JP2000100471A - Sheet battery - Google Patents

Sheet battery

Info

Publication number
JP2000100471A
JP2000100471A JP10268159A JP26815998A JP2000100471A JP 2000100471 A JP2000100471 A JP 2000100471A JP 10268159 A JP10268159 A JP 10268159A JP 26815998 A JP26815998 A JP 26815998A JP 2000100471 A JP2000100471 A JP 2000100471A
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
active material
layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268159A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10268159A priority Critical patent/JP2000100471A/en
Publication of JP2000100471A publication Critical patent/JP2000100471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent self-discharging between a positive electrode active material layer and a negative electrode active material layer by providing a bipolar electrode unit having the positive electrode active material layer on a current collector layer for a positive electrode of a composite current collector and having the negative electrode active material layer on a current collector layer for a negative electrode and a solid electrolyte. SOLUTION: In a composite current collector P having one surface being a current collector layer for the positive electrode and the other surface being a current collector layer for the negative electrode, a positive electrode active material layer CP1 is arranged on the current collector layer for the positive electrode, and a negative electrode active material layer AP1 is arranged on the current collector layer for the negative electrode to constitute a bipolar electrode unit BU. In respective sets of two sets by connecting, for example, this bipolar electrode unit BU in series by two units, a solid electrolyte ES is interposed between the two bipolar electrode units BU. A positive electrode terminal CT of a battery is positioned between two positive electrode active material layers CP1 existing on both sides so that the surface for dividing the positive electrode terminal CT into two parts along an X-X line at a right angle to a space becomes the reference surface of the mirror image relationship.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次シー
ト電池などのシート電池に関する。
The present invention relates to a sheet battery such as a lithium secondary sheet battery.

【0002】[0002]

【従来の技術】携帯用の電話やパソコンなどの電子機器
用の電池として放電容量の大きいリチウム二次電池が脚
光を浴びている。このリチウム二次電池として、従来は
主として円柱状や箱型などの立体型電池が主流をなして
きたが、近時、スペースファクター並びに軽量の点から
リチウム二次シート電池に関心が高まっている。
2. Description of the Related Art A lithium secondary battery having a large discharge capacity has been spotlighted as a battery for electronic equipment such as a portable telephone and a personal computer. Conventionally, as such a lithium secondary battery, a three-dimensional battery such as a columnar or box-shaped battery has been mainly used, but recently, attention has been paid to a lithium secondary sheet battery in view of a space factor and a light weight.

【0003】従来のリチウム二次シート電池は、負極シ
ートと正極シートとをセパレータを介して積層した構造
のシート状の発電要素体を適当な防水性シートからなる
袋体に収容し、ついで液体の電解質を充填して封止した
構造を有する。液体電解質は、立体型電池の場合と同様
に、セパレータに含浸した状態で機能する。
In a conventional lithium secondary sheet battery, a sheet-like power generating element having a structure in which a negative electrode sheet and a positive electrode sheet are stacked with a separator interposed therebetween is accommodated in a bag made of a suitable waterproof sheet. It has a structure filled with electrolyte and sealed. The liquid electrolyte functions in a state where the separator is impregnated, as in the case of the three-dimensional battery.

【0004】リチウム二次シート電池の長所は、立体型
電池と異なって薄型であるので、放熱性が良好なために
電池内に熱が籠もる程度が低く、このためにたとえ何ら
かの理由で過電流が流れ、あるいは釘などによる貫通傷
が生じても、電池内部のリチウムの燃焼による爆発事故
が起こり難く頗る安全なることである。
The advantage of a lithium secondary sheet battery is that, unlike a three-dimensional battery, it is thin, and because of its good heat dissipation, the degree of heat trapped in the battery is low. Even if a current flows or a penetrating scratch is caused by a nail or the like, an explosion accident due to burning of lithium inside the battery is unlikely to occur, which is extremely safe.

【0005】リチウム二次シート電池に限らずシート電
池の容量を大きくするには、一対の負極シートと正極シ
ートとの組み合わせ(以下単位セル)の複数を直列接続
し、直列接続したものを並列接続して有効反応面積を大
きくする。その際、単位セル間の接続抵抗が増大する問
題があることに鑑みて、特開平8−7926号公報に
は、単位セルとしてバイポーラ電極ユニットを採用し、
且つ電解質として液体電解質を用いる提案がなされてい
る。
In order to increase the capacity of not only lithium secondary sheet batteries but also sheet batteries, a plurality of combinations (hereinafter, unit cells) of a pair of a negative electrode sheet and a positive electrode sheet are connected in series, and those connected in series are connected in parallel. To increase the effective reaction area. At that time, in view of the problem that the connection resistance between the unit cells increases, Japanese Patent Application Laid-Open No. H8-7926 adopts a bipolar electrode unit as the unit cell,
In addition, proposals have been made to use a liquid electrolyte as an electrolyte.

【0006】バイポーラ電極ユニットとは、図3にその
断面図を示す(符号BUで示す)ように、一方の面が正
極用集電体層CPであり他方の面が負極用集電体層AP
である複合集電体Pの正極用集電体層CPの上に正極活
物質層CP1を有し、負極用集電体層APの上に負極活
物質層AP1を有する構造のものである。図4には、か
かる構造のバイポーラ電極ユニットBUを一つ用いたシ
ート電池の断面図例を示し、バイポーラ電極ユニットB
Uを中間において、その上にセパレータSを介して負極
シートASを重ね、一方、その下にセパレータSを介し
て正極シートCSを重ねたシート電池の断面図を示す。
LEは、液体電解質である。
As shown in FIG. 3 (indicated by reference numeral BU), the bipolar electrode unit has a positive electrode current collector layer CP on one side and a negative electrode current collector layer AP on the other side.
The composite current collector P has a structure in which the positive electrode active material layer CP1 is provided on the positive electrode current collector layer CP, and the negative electrode active material layer AP1 is provided on the negative electrode current collector layer AP. FIG. 4 shows an example of a sectional view of a sheet battery using one bipolar electrode unit BU having such a structure.
A cross-sectional view of a sheet battery in which a negative electrode sheet AS is stacked with a separator U interposed therebetween with a separator S interposed therebetween, while a positive electrode sheet CS is stacked with a separator S interposed therebetween under U.
LE is a liquid electrolyte.

