC1の放電時間を示す図である。初期電圧値であるd点の電圧値Vdが温度変化に伴って変動しても、放電電流を決定するためのa点とb点の間の差分電圧Va−Vcも温度特性が等しいので同様に変動し、出力キャパシタC1の放電時間はほぼ一定となる。このため、図3に示すように、出力端子Toの初期電圧値が異なっていても、電圧降下開始時刻よりグランド電位に到達するまでの時間は一定となる。図3は実施の形態の出力端子Toの電圧値がグランド電位まで降下する時間を示す図であり、温度が100℃のときと25℃のときの降下時間を示している。   FIG. 2 is a diagram illustrating a discharge time of the output capacitor C1 due to a temperature change according to the embodiment. Even if the voltage value Vd at the point d, which is the initial voltage value, fluctuates as the temperature changes, the difference voltage Va-Vc between the points a and b for determining the discharge current is also equal in temperature characteristic. As a result, the discharge time of the output capacitor C1 becomes substantially constant. For this reason, as shown in FIG. 3, even when the initial voltage value of the output terminal To is different, the time from the voltage drop start time until reaching the ground potential is constant. FIG. 3 is a diagram showing the time during which the voltage value of the output terminal To drops to the ground potential according to the embodiment, and shows the time when the temperature is 100 ° C. and 25 ° C.

以上のように、第1の実施の形態では、初期電圧値決定用の基準電圧源1と特性変動に相関関係のある第2の電圧源2及び第3の電圧源3を用い、初期電圧値に比例し、かつその変動割合が初期電圧値と相関のある電流量を持つ定電流回路を構成し、その電流量に比例した電流量で出力キャパシタC1を放電させる。このため、電源電圧の変化、温度変化、製造ばらつきなどによって初期電圧値や放電電流量が変動した場合でも、その変動割合は相関を持っているので、前述の(3)式のようにそれらの変動分を相殺することができ、放電終了時間の変動は出力キャパシタC1の変動分のみに抑えることができる。   As described above, in the first embodiment, the initial voltage value is determined by using the reference voltage source 1 for determining the initial voltage value and the second voltage source 2 and the third voltage source 3 that are correlated with the characteristic variation. And a constant current circuit having a current amount that is proportional to the initial voltage value and whose fluctuation ratio is correlated with the initial voltage value, and discharges the output capacitor C1 with a current amount proportional to the current amount. For this reason, even if the initial voltage value or the amount of discharge current fluctuates due to a change in power supply voltage, temperature change, manufacturing variation, etc., the fluctuation ratio has a correlation, so that those equations (3) are correlated. The fluctuation can be canceled out, and the fluctuation of the discharge end time can be suppressed only to the fluctuation of the output capacitor C1.

一般的に、キャパシタの電源電圧、温度、製造ばらつきによる変動割合は小さいので、上記の構成により、基準電圧源1、出力キャパシタC1及びその放電系統を構成する各素子、回路の特性に変動があっても、常に一定時間で出力キャパシタC1の端子電圧をグランド電位まで直線的に降下させることができ、信頼性が向上したものとなる。   In general, since the fluctuation ratio due to the power supply voltage, temperature, and manufacturing variation of the capacitor is small, the characteristics of the elements and circuits constituting the reference voltage source 1, the output capacitor C1, and the discharge system thereof vary due to the above configuration. However, the terminal voltage of the output capacitor C1 can always be linearly dropped to the ground potential in a certain time, and the reliability is improved.

図4は本発明の第2の実施の形態の電圧源回路の構成を示す図である。第2の実施の形態では、図1に示す基準電圧源1が定電流回路の電圧源と共用になっており、基準電圧源1と第2の電圧源2を用いて定電流回路が構成されている。その他は図1の回路と同様の構成であり、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1を放電させるので、出力キャパシタC1の端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。   FIG. 4 is a diagram showing the configuration of the voltage source circuit according to the second embodiment of the present invention. In the second embodiment, the reference voltage source 1 shown in FIG. 1 is shared with the voltage source of the constant current circuit, and the constant voltage circuit is configured by using the reference voltage source 1 and the second voltage source 2. ing. The rest of the configuration is the same as that of the circuit of FIG. 1, and a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1 is provided. Since the output capacitor C1 is discharged, the terminal voltage of the output capacitor C1 can always be lowered linearly to the ground potential in a certain time.

図5は本発明の第3の実施の形態の電圧源回路の構成を示す図である。第3の実施の形態においても、図1に示す基準電圧源1が定電流回路の電圧源と共用になっており、基準電圧源1と第2の電圧源2を用いて定電流回路が構成されている。その他は図1の回路と同様の構成であり、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1を放電させるので、出力キャパシタC1の端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。   FIG. 5 is a diagram showing the configuration of the voltage source circuit according to the third embodiment of the present invention. Also in the third embodiment, the reference voltage source 1 shown in FIG. 1 is shared with the voltage source of the constant current circuit, and the constant current circuit is configured by using the reference voltage source 1 and the second voltage source 2. Has been. The rest of the configuration is the same as that of the circuit of FIG. 1, and a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1 is provided. Since the output capacitor C1 is discharged, the terminal voltage of the output capacitor C1 can always be lowered linearly to the ground potential in a certain time.

図6は本発明の第4の実施の形態の電圧源回路の構成を示す図である。第4の実施の形態においても、図1に示す基準電圧源1が定電流回路の電圧源と共用になっており、一つの基準電圧源1を用いて定電流回路が構成されている。その他は図1の回路と同様の構成であり、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1を放電させるので、出力キャパシタC1の端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。   FIG. 6 is a diagram showing a configuration of a voltage source circuit according to the fourth embodiment of the present invention. Also in the fourth embodiment, the reference voltage source 1 shown in FIG. 1 is shared with the voltage source of the constant current circuit, and the constant current circuit is configured by using one reference voltage source 1. The rest of the configuration is the same as that of the circuit of FIG. 1, and a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1 is provided. Since the output capacitor C1 is discharged, the terminal voltage of the output capacitor C1 can always be lowered linearly to the ground potential in a certain time.

図7は本発明の第5の実施の形態の電圧源回路の構成を示す図である。第5の実施の形態においても、図1に示す基準電圧源1が定電流回路の電圧源と共用になっており、一つの基準電圧源1を用いて定電流回路が構成されている。出力キャパシタC1には基準電圧源1からオペアンプ(第2の演算増幅器)OP2を介して初期電圧値が与えられ、また基準電圧源1の電圧が抵抗R2,R3によって分圧され、その分圧された電圧がオペアンプOP1の反転入力端子に入力される。その他は図6の回路と同様の構成であり、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1を放電させるので、出力キャパシタC1の端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。 FIG. 7 is a diagram showing the configuration of the voltage source circuit according to the fifth embodiment of the present invention. Also in the fifth embodiment, the reference voltage source 1 shown in FIG. 1 is shared with the voltage source of the constant current circuit, and the constant current circuit is configured by using one reference voltage source 1. The output capacitor C1 is given an initial voltage value from the reference voltage source 1 via an operational amplifier (second operational amplifier) OP2, and the voltage of the reference voltage source 1 is divided by resistors R2 and R3 and divided. Voltage is input to the inverting input terminal of the operational amplifier OP1. The other configuration is the same as that of the circuit of FIG. 6, and includes a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1, and a current value correlated with a current value flowing through the constant current circuit. Since the output capacitor C1 is discharged, the terminal voltage of the output capacitor C1 can always be lowered linearly to the ground potential in a certain time.

図8は本発明の第6の実施の形態の電圧源回路の構成を示す図である。第6の実施の形態では、図1に示す第2の電圧源2が第3の電圧源3と共用になっており、一つの第2の電圧源2を用いて定電流回路が構成されている。その他は図7の回路と同様の構成であり、基準電圧源1の特性変動と相関関係を持つ特性変動を有する定電流回路を備え、この定電流回路に流れる電流値と相関のある電流値で出力キャパシタC1を放電させるので、出力キャパシタC1の端子電圧を常に一定時間で直線的にグランド電位まで降下させることができる。   FIG. 8 is a diagram showing the configuration of the voltage source circuit according to the sixth embodiment of the present invention. In the sixth embodiment, the second voltage source 2 shown in FIG. 1 is shared with the third voltage source 3, and a constant current circuit is configured by using one second voltage source 2. Yes. The other configuration is the same as that of the circuit of FIG. 7, and includes a constant current circuit having a characteristic variation correlated with the characteristic variation of the reference voltage source 1, and a current value correlated with the current value flowing through the constant current circuit. Since the output capacitor C1 is discharged, the terminal voltage of the output capacitor C1 can always be lowered linearly to the ground potential in a certain time.

本発明の第1の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 1st Embodiment of this invention. 実施の形態の温度変化による出力キャパシタの放電時間を示す図である。It is a figure which shows the discharge time of the output capacitor by the temperature change of embodiment. 実施の形態の出力端子の電圧値がグランド電位まで降下する時間を示す図である。It is a figure which shows the time when the voltage value of the output terminal of embodiment falls to ground potential. 本発明の第2の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 4th Embodiment of this invention. 本発明の第5の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 5th Embodiment of this invention. 本発明の第6の実施の形態の電圧源回路の構成を示す図である。It is a figure which shows the structure of the voltage source circuit of the 6th Embodiment of this invention. 従来の電圧源回路の構成を示す図である。It is a figure which shows the structure of the conventional voltage source circuit.

符号の説明Explanation of symbols

1 基準電圧源
2 第2の電圧源
3 第3の電圧源
4,5 倍率回路
C1 出力キャパシタ
OP1,OP2 オペアンプ
Q1,Q2 トランジスタ
R1 基準抵抗
R2,R3 抵抗
SW1 スイッチ
To 出力端子
DESCRIPTION OF SYMBOLS 1 Reference voltage source 2 2nd voltage source 3 3rd voltage source 4,5 Multiplier circuit C1 Output capacitor OP1, OP2 Operational amplifier Q1, Q2 Transistor R1 Reference resistance R2, R3 Resistance SW1 Switch To Output terminal

Claims (9)

出力キャパシタを充電して初期電圧値を与える基準電圧源と、
前記基準電圧源と同一特性を持つ第2、第3の電圧源、前記第2の電圧源から第1の倍率回路及び基準抵抗を介して駆動電流が供給される第1のトランジスタ、及び前記第3の電圧源から第2の倍率回路を介して反転入力端子に電圧が供給されるとともに前記基準抵抗と前記第1のトランジスタとの接続点の電圧が非反転入力端子に供給され、前記第1のトランジスタの駆動電流を制御する第1の演算増幅器を有する定電流回路と、
前記出力キャパシタを前記定電流回路に流れる電流値と相関のある電流値で放電させる放電回路と、を備えたことを特徴とする電圧源回路。
A reference voltage source that charges the output capacitor to provide an initial voltage value;
Second and third voltage sources having the same characteristics as the reference voltage source , a first transistor to which a drive current is supplied from the second voltage source via a first multiplier circuit and a reference resistor, and the second transistor Voltage is supplied from the voltage source 3 to the inverting input terminal via the second magnification circuit, and the voltage at the connection point between the reference resistor and the first transistor is supplied to the non-inverting input terminal. A constant current circuit having a first operational amplifier for controlling a driving current of the transistor ;
A voltage source circuit comprising: a discharge circuit that discharges the output capacitor at a current value correlated with a current value flowing through the constant current circuit.
前記第2の電圧源が前記基準電圧源と共通の電圧源として構成されていることを特徴とする請求項1記載の電圧源回路。 2. The voltage source circuit according to claim 1, wherein the second voltage source is configured as a common voltage source with the reference voltage source . 前記第3の電圧源が前記基準電圧源と共通の電圧源として構成されていることを特徴とする請求項1記載の電圧源回路。 2. The voltage source circuit according to claim 1, wherein the third voltage source is configured as a common voltage source with the reference voltage source . 前記第2の電圧源及び前記第3の電圧源が前記基準電圧源と共通の電圧源として構成されていることを特徴とする請求項1記載の電圧源回路。 2. The voltage source circuit according to claim 1, wherein the second voltage source and the third voltage source are configured as a common voltage source with the reference voltage source . 前記第2の電圧源と前記第3の電圧源が一つの共通の電圧源として構成されていることを特徴とする請求項1記載の電圧源回路。 2. The voltage source circuit according to claim 1, wherein the second voltage source and the third voltage source are configured as one common voltage source. 前記第1の倍率回路は、出力端子が反転入力端子に接続され、前記共通の電圧源の電圧が非反転入力端子に供給される第2の演算増幅器であり、  The first magnification circuit is a second operational amplifier in which an output terminal is connected to an inverting input terminal, and a voltage of the common voltage source is supplied to a non-inverting input terminal;
前記第2の倍率回路は抵抗分圧回路によって構成されていることを特徴とする請求項4または5記載の電圧源回路。  6. The voltage source circuit according to claim 4, wherein the second magnification circuit is constituted by a resistance voltage dividing circuit.
前記第1の倍率回路は、出力端子が反転入力端子に接続され、前記第2の電圧源の電圧が非反転入力端子に供給される演算増幅器であることを特徴とする請求項1ないし5のいずれか一項に記載の電圧源回路。  6. The operational amplifier according to claim 1, wherein the first magnification circuit is an operational amplifier having an output terminal connected to an inverting input terminal and a voltage of the second voltage source supplied to a non-inverting input terminal. The voltage source circuit according to any one of the above. 前記第2の倍率回路は抵抗分圧回路によって構成されていることを特徴とする請求項1ないし5のいずれか一項に記載の電圧源回路。  6. The voltage source circuit according to claim 1, wherein the second magnification circuit is configured by a resistance voltage dividing circuit. 前記放電回路は、前記出力キャパシタと並列に接続された第2のトランジスタであって、前記定電流回路の前記第1のトランジスタとカレントミラー回路を構成していることを特徴とする請求項1ないし8のいずれか一項に記載の電圧源回路。  2. The discharge circuit according to claim 1, wherein the discharge circuit is a second transistor connected in parallel with the output capacitor, and constitutes a current mirror circuit with the first transistor of the constant current circuit. 9. The voltage source circuit according to claim 8.
JP2006250288A 2006-09-15 2006-09-15 Voltage source circuit Active JP4894425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250288A JP4894425B2 (en) 2006-09-15 2006-09-15 Voltage source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250288A JP4894425B2 (en) 2006-09-15 2006-09-15 Voltage source circuit

Publications (2)

Publication Number Publication Date
JP2008071218A JP2008071218A (en) 2008-03-27
JP4894425B2 true JP4894425B2 (en) 2012-03-14

Family

ID=39292731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250288A Active JP4894425B2 (en) 2006-09-15 2006-09-15 Voltage source circuit

Country Status (1)

Country Link
JP (1) JP4894425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130106B1 (en) 2013-12-17 2020-07-06 삼성디스플레이 주식회사 Voltage generating circuit and display apparatus having the voltage generating circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625943B2 (en) * 1984-02-17 1994-04-06 松下電器産業株式会社 Charge / discharge circuit
JPH0448812A (en) * 1990-06-18 1992-02-18 Tdk Corp Ramp waveform generating circuit
JP3584536B2 (en) * 1995-03-31 2004-11-04 セイコーエプソン株式会社 Voltage source circuit having mechanism for changing temperature characteristics of output voltage, and stabilized power supply circuit for liquid crystal having the mechanism
JP3403606B2 (en) * 1997-05-16 2003-05-06 シャープ株式会社 Stabilized power supply circuit
JP2003008368A (en) * 2001-06-22 2003-01-10 Denso Corp Current mirror circuit and trapezoidal wave voltage generating circuit
JP2006020172A (en) * 2004-07-02 2006-01-19 Fujitsu Ltd Lamp waveform generating circuit, analog-digital conversion circuit, imaging apparatus, method for controlling imaging apparatus

Also Published As

Publication number Publication date
JP2008071218A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
KR101136691B1 (en) Constant voltage circuit
US7315154B2 (en) Voltage regulator
KR100763328B1 (en) Constant voltage circuit and semiconductor device including the constant voltage circuit
JP5008472B2 (en) Voltage regulator
JP4603378B2 (en) Reference voltage circuit
TWI564690B (en) Constant current circuit and reference voltage circuit
JP2008015925A (en) Reference voltage generation circuit
US11543847B2 (en) Band gap reference voltage generating circuit
TWI405067B (en) Control circuit for negative voltage regulator and method for controlling negative voltage regulator
TWI684767B (en) Current detection circuit
JP2008067188A (en) Differential amplifier circuit and charge controller using the differential amplifier circuit
TWI448868B (en) Voltage regulator
US20080084232A1 (en) Negative voltage detector
US20050184805A1 (en) Differential amplifier circuit
JP3680122B2 (en) Reference voltage generation circuit
JPH1124766A (en) Reference voltage generator
US20090121690A1 (en) Voltage regulator
US9887689B2 (en) Pseudo resistance circuit and charge detection circuit
JPH05233079A (en) Power circuit
JP2002351556A (en) Stabilized direct current power circuit
JP4894425B2 (en) Voltage source circuit
US7633281B2 (en) Reference current circuit for adjusting its output current at a low power-supply voltage
JP3136012U (en) Oscillator
KR100760145B1 (en) Reference voltage generating circuit and reference current generating circuit
JP2021096554A (en) Constant current circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250