JP4092620B2 - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery Download PDF

Info

Publication number
JP4092620B2
JP4092620B2 JP2002045887A JP2002045887A JP4092620B2 JP 4092620 B2 JP4092620 B2 JP 4092620B2 JP 2002045887 A JP2002045887 A JP 2002045887A JP 2002045887 A JP2002045887 A JP 2002045887A JP 4092620 B2 JP4092620 B2 JP 4092620B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
resin material
laminated
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002045887A
Other languages
Japanese (ja)
Other versions
JP2003249265A (en
Inventor
純一 倉富
隆明 井口
哲夫 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002045887A priority Critical patent/JP4092620B2/en
Publication of JP2003249265A publication Critical patent/JP2003249265A/en
Application granted granted Critical
Publication of JP4092620B2 publication Critical patent/JP4092620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型ポリマー電解質電池に関し、特に積層断面における短絡を防止したポリマー電解質電池に関する。
【0002】
【従来の技術】
ポリマー電解質電池は、漏液がなく、外装体を軽量化できるといった利点があり、開発が盛んに行われている。なかでも、ソルベントを含まない全固体型ポリマー電解質電池は高度な安全性が要求される電気自動車や電力貯蔵用電源等の用途に大容量電池として開発が進められている。しかし、ポリマー電解質は一般に電解液に比べてイオン伝導度がやや低く、なかでも全固体型ポリマー電解質は液体電解液に比べてイオン伝導度が約一桁低い。
【0003】
ところで、正極層や負極層に用いる電極材料が粉体から構成される場合、前記正極層や負極層は電極材料とポリマー電解質を混合して形成した複合電極とすることが望ましい。このとき、前記複合電極の厚さが厚いと、ポリマー電解質のイオン伝導度が電解液に比べて低いため、電極表面から深い部分に位置する電極材料の活物質利用率が低いものとなる虞がある。そこで、電池のエネルギー密度を充分なものとするため、ポリマー電解質電池に用いる前記複合電極は薄型化することが望ましい。
【0004】
薄型化された電極を用いて大容量電池を構成するには、一組の正極層、ポリマー電解質層及び負極層からなる単電池シートを複数枚重ね合わせるか、又は帯状の単電池シートを捲回して構成することによって積層することが有効である。このうち、電池の大型化、高エネルギー密度化に鑑みれば、電槽内に発電要素を効率よく配置させる観点から、単電池シートを複数枚重ね合わせる方式が好ましい。
【0005】
ところが、電極は薄型化されているため、大容量電池とするためには積層数が多くなることから、発電要素の単位体積あたりに占める集電体の割合が大きなものとなっている。例えば、一般的な全固体型高分子電解質を用いた電池では、発電要素のうち集電体が占める割合が25%以上となっている。また、該集電体の厚さは10〜15μmと薄く、柔軟であるため、発電要素の中でも積層断面部分の取り扱いには細心の注意を要していた。即ち、集電体に積層断面に沿ったわずかな曲がりやバリが生じるだけで内部短絡の原因となりやすかった。また、多数枚の単電池を積層する際、積層時や積層後にわずかな単電池同士のずれが生じるだけでも、周囲の電池用部材等との接触の虞が生じていた。また、積層された発電要素への緊圧印加時や電槽等の外装体への発電要素挿入時、さらには外装体が柔軟な材質で構成されている場合には電池の使用時等にも、外力によって積層断面部の電極の変形等によって内部短絡が発生する虞があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたものであり、ポリマー電解質電池において、発電要素の積層断面における破損や内部短絡を防ぎ、製造中の不良率を低減することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、請求項1に記載したように、一組の正極層、ポリマー電解質層及び負極層からなる単電池が複数組積層されて発電要素を構成しているポリマー電解質電池において、前記発電要素の積層断面が樹脂材料で覆われていることを特徴とするポリマー電解質電池である。
【0008】
ここで、ポリマー電解質は、ソルベントを含まない全固体型ポリマー電解質であ
【0009】
積層する方法は、前記したように、シート状の単電池を複数枚重ね合わせる方法によってもよく、帯状の単電池シートを捲回して構成することによってもよいが、電槽内に発電要素を効率よく配置させる観点から、シート状の単電池を複数枚重ね合わせる方式が好ましい。
【0010】
本発明による積層断面のモデル図を図1に示す。積層型ポリマー固体電解質電池は、集電体同士の距離が狭く、発電要素が柔軟であるため短絡が発生する虞が高いところ、本発明によれば、このような積層断面に樹脂材料で被覆することにより、発電要素の短絡を防ぐことができる。前記樹脂材料は電子伝導性を有さないものでなければならないことは言うまでもない。前記樹脂材料はイオン伝導性を有していてもよいが、高電圧を取り出す事のできる電池とするために単セルを直列に積層して構成する場合には共通電解質効果を避けるためにイオン伝導性を有さないものとしなければならない。
【0011】
樹脂材料の種類については限定されるものではなく、電池作動電圧において分解や反応を起こすことがないものであればよい。例えば、ポリエチレン、ポリフッ化ビニリデン、ポリエチレンテレフタレート、ポリエーテル等が挙げられる。
【0012】
このような構成によれば、前記発電要素の積層断面が樹脂材料で覆われ固定されているので、上記した積層断面における短絡の防止することができる。
【0013】
また前記樹脂材料は、流動性モノマーを前記発電要素の積層断面に塗布後、硬化させることにより形成されことが好ましい
【0014】
ここで、モノマーを硬化させる方法については限定されるものではなく、熱可塑性樹脂を適用する方法や、反応性モノマーを適用し、熱・電子線・紫外線等のエネルギーを付与することにより硬化させる方法や、化学架橋による方法等が挙げられる。熱エネルギーにより硬化させる方法を採れば、深部まで充分に硬化させることができる点で好ましい。電子線照射による方法を採れば、生産速度が大幅に向上できる点で好ましい。化学架橋による方法を採れば、別途エネルギーを付与する設備も用いる必要がなく、電池を安価に提供できる点で好ましい。
【0015】
このような方法によれば、正極層、電解質層及び負極層を多数組積層したエッジ面に樹脂材料を隅々まで行き渡らせることができる。
【0016】
前記樹脂材料を形成するための前記流動性モノマーの選択に当たっては、モノマーの塗布時においては発電要素の積層断面に生じている隙間空間を隅々まで埋めることができる程度に粘度が低いことが好ましく、前記モノマーの重合後においては外圧等によっても樹脂材料が破壊し集電体近傍に短絡が発生することがない程度に強度を有した物性となることが好ましい。前記流動性モノマーの粘度は、具体的には0.4Pa・s以上であることが好ましい。
【0017】
上記したように、前記樹脂材料は、前記モノマーの重合後においては外圧等により樹脂材料が破壊し集電体近傍に短絡が発生することがない程度に強度を有した物性となることが求められることはいうまでもない。しかしながら、ポリマー電解質が持つ硬度(柔軟性)と前記樹脂材料が持つ硬度とが大きく乖離している場合には異種の問題が生じる。即ち、ポリマー電解質が含有された柔軟性を有する積層電極の積層断面に対して、硬度の高い樹脂材料が応用された場合、発電要素に外圧が加わったとき、該積層電極と該樹脂材料との間に変形の程度の差による歪みが生じ、該樹脂材料の該積層電極からの剥離や積層断面近傍の変形が生じる虞があり、これによって積層断面部分における短絡が生じる虞がある。
【0018】
そこで、本発明は、請求項に記載したように、前記樹脂材料は、前記ポリマー電解質を構成しているポリマー材料と同一の繰り返し単位を有する材料からなることを特徴としている。
【0019】
このような構成によれば、ポリマー電解質が有する硬度(柔軟性)と、積層電極の積層断面に応用される前記樹脂材料が有する硬度(柔軟性)とを近接させることができるため、発電要素が変形を受けるような外力を受けた場合においても、両者が同程度に該変形に追随できるので、積層断面部分における短絡が生じる虞をさらに低減できる。
【0020】
ポリマー電解質の原料として例えば分子量8000程度の3官能ポリエーテルモノマーを用いる場合には、それと同じモノマーをそのまま用いて樹脂材料の原料とすることができる。ここで、前記モノマーには電解質塩を含んでいても含んでいなくてもよい。このような構成によれば、異種の原料を用いた場合に懸念されるコンタミネーションの問題を回避することができる。また、樹脂材料用材料を別途用意する必要がなく、ポリマー電解質電池を簡便且つ安価に製造することができる。
【0021】
上記にかかわらず、発電要素が充分に強度の高い外装体に覆われて固定されている場合には、前記樹脂材料の柔軟性に対する配慮はさほど必要とされず、この場合には樹脂材料部分は硬度が高いものであってもよい。具体的には、分子量10万以上のモノマー(例えば分子量10万以上の重合性ポリエーテル)とすれば、発電要素を外装体へ挿入する際にも振動等に耐え、絶縁を保持できる強度が得られ、さらに電池の使用時においても外装体と発電要素が該樹脂材料によって固定される効果が生まれるため、好ましい。
【0022】
また、本発明は、請求項に記載したように、前記ポリマー電解質は、ソルベントを含まない全固体型ポリマー電解質であることを特徴としている。
【0023】
このような構成によれば、電極を薄型化する必要性が特に高い全固体型ポリマー電解質電池において、本発明の効果が極めて効率的に発揮できる。
【0024】
なお、前記樹脂材料は、強度を向上させるために無機フィラー等を添加してもよい。無機フィラーとしては、電子伝導性を有さないものであればよく、中でもガラス、TiO2、BaTiO3、SiO2、Si等が好ましい。
【0025】
本発明のポリマー電解質電池の負極層に用いられる負極材料には、例えばリチウム電池であれば、リチウムを吸蔵・放出可能な金属リチウム、リチウム合金、炭素材料、その他の材料を1種又は2種以上混合して用いることができる。例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、人造黒鉛や天然黒鉛等のグラファイト類、フッ化黒鉛、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等の炭素材料、ポリアセチレン、ポリピロール、ポリアセン等のポリマー、Li4/3Ti5/3O4、TiS2等のリチウム含有遷移金属酸化物又は遷移金属硫化物、アルミニウム、インジウム等のリチウムと合金化可能な金属、シリコン化合物、珪化物等の金属間化合物等が挙げられる。なかでも、炭素材料が適しており、例えば、(002)面の面間隔d002が0.340nm以下の炭素材料、すなわちグラファイトを用いると、電池のエネルギー密度が向上するため好ましい。
【0026】
前記負極層には、電子伝導性を向上させる目的で導電剤がさらに添加されていてもよい。例えば、鱗片状黒鉛等の天然黒鉛や人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維等の導電性繊維類、フッ化カーボン、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体等の有機導電性材料等を単独又は2種以上混合して含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電剤の添加量は、特に限定されないが、1〜50重量%が好ましく、特に1〜30重量%が好ましい。
【0027】
本発明に用いられる負極用集電体としては、構成された電池において化学変化を起こさない電子伝導体であればよく、例えば、材料としてステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂等の他に、銅やステンレス鋼の表面にカーボン、ニッケルあるいはチタンを処理させたもの等を用いることができる。特に、銅あるいは銅合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体等が用いられる。厚さは、特に限定されないが、1〜500μmのものが用いられる。
【0028】
本発明のポリマー電解質電池の正極層に用いられる正極材料には、リチウム含有または非含有の化合物を用いることができる。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yyOのうち少なくとも一種)、(ここでx=0〜1.2、y=0〜0.9、z=2.0〜2.3)が挙げられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。ただし、二硫化チタン等の遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物、ニオブ酸化物およびそのリチウム化合物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物等の他の正極活物質を用いることも可能である。また、複数の異なった正極活物質を混合して用いることも可能である。正極活物質粒子の平均粒径は、特に限定されないが、1〜30μmであることが好ましい。
【0029】
前記正極層には、電子伝導性を向上させる目的で導電剤がさらに添加することが好ましい。正極用導電剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であればよく、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維等の導電性繊維類、フッ化カーボン、銅、ニッケル、アルミニウム、銀等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物あるいはポリフェニレン誘導体等の有機導電性材料等を単独又は2種以上混合して含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、ニッケル粉末が特に好ましい。導電剤の添加量は、特に限定されないが、1〜50重量%が好ましく、特に1〜30重量%が好ましい。カーボンやグラファイトを用いる場合には、2〜15重量%が特に好ましい。
【0030】
本発明に用いられる正極用集電体としては、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂等の他に、アルミニウムやステンレス鋼の表面にカーボン、あるいはチタンを処理させたものが用いられる。特に、アルミニウムあるいはアルミニウム合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体等が用いられる。厚さは、特に限定されないが、1〜500μmのものが用いられる。
【0031】
前記正極層には、導電剤や結着剤の他、フィラー、分散剤、イオン伝導剤、圧力増強剤及びその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。
【0032】
本発明における負極層と正極層の構成は、正極層の表面の全面が負極層の表面と対向していることが好ましい。
【0033】
【発明の実施の形態】
(実施例1)
正極活物質としてのLiCoO2に導電材としてのアセチレンブラック及び結着剤としてのポリフッ化ビニリデン(PVdF)を加え、希釈剤としてのN−メチルピロリドンを加え、混練してペースト状とし、正極集電体1としての矩形状のアルミニウム箔状に塗布し、乾燥し正極層2となる正極板とした。
【0034】
負極炭素材料としての天然黒鉛に結着剤としてポリフッ化ビニリデン(PVdF)を加え、希釈剤としてのN−メチルピロリドンを加え、混練してペースト状とし、負極集電体5としての矩形状の銅箔上に塗布し、乾燥し負極層4となる負極板とした。
【0035】
ポリマー電解質3を構成する原料としてのモノマーには、アクリレート基を末端に有し、エチレンオキシド(EO)とプロピレンオキシド(PO)がEO:PO=8:1の割合でランダム共重合した分子量8000の3官能性ポリエーテルを用いた。電解質塩としてLiN(CF3SO22を該モノマーの体積に対して1mol/lの濃度で溶解し、電解質モノマー液とした。
【0036】
前記正極板、前記負極板及び前記電解質モノマー液を用いて単電池を構成した。モノマー液の硬化にあたっては電子線を照射することにより行った。このとき、正極層2の正極材料部分が有する空隙及び負極層4の負極材料部分が有する空隙にはポリマー電解質3が入り込み、複合正極及び複合負極が形成されると共に、ポリマー電解質3のみからなる層が正極層2と負極層4との間に介在するように構成した。
【0037】
次に、積層体形成工程として、前記単電池を80組用意し、積層した。
【0038】
次に、緊圧印加工程として、前記積層体を水平な机上に設置し、上部に平板を重ね、前記平板の上部に錘を載せ、常温で積層方向に3〜5kg/cm2の緊圧を約30分間印加した。
【0039】
次に、樹脂被覆工程として、前記積層体の積層断面に、樹脂材料6を構成する原料として、アクリレート基を末端に有しエチレンオキシド(EO)とプロピレンオキシド(PO)がEO:PO=8:1の割合でランダム共重合した分子量8000の3官能性ポリエーテルを塗布し、積層された電極群の積層断面に生じている隙間空間に該モノマーが隅々まで入り込むように、十分に含浸を行った後、積層体全体を加熱することにより該モノマーを硬化させ、前記積層断面に樹脂材料6を形成させた。このようにして発電要素7を得た。
【0040】
次に、電槽挿入工程として、前記発電要素7を角形の電槽に積層方向と直交する方向に挿入し、密閉して電池を構成した。
【0041】
(実施例2)
樹脂材料6を構成する原料として、アクリレート基を末端に有する分子量8000の3官能性ポリプロピレンオキシドを用いたことを除いては、実施例1と同様にして電池を構成した。
【0042】
(実施例3)
樹脂材料6を構成する原料として、円柱状のポリプロピレン棒を熱融解しながら、積層された電極群の積層断面に生じている隙間空間にポリプロピレンを注入した。このようにして発電要素を得たことを除いては、実施例1と同様にして電池を構成した。
【0043】
(実施例4)
樹脂材料6を構成する原料として、アクリレート基を末端に有する分子量8000の3官能性ポリシロキサンを用いたことを除いては、実施例1と同様にして電池を構成した。
【0044】
(実施例5)
アクリレート基を末端に有しエチレンオキシド(EO)とプロピレンオキシド(PO)がEO:PO=8:1の割合でランダム共重合した分子量8000の3官能性ポリエーテルに無機フィラーとして二酸化珪素を5重量%添加して混練したものを樹脂材料6を構成する原料として、用いたことを除いては、実施例1と同様にして電池を構成した。
【0045】
(比較例1)
積層断面を樹脂材料で覆わなかったことを除いては、実施例1と同様にして電池を構成した。
【0046】
前記実施例1〜5及び比較例1について、それぞれ20個の電池を試作し、前記積層体形成工程、緊圧印加工程及び電槽挿入工程の各工程後における積層体の短絡発生頻度を調査した。なお、前工程で短絡発生が認められたセルは取り除き、後工程に供した。結果を表1に示す。
【0047】
【表1】

Figure 0004092620
【0048】
表1から明らかなように、積層断面を樹脂で覆った実施例1〜5は、積層断面を樹脂で覆わなかった比較例1に比べ、短絡発生頻度を大幅に低減できることがわかった。
【0049】
【発明の効果】
本発明によれば、一組の正極層、ポリマー電解質層及び負極層からなる単電池が複数組積層された発電要素の積層断面が樹脂材料で覆われているので、発電要素周縁部の短絡を防ぐことができる。
【0050】
また、前記樹脂材料は、流動性モノマーを前記発電要素の積層断面に塗布後、硬化させることにより形成されたことを特徴としているので、積層断面部分の微細な凹凸に樹脂材料を充分に行き渡らすことができる。
【0051】
さらに、前記樹脂材料を構成する高分子のモノマーと、前記ポリマー電解質を構成する高分子のモノマーとが同一材料からなることを特徴としているので、ポリマー電解質が有する硬度(柔軟性)と、積層電極の積層断面に応用される前記樹脂材料が有する硬度(柔軟性)とが極めて近接したものとなるため、発電要素が変形を受けるような外力を受けた場合においても、両者が同程度に該変形に追随でき、積層断面部分における短絡が生じる虞をさらに低減できる。
【0052】
また、前記ポリマー電解質は、ソルベントを含まない全固体型ポリマー電解質であることを特徴としているので、特に電極を薄型化する必要度の高い全固体型ポリマー電解質電池において、本発明の効果を効率的に発揮できる。
のポリマー電解質電池。
【図面の簡単な説明】
【図1】本発明に係る電池の積層体と樹脂材料の関係を示した模式図である。
【符号の説明】
1 正極集電体
2 正極層
3 ポリマー電解質
4 負極層
5 負極集電体
6 樹脂材料
7 発電要素[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated polymer electrolyte battery, and more particularly to a polymer electrolyte battery that prevents a short circuit in a laminated section.
[0002]
[Prior art]
Polymer electrolyte batteries have the advantage that there is no leakage and the weight of the exterior body can be reduced, and the polymer electrolyte batteries are being actively developed. In particular, all-solid-state polymer electrolyte batteries that do not contain a solvent are being developed as large-capacity batteries for applications such as electric vehicles and power storage power sources that require a high level of safety. However, the polymer electrolyte generally has a slightly lower ionic conductivity than the electrolytic solution, and the all-solid polymer electrolyte has an ionic conductivity that is about an order of magnitude lower than that of the liquid electrolytic solution.
[0003]
By the way, when the electrode material used for the positive electrode layer and the negative electrode layer is composed of powder, the positive electrode layer and the negative electrode layer are preferably a composite electrode formed by mixing an electrode material and a polymer electrolyte. At this time, if the composite electrode is thick, the ionic conductivity of the polymer electrolyte is lower than that of the electrolytic solution, so that the active material utilization rate of the electrode material located deep from the electrode surface may be low. is there. Therefore, in order to make the energy density of the battery sufficient, it is desirable to make the composite electrode used in the polymer electrolyte battery thin.
[0004]
In order to configure a large capacity battery using thinned electrodes, a plurality of unit cell sheets composed of a pair of positive electrode layer, polymer electrolyte layer and negative electrode layer are overlapped or a band-shaped unit cell sheet is wound. It is effective to stack them by configuring them. Among these, in view of increasing the size of the battery and increasing the energy density, a method of superimposing a plurality of unit cell sheets is preferable from the viewpoint of efficiently arranging the power generation elements in the battery case.
[0005]
However, since the electrodes are thinned, the number of stacks is increased in order to obtain a large-capacity battery, so that the ratio of the current collector to the unit volume of the power generation element is large. For example, in a battery using a general all solid-type polymer electrolyte, the ratio of the current collector to the power generation element is 25% or more. In addition, since the current collector is as thin as 10 to 15 μm and is flexible, handling of the laminated cross-sectional portion of the power generation element requires great care. That is, a slight bend or burr along the cross section of the current collector is generated, which easily causes an internal short circuit. Further, when stacking a large number of single cells, there is a risk of contact with surrounding battery members or the like even if a slight shift between the single cells occurs during or after stacking. Also, when applying pressure to the laminated power generation elements, inserting the power generation elements into an outer casing such as a battery case, or when the battery is used if the outer casing is made of a flexible material. There is a possibility that an internal short circuit may occur due to deformation of the electrodes in the laminated cross section due to external force.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to prevent damage and internal short circuit in a laminated section of a power generation element in a polymer electrolyte battery and reduce a defective rate during manufacture.
[0007]
[Means for Solving the Problems]
To achieve the above object, according to the present invention, as described in claim 1, a plurality of unit cells each composed of a set of a positive electrode layer, a polymer electrolyte layer, and a negative electrode layer are stacked to constitute a power generation element. In the polymer electrolyte battery, the laminated cross section of the power generation element is covered with a resin material.
[0008]
Here, the polymer electrolyte, Ru all solid polymer electrolyte der without the Soviet Rubento.
[0009]
As described above, the stacking method may be a method of stacking a plurality of sheet-shaped unit cells, or may be formed by winding a strip-shaped unit cell sheet. From the viewpoint of arranging them well, a method of stacking a plurality of sheet-like single cells is preferable.
[0010]
FIG. 1 shows a model diagram of a laminated section according to the present invention. In the laminated polymer solid electrolyte battery, the distance between the current collectors is narrow and the power generation element is flexible, so that there is a high possibility that a short circuit will occur. According to the present invention, such a laminated cross section is coated with a resin material. Thus, a short circuit of the power generation element can be prevented. Needless to say, the resin material must have no electronic conductivity. The resin material may have ionic conductivity, but in order to avoid a common electrolyte effect when a single cell is laminated in series in order to obtain a battery capable of taking out a high voltage, Must not have sex.
[0011]
The type of the resin material is not limited, and any resin material that does not cause decomposition or reaction at the battery operating voltage may be used. Examples thereof include polyethylene, polyvinylidene fluoride, polyethylene terephthalate, and polyether.
[0012]
According to such a structure, since the lamination | stacking cross section of the said electric power generation element is covered and fixed with the resin material, the short circuit in an above-described lamination | stacking cross section can be prevented.
[0013]
Further, the resin material after applying flowable monomer laminated cross-section of the power generating element, it is preferable that will be formed by curing.
[0014]
Here, the method of curing the monomer is not limited, and a method of applying a thermoplastic resin, a method of applying a reactive monomer, and curing by applying energy such as heat, electron beam, and ultraviolet rays. And a method by chemical cross-linking. If a method of curing by thermal energy is adopted, it is preferable in that it can be sufficiently cured to a deep part. If the method by electron beam irradiation is taken, it is preferable at the point which can improve a production rate significantly. If the method by chemical crosslinking is adopted, it is not necessary to use a separate facility for providing energy, which is preferable in that the battery can be provided at a low cost.
[0015]
According to such a method, the resin material can be spread all over the edge surface where a large number of positive electrode layers, electrolyte layers, and negative electrode layers are laminated.
[0016]
In the selection of the flowable monomer for forming the resin material, it is preferable that the viscosity is low enough to fill all the gaps generated in the cross-section of the power generation element when the monomer is applied. After the polymerization of the monomer, it is preferable that the physical properties are strong enough to prevent the resin material from being broken by an external pressure or the like and causing a short circuit in the vicinity of the current collector. Specifically, the viscosity of the flowable monomer is preferably 0.4 Pa · s or more.
[0017]
As described above, the resin material is required to have physical properties that are strong enough to prevent the resin material from being destroyed by an external pressure or the like after the polymerization of the monomer and causing a short circuit near the current collector. Needless to say. However, different problems arise when the hardness (flexibility) of the polymer electrolyte and the hardness of the resin material are significantly different. That is, when a resin material having high hardness is applied to the laminated cross section of a flexible laminated electrode containing a polymer electrolyte, when an external pressure is applied to the power generation element, the laminated electrode and the resin material There is a possibility that distortion due to the difference in the degree of deformation will occur between the two, and the resin material may be peeled off from the laminated electrode or deformed in the vicinity of the laminated section, thereby causing a short circuit in the laminated section.
[0018]
Therefore, the present invention is characterized in that, as described in claim 1 , the resin material is made of a material having the same repeating unit as the polymer material constituting the polymer electrolyte.
[0019]
According to such a configuration, the hardness (flexibility) of the polymer electrolyte can be brought close to the hardness (flexibility) of the resin material applied to the laminated cross section of the laminated electrode. Even when subjected to an external force that undergoes deformation, both can follow the deformation to the same extent, so that the possibility of a short circuit occurring at the laminated cross-section can be further reduced.
[0020]
For example, when a trifunctional polyether monomer having a molecular weight of about 8000 is used as a raw material for the polymer electrolyte, the same monomer can be used as it is as a raw material for the resin material. Here, the monomer may or may not contain an electrolyte salt. According to such a configuration, it is possible to avoid the problem of contamination that is a concern when different types of raw materials are used. Further, it is not necessary to separately prepare a resin material, and the polymer electrolyte battery can be manufactured easily and inexpensively.
[0021]
Regardless of the above, when the power generation element is covered and fixed by a sufficiently strong exterior body, consideration for the flexibility of the resin material is not required so much, in this case the resin material portion is A thing with high hardness may be sufficient. Specifically, if a monomer having a molecular weight of 100,000 or more (for example, a polymerizable polyether having a molecular weight of 100,000 or more) is used, a strength capable of withstanding vibration and maintaining insulation even when the power generation element is inserted into the exterior body is obtained. Furthermore, it is preferable because the effect of fixing the exterior body and the power generation element with the resin material is produced even when the battery is used.
[0022]
Further, the present invention is characterized in that, as described in claim 1 , the polymer electrolyte is an all-solid-type polymer electrolyte containing no solvent.
[0023]
According to such a configuration, the effect of the present invention can be exhibited very efficiently in an all solid-state polymer electrolyte battery in which the necessity of thinning the electrode is particularly high.
[0024]
In addition, in order to improve the intensity | strength, the said resin material may add an inorganic filler etc. The inorganic filler is not particularly limited as long as it does not have electronic conductivity, and glass, TiO 2 , BaTiO 3 , SiO 2 , Si and the like are particularly preferable.
[0025]
The negative electrode material used for the negative electrode layer of the polymer electrolyte battery of the present invention is, for example, a lithium battery, one or more of metallic lithium, lithium alloy, carbon material, and other materials capable of inserting and extracting lithium. It can be used by mixing. For example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites such as artificial graphite and natural graphite, fluorinated graphite, glassy carbons, organic polymer compound fired bodies (phenol resin, Furan resin, etc., calcined at an appropriate temperature), carbon fiber, carbon materials such as activated carbon, polymers such as polyacetylene, polypyrrole, polyacene, lithium-containing transition metal oxides such as Li4 / 3Ti5 / 3O4, TiS2. Alternatively, transition metal sulfides, metals that can be alloyed with lithium such as aluminum and indium, and intermetallic compounds such as silicon compounds and silicides can be used. Among them, is suitable carbon material, for example, (002) plane face spacing d 002 is less carbon material 0.340nm, i.e. the use of graphite, preferred to improve the energy density of the battery.
[0026]
A conductive agent may be further added to the negative electrode layer for the purpose of improving electronic conductivity. For example, natural graphite such as flaky graphite, graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber, etc. Conductive fibers, metal powders such as carbon fluoride, copper and nickel, and organic conductive materials such as polyphenylene derivatives can be contained alone or in combination. Among these conductive agents, artificial graphite, acetylene black, and carbon fiber are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1 to 50 weight% is preferable and 1 to 30 weight% is especially preferable.
[0027]
The negative electrode current collector used in the present invention may be any electronic conductor that does not cause a chemical change in the constructed battery. For example, the material is stainless steel, nickel, copper, titanium, carbon, conductive resin, etc. In addition, the surface of copper or stainless steel treated with carbon, nickel, or titanium can be used. In particular, copper or a copper alloy is preferable. The surface of these materials can be oxidized and used. Further, it is desirable to make the current collector surface uneven by surface treatment. As the shape, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0028]
As the positive electrode material used in the positive electrode layer of the polymer electrolyte battery of the present invention, a lithium-containing or non-containing compound can be used. For example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z, Li x Mn 2 O 4, Li x Mn least one of the 2-y M y O), ( where x = 0~1.2, y = 0~0.9, z = 2.0~2.3 ). Here, said x value is a value before the start of charging / discharging, and it increases / decreases by charging / discharging. However, other positive electrode active materials such as transition metal chalcogenides such as titanium disulfide, vanadium oxide and its lithium compound, niobium oxide and its lithium compound, conjugated polymers using organic conductive materials, chevrel phase compounds, etc. It is also possible to use it. It is also possible to use a mixture of a plurality of different positive electrode active materials. The average particle diameter of the positive electrode active material particles is not particularly limited, but is preferably 1 to 30 μm.
[0029]
It is preferable that a conductive agent is further added to the positive electrode layer for the purpose of improving electronic conductivity. The conductive agent for the positive electrode may be an electron conductive material that does not cause a chemical change in the charge / discharge potential of the positive electrode material to be used. For example, natural graphite (such as flake graphite), graphite such as artificial graphite, acetylene black, Carbon blacks such as ketjen black, channel black, furnace black, lamp black and thermal black, conductive fibers such as carbon fiber and metal fiber, metal powders such as carbon fluoride, copper, nickel, aluminum and silver , Conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, or organic conductive materials such as polyphenylene derivatives, or a mixture of two or more thereof. Among these conductive agents, artificial graphite, acetylene black, and nickel powder are particularly preferable. Although the addition amount of a electrically conductive agent is not specifically limited, 1 to 50 weight% is preferable and 1 to 30 weight% is especially preferable. In the case of using carbon or graphite, 2 to 15% by weight is particularly preferable.
[0030]
The positive electrode current collector used in the present invention may be any electronic conductor that does not cause a chemical change in the charge / discharge potential of the positive electrode material used. For example, in addition to stainless steel, aluminum, titanium, carbon, conductive resin, and the like, materials obtained by treating carbon or titanium on the surface of aluminum or stainless steel are used. In particular, aluminum or an aluminum alloy is preferable. The surface of these materials can be oxidized and used. Further, it is desirable to make the current collector surface uneven by surface treatment. As the shape, a film, a sheet, a net, a punched thing, a lath body, a porous body, a foamed body, a fiber group, a non-woven body shaped body, and the like are used in addition to the foil. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0031]
In addition to the conductive agent and the binder, a filler, a dispersant, an ionic conductive agent, a pressure enhancer, and other various additives can be used for the positive electrode layer. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery. Usually, olefin polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0 to 30 weight% is preferable.
[0032]
In the configuration of the negative electrode layer and the positive electrode layer in the present invention, the entire surface of the positive electrode layer is preferably opposed to the surface of the negative electrode layer.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Add acetylene black as a conductive material and polyvinylidene fluoride (PVdF) as a binder to LiCoO 2 as a positive electrode active material, add N-methylpyrrolidone as a diluent, knead to form a paste, A positive electrode plate that was applied to a rectangular aluminum foil as the body 1 and dried to form the positive electrode layer 2 was obtained.
[0034]
Polyvinylidene fluoride (PVdF) as a binder is added to natural graphite as a negative electrode carbon material, N-methylpyrrolidone as a diluent is added, kneaded to form a paste, and rectangular copper as the negative electrode current collector 5 The negative electrode plate was coated on the foil and dried to form the negative electrode layer 4.
[0035]
The monomer as a raw material constituting the polymer electrolyte 3 has an acrylate group at its terminal, and a random copolymer of ethylene oxide (EO) and propylene oxide (PO) at a ratio of EO: PO = 8: 1 and having a molecular weight of 8000. A functional polyether was used. LiN (CF 3 SO 2 ) 2 as an electrolyte salt was dissolved at a concentration of 1 mol / l with respect to the volume of the monomer to obtain an electrolyte monomer solution.
[0036]
A single battery was constructed using the positive electrode plate, the negative electrode plate, and the electrolyte monomer solution. The monomer liquid was cured by irradiation with an electron beam. At this time, the polymer electrolyte 3 enters the voids of the positive electrode material portion of the positive electrode layer 2 and the voids of the negative electrode material portion of the negative electrode layer 4 to form a composite positive electrode and a composite negative electrode, and a layer made of only the polymer electrolyte 3 Is interposed between the positive electrode layer 2 and the negative electrode layer 4.
[0037]
Next, as the laminated body forming step, 80 sets of the unit cells were prepared and laminated.
[0038]
Next, as a tension application step, the laminate is placed on a horizontal desk, a flat plate is stacked on top, a weight is placed on the top of the flat plate, and a tension of 3 to 5 kg / cm 2 is applied in the stacking direction at room temperature. Applied for about 30 minutes.
[0039]
Next, as a resin coating step, ethylene oxide (EO) and propylene oxide (PO) having an acrylate group at the end as a raw material constituting the resin material 6 in the laminated section of the laminate are EO: PO = 8: 1. A trifunctional polyether having a molecular weight of 8000, which was randomly copolymerized at a ratio of, was applied and sufficiently impregnated so that the monomer entered every corner of the gap space formed in the laminated section of the laminated electrode group. Then, the monomer was hardened by heating the whole laminated body, and the resin material 6 was formed in the said laminated cross section. In this way, a power generation element 7 was obtained.
[0040]
Next, as a battery case insertion step, the power generation element 7 was inserted into a rectangular battery case in a direction perpendicular to the stacking direction and sealed to form a battery.
[0041]
(Example 2)
A battery was constructed in the same manner as in Example 1 except that trifunctional polypropylene oxide having an acrylate group at the end and a molecular weight of 8000 was used as a raw material constituting the resin material 6.
[0042]
(Example 3)
As a raw material constituting the resin material 6, polypropylene was injected into a gap space generated in the laminated cross section of the laminated electrode group while melting a cylindrical polypropylene rod. A battery was constructed in the same manner as in Example 1 except that the power generation element was obtained in this way.
[0043]
Example 4
A battery was constructed in the same manner as in Example 1 except that trifunctional polysiloxane having a molecular weight of 8000 having an acrylate group at the end was used as a raw material constituting the resin material 6.
[0044]
(Example 5)
5% by weight of silicon dioxide as an inorganic filler in a trifunctional polyether having a molecular weight of 8000, in which ethylene oxide (EO) and propylene oxide (PO) are randomly copolymerized at a ratio of EO: PO = 8: 1 with an acrylate group at the terminal A battery was constructed in the same manner as in Example 1 except that the material added and kneaded was used as a raw material constituting the resin material 6.
[0045]
(Comparative Example 1)
A battery was constructed in the same manner as in Example 1 except that the laminated cross section was not covered with the resin material.
[0046]
About Examples 1-5 and Comparative Example 1, 20 batteries were prototyped, and the frequency of occurrence of a short circuit in the laminated body after each of the laminated body forming step, the tension applying step, and the battery case inserting step was investigated. . In addition, the cell in which short circuit generation | occurrence | production was recognized by the front process was removed, and it used for the back process. The results are shown in Table 1.
[0047]
[Table 1]
Figure 0004092620
[0048]
As is clear from Table 1, it was found that Examples 1 to 5 in which the laminated cross section was covered with a resin can greatly reduce the frequency of occurrence of a short circuit compared to Comparative Example 1 in which the laminated cross section was not covered with a resin.
[0049]
【The invention's effect】
According to the present invention, since the laminated cross section of the power generating element in which a plurality of unit cells each composed of a set of positive electrode layer, polymer electrolyte layer and negative electrode layer are laminated is covered with the resin material, Can be prevented.
[0050]
Further, since the resin material is formed by applying a flowable monomer to the laminated cross section of the power generating element and then curing it, the resin material is sufficiently spread over the fine irregularities of the laminated cross section. be able to.
[0051]
Furthermore, since the polymer monomer constituting the resin material and the polymer monomer constituting the polymer electrolyte are made of the same material, the hardness (flexibility) of the polymer electrolyte, and the laminated electrode The hardness (flexibility) of the resin material applied to the laminated section of the material is very close to each other. Therefore, even when the power generation element receives an external force that is subject to deformation, both of them are deformed to the same extent. The possibility that a short circuit will occur in the laminated cross section can be further reduced.
[0052]
In addition, since the polymer electrolyte is an all-solid polymer electrolyte that does not contain a solvent, the effect of the present invention can be efficiently achieved particularly in an all-solid polymer electrolyte battery that requires a high degree of thinning of the electrode. Can demonstrate.
Polymer electrolyte battery.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a relationship between a battery laminate and a resin material according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode layer 3 Polymer electrolyte 4 Negative electrode layer 5 Negative electrode collector 6 Resin material 7 Electric power generation element

Claims (3)

一組の正極層、ソルベントを含まない全固体型ポリマー電解質層及び負極層からなる単電池が複数組積層されて発電要素を構成しているポリマー電解質電池において、前記発電要素の積層断面が、前記ポリマー電解質を構成しているポリマー材料と同一の繰り返し単位を有する樹脂材料で覆われていることを特徴とするポリマー電解質電池。In a polymer electrolyte battery in which a plurality of unit cells each including a set of positive electrode layers, a solvent-free all solid polymer electrolyte layer, and a negative electrode layer are stacked to form a power generation element, A polymer electrolyte battery which is covered with a resin material having the same repeating unit as the polymer material constituting the polymer electrolyte. 前記樹脂材料が、電解質塩を含んでいない樹脂材料である請求項1記載のポリマー電解質電池。 The polymer electrolyte battery according to claim 1, wherein the resin material is a resin material containing no electrolyte salt. 前記積層が直列積層である請求項1又は2記載のポリマー電解質電池。 The polymer electrolyte battery according to claim 1, wherein the stack is a serial stack.
JP2002045887A 2002-02-22 2002-02-22 Polymer electrolyte battery Expired - Fee Related JP4092620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002045887A JP4092620B2 (en) 2002-02-22 2002-02-22 Polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002045887A JP4092620B2 (en) 2002-02-22 2002-02-22 Polymer electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003249265A JP2003249265A (en) 2003-09-05
JP4092620B2 true JP4092620B2 (en) 2008-05-28

Family

ID=28659512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002045887A Expired - Fee Related JP4092620B2 (en) 2002-02-22 2002-02-22 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP4092620B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531012B2 (en) * 2004-10-21 2009-05-12 Bathium Canada Inc. Thin film electrochemical cell for lithium polymer batteries and manufacturing method therefor
JP4741559B2 (en) * 2006-08-31 2011-08-03 株式会社国際基盤材料研究所 Secondary battery and secondary battery unit
JP5552398B2 (en) * 2010-08-31 2014-07-16 古河電池株式会社 Lithium ion battery
KR102005448B1 (en) * 2012-09-13 2019-07-31 삼성전자주식회사 Lithium battery
JP7017081B2 (en) * 2015-09-16 2022-02-08 日本ゼオン株式会社 Binder for all-solid-state secondary battery, manufacturing method of binder for all-solid-state secondary battery and all-solid-state secondary battery
EP3352278A4 (en) * 2015-09-16 2019-02-13 Zeon Corporation All-solid secondary battery
DE102017111509B4 (en) 2016-06-01 2023-07-06 Toyota Jidosha Kabushiki Kaisha All-solid-state battery manufacturing method, all-solid-state battery manufacturing apparatus, and all-solid-state battery
JP6445601B2 (en) * 2016-06-01 2018-12-26 トヨタ自動車株式会社 All-solid battery manufacturing method, all-solid battery manufacturing apparatus, and all-solid battery
JP6948382B2 (en) * 2017-03-13 2021-10-13 富士フイルム株式会社 All-solid-state secondary battery and its manufacturing method, as well as solid-state electrolyte sheet for all-solid-state secondary battery and positive electrode active material sheet for all-solid-state secondary battery

Also Published As

Publication number Publication date
JP2003249265A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
KR100742109B1 (en) Nonaqueous-electrolyte secondary battery and method of manufacturing the same
JP3606554B2 (en) Manufacturing method of sealed battery
JP2005044663A (en) Solid electrolyte, lithium ion battery, and its manufacturing method
JP4014816B2 (en) Lithium polymer secondary battery
JP7272120B2 (en) lithium secondary battery
JP7036125B2 (en) Lithium-ion secondary battery and its manufacturing method
WO2004107493A1 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2018116840A (en) Lithium secondary battery
JP2002110239A (en) All-solid polymer battery and its manufacturing method
JP3503935B2 (en) Winding battery
JP4092620B2 (en) Polymer electrolyte battery
JP4751502B2 (en) Polymer battery
JP4432244B2 (en) Flat plate type battery
JP3512551B2 (en) Rechargeable battery
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2007123009A (en) Wound type battery
JP5674357B2 (en) Lithium ion secondary battery
CN111697261A (en) Lithium secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JP2004071405A (en) Bipolar battery
JP2008091343A (en) Solid electrolyte, lithium ion cell, and its manufacturing method
JP2019169346A (en) Lithium ion secondary battery
JP2007109512A (en) Non-aqueous electrolytic liquid secondary battery
JP2004095333A (en) Laminate film for battery and non-aqueous electrolyte secondary battery
JP6946719B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4092620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees