JP4894083B2 - All-solid polymer battery and method for producing the same - Google Patents

All-solid polymer battery and method for producing the same Download PDF

Info

Publication number
JP4894083B2
JP4894083B2 JP2000296507A JP2000296507A JP4894083B2 JP 4894083 B2 JP4894083 B2 JP 4894083B2 JP 2000296507 A JP2000296507 A JP 2000296507A JP 2000296507 A JP2000296507 A JP 2000296507A JP 4894083 B2 JP4894083 B2 JP 4894083B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000296507A
Other languages
Japanese (ja)
Other versions
JP2002110239A (en
Inventor
康彦 大澤
修 嶋村
隆三 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000296507A priority Critical patent/JP4894083B2/en
Publication of JP2002110239A publication Critical patent/JP2002110239A/en
Application granted granted Critical
Publication of JP4894083B2 publication Critical patent/JP4894083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、全固体ポリマー電池およびその製造方法に関するものである。詳しく述べると、実質的に溶媒を含まない固体型高分子電解質相を用いた全固体ポリマー電池およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電気自動車等の大容量電源として、高エネルギー密度および高出力密度が達成できるリチウムイオン二次電池が開発されてきた。リチウムイオン二次電池の基本構成は、アルミニウム集電体に、コバルト酸リチウム等の正極活物資とアセチレンブラック等の導電助剤をポリフッ化ビニリデン等のバインダーを用いて塗布した正極と、銅集電体にカーボン微粒子をバインダーを用いて塗布した負極とを、ポリオレフィン系の多孔質膜セパレーターを介して配置し、これにLiPF6等を含む非水電解液を満たしたものとなっている。
【0003】
最近、前記のリチウムイオン二次電池の非水電解液の代りにポリマー電解質を用いたものが開発されている。この電解質のポリマー化により、電池の形状自由性やコンパクト化が期待できる。現在、ポリマー中に電解液を含浸させたゲル電解質の検討が行なわれ、一部分は商品化されている。
【0004】
ゲル電解質については、例えばJ.Y.Songらが総説を発表している(J.Power Sources,77(1999)183)。該総説によれば、ゲル電解質として、ポリ(エチレンオキシド)、ポリ(アクリロニトリル)、ポリ(メチルメタクリレート)、ポリ(ビニリデンフルオライド)等が開示されている。
【0005】
また、ゲル電解質としては、ポリエチレンオキシド系、ポリアクリロニトリル系、ポリメチルメタクリレート系、ポリフッ化ビニリデン系およびこれらを含む共重合体系等が提案されている(特開平8−264205号公報等)。
【0006】
【発明が解決しようとする課題】
しかしながら、よりコンパクトなバイポーラー型の組み電池を構成するためには、前記のごときゲル電解質電池を積層したのでは、単セル間の液絡の問題がある。
【0007】
したがって、本発明の目的は、実質的に溶媒を含まない固体型ポリマー電解質相を用いた電池およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的は、下記(1)〜(7)により達成される。
【0009】
(1)正極活物質と負極活物質をそれぞれの集電体上に配置し、それらの活物質が配置された側が向き合うようにして粘着力がある高分子電解質層を挟んで、これら3層の両サイドに設けたロールで押圧して貼着して単電池を連続的に製作し、
連続的に製作された単電池を適当な形、サイズに切り出し、切り出した単電池を複数個積層し、積層された単電池積層体の両側に弾性層を当接し、電池ケースに収納することを特徴とする全固体ポリマー電池の製造法。
【0010】
(2)高分子電解質を構成するポリマーの主成分が架橋構造を有するポリエーテル系高分子である前記(1)に記載の製造法。
【0011】
(3)正極活物質あるいは負極活物質をそれぞれの集電体上に配置する方法として、正極活物質あるいは負極活物質を含むスラリーを調整して、集電体上にスプレー塗布後乾燥したものである前記(1)または(2)に記載の製造法。
【0012】
(4)正極活物質および負極活物質の粒径が20μm以下である前記(1)〜(3)のいずれかに一つに記載の製造法。
【0013】
(5)前記(1)〜(4)のいずれかに記載の製造法により得られてなることを特徴とする全固体ポリマー電池であって、
正極集電体上に正極層を設け、負極集電体上に負極層を設け、かつそれらをリチウム塩を含む高分子電解質層を介して対向させた構造の単電池が複数個積層されて電池ケースに収納されており、積層された単電池積層体の両側に弾性層が当接されてなることを特徴とする全固体ポリマー電池。
【0014】
(6)該弾性層は、ゴム弾性体層である前記(5)に記載の全固体ポリマー電池。
【0015】
(7)高分子電解質を構成するポリマーの主成分が、架橋構造を有するポリエーテルである前記(5)または(6)に記載の全固体ポリマー電池。
【0016】
【発明の実施形態】
つぎに、図面を参照しながら本発明の一実施形態について説明する。
【0017】
まず、図1に示すように、単電池1の構成は、正極集電体2上に正極活物質層3を設けて正極層4を形成し、一方、負極集電体5上に負極活物質層6を設けて負極層7を形成し、正負両極層4,7間に高分子電解質層8を挟み、これら両活物質層3,6が対向するようになっている。
【0018】
本発明による全固体ポリマー電池、すなわち電源システムを構成するには、例えば図2に示すように、前記単電池1を直列接続になるように積層し、これを電池ケース8に収納し、このようにして得られる積層体の両側面のうち少なくとも片面に弾性層9を設け、両端(例えば最上層と最下層)の電池の集電体2,5からそれぞれ電源の正負の端子10,11を電池ケース8を通して取出す。
【0019】
弾性層9としては、弾力性のあるシート状物であればいずれでもよく、特に電気絶縁性のものであることが好ましい。一例を挙げると、ゴム、合成樹脂等がある。ゴムとしては天然ゴムの他にSBR、ニトリルゴム、クロロプレンゴム、ウレタンゴム、エチレン−プロピレンターポリマー等がある。また、合成樹脂としては、ポリエチレン、ポリプロピレン等がある。
【0020】
これらの弾性層を形成するシートは、発泡体でもまた未発泡体でもよい。
【0021】
このような本発明による全固体ポリマー電池は、つぎのようにして製造される。すなわち、まず正極活物質および負極物質を、それぞれの集電体上に配置することにより正極層および負極層をそれぞれ形成させ、これらの正負両極層を、各活物質が配置された側が向き合うようにして粘着力があるポリマー電解質層を挟んで押圧して貼着することによって、全固体ポリマー電池の単電池が得られる。
【0022】
該ポリマー電解質層を構成するポリマーの主成分としては、粘着力のあるポリマー電解質であればいずれも使用でき、例えば、ポリエチレンオキシド、プロピレンオキシド等のポリアルキネンオキシド、アクリロニトリル−ブタジエンゴム、アクリロニトリル−ブタジエン−スチレン樹脂、ポリアクリロニトリル等のアクリロニトリル系ポリマー、架橋ポリエーテル等がある。これらのうちでも、架橋ポリエーテルが好ましい。
【0023】
架橋ポリエーテルとしては、例えば、J.Electrochem.Soc.145,1521−1527(1998)に記載されているようなポリエチレンオキシド(PE)およびポリプロピレンオキシド(PO)系高分子であり、特にポリエチレンオキシドとポリプロピレンオキシドとのランダムコポリマーをトリオールで架橋し、さらに不飽和脂肪酸でエステル化し、これをアルコシキ化したものが好ましい。このようなポリエーテルトリオールから得られるものとしては、部分メチル化ポリエーテルアクリレートがある。
【0024】
このような分子内に炭素−炭素二重結合を持った原料モノマーを用いて合成した高分子は、LiBF4などのリチウム塩をよく溶解できるうえに、加熱乾燥して十分に溶媒を除去した後でも、粘着性が強く、弾力に富んでいるので、集電体上に薄く活物質を配置して、この上からこの粘着性で弾力性に富むポリマー層を置き上から圧力をかけると、集電体に貼りつけることができ、このようにして作製した電極が安定に充放電できるのである。
【0025】
本発明において、正極活物質あるいは負極活物質をそれぞれの集電体上に配置する方法としては、正極活物質あるいは負極活物質を含むスラリーを調整して、集電体上にスプレー塗布後乾燥することによって均一性のよい好ましい電極活物質層を形成できる。また、用いる活物質の粒径としては、大きすぎると短絡しやすいので、20μm以下であることが望ましい。
【0026】
さらに、ここで製造する薄膜積層電池を適当な形、サイズに切り出して積層し、積層した両サイドの少なくとも一方に弾力性の層を設けた構造とすることにより、安定に使用できる電源システムを構成できる。
【0027】
また、前記単電池を連続的に製造する方法としては、例えば、つぎのごとき方法がある。
【0028】
に示すように、正極集電体箔21上に正極活物質サーバー22より正極活物質と導電助剤との混合物(正極活物質混合物)23を供給したものと、負極集電体箔24上に負極活物質25を押圧して貼着したものとの間に、高分子電解層26を配置し、これらの3層をロール27,28で押圧して貼着する。この場合、サーバー22の代りに、スプレー塗布装置およびそれに続く乾燥炉(いずれも図示せず)を設けることもでき、より均一性の高い正極活物質層を形成することができる。
【0029】
図4は、本発明方法の他の実施態様を示すもので、正極集電体箔31上に正極活物質サーバー32より正極活物質と導電助剤との混合物(正極活物質混合物)33を供給したものと、負極集電体箔34上に負極活物質サーバー39より負極活物質と導電助剤との混合物(負極活物質混合物)35を供給したものとの間に、高分子電解層36を配置し、これらの3層をロール37,38で押圧して貼着する。また、正極と負極の電気容量のバランスが正極容量支配となるようにして、安定な充放電を行なえるようにする。この場合、サーバー32、39の代りに、スプレー塗布装置およびそれに続く乾燥炉(いずれも図示せず)を設けることもでき、より均一性の高い正極活物質層を形成することができる。
【0030】
本発明において、正極集電体箔としては、アルミニウム箔等があり、また負極集電体箔としては、銅箔、ニッケル箔、ステンレス箔、鉄箔等がある。
【0031】
正極活物質としては、リチウム化合物、例えば一般式LixMO2またはLiMyMn2-y4(ただし、式中、MはMn、CoおよびNiよりなる群から選ばれた少なくとも1種の遷移金属を表わし、xは0.00≦x≦1.10、yは0.05<y<0.5である)で表わされるリチウム遷移金属酸化物が好ましく使用される。これらは固体粒子であるので、通常25μm以下、好ましくは20μm以下の微粒子として用いられる。
【0032】
活物質微粉末を集電体上に配置する場合、電池の性能的には通常用いるポリフッカビニリデン、SBRなどのバインダーはない方がよいが、スプレー塗布により集電体上に活物質を配置する場合、必ずしもバインダーを用いなくともよい。電池の性能的には、使用するバインダーの量は少ない方がよいので、多くても使用する活物質の1%を超えないのが望ましい。バインダーの量が多すぎると、活物質がバインダーによって表面を被覆され、充放電反応するためのイオンの動きを大幅に損なうことになるからである。
【0033】
また、負極活物質としては、リチウム金属、リチウム合金さらにはリチウムを吸蔵することが可能な炭素質材料が用いられる。炭素質材料としては、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂等を適当な温度で焼成し炭素したもの)、炭素繊維、活性炭等が挙げられる。
【0034】
また、電解質塩としては、イオン伝導性の点から優れるとともに、ゲルに難燃性を付与するのに非常に有効であることからLiBF4、LiPF6、Li(CFSON等のリチウムイミド塩等が好適である。LiBF4、LiPF6、Li(CFSON等のリチウムイミド塩と他のリチウム塩との混合物も使用可能である。その使用量は該高分子電解質に対して5〜50重量%、好ましくは20〜40重量%である。
【0035】
【実施例】
つぎに、実施例および比較例を挙げて本発明をさらに詳細に説明する。
【0036】
実施例1
単電池の製造
高分子電解質の製造は、つぎのとおり行なった。J. Electrochem. Soc., 145, 1521-1527 (1998)に記載の方法に従って、ポリエーテル形のネットワークポリマー原料を合成した。
【0037】
まず、出発物質としてグリセリンの存在下に、水酸化カリウムを触媒としてアニオン開環重合法により、エチレンオキシド(EO)およびプロピレンオキシド(PO)のランダムコポリマーよりなるポリエーテルトリオールを調製した。この場合、EOとPOのモノマー比 EO/POを86/14に制御してEOとPOの混合物をオートクレーブに連続的に供給し、120℃の温度で得られるポリエーテルトリオールの分子量が約8,000になるまで反応を行なった。得られた粗コポリマーを硫酸で中和し、脱塩を行なって精製した。ポリエーテルトリオールの分子量は、末端OH基の滴定により行なった。
【0038】
該ポリエーテルトリオールの若干の末端OH基は、メタノール中でナトリウムメトキシドを反応させることにより、ナトリウムアルコキシドに変化しており、ついで塩化メチルを使用してメタノール中でウィリアムソン縮合反応によりメチル化した。この反応は、オートクレーブ中で110℃の温度で3時間行なった。得られた部分メチル化ポリエーテルトリオールを脱塩して精製し、ついで減圧乾燥した。
【0039】
残余の末端OH基は、エステル化してアクリロイル基に変えて部分メチル化ポリエーテルアクリレート(PMPEA)とした。該エステル化反応は、トルエン、アクリル酸および部分メチル化ポリエーテルトリオールの混合物を還流温度で共沸させて6〜10時間で水分を除去しながら行なわれた。使用したアクリル酸の量は、残余の末端OH基に対して2.5当量であり、また該部分メチル化ポリエーテルトリオールに対して2重量%のp−トルエンスルホン酸を触媒として添加した。
【0040】
反応終了後、反応混合物を中和し、脱塩により精製してp−トルエンスルホン酸および過剰のアクリル酸を除去した。得られたPMPEAのトルエン溶液を、分子篩上で脱水し、かつ減圧下にトルエンを除去した。
【0041】
光重合開始剤として、ベンジルジメチルケタールをPMPEAに対して1重量%加えて、溶媒としてプロピレンカーボネートを用いて、リチウム塩として、LiBF4をPMPEAに対して36重量%加えて、50μm厚さのテフロンスペーサーを用いて、ガラス基板間にこの粘性の高い溶液を満たし、紫外線を20分間照射して光重合(架橋)した。膜を取り出して、真空容器に入れて90℃にて12時間高真空下で加熱乾燥して溶媒を除いた膜を作製した。得られた膜は、弾性にとみ、粘着性が強かった。
【0042】
単電池の製造は、次のように行なった。図3に示すように、銅箔の負極集電体上にリチウム箔を圧力をかけて押し付けてはり、正極集電体のアルミニウム箔上に正極活物質である平均粒径2μmのLiMn24を95重量%と導電助剤のアセチレンブラックを5重量%の混合物をサーバーから供給して薄く配置し、中央に上記で作製した高分子電解質膜を挟んで、ロールで適切な圧力をかけて貼りつけて単電池を製作した。
【0043】
実施例2
単電池の製造
実施例1と同様にして、高分子電解質層を作製し、負極集電体上のリチウム金属箔の代わりに、平均粒子径5μmのハードカーボンの微粉末を正極と同様にして配置して、実施例1と同様にして正負極で高分子電解質層を挟んで、ロールで張り合わせて単電池を製作した。正極と負極の活物質の面密度は、正極容量が電池の容量をきめる関係にした。
【0044】
実施例3
単電池の製造
実施例1と同様にして、高分子電解質層を作製し、実施例1で、正極集電体のアルミニウム箔上に正極活物質であるLiMn24と導電助剤のアセチレンブラックの重量比95:5の混合物をサーバーから供給して薄く配置する代わりに、同重量比のLiMn24とアセチレンブラックとLiMn24の0.5重量%のポリフッ化ビニリデンを加えてN−メチルピロリドンを溶媒として用いてスラリーを調製して、これをスプレー塗布装置でアルミ箔集電体上に塗布後、乾燥炉で乾燥して正極として、実施例1と同様にして高分子電解質層にはりつけて単電池を構成した。
【0045】
比較例1
単電池の製造
ゲル電解質電池の製造は次のようにして行なった。ポリマー電解質複合正極は以下の方法で作製した。正極活物質としてLiMn24を60重量%、アセチレンブラック10重量%、高分子の原料モノマーとして、ポリエチレングリコールジアクリレート7重量%、電解質溶液23重量%、アゾビスイソブチロニトリルを0.2重量%を加えて、よく攪拌混合して、できたスラリーをアルミニウム集電体に塗布して80℃にて1時間加熱重合して正極とした。用いた電解質溶液は、プロピレンカーボネートとエチレンカーボネートの体積比1:1の混合溶媒に、1モル/リットルのLiBF4塩を溶解させたものである。正極活物質の代わりに負極活物質として、ハードカーボンを用いて同様にして、負極を製作した。ポリエチレングリコールジアクリレートと電解質溶液の重量比を前記と同様にして調製し、0.5重量%の重合開始剤ベンジルジメチルケタールを加え、紫外線重合してゲル状のポリマー電解質膜を製作した。作製したゲル電解質ポリマー膜と正極、負極をサンドイッチして単電池を構成した。
【0046】
比較例2
単電池の製造
実施例2において、負極活物質ハードカーボンの平均粒径を30μmにした以外は、同様にして単電池を構成した。
【0047】
実施例1の単電池を50mm×50mmの寸法に切り出し、その6個を積層し、それぞれ正負の各端子を接続したのち、その上下両側に弾性層として、厚さ3mmの天然ゴム製のシートを当接し、ステンレス製の電池ケースに収納することにより全固体ポリマー電池(電池電源システム)を得た。
【0048】
このようにした得られた全個体ポリマー電池を、50℃、最大電流値を0.5Cに絞って25Vの定電圧で充電を3時間行ない、10分間の休止後電流値0.5Cの定電流で12Vまで放電を行ない休止する。この充放電サイクルを10回繰り返して、充放電試験を行なった。10回目の充放電曲線を図5に示す。実施例2〜3、比較例1〜2についても同様な積層電池を構成して同様な試験を行ない、結果を充放電の安定性の結果を表1にまとめた。充放電の安定性の判断は、10回後の放電容量が初回に70%以上あれば○とした。表1から分かるように、比較例1のゲル電池では、当然安定な充放電を続けられず、また比較例2の電池は内部短絡が起こったためと考えられるが、実施例1から3の単電池を用いた組み電池電源システムは安定な充放電を行なえた。
【0049】
【表1】

Figure 0004894083
【0050】
【発明の効果】
以上述べたように、本発明によれば、全固体のポリマー電池を短いプロセスで製造できるので、それを用いてセル間での液絡がおこらない積層電池を構成できるので、多層の積層構造とすることにより高電圧の電源システムを容易に構成できる。
【図面の簡単な説明】
【図1】 本発明の単電池の断面の模式図である。
【図2】 本発明の電池システムの断面図である。
【図3】 本発明の単電池の製造法を示す概略図である。
【図4】 本発明の単電池の製造法を示す概略図である。
【図5】 本発明の電池システムの充放電特性を示すグラフである。
【符号の説明】
1…単電池、
2…正極集電体、
3…正極活物質層、
4…正極層、
5…負極集電体、
6…負極活物質層、
7…負極層、
8…電池ケース、
9…弾性層、
21、31…正極集電体、
22、32、39…サーバー、
23、33…正極活物質、
24、34…負極集電体、
25、35…負極活物質、
26、36…高分子電解質、
27、28、37、38…ロール。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an all-solid polymer battery and a method for producing the same. More specifically, the present invention relates to an all-solid polymer battery using a solid polymer electrolyte phase substantially free of a solvent and a method for producing the same.
[0002]
[Prior art]
In recent years, lithium ion secondary batteries that can achieve high energy density and high output density have been developed as large-capacity power supplies for electric vehicles and the like. The basic configuration of a lithium ion secondary battery is that a positive electrode obtained by applying a positive electrode active material such as lithium cobaltate and a conductive auxiliary agent such as acetylene black to an aluminum current collector using a binder such as polyvinylidene fluoride, and a copper current collector. A negative electrode obtained by applying carbon fine particles to a body using a binder is disposed via a polyolefin-based porous membrane separator, and this is filled with a nonaqueous electrolytic solution containing LiPF 6 or the like.
[0003]
Recently, a lithium ion secondary battery using a polymer electrolyte instead of the non-aqueous electrolyte has been developed. By forming the electrolyte into a polymer, it is expected that the battery is free to be shaped and compact. At present, a gel electrolyte in which an electrolyte is impregnated in a polymer has been studied, and a part thereof has been commercialized.
[0004]
Regarding gel electrolytes, see, for example, J. Org. Y. Song et al. Have published a review (J. Power Sources, 77 (1999) 183). According to the review, poly (ethylene oxide), poly (acrylonitrile), poly (methyl methacrylate), poly (vinylidene fluoride) and the like are disclosed as gel electrolytes.
[0005]
Further, as the gel electrolyte, a polyethylene oxide system, a polyacrylonitrile system, a polymethyl methacrylate system, a polyvinylidene fluoride system and a copolymer system containing these have been proposed (Japanese Patent Laid-Open No. 8-264205).
[0006]
[Problems to be solved by the invention]
However, in order to construct a more compact bipolar type assembled battery, if the gel electrolyte batteries as described above are stacked, there is a problem of liquid junction between single cells.
[0007]
Accordingly, an object of the present invention is to provide a battery using a solid polymer electrolyte phase substantially free of a solvent and a method for producing the same.
[0008]
[Means for Solving the Problems]
The above object is achieved by the following (1) to (7).
[0009]
(1) The positive electrode active material and the negative electrode active material are disposed on each current collector, and the three layers of these three layers are sandwiched by sandwiching the adhesive polymer electrolyte layer so that the sides on which the active materials are disposed face each other. Press and stick with the rolls provided on both sides to produce single cells continuously,
Continuously manufactured cells are cut into appropriate shapes and sizes, a plurality of cut cells are stacked, and elastic layers are brought into contact with both sides of the stacked cell stacks so that they are stored in a battery case. A method for producing an all-solid polymer battery.
[0010]
(2) The production method according to the above (1), wherein the main component of the polymer constituting the polymer electrolyte is a polyether polymer having a crosslinked structure.
[0011]
(3) As a method of disposing the positive electrode active material or the negative electrode active material on the respective current collectors, a slurry containing the positive electrode active material or the negative electrode active material is prepared, sprayed on the current collector and then dried. The production method according to (1) or (2) above.
[0012]
(4) The production method according to any one of (1) to (3), wherein the particle diameters of the positive electrode active material and the negative electrode active material are 20 μm or less.
[0013]
(5) An all-solid polymer battery obtained by the production method according to any one of (1) to (4),
A battery in which a plurality of unit cells having a structure in which a positive electrode layer is provided on a positive electrode current collector, a negative electrode layer is provided on a negative electrode current collector, and they are opposed to each other via a polymer electrolyte layer containing a lithium salt are stacked. An all-solid polymer battery characterized in that an elastic layer is brought into contact with both sides of a stacked unit cell stack housed in a case.
[0014]
(6) The all-solid polymer battery according to (5), wherein the elastic layer is a rubber elastic body layer.
[0015]
(7) The all-solid-state polymer battery according to (5) or (6), wherein the main component of the polymer constituting the polymer electrolyte is a polyether having a crosslinked structure.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
[0017]
First, as shown in FIG. 1, the unit cell 1 has a structure in which a positive electrode active material layer 3 is provided on a positive electrode current collector 2 to form a positive electrode layer 4, while a negative electrode active material is formed on a negative electrode current collector 5. The negative electrode layer 7 is formed by providing the layer 6, the polymer electrolyte layer 8 is sandwiched between the positive and negative bipolar layers 4, 7, and both the active material layers 3, 6 are opposed to each other.
[0018]
In order to construct an all solid polymer battery according to the present invention, that is, a power supply system, for example, as shown in FIG. 2, the unit cells 1 are stacked so as to be connected in series, and this is accommodated in a battery case 8, and thus The elastic layer 9 is provided on at least one side of the both side surfaces of the laminate obtained as described above, and the positive and negative terminals 10 and 11 of the power source are respectively connected to the battery current collectors 2 and 5 at both ends (for example, the uppermost and lowermost layers) Take out through Case 8.
[0019]
The elastic layer 9 may be any elastic sheet-like material, and is particularly preferably electrically insulating. For example, there are rubber, synthetic resin and the like. Examples of the rubber include natural rubber, SBR, nitrile rubber, chloroprene rubber, urethane rubber, ethylene-propylene terpolymer, and the like. Synthetic resins include polyethylene and polypropylene.
[0020]
The sheet forming these elastic layers may be a foam or an unfoamed body.
[0021]
Such an all-solid polymer battery according to the present invention is manufactured as follows. That is, first, a positive electrode active material and a negative electrode material are arranged on respective current collectors to form a positive electrode layer and a negative electrode layer, respectively, and these positive and negative electrode layers are arranged so that the side where each active material is arranged faces each other. A single battery of an all-solid polymer battery can be obtained by pressing and adhering with a polymer electrolyte layer having adhesive strength therebetween.
[0022]
As the main component of the polymer constituting the polymer electrolyte layer, any adhesive polymer electrolyte can be used. For example, polyalkyne oxides such as polyethylene oxide and propylene oxide, acrylonitrile-butadiene rubber, and acrylonitrile-butadiene. -There are styrene resins, acrylonitrile polymers such as polyacrylonitrile, and crosslinked polyethers. Among these, a crosslinked polyether is preferable.
[0023]
Examples of the cross-linked polyether include J.I. Electrochem. Soc. 145 , 1521-1527 (1998), which are polymers based on polyethylene oxide (PE) and polypropylene oxide (PO), in particular, random copolymers of polyethylene oxide and polypropylene oxide are crosslinked with triol, Those obtained by esterification with a saturated fatty acid and alkoxylation thereof are preferred. One obtained from such a polyether triol is a partially methylated polyether acrylate.
[0024]
A polymer synthesized using a raw material monomer having a carbon-carbon double bond in the molecule can dissolve lithium salts such as LiBF 4 well, and after drying by heating and removing the solvent sufficiently. However, it is highly sticky and rich in elasticity, so if you place a thin active material on the current collector and place this sticky and elastic polymer layer on top of this to apply pressure from above, It can be affixed to an electric body, and the electrode thus produced can be charged and discharged stably.
[0025]
In the present invention, as a method of disposing the positive electrode active material or the negative electrode active material on the respective current collectors, a slurry containing the positive electrode active material or the negative electrode active material is prepared, sprayed on the current collector and then dried. Thus, a preferable electrode active material layer with good uniformity can be formed. Moreover, since it will be easy to short-circuit if the particle size of the active material to be used is too large, it is desirable that it is 20 micrometers or less.
[0026]
Furthermore, the thin-film laminated battery manufactured here is cut out into an appropriate shape and size and stacked, and a structure is provided with an elastic layer on at least one of the stacked sides, thereby configuring a stable power supply system it can.
[0027]
Moreover, as a method of manufacturing the said cell continuously, there exist the following methods, for example.
[0028]
As shown in FIG. 3 , a positive electrode current collector foil 21 supplied with a mixture (positive electrode active material mixture) 23 of a positive electrode active material and a conductive additive from a positive electrode active material server 22, and a negative electrode current collector foil 24 A polymer electrolyte layer 26 is disposed between the negative electrode active material 25 pressed and pasted thereon, and these three layers are pressed and pasted by rolls 27 and 28. In this case, instead of the server 22, a spray coating device and a subsequent drying furnace (both not shown) can be provided, and a more uniform positive electrode active material layer can be formed.
[0029]
FIG. 4 shows another embodiment of the method of the present invention. A mixture (positive electrode active material mixture) 33 of a positive electrode active material and a conductive auxiliary agent is supplied from a positive electrode active material server 32 onto a positive electrode current collector foil 31. And a polymer electrolyte layer 36 between the negative electrode current collector foil 34 and the negative electrode active material server 39 supplied with a mixture (negative electrode active material mixture) 35 of a negative electrode active material and a conductive additive. Arrange and press these three layers with rolls 37 and 38 and stick them. Further, the balance between the electric capacities of the positive electrode and the negative electrode is governed by the positive electrode capacity, so that stable charge and discharge can be performed. In this case, instead of the servers 32 and 39, a spray coating device and a subsequent drying furnace (both not shown) can be provided, and a more uniform positive electrode active material layer can be formed.
[0030]
In the present invention, examples of the positive electrode current collector foil include an aluminum foil, and examples of the negative electrode current collector foil include a copper foil, a nickel foil, a stainless steel foil, and an iron foil.
[0031]
As the positive electrode active material, a lithium compound, for example, a general formula Li x MO 2 or LiMyMn 2-y O 4 (wherein M represents at least one transition metal selected from the group consisting of Mn, Co, and Ni). Wherein x is 0.00 ≦ x ≦ 1.10 and y is 0.05 <y <0.5) is preferably used. Since these are solid particles, they are usually used as fine particles of 25 μm or less, preferably 20 μm or less.
[0032]
When the active material fine powder is arranged on the current collector, it is better not to use a binder such as polyfucavinylidene or SBR which is usually used in terms of battery performance, but the active material is arranged on the current collector by spray coating. In some cases, a binder is not necessarily used. From the viewpoint of battery performance, it is preferable that the amount of the binder used is small, so that it is desirable that the amount does not exceed 1% of the active material to be used. This is because if the amount of the binder is too large, the surface of the active material is covered with the binder, and the movement of ions for charge / discharge reaction is greatly impaired.
[0033]
As the negative electrode active material, a lithium metal, a lithium alloy, or a carbonaceous material capable of occluding lithium is used. Examples of carbonaceous materials include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired bodies (furan resins, etc., fired at an appropriate temperature. Carbon), carbon fiber, activated carbon and the like.
[0034]
Moreover, as an electrolyte salt, it is excellent in terms of ion conductivity, and is very effective for imparting flame retardancy to the gel. Therefore, LiBF 4 , LiPF 6 , Li (CF 2 SO 2 ) 2 N, etc. Lithium imide salt and the like are preferable. Mixtures of lithium imide salts such as LiBF 4 , LiPF 6 , Li (CF 2 SO 2 ) 2 N and other lithium salts can also be used. The amount used is 5 to 50% by weight, preferably 20 to 40% by weight, based on the polymer electrolyte.
[0035]
【Example】
Next, the present invention will be described in more detail with reference to examples and comparative examples.
[0036]
Example 1
Manufacture of unit cell The polymer electrolyte was manufactured as follows. According to the method described in J. Electrochem. Soc., 145 , 1521-1527 (1998), a polyether type network polymer raw material was synthesized.
[0037]
First, a polyether triol composed of a random copolymer of ethylene oxide (EO) and propylene oxide (PO) was prepared by anionic ring-opening polymerization using potassium hydroxide as a catalyst in the presence of glycerol as a starting material. In this case, the EO / PO monomer ratio EO / PO is controlled to 86/14, and a mixture of EO and PO is continuously supplied to the autoclave. The polyether triol obtained at a temperature of 120 ° C. has a molecular weight of about 8, The reaction was continued until 000. The resulting crude copolymer was neutralized with sulfuric acid and purified by desalting. The molecular weight of the polyether triol was determined by titration of terminal OH groups.
[0038]
Some terminal OH groups of the polyether triol were changed to sodium alkoxide by reacting with sodium methoxide in methanol and then methylated by Williamson condensation reaction in methanol using methyl chloride. . This reaction was carried out in an autoclave at a temperature of 110 ° C. for 3 hours. The partially methylated polyether triol obtained was purified by desalting and then dried under reduced pressure.
[0039]
The remaining terminal OH group was esterified to an acryloyl group to obtain a partially methylated polyether acrylate (PMPEA). The esterification reaction was carried out while removing water in 6 to 10 hours by azeotroping a mixture of toluene, acrylic acid and partially methylated polyether triol at reflux temperature. The amount of acrylic acid used was 2.5 equivalents with respect to the remaining terminal OH groups, and 2% by weight of p-toluenesulfonic acid was added as a catalyst with respect to the partially methylated polyether triol.
[0040]
After completion of the reaction, the reaction mixture was neutralized and purified by desalting to remove p-toluenesulfonic acid and excess acrylic acid. The obtained toluene solution of PMPEA was dehydrated on a molecular sieve, and toluene was removed under reduced pressure.
[0041]
1% by weight of benzyldimethyl ketal as a photopolymerization initiator with respect to PMPEA, propylene carbonate as a solvent, 36% by weight of LiBF 4 as a lithium salt with respect to PMPEA, and 50 μm thick Teflon Using a spacer, the glass substrate was filled with this highly viscous solution and irradiated with ultraviolet rays for 20 minutes for photopolymerization (crosslinking). The film was taken out, put into a vacuum container, and heated and dried under high vacuum at 90 ° C. for 12 hours to prepare a film from which the solvent was removed. The obtained film was elastic and sticky.
[0042]
The unit cell was manufactured as follows. As shown in FIG. 3, a lithium foil was pressed against a copper foil negative electrode current collector, and LiMn 2 O 4 having an average particle diameter of 2 μm as a positive electrode active material was applied onto the aluminum foil of the positive electrode current collector. A mixture of 95% by weight of acetylene black as a conductive additive and 5% by weight of a conductive auxiliary agent is supplied from a server and placed thinly, and the polymer electrolyte membrane prepared above is sandwiched in the center and applied with appropriate pressure with a roll. I put on a cell.
[0043]
Example 2
Manufacture of unit cell A polymer electrolyte layer was prepared in the same manner as in Example 1, and instead of the lithium metal foil on the negative electrode current collector, hard carbon fine powder having an average particle diameter of 5 μm was disposed in the same manner as the positive electrode. Then, in the same manner as in Example 1, the polymer electrolyte layer was sandwiched between the positive and negative electrodes, and the cells were laminated together to produce a single cell. The areal density of the positive and negative electrode active materials was such that the positive electrode capacity determined the battery capacity.
[0044]
Example 3
Production of unit cell A polymer electrolyte layer was prepared in the same manner as in Example 1. In Example 1, on the aluminum foil of the positive electrode current collector, LiMn 2 O 4 as the positive electrode active material and acetylene black as the conductive auxiliary agent. Instead of supplying a 95: 5 weight ratio of the mixture from the server and placing it thinly, 0.5 wt% polyvinylidene fluoride of LiMn 2 O 4 , acetylene black and LiMn 2 O 4 in the same weight ratio was added to add N -A slurry is prepared using methylpyrrolidone as a solvent, and this is coated on an aluminum foil current collector with a spray coating device, and then dried in a drying furnace to form a positive electrode in the same manner as in Example 1. A single cell was constructed by sticking.
[0045]
Comparative Example 1
Manufacture of unit cell The gel electrolyte battery was manufactured as follows. The polymer electrolyte composite positive electrode was produced by the following method. 60% by weight of LiMn 2 O 4 as positive electrode active material, 10% by weight of acetylene black, 7% by weight of polyethylene glycol diacrylate, 23% by weight of electrolyte solution, 0.2% of azobisisobutyronitrile as raw material monomers for the polymer The mixture was stirred and mixed well, and the resulting slurry was applied to an aluminum current collector and heated and polymerized at 80 ° C. for 1 hour to obtain a positive electrode. The electrolyte solution used was prepared by dissolving 1 mol / liter LiBF 4 salt in a mixed solvent of propylene carbonate and ethylene carbonate in a volume ratio of 1: 1. A negative electrode was produced in the same manner using hard carbon as the negative electrode active material instead of the positive electrode active material. A weight ratio of polyethylene glycol diacrylate to the electrolyte solution was prepared in the same manner as described above, 0.5 wt% of the polymerization initiator benzyldimethyl ketal was added, and ultraviolet polymerization was performed to produce a gel polymer electrolyte membrane. A single battery was constructed by sandwiching the prepared gel electrolyte polymer film, the positive electrode, and the negative electrode.
[0046]
Comparative Example 2
Single Cell Production In Example 2, a single cell was constructed in the same manner except that the average particle size of the negative electrode active material hard carbon was 30 μm.
[0047]
A cut-out single cell of Example 1 in the dimensions of 50 mm × 50 mm, its six stacked, after connecting the terminals of the positive and negative, on the upper and lower sides as elastic layer, made of natural rubber having a thickness of 3mm sheet Was placed in a stainless steel battery case to obtain an all solid polymer battery (battery power supply system).
[0048]
The solid polymer battery thus obtained was charged at 50 ° C. with a maximum current value of 0.5 C and charged at a constant voltage of 25 V for 3 hours, and after a 10-minute pause, a constant current of 0.5 C To discharge to 12V and pause. This charge / discharge cycle was repeated 10 times to conduct a charge / discharge test. FIG. 5 shows the 10th charge / discharge curve. For Examples 2 to 3 and Comparative Examples 1 to 2, similar laminated batteries were constructed and subjected to the same test, and the results of charging and discharging stability are summarized in Table 1. Judgment of the stability of charge / discharge was evaluated as ◯ if the discharge capacity after 10 times was 70% or more in the first time. As can be seen from Table 1, the gel battery of Comparative Example 1 naturally cannot continue to be stably charged and discharged, and the battery of Comparative Example 2 is considered to have been caused by an internal short circuit. The assembled battery power system using the battery can stably charge and discharge.
[0049]
[Table 1]
Figure 0004894083
[0050]
【Effect of the invention】
As described above, according to the present invention, an all-solid polymer battery can be manufactured in a short process, and thus a laminated battery that does not cause liquid junction between cells can be formed using the multilayer battery structure. By doing so, a high-voltage power supply system can be easily configured.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cross section of a unit cell of the present invention.
FIG. 2 is a cross-sectional view of the battery system of the present invention.
FIG. 3 is a schematic view showing a method for producing a unit cell of the present invention.
FIG. 4 is a schematic view showing a method for producing a unit cell of the present invention.
FIG. 5 is a graph showing charge / discharge characteristics of the battery system of the present invention.
[Explanation of symbols]
1 ... single cell,
2 ... positive electrode current collector,
3 ... positive electrode active material layer,
4 ... positive electrode layer,
5 ... negative electrode current collector,
6 ... negative electrode active material layer,
7 ... negative electrode layer,
8 ... Battery case,
9 ... elastic layer,
21, 31 ... positive electrode current collector,
22, 32, 39 ... server,
23, 33 ... positive electrode active material,
24, 34 ... negative electrode current collector,
25, 35 ... negative electrode active material,
26, 36 ... polymer electrolyte,
27, 28, 37, 38 ... rolls.

Claims (7)

正極活物質と負極活物質をそれぞれの集電体上に配置し、それらの活物質が配置された側が向き合うようにして粘着力がある高分子電解質層を挟んで、これら3層の両サイドに設けたロールで押圧して貼着して単電池を連続的に製作し、
連続的に製作された単電池を適当な形、サイズに切り出し、切り出した単電池を複数個積層し、積層された単電池積層体の両側に弾性層を当接し、電池ケースに収納することを特徴とする全固体ポリマー電池の製造法。
The positive electrode active material and the negative electrode active material are arranged on each current collector, and the side on which the active material is arranged faces each other and an adhesive polymer electrolyte layer is sandwiched between both sides of these three layers. Pressing and sticking with the provided roll to produce single cells continuously,
Continuously manufactured cells are cut into appropriate shapes and sizes, a plurality of cut cells are stacked, and elastic layers are brought into contact with both sides of the stacked cell stacks so that they are stored in a battery case. A method for producing an all-solid polymer battery.
高分子電解質を構成するポリマーの主成分が架橋構造を有するポリエーテル系高分子である請求項に記載の製造法。The production method according to claim 1 , wherein the main component of the polymer constituting the polymer electrolyte is a polyether polymer having a crosslinked structure. 正極活物質あるいは負極活物質をそれぞれの集電体上に配置する方法として、正極活物質あるいは負極活物質を含むスラリーを調整して、集電体上にスプレー塗布後乾燥したものである請求項またはに記載の製造法。The method for arranging the positive electrode active material or the negative electrode active material on each current collector is prepared by preparing a slurry containing the positive electrode active material or the negative electrode active material, spraying the current collector and then drying it. 3. The production method according to 1 or 2 . 正極活物質および負極活物質の粒径が20μm以下である請求項のいずれかに一つに記載の製造法。 Process according to one any of claims 1 to 3, the particle size of the positive electrode active material and the anode active material is 20μm or less. 請求項1〜4のいずれかに記載の製造法により得られてなることを特徴とする全固体ポリマー電池であって、
正極集電体上に正極層を設け、負極集電体上に負極層を設け、かつそれらをリチウム塩を含む高分子電解質層を介して対向させた構造の単電池複数個積層されて電池ケースに収納されており、積層された単電池積層体の両側に弾性層が当接されてなることを特徴とする全固体ポリマー電池。
An all-solid polymer battery obtained by the production method according to claim 1,
It provided positive electrode layer on the positive electrode current collector, the negative electrode provided with a negative electrode layer on the current collector, and they are a plurality stacked unit cells of the structure opposed to each other through the polymer electrolyte layer containing a lithium salt battery It is housed in a case, all solid polymer battery, wherein the elastic layer on both sides of the laminated unit cells stacked body is formed by abutting.
該弾性層は、ゴム性体層である請求項に記載の全固体ポリマー電池。Elastic layer, all solid polymer battery according to claim 5 which is a rubber bullet material layer. 高分子電解質を構成するポリマーの主成分が、架橋構造を有するポリエーテルである請求項またはに記載の全固体ポリマー電池。The all-solid-state polymer battery according to claim 5 or 6 , wherein a main component of a polymer constituting the polymer electrolyte is a polyether having a crosslinked structure.
JP2000296507A 2000-09-28 2000-09-28 All-solid polymer battery and method for producing the same Expired - Lifetime JP4894083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296507A JP4894083B2 (en) 2000-09-28 2000-09-28 All-solid polymer battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296507A JP4894083B2 (en) 2000-09-28 2000-09-28 All-solid polymer battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002110239A JP2002110239A (en) 2002-04-12
JP4894083B2 true JP4894083B2 (en) 2012-03-07

Family

ID=18778777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296507A Expired - Lifetime JP4894083B2 (en) 2000-09-28 2000-09-28 All-solid polymer battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4894083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816765B1 (en) * 2015-06-04 2018-01-10 주식회사 엘지화학 A protection film for a lamination of an electrode and a method for manufacturing a secondary battery using the same
WO2023182681A1 (en) * 2022-03-23 2023-09-28 삼성에스디아이주식회사 All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539051B2 (en) * 2003-08-04 2010-09-08 日産自動車株式会社 Lithium secondary battery
JP5114950B2 (en) 2006-02-13 2013-01-09 日産自動車株式会社 Battery module, assembled battery, and vehicle equipped with these batteries
JP2008021517A (en) * 2006-07-12 2008-01-31 Sony Corp Nonaqueous secondary battery
KR100810601B1 (en) * 2006-12-29 2008-03-06 새한에너테크 주식회사 Crude cell for large secondary battery and manufacturing method thereof
US20090162754A1 (en) * 2007-12-21 2009-06-25 Bathium Canada Inc. Electrolyte for lithium polymer batteries
CA2750164C (en) * 2009-01-27 2015-06-30 G4 Synergetics, Inc. Variable volume containment for energy storage devices
FR2960705B1 (en) * 2010-05-27 2012-08-17 Batscap Sa LITHIUM BATTERY PROTECTED AGAINST INTRUSION OF SHARP ELEMENTS
KR101269943B1 (en) * 2010-12-02 2013-05-31 주식회사 엘지화학 Manufacture Device of Battery Cell
US20120219841A1 (en) * 2011-02-25 2012-08-30 Applied Materials, Inc. Lithium ion cell design apparatus and method
JP6430760B2 (en) * 2014-09-24 2018-11-28 日本特殊陶業株式会社 All solid state battery and manufacturing method thereof
JP2016139521A (en) * 2015-01-27 2016-08-04 日産自動車株式会社 Nonaqueous electrolyte secondary battery
CN114361659A (en) 2016-04-19 2022-04-15 加拿大蓝色解决方案有限公司 Compressed lithium metal polymer battery
EP3255707A1 (en) * 2016-06-07 2017-12-13 Université de Liège Process to prepare an electrode for an electrochemical storage device
US11245148B2 (en) * 2017-03-29 2022-02-08 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and battery module
JP2019061861A (en) * 2017-09-27 2019-04-18 日立造船株式会社 All-solid battery and manufacturing method of the same
JP7090259B2 (en) * 2018-03-28 2022-06-24 株式会社カネカ Positive electrode of non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and its manufacturing method
US20230387471A1 (en) * 2021-09-28 2023-11-30 Lg Energy Solution, Ltd. Electrode assembly and secondary battery comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376273A (en) * 1986-09-18 1988-04-06 Yuasa Battery Co Ltd Polymer solid electrolyte
IT1222929B (en) * 1987-10-16 1990-09-12 Enirecherche S P A SOLID POLYMER ELECTROLYTE AND ELECTROCHEMICAL GENERATORS THAT CONTAIN IT
JP3152305B2 (en) * 1991-01-31 2001-04-03 株式会社ユアサコーポレーション Polymer solid electrolyte
JPH09204935A (en) * 1996-01-24 1997-08-05 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000100471A (en) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd Sheet battery
JP2000223085A (en) * 1999-01-28 2000-08-11 Mitsubishi Chemicals Corp Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816765B1 (en) * 2015-06-04 2018-01-10 주식회사 엘지화학 A protection film for a lamination of an electrode and a method for manufacturing a secondary battery using the same
WO2023182681A1 (en) * 2022-03-23 2023-09-28 삼성에스디아이주식회사 All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery

Also Published As

Publication number Publication date
JP2002110239A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP4894083B2 (en) All-solid polymer battery and method for producing the same
KR100279068B1 (en) Battery adhesive, battery using same and manufacturing method thereof
JP4352475B2 (en) Solid electrolyte secondary battery
EP1391958A1 (en) Composition for polymer gel electrolyte, polymer gel electrolyte, and secondary battery and electric double layer capacitor each employing the electrolyte
KR20040005956A (en) Polymer gel electrolyte-use composition and method of pouring non-aqueous electrolyte solution
JP2004134116A (en) Bipolar battery
KR20050057462A (en) Composition for polyelectrolytes, polyelectrolytes, electrical double layer capacitors and nonaqueous electrolyte secondary cells
JP2000188099A (en) Manufacture of thin film type battery
JP4014816B2 (en) Lithium polymer secondary battery
JP2020009548A (en) Power storage device
KR20200060365A (en) Composition for functional layer of non-aqueous secondary battery, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP2003031261A (en) Bipolar battery
TW561641B (en) Lithium polymer secondary cell and its manufacturing method
JP4559587B2 (en) Solid lithium polymer battery
KR102367371B1 (en) Anode and Lithium Secondary Battery Comprising the Same
JP2003331838A (en) Lithium secondary battery
JP4092620B2 (en) Polymer electrolyte battery
JP2000133248A (en) Manufacture of thin film type battery
CN115172864A (en) Solid-state battery and preparation method and application thereof
JP2000003728A (en) Lithium secondary battery and manufacture thereof
JP2003068364A (en) Secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
JP3379567B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3