【0007】ところでバイポーラ電極ユニットBUを使
用した場合、その正極活物質層CP1と負極活物質層A
P1との各先端間では導電性たる液体電解質LEが連通
しているので、矢印Yで示すように、該両先端間で自己
放電する問題がある。図5は、かかる自己放電を防止し
得る電池の断面図であって、負極シートASの集電体層
AS1とバイポーラ電極ユニットBUの正極用集電体層
CPとの間、および正極シートCSの集電体層CS1と
バイポーラ電極ユニットBUの負極用集電体層APとの
間に、それぞれ電気絶縁体EIを設けて液体電解質の連
通を遮断し、自己放電を防止する。
When the bipolar electrode unit BU is used, the positive electrode active material layer CP1 and the negative electrode active material layer A
Since the liquid electrolyte LE, which is a conductive material, is in communication between P1 and each tip, there is a problem that self-discharge occurs between the two tips as shown by the arrow Y. FIG. 5 is a cross-sectional view of a battery that can prevent such self-discharge, and shows a portion between the current collector layer AS1 of the negative electrode sheet AS and the positive electrode current collector layer CP of the bipolar electrode unit BU, and a diagram of the positive electrode sheet CS. An electric insulator EI is provided between the current collector layer CS1 and the negative electrode current collector layer AP of the bipolar electrode unit BU to interrupt communication of the liquid electrolyte and prevent self-discharge.

【0008】しかしながら、この電気絶縁体EIによる
液体電解質の連通の遮断が不十分であると自己放電を防
止することができないので、その遮断は確実に行なう必
要がある。またシート電池の多くの用途においては、バ
イポーラ電極ユニットBUの多数を積層するケースが多
く、積層の度に電気絶縁体EIが必要となる。したがっ
て電気絶縁体EIの設置は、シート電池の製造工程を増
やす問題があり、それのみならず、電池の構造を複雑に
する、電池の厚みを増大させる、正負活物質層の面積が
小さくなる、などの問題を惹起する。
However, if the interruption of the communication of the liquid electrolyte by the electric insulator EI is insufficient, self-discharge cannot be prevented, so that the interruption must be surely performed. In many applications of the sheet battery, a large number of bipolar electrode units BU are often stacked, and an electrical insulator EI is required for each stack. Therefore, the installation of the electric insulator EI has a problem of increasing the number of manufacturing steps of the sheet battery, but also complicates the structure of the battery, increases the thickness of the battery, reduces the area of the positive and negative active material layers, And other problems.

【0009】[0009]

【発明が解決しようとする課題】上記に鑑み本発明は、
バイポーラ電極ユニットの正極活物質層と負極活物質層
との間での自己放電が防止されたシート電池を提供する
ことを課題とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides
It is an object to provide a sheet battery in which self-discharge between a positive electrode active material layer and a negative electrode active material layer of a bipolar electrode unit is prevented.

【0010】[0010]

【課題を解決するための手段】上記の課題は、つぎのシ
ート電池により解決することができる。 (1) 一方の面が正極用集電体層であり他方の面が負極用
集電体層である複合集電体の正極用集電体層の上に正極
活物質層を有し、負極用集電体層の上に負極活物質層を
有するバイポーラ電極ユニットと、固体電解質とを有す
ることを特徴とするシート電池。 (2) 複合集電体が、一方の極の集電体層となる金属箔の
片面に他方の極の集電体層となる金属をメッキして形成
してなるものである上記(1) 記載のシート電池。 (3) 複合集電体が、負極用集電体層となる金属と正極用
集電体層となる金属のクラッド材を圧延して形成してな
るものである上記(1) または(2) 記載のシート電池。 (4) 正極用集電体層がアルミニウム層であり、負極用集
電体層が銅層である上記(1) 〜(3) のいずれかに記載の
シート電池。 (5) バイポーラ電極ユニットの1つまたは直列接続され
た複数個を有する1番目の組とバイポーラ電極ユニット
の1つまたは直列接続された複数個を有する2番目の組
とが並列接続されており、1番目の組の放電容量を10
0としたとき、2番目の組の放電容量が100±10の
範囲内にある上記(1) 〜(4) のいずれかに記載のシート
電池。 (6) リチウム二次電池である上記(1) 〜(5) のいずれか
に記載のシート電池。
The above object can be solved by the following sheet battery. (1) having a positive electrode active material layer on the positive electrode current collector layer of a composite current collector in which one surface is a positive electrode current collector layer and the other surface is a negative electrode current collector layer; A sheet battery comprising: a bipolar electrode unit having a negative electrode active material layer on a current collector layer for use; and a solid electrolyte. (2) The composite current collector is formed by plating one side of a metal foil serving as a current collector layer of one pole with a metal serving as a current collector layer of the other pole and forming the same (1). A sheet battery as described. (3) The composite current collector is formed by rolling a clad material of a metal to be a current collector layer for a negative electrode and a metal to be a current collector layer for a positive electrode, (1) or (2). A sheet battery as described. (4) The sheet battery according to any one of the above (1) to (3), wherein the positive electrode current collector layer is an aluminum layer, and the negative electrode current collector layer is a copper layer. (5) a first set having one or a plurality of serially connected bipolar electrode units and a second set having one or a plurality of serially connected bipolar electrode units are connected in parallel; Set the discharge capacity of the first set to 10
The sheet battery according to any one of (1) to (4), wherein the discharge capacity of the second set is within a range of 100 ± 10 when 0 is set. (6) The sheet battery according to any one of the above (1) to (5), which is a lithium secondary battery.

【0011】[0011]

【作用】固体電解質は、液体電解質と異なって、基本的
に正極活物質層と負極活物質層とが直接対向する面間の
みに設置される。あるいはその面間の両端を越えること
もあるが、固体電解質は前記した図4上で矢印Yが記載
された辺りにまでは及ばず、その辺りは通常真空または
気体が存在する。よって本発明においては、バイポーラ
電極ユニットBUの正極活物質層CP1と負極活物質層
AP1(図3参照)との各先端間は真空または気体にて
電気的に絶縁されているので両層間での自己放電が防止
される。
The solid electrolyte, unlike the liquid electrolyte, is basically provided only between the surfaces where the positive electrode active material layer and the negative electrode active material layer directly face each other. Alternatively, the solid electrolyte may exceed both ends between the surfaces, but the solid electrolyte does not reach the vicinity indicated by the arrow Y in FIG. 4 described above, and a vacuum or a gas usually exists in the vicinity. Therefore, in the present invention, since the front ends of the positive electrode active material layer CP1 and the negative electrode active material layer AP1 (see FIG. 3) of the bipolar electrode unit BU are electrically insulated by vacuum or gas, the space between the two layers is maintained. Self-discharge is prevented.

【0012】[0012]

【発明の実施の形態】本発明で用いられるバイポーラ電
極ユニットは、一般的には前記した図3に示す従来構造
と基本的に同じものであってよいので、以下においては
バイポーラ電極ユニットの説明は引き続き図3による。
バイポーラ電極ユニットBUの各部の構成材料は、従来
から周知の材料でよい。そこで以下には、リチウム二次
シート電池の場合を例にとって各層の周知材料のうちの
若干例を挙げておく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The bipolar electrode unit used in the present invention may be basically the same as the conventional structure shown in FIG. 3 described above. Continued with FIG.
The constituent material of each part of the bipolar electrode unit BU may be a conventionally known material. Therefore, in the following, some examples of well-known materials of each layer will be given taking the case of a lithium secondary sheet battery as an example.

【0013】正極用集電体層CPの材料としては、アル
ミニウム、アルミニウム合金、チタンなどの導電性金属
を例示し得る。就中、アルミニウムが特に好ましい。一
方、負極用集電体層APの材料としては、銅、ニッケ
ル、銀、SUSなどの導電性金属を例示し得る。就中、
銅が特に好ましい。複合集電体Pにおける正極用集電体
層CPおよび負極用集電体層APの各厚みは、通常通り
でよく両層とも例えば1〜100μm程度である。
Examples of the material of the positive electrode current collector layer CP include conductive metals such as aluminum, aluminum alloy, and titanium. Of these, aluminum is particularly preferred. On the other hand, examples of the material of the negative electrode current collector layer AP include conductive metals such as copper, nickel, silver, and SUS. Above all,
Copper is particularly preferred. The thickness of each of the positive electrode current collector layer CP and the negative electrode current collector layer AP in the composite current collector P may be as usual, and both layers are, for example, about 1 to 100 μm.

【0014】複合集電体Pにおいては、正極用集電体層
CPと負極用集電体層APとは、互いに直接あるいは第
三の材料からなる中間層(図3では図示せず)を介して
電気的に導通している。バイポーラ電極ユニットを採用
する趣旨は、前記した通り従来の単位セル間の接続抵抗
の増大を軽減することにあるが、それと共にシート電池
全体の厚みを薄くする狙いもある。後者の場合には、上
記した中間層を排して正極用集電体層CPと負極用集電
体層APとを直接接合することが好ましい。また正極用
集電体層CPと負極用集電体層APとの電気的導通を一
層良好となすために、両層は単に物理的に密着している
よりも金属結合していることが好ましい。両層が金属結
合した複合集電体Pは、例えば、一方の極の集電体層と
なる金属箔の片面に他方の極の集電体層となる金属を電
気メッキ、どぶ漬けメッキなどにてメッキする方法、負
極用集電体層となる金属と正極用集電体層となる金属の
クラッド材を圧延する方法、などにより得ることができ
る。
In the composite current collector P, the positive electrode current collector layer CP and the negative electrode current collector layer AP are directly connected to each other or via an intermediate layer (not shown in FIG. 3) made of a third material. And are electrically conductive. The purpose of employing the bipolar electrode unit is to reduce the increase in connection resistance between the conventional unit cells as described above, but also to reduce the thickness of the entire sheet battery. In the latter case, it is preferable to directly join the positive electrode current collector layer CP and the negative electrode current collector layer AP by removing the above-mentioned intermediate layer. Further, in order to further improve the electrical continuity between the positive electrode current collector layer CP and the negative electrode current collector layer AP, it is preferable that both layers are metal-bonded rather than simply being in close physical contact. . The composite current collector P in which both layers are metal-bonded is formed by, for example, electroplating or soaking plating on one surface of a metal foil to be a current collector layer of one electrode and a metal to be a current collector layer of the other electrode. And a method of rolling a clad material of a metal serving as a current collector layer for a negative electrode and a metal serving as a current collector layer for a positive electrode, and the like.

【0015】正極用集電体層CPがアルミニウムであ
り、負極用集電体層APが銅である複合集電体Pをメッ
キ方法により製造する際には、アルミニウム箔の片面に
銅を通常の方法で電気メッキすると、2μm前後の薄い
銅層を容易に形成することができる。
When a composite current collector P in which the positive electrode current collector layer CP is aluminum and the negative electrode current collector layer AP is copper is produced by a plating method, copper is coated on one side of an aluminum foil in a usual manner. When electroplating by this method, a thin copper layer of about 2 μm can be easily formed.

【0016】正極活物質としては、LiCoO2 などの
Li・Co系複合酸化物、LiNiO2 などのLi・N
i系複合酸化物、LiMn2 4 などのLi・Mn系複
合酸化物などである。正極活物質の結着剤としてはポリ
テトラフルオロエチレン、ポリビニリデンフルオリド、
ポリエチレン、エチレン−プロピレン−ジエン系ポリマ
ーなどが例示され、導電剤としては各種導電性黒鉛や導
電性カーボンブラックなどが例示される。正極活物質の
使用量は、正極活物質、結着剤、および導電剤の合計量
100重量部あたり80〜95重量部程度であり、結着
剤の使用量は正極活物質100重量部あたり1〜10重
量部程度であり、また導電剤の使用量は正極活物質10
0重量部あたり3〜15重量部程度である。正極活物質
層CP1は、正極用集電体層CPの上に正極活物質、結
着剤、および導電剤からなる混合組成物を塗布し、充分
に乾燥後、圧延して形成することができ、その厚さは2
0〜500μm程度、特に50〜200μm程度であ
る。
[0016] As the positive electrode active material, Li · Co-based composite oxides such as LiCoO 2, such as LiNiO 2 Li · N
Examples thereof include i-based composite oxides and Li / Mn-based composite oxides such as LiMn 2 O 4 . Polytetrafluoroethylene, polyvinylidene fluoride, as a binder for the positive electrode active material,
Examples include polyethylene and ethylene-propylene-diene-based polymers, and examples of the conductive agent include various conductive graphites and conductive carbon blacks. The amount of the positive electrode active material used is about 80 to 95 parts by weight per 100 parts by weight of the total amount of the positive electrode active material, the binder, and the conductive agent, and the amount of the binder used is 1 to 100 parts by weight of the positive electrode active material. About 10 parts by weight, and the amount of conductive agent used is
It is about 3 to 15 parts by weight per 0 parts by weight. The positive electrode active material layer CP1 can be formed by applying a mixed composition including a positive electrode active material, a binder, and a conductive agent on the positive electrode current collector layer CP, drying the resultant sufficiently, and then rolling. , Its thickness is 2
It is about 0 to 500 μm, especially about 50 to 200 μm.

【0017】負極活物質としては、各種の天然黒鉛や人
造黒鉛、例えば繊維状黒鉛、鱗片状黒鉛、球状黒鉛など
の黒鉛類、および各種のリチウム合金類などである。そ
の結着剤としては、ポリテトラフルオロエチレン、ポリ
ビニリデンフルオリド、ポリエチレン、エチレン−プロ
ピレン−ジエン系ポリマーなどが例示され、負極活物質
の使用量は、負極活物質と結着剤との合計量100重量
部あたり80〜96重量部程度である。負極活物質層A
P1は、負極用集電体層APの上に負極活物質と結着剤
とからなる混合組成物を塗布し、充分に乾燥後、圧延し
て形成することができ、その厚さは20〜500μm程
度、特に50〜200μm程度である。
Examples of the negative electrode active material include various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flaky graphite and spherical graphite, and various lithium alloys. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene-based polymer, and the like. The amount of the negative electrode active material used is the total amount of the negative electrode active material and the binder. It is about 80 to 96 parts by weight per 100 parts by weight. Negative electrode active material layer A
P1 can be formed by applying a mixed composition composed of a negative electrode active material and a binder on the negative electrode current collector layer AP, drying it sufficiently, and rolling it. It is about 500 μm, especially about 50 to 200 μm.

【0018】固体電解質の例では、Li3 N、Li2
−B2 3 −SiO2 系、B2 3−Li2 S−LiI
系、P2 5 −Li2 S−LiI系、GeS2 −Li2
S−LiI系、SiS2 −Li2 S−LiI系などの無
機固体電解質が例示される。固体電解質の他の例では、
LiI、LiClO4 、LiCF3 SO3 、LiBF 4
などのリチウム化合物と有機高分子との混合物があり、
例えばエチレンカーボネートとプロピレンカーボネート
とポリアクリロニトリルとポリ−テトラエチレングリコ
ール−ジ−アクリレートとLiClO4 との混合物、プ
ロピレンカーボネートとポリアクリロニトリルとLiC
lO4 との混合物、エチレンカーボネートとプロピレン
カーボネートとポリアクリロニトリルとポリ−テトラエ
チレングリコール−ジ−アクリレートとLiBF4 との
混合物、プロピレンカーボネートとポリアクリロニトリ
ルとLiCF3 SO3 との混合物などが例示される。
In the example of the solid electrolyte, LiThreeN, LiTwoO
-BTwoOThree-SiOTwoSystem, BTwoSThree−LiTwoS-LiI
System, PTwoSFive−LiTwoS-LiI system, GeSTwo−LiTwo
S-LiI system, SiSTwo−LiTwoNo S-LiI system
The solid electrolyte is exemplified. In another example of a solid electrolyte,
LiI, LiClOFour, LiCFThreeSOThree, LiBF Four
There is a mixture of such lithium compounds and organic polymers,
For example, ethylene carbonate and propylene carbonate
And polyacrylonitrile and poly-tetraethyleneglyco
-Di-acrylate and LiClOFourMixture with
Lopylene carbonate, polyacrylonitrile and LiC
10FourMixtures with ethylene carbonate and propylene
Carbonate, polyacrylonitrile and poly-tetraet
Tylene glycol diacrylate and LiBFFourWith
Mixture, propylene carbonate and polyacrylonitrile
And LiCFThreeSOThreeAnd the like.

【0019】シート電池は、一般的にシート状の発電要
素からなり、水分との接触を嫌うリチウム二次シート電
池では、該シート状の発電要素は防水性のフィルムから
なる袋体内に収容される。本発明のシート電池も、その
例外ではない。但しシート状の発電要素は、発電要素単
位として上記したバイポーラ電極ユニットを有し、且つ
それは主としてシート状を呈する固体電解質と共に用い
られる。なお本発明において用いられる発電要素は、バ
イポーラ電極ユニットのみからなっていてもよく、また
バイポーラ電極ユニットの数は1つ以上であってもよ
い。さらに発電要素は、バイポーラ電極ユニットと通常
の正極シート(正極集電体の片面のみにまたは両面に正
極活物質層を有するもの)および/または負極シート
(負極集電体の片面のみにまたは両面に負極活物質層を
有するもの)との組み合わせであってもよい。
A sheet battery generally comprises a sheet-like power generating element. In a lithium secondary sheet battery which does not like contact with moisture, the sheet-like power generating element is accommodated in a bag made of a waterproof film. . The sheet battery of the present invention is no exception. However, the sheet-like power generating element has the above-mentioned bipolar electrode unit as a power generating element unit, and is mainly used with a sheet-like solid electrolyte. The power generating element used in the present invention may be composed of only bipolar electrode units, and the number of bipolar electrode units may be one or more. Further, the power generating element includes a bipolar electrode unit and a normal positive electrode sheet (having a positive electrode active material layer on only one side or both sides of a positive electrode current collector) and / or a negative electrode sheet (only one side or both sides of a negative electrode current collector). (Having a negative electrode active material layer).

【0020】図1には、本発明における発電要素を形成
する発電要素単位の種々の接続例を概念的に示す。図1
において、短い太実線は負極活物質層AP1を、長い中
太の実線は正極活物質層CP1を、二本の点線は複合集
電体Pを、また一本の点線は通常の集電体を、それぞれ
示す。よって、短い太実線と二本の点線と長い中太の実
線との集合は一つのバイポーラ電極ユニットBUを、短
い太実線と一本の点線との集合は通常の負極シートAS
を、また長い中太の実線と一本の点線との集合は通常の
正極シートCSを、それぞれ意味する。さらに図1にお
いて細い実線は電気的接続の様子を示し、CTは電池の
正極端子を、ATは電池の負極端子をそれぞれ示す。な
お図1においては固体電解質の層の記載を全て省略して
いるが、正極活物質層CP1と負極活物質層AP1とは
互いに直接接することはなく、その間には必ず固体電解
質の層が介在している。
FIG. 1 conceptually shows various connection examples of a power generating element unit forming a power generating element in the present invention. FIG.
, The short solid line represents the negative electrode active material layer AP1, the long middle solid line represents the positive electrode active material layer CP1, the two dotted lines represent the composite current collector P, and the one dotted line represents the ordinary current collector. , Respectively. Therefore, a set of a short thick solid line, two dotted lines and a long middle solid line represents one bipolar electrode unit BU, and a set of a short thick solid line and one dotted line represents a normal negative electrode sheet AS.
And a set of a long solid line and a single dotted line means an ordinary positive electrode sheet CS. Further, in FIG. 1, a thin solid line indicates the state of electrical connection, CT indicates the positive terminal of the battery, and AT indicates the negative terminal of the battery. In FIG. 1, the illustration of the solid electrolyte layer is all omitted, but the positive electrode active material layer CP1 and the negative electrode active material layer AP1 do not directly contact each other, and the solid electrolyte layer always intervenes between them. ing.

【0021】図1の図(a)では、図の上から順に正極
シートCS、一つのバイポーラ電極ユニットBU、およ
び負極シートASが直列に接続されており、正極シート
CSの集電体が電池の正極端子CTに、一方負極シート
ASの集電体が電池の負極端子ATに、それぞれ接続さ
れている。
In FIG. 1A, the positive electrode sheet CS, one bipolar electrode unit BU, and the negative electrode sheet AS are connected in series from the top of the figure, and the current collector of the positive electrode sheet CS is The current collector of the negative electrode sheet AS is connected to the positive electrode terminal CT, and the current collector of the negative electrode sheet AS is connected to the negative electrode terminal AT of the battery.

【0022】図1の図(b)では、5つのバイポーラ電
極ユニットBUが直列に接続されており、同図上では最
上のバイポーラ電極ユニットBUの負極活物質層AP1
が負極端子ATに、一方、最下のバイポーラ電極ユニッ
トBUの正極活物質層CP1が正極端子CTにそれぞれ
接続されている。
In FIG. 1B, five bipolar electrode units BU are connected in series. In FIG. 1B, the negative electrode active material layer AP1 of the uppermost bipolar electrode unit BU is shown.
Is connected to the negative electrode terminal AT, while the positive electrode active material layer CP1 of the lowermost bipolar electrode unit BU is connected to the positive electrode terminal CT.

【0023】図1の図(c)では、2つのバイポーラ電
極ユニットBUが直列に接続された1番目の組G1と2
つのバイポーラ電極ユニットBUが直列に接続された2
番目の組G2との2組(バイポーラ電極ユニット数:合
計4つ)が同図のX−X線(以下、基準線または基準
面)で互いに鏡像関係となるように並列接続されてお
り、該基準線に最寄りの2つのバイポーラ電極ユニット
BUの各正極活物質層CP1が正極端子CTに、一方、
該基準線から遠い位置にある2つのバイポーラ電極ユニ
ットBUの各負極活物質層AP1が負極端子ATにそれ
ぞれ接続されている。
In FIG. 1C, a first pair G1 and G2 in which two bipolar electrode units BU are connected in series is shown.
Of two bipolar electrode units BU connected in series
The two sets (the number of bipolar electrode units: a total of four) with the second set G2 are connected in parallel so as to be in a mirror image relationship with each other at the XX line (hereinafter referred to as a reference line or reference plane) in FIG. Each positive electrode active material layer CP1 of the two bipolar electrode units BU closest to the reference line is connected to the positive terminal CT,
Each of the negative electrode active material layers AP1 of the two bipolar electrode units BU located far from the reference line is connected to the negative electrode terminal AT.

【0024】図2は、図1の図(c)に対応する本発明
のシート電池の実施例の断面図であって、同図における
各部の符号は図1の図(c)において対応する部分のそ
れと一致させている。なお、2つのバイポーラ電極ユニ
ットBUが直列に接続されたものの2組の各組におい
て、2つのバイポーラ電極ユニットBU間には固体電解
質のシートESが介在している。正極端子CTは、その
両側に存在する2つの正極活物質層CP1の間に位置
し、正極端子CTを紙面に垂直にX−X線に沿って2分
割する面が鏡像関係の基準面となる。即ち、上記した2
つのバイポーラ電極ユニットBUが直列に接続されたも
のの2組は、上記の基準面に対して互いに鏡像関係に位
置している。
FIG. 2 is a cross-sectional view of the embodiment of the sheet battery of the present invention corresponding to FIG. 1C, and the reference numerals of the respective parts in FIG. 2 correspond to the corresponding parts in FIG. To match that of. In each of the two sets of two bipolar electrode units BU connected in series, a solid electrolyte sheet ES is interposed between the two bipolar electrode units BU. The positive electrode terminal CT is located between the two positive electrode active material layers CP1 existing on both sides of the positive electrode terminal CT, and a plane that divides the positive electrode terminal CT into two along the XX line perpendicular to the paper surface is a mirror image reference plane. . That is, 2
Two sets of two bipolar electrode units BU connected in series are located in a mirror image relationship with respect to the reference plane.

【0025】工場で生産された個々のバイポーラ電極ユ
ニットは、製造ロットが異なるとその正極活物質層CP
1や負極活物質層AP1の各組成、各部の厚み、活物質
量、活物質の密度などにバラツキが生じることがあり、
かかるバラツキのためにバイポーラ電極ユニットの放電
容量や放電寿命などにバラツキが生じる。同一製造ロッ
ト内では、かかるバラツキは一般的には小さいが、場合
によってはそれが大きいこともある。
Each bipolar electrode unit produced in the factory has its own positive electrode active material layer CP when the production lot is different.
1 and the composition of the negative electrode active material layer AP1, the thickness of each part, the amount of the active material, the density of the active material, and the like, may be varied.
Such variations cause variations in the discharge capacity and discharge life of the bipolar electrode unit. Such variations are generally small within the same manufacturing lot, but may be large in some cases.

【0026】いずれにせよ、バラツキの大きいバイポー
ラ電極ユニットの1つまたは直列接続された複数個を1
組としてその2組を並列接続すると、2組間の放電容量
の差異により電池の充放電サイクル特性が低下すること
がある。この低下を軽減するには、2組間の放電容量の
差異を可及的に小さくすればよい。具体的には上記の2
組のうちの1番目の組の放電容量を100としたとき、
2番目の組の放電容量が100±10の範囲内、特に1
00±5の範囲内とする。1番目の組の放電容量を2番
目の組のそれと比較する場合、室温下で4.2Vまで充
電した後、電池電圧が2.75Vに低下するまで放電さ
せる充放電サイクルを行なった際の、初回の充放電サイ
クルにおいて測定される放電容量で比べるとよい。この
方法で測定した1番目の組の放電容量が、例えば、正極
活物質1gあたり1000mA・Hである場合、2番目
の組の対応放電容量は正極活物質1gあたり900〜1
100mA・Hの範囲内となるように性能の揃ったバイ
ポーラ電極ユニットBUを選択使用すればよい。同一製
造ロット内のバイポーラ電極ユニットBUを使用する
と、上記の条件を満たし得ることが多い。
In any case, one or a plurality of serially connected bipolar electrode units having a large variation
When the two sets are connected in parallel as a set, the charge / discharge cycle characteristics of the battery may deteriorate due to the difference in the discharge capacity between the two sets. To reduce this decrease, the difference in discharge capacity between the two sets may be reduced as much as possible. Specifically, the above 2
When the discharge capacity of the first set in the set is 100,
The discharge capacity of the second set is in the range of 100 ± 10, especially 1
Within the range of 00 ± 5. When comparing the discharge capacity of the first set with that of the second set, a charge-discharge cycle in which the battery was charged to 4.2 V at room temperature and then discharged until the battery voltage dropped to 2.75 V was performed. It is better to compare the discharge capacities measured in the first charge / discharge cycle. If the first set of discharge capacities measured by this method is, for example, 1000 mA · H per gram of the positive electrode active material, the corresponding discharge capacity of the second set is 900 to 1 / g of the positive electrode active material.
What is necessary is just to select and use the bipolar electrode unit BU with uniform performance so as to be within the range of 100 mA · H. If bipolar electrode units BU in the same production lot are used, the above conditions can often be satisfied.

【0027】上記した2組を並列接続する方法、個々の
バイポーラ電極ユニット、正極端子、負極端子などの存
在位置などは任意であってよいが、該2組は、図2に例
示するように基準面に対して互いに鏡像関係となるよう
に位置していると、電池の充放電サイクル特性の低下を
軽減する上で一層効果がある。なおここで言う鏡像関係
とは、厳密な意味での鏡像関係(各部位の1対1対称)
である必要は必ずしもなく、基準面の両側に性能、形
状、寸法などが同じあるいは略似通ったバイポーラ電極
ユニットを同じ個数配置し、且つ基準面に対して対応す
る同士の各バイポーラ電極ユニットが略鏡像関係となる
位置、あるいはその近傍に存在していればよい。
The method of connecting the two sets in parallel, the positions of the individual bipolar electrode units, the positive electrode terminal, the negative electrode terminal, and the like may be arbitrary. The two sets are, as shown in FIG. When they are positioned so as to have a mirror image relationship with each other with respect to the surface, it is more effective in reducing deterioration of the charge / discharge cycle characteristics of the battery. The mirror image relationship here is a mirror image relationship in a strict sense (one-to-one symmetry of each part)
It is not always necessary to arrange the same number of bipolar electrode units having the same or substantially similar performance, shape, dimensions, etc. on both sides of the reference surface, and each bipolar electrode unit corresponding to the reference surface is substantially a mirror image. It only has to exist at the relevant position or in the vicinity thereof.

【0028】[0028]

【発明の効果】バイポーラ電極ユニットを使用しても、
液体電解質を使用した従来のシート電池にみられた正極
活物質層と負極活物質層との間での自己放電の問題がな
いので、前記した図5に示すような電気絶縁体EIを設
ける必要がなく、しかしてシート電池の構造や製造方法
が簡単となる、正負活物質層の面積を広く取れるので電
池容量も大きくなる、しかも電池の安全性も向上する、
などの効果がある。
Even if a bipolar electrode unit is used,
Since there is no problem of self-discharge between the positive electrode active material layer and the negative electrode active material layer seen in a conventional sheet battery using a liquid electrolyte, it is necessary to provide the electric insulator EI as shown in FIG. The structure and manufacturing method of the sheet battery are simplified, and the area of the positive and negative active material layers can be increased, so that the battery capacity is increased, and the safety of the battery is also improved.
And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における発電要素を形成する発電要素単
位の接続例の概念図である。
FIG. 1 is a conceptual diagram of a connection example of a power generating element unit forming a power generating element in the present invention.

【図2】図1の図(c)に対応する本発明のシート電池
の実施例の断面図である。
FIG. 2 is a cross-sectional view of the embodiment of the sheet battery of the present invention corresponding to FIG. 1C.

【図3】従来または本発明で用いる一般的なバイポーラ
電極ユニットの断面図である。
FIG. 3 is a cross-sectional view of a general bipolar electrode unit used in the related art or the present invention.

【図4】バイポーラ電極ユニットを用いた従来のシート
電池の断面図である。
FIG. 4 is a cross-sectional view of a conventional sheet battery using a bipolar electrode unit.

【図5】バイポーラ電極ユニットを用いた従来の他のシ
ート電池の断面図である。
FIG. 5 is a cross-sectional view of another conventional sheet battery using a bipolar electrode unit.

【符号の説明】[Explanation of symbols]

AP1 負極活物質層 CP1 正極活物質層 P 複合集電体 BU バイポーラ電極ユニット CT 電池の正極端子 AT 電池の負極端子 ES 固体電解質 AP1 Negative active material layer CP1 Positive active material layer P Composite current collector BU Bipolar electrode unit CT Positive terminal of battery AT Negative terminal of battery ES Solid electrolyte

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H014 AA04 BB05 BB08 CC01 EE05 EE10 HH01 HH04 5H017 AA03 AS03 BB06 BB08 CC01 EE01 EE05 HH01 HH10 5H022 AA09 AA20 CC21 5H029 AJ03 AK03 AL07 AL12 AM12 AM16 BJ04 DJ07 EJ01 HJ19 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一方の面が正極用集電体層であり他方の
面が負極用集電体層である複合集電体の正極用集電体層
の上に正極活物質層を有し、負極用集電体層の上に負極
活物質層を有するバイポーラ電極ユニットと、固体電解
質とを有することを特徴とするシート電池。
1. A composite current collector in which one surface is a positive electrode current collector layer and the other surface is a negative electrode current collector layer has a positive electrode active material layer on the positive electrode current collector layer. A sheet battery comprising: a bipolar electrode unit having a negative electrode active material layer on a negative electrode current collector layer; and a solid electrolyte.
【請求項2】 複合集電体が、一方の極の集電体層とな
る金属箔の片面に他方の極の集電体層となる金属をメッ
キして形成してなるものである請求項1記載のシート電
池。
2. The composite current collector is formed by plating one surface of a metal foil serving as a current collector layer of one electrode with a metal serving as a current collector layer of the other electrode. 2. The sheet battery according to 1.
【請求項3】 複合集電体が、負極用集電体層となる金
属と正極用集電体層となる金属のクラッド材を圧延して
形成してなるものである請求項1または2記載のシート
電池。
3. The composite current collector is formed by rolling a metal clad material of a negative electrode current collector layer and a metal of a positive electrode current collector layer. Sheet battery.
【請求項4】 正極用集電体層がアルミニウム層であ
り、負極用集電体層が銅層である請求項1〜3のいずれ
かに記載のシート電池。
4. The sheet battery according to claim 1, wherein the positive electrode current collector layer is an aluminum layer, and the negative electrode current collector layer is a copper layer.
【請求項5】 バイポーラ電極ユニットの1つまたは直
列接続された複数個を有する1番目の組とバイポーラ電
極ユニットの1つまたは直列接続された複数個を有する
2番目の組とが並列接続されており、1番目の組の放電
容量を100としたとき、2番目の組の放電容量が10
0±10の範囲内にある請求項1〜4のいずれかに記載
のシート電池。
5. A first set having one or a plurality of serially connected bipolar electrode units and a second set having one or a plurality of serially connected bipolar electrode units are connected in parallel. When the discharge capacity of the first set is 100, the discharge capacity of the second set is 10
The sheet battery according to any one of claims 1 to 4, which is within a range of 0 ± 10.
【請求項6】 リチウム二次電池である請求項1〜5の
いずれかに記載のシート電池。
6. The sheet battery according to claim 1, which is a lithium secondary battery.
JP10268159A 1998-09-22 1998-09-22 Sheet battery Pending JP2000100471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268159A JP2000100471A (en) 1998-09-22 1998-09-22 Sheet battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268159A JP2000100471A (en) 1998-09-22 1998-09-22 Sheet battery

Publications (1)

Publication Number Publication Date
JP2000100471A true JP2000100471A (en) 2000-04-07

Family

ID=17454734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268159A Pending JP2000100471A (en) 1998-09-22 1998-09-22 Sheet battery

Country Status (1)

Country Link
JP (1) JP2000100471A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110239A (en) * 2000-09-28 2002-04-12 Nissan Motor Co Ltd All-solid polymer battery and its manufacturing method
JP2004164897A (en) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd Bipolar battery
WO2004059780A1 (en) * 2002-12-26 2004-07-15 Yaoqing Yu High-voltage power accumulator
EP1505669A2 (en) * 2003-08-08 2005-02-09 Nissan Motor Co., Ltd. Bipolar battery with laminate films and resin layer.
JP2005174617A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Battery and vehicle having battery
JP2006302616A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Bipolar battery
WO2007060841A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Cell structure, battery and vehicle mounted with those
US7279248B2 (en) 2003-02-18 2007-10-09 Nissan Motor Co., Ltd. Bipolar battery and related method
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
US7462420B2 (en) 2002-11-11 2008-12-09 Nissan Motor Co., Ltd. Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
JP2010277862A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Collector for bipolar battery
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery
WO2011033702A1 (en) * 2009-09-17 2011-03-24 株式会社村田製作所 Intercellular separation structure and stacked solid secondary battery comprising same
WO2011062419A2 (en) 2009-11-18 2011-05-26 주식회사 엘지화학 Bipolar electrode pair/separation membrane assembly, bipolar battery including same, and production method thereof
JP2011181520A (en) * 2011-05-19 2011-09-15 Nissan Motor Co Ltd Bipolar battery
US8076021B2 (en) 2004-12-10 2011-12-13 Nissan Motor Co., Ltd. Bipolar battery
JP2012033503A (en) * 2001-11-28 2012-02-16 Commissariat A L'energie Atomique & Aux Energies Alternatives Lithium electrochemical battery comprising at least one bipolar electrode with conductive aluminum or aluminum alloy substrate
US8304103B2 (en) 2006-05-20 2012-11-06 Nissan Motor Co., Ltd. Battery structure
US8512888B2 (en) 2010-03-11 2013-08-20 Toyota Jidosha Kabushiki Kaisha Current collector and method for producing the same, battery and method for producing the same
US8753770B2 (en) 2008-10-03 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode body, all solid state battery element, and all solid state battery
WO2014157125A1 (en) * 2013-03-29 2014-10-02 住友化学株式会社 Sodium secondary battery
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP2016517146A (en) * 2013-03-21 2016-06-09 ユニバーシティー オブ メリーランド、カレッジ パーク Ion conductive battery containing solid electrolyte material
US10305146B2 (en) 2015-01-14 2019-05-28 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
US10381650B2 (en) 2014-05-30 2019-08-13 Hitachi Metals, Ltd. Cladding material for battery collector and electrode
US10559843B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
CN113178666A (en) * 2021-04-15 2021-07-27 Oppo广东移动通信有限公司 Battery and electronic device
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
US11939224B2 (en) 2018-02-15 2024-03-26 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110239A (en) * 2000-09-28 2002-04-12 Nissan Motor Co Ltd All-solid polymer battery and its manufacturing method
JP2012033503A (en) * 2001-11-28 2012-02-16 Commissariat A L'energie Atomique & Aux Energies Alternatives Lithium electrochemical battery comprising at least one bipolar electrode with conductive aluminum or aluminum alloy substrate
JP2004164897A (en) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd Bipolar battery
US7462420B2 (en) 2002-11-11 2008-12-09 Nissan Motor Co., Ltd. Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
JP4674434B2 (en) * 2002-11-11 2011-04-20 日産自動車株式会社 Bipolar battery
WO2004059780A1 (en) * 2002-12-26 2004-07-15 Yaoqing Yu High-voltage power accumulator
US7279248B2 (en) 2003-02-18 2007-10-09 Nissan Motor Co., Ltd. Bipolar battery and related method
EP1505669A2 (en) * 2003-08-08 2005-02-09 Nissan Motor Co., Ltd. Bipolar battery with laminate films and resin layer.
EP1505669A3 (en) * 2003-08-08 2008-07-09 Nissan Motor Co., Ltd. Bipolar battery with laminate films and resin layer.
US7501206B2 (en) 2003-08-08 2009-03-10 Nissan Motor Co., Ltd. Bipolar battery, assembled battery, combination assembled battery, and vehicle using the assembled battery or the combination assembled battery
JP4581384B2 (en) * 2003-12-08 2010-11-17 日産自動車株式会社 Battery and manufacturing method thereof
JP2005174617A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Battery and vehicle having battery
US8415049B2 (en) 2004-12-10 2013-04-09 Nissan Motor Co., Ltd. Bipolar battery
US8076021B2 (en) 2004-12-10 2011-12-13 Nissan Motor Co., Ltd. Bipolar battery
JP2006302616A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Bipolar battery
US8124276B2 (en) 2005-11-24 2012-02-28 Nissan Motor Co., Ltd. Battery structure, assembled battery, and vehicle mounting these thereon
JP2007149400A (en) * 2005-11-24 2007-06-14 Nissan Motor Co Ltd Battery structure, battery pack, and vehicle mounted with same
CN101313434B (en) * 2005-11-24 2010-10-06 日产自动车株式会社 Cell structure, battery and vehicle mounted with those
WO2007060841A1 (en) * 2005-11-24 2007-05-31 Nissan Motor Co., Ltd. Cell structure, battery and vehicle mounted with those
KR101052163B1 (en) 2005-11-24 2011-07-26 닛산 지도우샤 가부시키가이샤 Battery structures, battery packs and vehicles with them
US7997367B2 (en) 2006-05-11 2011-08-16 Toyota Jidosha Kabushiki Kaisha Assembled battery and vehicle
WO2007132621A1 (en) * 2006-05-11 2007-11-22 Toyota Jidosha Kabushiki Kaisha Assembly battery, and vehicle
JP2007305425A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Battery pack and vehicle
US8304103B2 (en) 2006-05-20 2012-11-06 Nissan Motor Co., Ltd. Battery structure
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
US8481204B2 (en) 2007-07-27 2013-07-09 Toyota Jidosha Kabushiki Kaisha Solid-state battery
JP4656102B2 (en) * 2007-07-27 2011-03-23 トヨタ自動車株式会社 Solid battery
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
US8753770B2 (en) 2008-10-03 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode body, all solid state battery element, and all solid state battery
JP2010277862A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Collector for bipolar battery
US8741477B2 (en) 2009-06-25 2014-06-03 Nissan Motor Co., Ltd. Bipolar secondary battery with seal members
JP2011009039A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Bipolar secondary battery
KR101338094B1 (en) * 2009-09-17 2013-12-06 가부시키가이샤 무라타 세이사쿠쇼 Intercellular separation structure and stacked solid secondary battery comprising same
JP5397475B2 (en) * 2009-09-17 2014-01-22 株式会社村田製作所 Inter-battery separation structure and laminated solid secondary battery including the same
US8895175B2 (en) 2009-09-17 2014-11-25 Murata Manufacturing Co., Ltd. Intercellular separation structure body and laminate type solid secondary battery provided with the same
WO2011033702A1 (en) * 2009-09-17 2011-03-24 株式会社村田製作所 Intercellular separation structure and stacked solid secondary battery comprising same
WO2011062419A2 (en) 2009-11-18 2011-05-26 주식회사 엘지화학 Bipolar electrode pair/separation membrane assembly, bipolar battery including same, and production method thereof
US8512888B2 (en) 2010-03-11 2013-08-20 Toyota Jidosha Kabushiki Kaisha Current collector and method for producing the same, battery and method for producing the same
JP2011181520A (en) * 2011-05-19 2011-09-15 Nissan Motor Co Ltd Bipolar battery
US10622666B2 (en) 2013-03-21 2020-04-14 University Of Maryland, College Park Ion conducting batteries with solid state electrolyte materials
JP2016517146A (en) * 2013-03-21 2016-06-09 ユニバーシティー オブ メリーランド、カレッジ パーク Ion conductive battery containing solid electrolyte material
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
WO2014157125A1 (en) * 2013-03-29 2014-10-02 住友化学株式会社 Sodium secondary battery
US10490824B2 (en) 2014-05-30 2019-11-26 Hitachi Metals, Ltd. Cladding material for battery collector and electrode
US10381650B2 (en) 2014-05-30 2019-08-13 Hitachi Metals, Ltd. Cladding material for battery collector and electrode
US10305146B2 (en) 2015-01-14 2019-05-28 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
US10559843B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
US11939224B2 (en) 2018-02-15 2024-03-26 University Of Maryland, College Park Ordered porous solid electrolyte structures, electrochemical devices with same, methods of making same
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
CN113178666A (en) * 2021-04-15 2021-07-27 Oppo广东移动通信有限公司 Battery and electronic device

Similar Documents

Publication Publication Date Title
JP2000100471A (en) Sheet battery
JP4038699B2 (en) Lithium ion battery
US20060234125A1 (en) Lithium Ion Rocking Chair Rechargeable Battery
EP4266396A1 (en) Electrode plate and preparation method therefor, and lithium-ion battery
JP6885309B2 (en) Series stacked all-solid-state battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP4352475B2 (en) Solid electrolyte secondary battery
KR100413608B1 (en) Separator for lithium ion secondary batteries, method for producing the same, and lithium ion secondary batteries using the same
JPH11238528A (en) Lithium secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
EP3039743A1 (en) Solid state battery with integrated rate booster
US20220352550A1 (en) Solid-state battery, battery module, battery pack, and apparatus associated therewith
JP2004127743A (en) Thin film battery
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
JP2023145484A (en) All-solid battery including composite electrode
JP2000195495A (en) Sheet battery
US20240021786A1 (en) Method for preparing positive electrode plate, and positive electrode plate and battery having same
EP3039739B1 (en) Solid state battery with offset geometry
JPH11111266A (en) High polymer electrolyte secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP2000090932A (en) Lithium secondary battery
US20230111642A1 (en) Electrode sheet and electrode sheet assembly
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JPH09161763A (en) Lithium ion secondary battery
JP2004253356A (en) Collector sheet for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery