JP4892944B2 - Method for manufacturing vacuum insulator and vacuum insulator - Google Patents

Method for manufacturing vacuum insulator and vacuum insulator Download PDF

Info

Publication number
JP4892944B2
JP4892944B2 JP2005354423A JP2005354423A JP4892944B2 JP 4892944 B2 JP4892944 B2 JP 4892944B2 JP 2005354423 A JP2005354423 A JP 2005354423A JP 2005354423 A JP2005354423 A JP 2005354423A JP 4892944 B2 JP4892944 B2 JP 4892944B2
Authority
JP
Japan
Prior art keywords
container
vacuum
filling container
filling
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005354423A
Other languages
Japanese (ja)
Other versions
JP2007155088A (en
Inventor
一登 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005354423A priority Critical patent/JP4892944B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to EP06810438.9A priority patent/EP1903271B1/en
Priority to CN2010101280552A priority patent/CN101799101B/en
Priority to US11/995,832 priority patent/US7988770B2/en
Priority to CN2010101280285A priority patent/CN101799100B/en
Priority to CN2006800261645A priority patent/CN101223397B/en
Priority to EP12189866A priority patent/EP2554891A3/en
Priority to PCT/JP2006/318825 priority patent/WO2007034906A1/en
Priority to EP12166138.3A priority patent/EP2484952B1/en
Priority to KR1020077029856A priority patent/KR100940975B1/en
Publication of JP2007155088A publication Critical patent/JP2007155088A/en
Priority to US12/796,396 priority patent/US8147598B2/en
Priority to US12/796,323 priority patent/US8282716B2/en
Priority to US12/796,274 priority patent/US8308852B2/en
Priority to US12/796,362 priority patent/US8152901B2/en
Application granted granted Critical
Publication of JP4892944B2 publication Critical patent/JP4892944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

本発明は、断熱を必要とするもの、例えば冷蔵庫、保温保冷容器、自動販売機、電気湯沸かし器、自動車、鉄道車両、及び住宅等の断熱体として使用可能な真空断熱体とその製造方法に関するものである。   The present invention relates to a vacuum heat insulator that can be used as a heat insulator such as a refrigerator, a heat insulation container, a vending machine, an electric water heater, an automobile, a railway vehicle, and a house, and a manufacturing method thereof. is there.

近年、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫、冷凍庫、自動販売機等の保温保冷機器では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。   In recent years, energy saving is strongly desired from the viewpoint of preventing global warming, and energy saving is an urgent issue for household appliances. In particular, a heat insulating material having excellent heat insulating performance is required from the viewpoint of efficiently using heat in a heat and cold insulation device such as a refrigerator, a freezer, and a vending machine.

一般的な断熱材として、グラスウールなどの繊維材やウレタンフォームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性能を向上するためには断熱材の厚さを増す必要があり、断熱材を充填できる空間に制限があって省スペースや空間の有効利用が必要な場合には適用することができない。   As general heat insulating materials, fiber materials such as glass wool and foams such as urethane foam are used. However, in order to improve the heat insulation performance of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material, and there is a limit to the space that can be filled with the heat insulating material, so when space saving and effective use of the space are necessary It cannot be applied.

そこで、高性能な断熱材として、真空断熱体が提案されている。これは、スペーサの役割を持つ芯材を、ガスバリア性を有する外被材中に挿入し内部を減圧にして封止した断熱体である。   Therefore, a vacuum heat insulator has been proposed as a high performance heat insulating material. This is a heat insulator in which a core material serving as a spacer is inserted into a jacket material having a gas barrier property and the inside is sealed under reduced pressure.

真空断熱体内部の真空度を上げることにより、高性能な断熱性能を得ることができる。真空断熱体内部に存在する気体には大きく分けて次の三つがある。一つは、真空断熱体作製時、排気できずに残存する気体、他の一つは、減圧封止後、芯材や外被材から発生する気体(芯材や外被材に吸着している気体や、芯材の未反応成分が反応することによって発生する反応ガス等)、残りの一つは、外被材を通過して外部から侵入してくる気体である。   Higher thermal insulation performance can be obtained by increasing the degree of vacuum inside the vacuum thermal insulator. There are roughly the following three types of gas in the vacuum insulator. One is the gas that cannot be evacuated when the vacuum heat insulator is produced, and the other is the gas generated from the core material and the jacket material after being vacuum-sealed (adsorbed to the core material and the jacket material). The remaining gas is a gas that passes through the jacket material and enters from the outside.

これらの気体を吸着するため、吸着材を真空断熱体に充填する方法が考案されている。   In order to adsorb these gases, a method of filling a vacuum heat insulating material with an adsorbent has been devised.

例えば、真空断熱体内の気体を、Ba−Li合金を用いて吸着するものがある(例えば、特許文献1参照)。   For example, there exists what adsorb | sucks the gas in a vacuum heat insulating body using Ba-Li alloy (for example, refer patent document 1).

真空断熱体内の吸着材が吸着すべき気体のうち、吸着困難な気体のひとつが窒素である。これは、窒素分子が約940kJ/molという大きい結合エネルギーを有する非極性分子であるから、活性化させるのが困難なためである。   Of the gases to be adsorbed by the adsorbent in the vacuum insulation body, one of the gases that are difficult to adsorb is nitrogen. This is because the nitrogen molecule is a nonpolar molecule having a large binding energy of about 940 kJ / mol, and thus it is difficult to activate.

しかし、Ba−Li合金により窒素を吸着可能とし、真空断熱体内部の真空度を維持するのである。
特表平9−512088号公報
However, nitrogen can be adsorbed by the Ba-Li alloy, and the degree of vacuum inside the vacuum heat insulator is maintained.
Japanese National Patent Publication No. 9-512088

しかしながら、特許文献1に記載の上記従来の構成では、活性化のための熱処理を必要とせず、常温下でも窒素吸着可能であり、数分間は空気雰囲気で取扱い可能と記載されているが、工業的に真空断熱体を製造する条件では、取扱い上、より長い許容時間が望ましい。   However, the above-described conventional configuration described in Patent Document 1 does not require heat treatment for activation, and can adsorb nitrogen even at room temperature and can be handled in an air atmosphere for several minutes. In particular, a longer permissible time is desirable for handling under conditions for manufacturing a vacuum insulator.

つまり、窒素吸着能力の多くが空気と接触する製造プロセスで消耗することによって、真空断熱体の経時的な性能維持のための吸着能力が乏しくなり、性能劣化や性能ばらつきが大きくなるためである。   That is, because much of the nitrogen adsorption capacity is consumed in the manufacturing process that comes into contact with air, the adsorption capacity for maintaining the performance over time of the vacuum heat insulator becomes poor, and performance deterioration and performance variation increase.

さらなる真空断熱体の高性能化が望まれている中で、真空断熱体内部の真空度維持を図るために、吸着材をより安定的に高効率に使いこなすことが大きな課題であった。   In order to further improve the performance of the vacuum heat insulator, it has been a big challenge to use the adsorbent more stably and efficiently in order to maintain the degree of vacuum inside the vacuum heat insulator.

本発明は、上記従来の課題を解決するもので、真空断熱体の製造プロセスにおいて、吸着材を大気中の空気に暴露させないことにより吸着能力の消耗を抑制し、真空断熱体の中で高い吸着能力を活かして、経時的に浸透してくる微量の窒素や酸素などの主要な空気成分を安定的に吸着、長期にわたって真空度を維持し、断熱性能の優れた真空断熱体を提供することを目的とする。   The present invention solves the above-described conventional problems. In the vacuum insulator manufacturing process, the adsorption capacity is suppressed by not exposing the adsorbent to air in the atmosphere, and high adsorption is achieved in the vacuum insulator. Utilizing its capabilities, it will stably absorb major air components such as nitrogen and oxygen that permeate over time, maintain a vacuum over a long period of time, and provide a vacuum insulator with excellent heat insulation performance. Objective.

上記目的を達成するために、本発明は、容器外の圧力が容器内の圧力に比較して所定値以上小さくなると開口する充填容器に空気成分吸着材と前記空気成分吸着材に吸着されない非吸着性ガスとを封入し、次に前記充填容器を多孔質芯材と共に外被容器の内部に配設して、前記充填容器外の圧力が前記充填容器内の圧力に比較して所定値以上小さくなるように前記外被容器内を減圧することにより、前記外被容器内の空気と共に、前記充填容器にできた開口部を通じて、前記充填容器の中の前記非吸着性ガスも排気した後、前記外被容器を密閉封止する方法により、真空断熱体を製造するのである。   In order to achieve the above object, the present invention provides an air component adsorbent that is not adsorbed by the air component adsorbent and the air component adsorbent that opens when the pressure outside the container becomes smaller than a predetermined value compared to the pressure inside the container. Next, the filling container is disposed inside the jacket container together with the porous core material, and the pressure outside the filling container is smaller than a predetermined value compared to the pressure inside the filling container. By reducing the pressure in the outer container so that the non-adsorbing gas in the filling container is exhausted through the opening made in the filling container together with the air in the outer container, A vacuum heat insulator is manufactured by a method of hermetically sealing the envelope container.

本発明の真空断熱体の製造方法によれば、空気成分吸着材は、充填容器の中に非吸着性ガスと共に封入されており、かつ真空雰囲気下で充填容器が開口して多孔質芯材と真空包装するため、大気中の空気との接触は製造プロセスでは起こらず吸着材の劣化はない。   According to the method for manufacturing a vacuum heat insulating body of the present invention, the air component adsorbent is sealed together with a non-adsorbing gas in a filling container, and the filling container is opened in a vacuum atmosphere to form a porous core material. Due to vacuum packaging, contact with air in the atmosphere does not occur in the manufacturing process and the adsorbent does not deteriorate.

よって、真空断熱体の製造時間の長短にかかわらず、問題なく使用可能である。このため、空気雰囲気での暴露による吸着性能バラツキはなくなり、安定的に製造でき、長期信頼性も問題のない真空断熱体が得られるのである。   Therefore, it can be used without any problem regardless of the manufacturing time of the vacuum heat insulator. For this reason, there is no variation in adsorption performance due to exposure in an air atmosphere, and a vacuum heat insulator that can be stably manufactured and has no problem with long-term reliability can be obtained.

ここで、充填容器としては、一方の容器の開口部を他方の容器の開口部で塞ぐように前記開口部の大きさが異なる2つの容器の開口部を重ね合わせて接合した構成で、前記充填容器外の圧力が前記充填容器内の圧力に比較して所定値以上小さくなると、重ね合わせて接合した部分が外れるものを使用できる。   Here, the filling container has a configuration in which the openings of two containers having different sizes of the openings are overlapped and joined so as to close the opening of one container with the opening of the other container. When the pressure outside the container becomes smaller than the pressure inside the filling container by a predetermined value or more, it is possible to use one in which the overlapped and joined portions are removed.

このとき、充填容器の重ね合わせて接合した部分に潤滑材をあらかじめ塗布しておくと、減圧による圧力差によって充填容器の接合部は容易に外れ、開口部を形成することができるのである。   At this time, if a lubricant is applied in advance to the overlapped and joined portions of the filling containers, the joining portions of the filling containers are easily detached due to the pressure difference due to the reduced pressure, and an opening can be formed.

また、本発明の真空断熱体は、少なくとも、接合部が外れて開口部を有する充填容器の中に配設された空気成分吸着材と、多孔質芯材と、これらを収納する外被容器とから成り、前記空気成分吸着材は前記開口部を通じて真空断熱体内部と連続空間でつながっていることを特徴とするものである。   In addition, the vacuum heat insulating body of the present invention includes at least an air component adsorbing material disposed in a filled container having an opening and a joint portion removed, a porous core material, and an outer container for housing these The air component adsorbent is connected to the inside of the vacuum heat insulator through the opening in a continuous space.

これによって、多孔質芯材に残る残留微量空気や外部から浸透してくる微量空気は多孔質芯材と連続空間でつながっている空気成分吸着材で吸着固定化でき、内部圧力を所定の真空度に維持できるのである。このことにより、長期にわたって優れた断熱性を維持することが可能となるのである。   As a result, the residual trace air remaining in the porous core material and the minute air permeating from the outside can be adsorbed and fixed by the air component adsorbent connected to the porous core material in a continuous space, and the internal pressure is set to a predetermined degree of vacuum. Can be maintained. This makes it possible to maintain excellent heat insulation over a long period of time.

なお、ここでいう充填容器とは、形状、大きさを問わないが、医薬品や健康食品に用いられるカプセルが利用できる。カプセルとは、ボディとキャップから成るハードカプセルであり、一端を閉じた交互に重ね合わすことができる一対の有底円筒体として定義されるものである。   In addition, although a filling container here does not ask | require a shape and a magnitude | size, the capsule used for a pharmaceutical and a health food can be utilized. The capsule is a hard capsule composed of a body and a cap, and is defined as a pair of bottomed cylindrical bodies that can be alternately stacked with one end closed.

本発明の真空断熱体は、高い断熱性能を安定的に実現し、長期信頼性を確保することが可能であり、地球温暖化などの環境問題解決に著しい効果を発揮することができる。   The vacuum heat insulating body of the present invention can stably achieve high heat insulating performance, ensure long-term reliability, and can exert a remarkable effect on solving environmental problems such as global warming.

請求項1に記載の真空断熱体の製造方法の発明は、容器外の圧力が容器内の圧力に比較して所定値以上小さくなると開口する充填容器に空気成分吸着材と前記空気成分吸着材に吸着されない非吸着性ガスとを封入し、次に前記充填容器を多孔質芯材と共に外被容器の内部に配設して、前記充填容器外の圧力が前記充填容器内の圧力に比較して所定値以上小さくなるように前記外被容器内を減圧することにより、前記外被容器内の空気と共に、前記充填容器にできた開口部を通じて、前記充填容器の中の前記非吸着性ガスも排気した後、前記外被容器を密閉封止するものであり、空気成分吸着材は、充填容器の中に非吸着性ガスと共に封入されており、かつ真空雰囲気下で充填容器が開口して多孔質芯材と真空包装するため、大気中の空気との接触は製造プロセスでは起こらず吸着材の劣化はない。よって、真空断熱体の製造時間の長短にかかわらず、問題なく使用可能である。このため、空気雰囲気での暴露による吸着性能バラツキはなくなり、安定的に製造でき、長期信頼性も問題のない真空断熱体が得られるのである。   According to the first aspect of the present invention, there is provided an air component adsorbent and an air component adsorbent in a filling container that opens when the pressure outside the container becomes a predetermined value or more smaller than the pressure inside the container. The non-adsorbing gas that is not adsorbed is sealed, and then the filling container is disposed inside the jacket container together with the porous core material, and the pressure outside the filling container is compared with the pressure inside the filling container. By reducing the pressure in the outer container so as to be smaller than a predetermined value, the non-adsorbing gas in the filling container is exhausted through the opening made in the filling container together with the air in the outer container. After that, the outer casing container is hermetically sealed, and the air component adsorbing material is sealed together with the non-adsorbing gas in the filling container, and the filling container opens in a vacuum atmosphere and is porous. For vacuum packaging with the core material, Catalyst is not deteriorated adsorbent does not occur in the manufacturing process. Therefore, it can be used without any problem regardless of the manufacturing time of the vacuum heat insulator. For this reason, there is no variation in adsorption performance due to exposure in an air atmosphere, and a vacuum heat insulator that can be stably manufactured and has no problem with long-term reliability can be obtained.

請求項2に記載の真空断熱体の製造方法の発明は、請求項1記載の発明における前記充填容器が、一方の容器の開口部を他方の容器の開口部で塞ぐように前記開口部の大きさが異なる2つの容器の開口部を重ね合わせて接合した構成であり、前記充填容器外の圧力が前記充填容器内の圧力に比較して所定値以上小さくなると、重ね合わせて接合した部分が外れるものであり、医薬品や健康食品に用いられるカプセルが利用できる。   According to a second aspect of the present invention, there is provided a method for producing a vacuum heat insulating body, wherein the filling container according to the first aspect of the invention has a size of the opening so that the opening of one container is closed by the opening of the other container. When the pressure outside the filling container is reduced by a predetermined value or more compared to the pressure inside the filling container, the overlapped and joined part is released. Capsules used for pharmaceuticals and health foods can be used.

請求項3に記載の真空断熱体の製造方法の発明は、請求項2記載の発明における前記充填容器が、重ね合わせて接合した部分に潤滑材があらかじめ塗布されてなるものであり、減圧による圧力差による変形が円滑に起こり、開口部を容易に形成することができるの3ある。   According to a third aspect of the present invention, there is provided a method for producing a vacuum heat insulator, wherein the filling container according to the second aspect of the invention is formed by applying a lubricant in advance to a portion where the fillers are overlapped and joined, The deformation due to the difference occurs smoothly and the opening can be easily formed.

請求項4に記載の真空断熱体の発明は、少なくとも、接合部が外れて開口部を有する充填容器の中に配設された空気成分吸着材と、多孔質芯材と、これらを収納する外被容器とから成り、前記空気成分吸着材は前記開口部を通じて前記外被容器内部と連続空間でつながっていることを特徴とするものであり、これによって、多孔質芯材に残る残留微量空気や外部から浸透してくる微量空気は、多孔質芯材と連続空間でつながっている空気成分吸着材で吸着固定化でき、内部圧力を所定以下に真空度に維持できるのである。このことにより、長期にわたって優れた断熱性を維持することが可能となるのである。   According to a fourth aspect of the present invention, there is provided an air component adsorbent, a porous core material, and an outer housing for housing these components, which are disposed in a filled container having an opening and a joint portion removed. The air component adsorbing material is connected to the inside of the outer packaging container through the opening in a continuous space, and thereby, residual trace air remaining in the porous core material and The minute amount of air that permeates from the outside can be adsorbed and fixed by the air component adsorbing material connected to the porous core material in a continuous space, and the internal pressure can be maintained at a predetermined degree of vacuum. This makes it possible to maintain excellent heat insulation over a long period of time.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における真空断熱体の製造方法での真空排気前の断面図であり、図2は、同実施の形態における真空断熱体に用いる充填容器を示す拡大断面図、図3は、同実施の形態における真空断熱体の製造方法での真空排気が終了直前時点での断面図、図4は、同実施の形態における真空断熱体の製造方法での真空包装後の真空断熱体の断面図である。   FIG. 1 is a cross-sectional view before evacuation in the method for manufacturing a vacuum heat insulator in an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view showing a filling container used for the vacuum heat insulator in the same embodiment. FIG. 3 is a cross-sectional view immediately before the end of evacuation in the vacuum insulator manufacturing method in the embodiment, and FIG. 4 is a vacuum after vacuum packaging in the vacuum insulator manufacturing method in the embodiment. It is sectional drawing of a heat insulating body.

図1において、ラミネートフィルムからなる外被容器1は、多孔質芯材2を内包し覆っている。空気成分吸着材3は、Ba−Li合金(SAES社製コンボゲッター)や銅イオン交換したZSM−5型ゼオライトから成る少なくとも窒素を吸着する吸着材であり、汎用の医薬品用のカプセルからなる充填容器4にアルゴンガスなどの空気成分吸着材3に吸着されない非吸着性ガス5と共に封入している。このときの充填されている非吸着性ガス5の圧力は、常圧の1気圧である。   In FIG. 1, an envelope container 1 made of a laminate film encloses and covers a porous core material 2. The air component adsorbing material 3 is an adsorbing material that adsorbs at least nitrogen composed of a Ba-Li alloy (SAES combo getter) or a copper ion exchanged ZSM-5 type zeolite, and is a filled container made of a general-purpose pharmaceutical capsule 4 is enclosed together with a non-adsorbing gas 5 that is not adsorbed by the air component adsorbent 3 such as argon gas. The pressure of the non-adsorbing gas 5 filled at this time is 1 atmospheric pressure.

図2の拡大図で図示するように、カプセルからなる充填容器4は、ガス透過性がないか、もしくは極めてガス透過性が小さいものであり、ボディ(一方の有底円筒状の容器)6とキャップ(他方の有底円筒状の容器)7からなり、ボディ(一方の容器)6の開口部をキャップ(他方の容器)7の開口部で塞ぐように開口部の大きさが異なる2つの容器(ボディ6,キャップ7)の開口部を重ね合わせてボディ6の開口部をキャップ7の開口部の中に押し込んで開口部を重ね合わせて接合部8で密着させて形成している。   As shown in the enlarged view of FIG. 2, the filling container 4 made of a capsule has no gas permeability or extremely low gas permeability, and has a body (one bottomed cylindrical container) 6 and Two containers having caps (the other bottomed cylindrical container) 7 and having different opening sizes so as to close the opening of the body (one container) 6 with the opening of the cap (the other container) 7 The openings of (body 6, cap 7) are overlapped and the opening of body 6 is pushed into the opening of cap 7, and the openings are overlapped and adhered at joint 8.

接合部8には、真空用オイルなどの潤滑材9が塗布されている。そして、充填容器4外の圧力が充填容器4内の圧力に比較して所定値以上小さくなると、重ね合わせて接合した部分が外れて開口するように構成してある。   A lubricant 9 such as vacuum oil is applied to the joint 8. When the pressure outside the filling container 4 becomes smaller than the pressure inside the filling container 4 by a predetermined value or more, the overlapped and joined portion is released and opened.

図1において、真空包装機10は、減圧チャンバー11と真空ポンプ12と、所定の真空排気が行なわれた後、熱溶着を行なうヒートシール機13から成っている。   In FIG. 1, a vacuum packaging machine 10 includes a decompression chamber 11, a vacuum pump 12, and a heat sealing machine 13 that performs heat welding after a predetermined vacuum exhaust.

図3において、真空包装機10が稼動し、減圧チャンバー11内が500Paまで真空引きされると、カプセルからなる充填容器4は、内包されている1気圧の非吸着ガス5との圧力差により、ボディ6とキャップ7が外れて開口部14を形成する。そして、カプセルからなる充填容器4内の非吸着性ガス5は開口部14を通して、減圧チャンバー11内に排気される。   In FIG. 3, when the vacuum packaging machine 10 is operated and the inside of the decompression chamber 11 is evacuated to 500 Pa, the filling container 4 made of the capsule is caused by a pressure difference with the non-adsorbed gas 5 of 1 atm. The body 6 and the cap 7 are removed to form the opening 14. Then, the non-adsorbing gas 5 in the filling container 4 made of capsules is exhausted into the decompression chamber 11 through the opening 14.

その後、減圧チャンバー11内の真空度が所定の10Paになった時点で、ヒートシール機13で外被容器1を熱溶着し、図4の真空断熱体15を得た。   Thereafter, when the degree of vacuum in the decompression chamber 11 reached a predetermined 10 Pa, the outer casing 1 was thermally welded by the heat sealer 13 to obtain the vacuum heat insulator 15 of FIG.

以上のように、本実施の形態による製造方法では、空気成分吸着材3は、真空雰囲気下でカプセルからなる充填容器4のボディ6とキャップ7が外れるため、空気との接触は製造プロセスでは極めて微量であり、製造時間が長くかかっても劣化はなく、問題なく使用可能である。このため、空気雰囲気で暴露させる時間による吸着性能バラツキはなくなり、安定的に製造でき、長期信頼性も問題がない効果が得られるのである。   As described above, in the manufacturing method according to the present embodiment, the air component adsorbing material 3 has the body 6 and the cap 7 of the filling container 4 made of capsules removed in a vacuum atmosphere. Even if the production time is long, there is no deterioration and it can be used without any problem. For this reason, there is no variation in the adsorption performance depending on the exposure time in the air atmosphere, stable production can be achieved, and long-term reliability can be obtained without any problem.

この結果、長期にわたっての高断熱性能を活かして、省エネルギーとして地球環境保護に寄与することができる。   As a result, it is possible to contribute to the protection of the global environment as energy saving by utilizing the high thermal insulation performance over a long period of time.

また、カプセルからなる充填容器4の接合部8には、真空用オイルなどの潤滑材9があらかじめ塗布されているため、図3で示すように真空引きされると、圧力差の力により、接合部8で容易に滑り外れて開口部14を形成する。   In addition, since a lubricant 9 such as a vacuum oil is preliminarily applied to the joint portion 8 of the filling container 4 made of capsules, when the vacuum is drawn as shown in FIG. The opening 14 is formed by easily slipping off at the portion 8.

以上のように、本実施の形態による製造方法では、カプセルからなる充填容器4のボディ6とキャップ7が潤滑剤9によって、より確実に外れるため、空気吸着材3が開口部14を通して真空断熱体15の内部の微量空気を効果的に吸着除去できるのである。   As described above, in the manufacturing method according to the present embodiment, the body 6 and the cap 7 of the filling container 4 made of capsules are more surely removed by the lubricant 9, so that the air adsorbent 3 passes through the opening 14 and is a vacuum heat insulator. Thus, the minute amount of air inside 15 can be effectively adsorbed and removed.

図4において、真空断熱体15は、外被容器1と多孔質芯材2と空気成分吸着材3からなり、空気成分吸着材3は、カプセルからなる充填容器4の開口部10を通じて、多孔質芯材2を含む真空断熱体11の内部と真空の連続空間でつながっている。   In FIG. 4, the vacuum heat insulator 15 includes an outer casing container 1, a porous core material 2, and an air component adsorbing material 3, and the air component adsorbing material 3 is porous through an opening 10 of a filling container 4 made of a capsule. It connects with the inside of the vacuum heat insulating body 11 containing the core material 2 in the continuous space of a vacuum.

これによって、多孔質芯材2に残る残留微量空気や外部から浸透してくる微量空気は多孔質芯材2と連続空間でつながっている空気成分吸着材3で吸着固定化でき、内部圧力を所定以下に真空度に維持できるのである。経時特性を評価するために、促進テストとして80℃で3ヶ月間、空気中に真空断熱体15を静置しても、熱伝導率の変化は1〜2%であり、問題なく性能維持が図れることが明らかとなった。   Thereby, residual trace air remaining in the porous core material 2 and trace air permeating from the outside can be adsorbed and fixed by the air component adsorbent 3 connected to the porous core material 2 in a continuous space, and the internal pressure is set to a predetermined value. The vacuum can be maintained below. In order to evaluate the aging characteristics, even if the vacuum insulation 15 is left in the air at 80 ° C. for 3 months as an accelerated test, the change in thermal conductivity is 1 to 2%, and the performance can be maintained without problems. It became clear that it was possible.

以上のように、本実施の形態では、優れた真空断熱体の性能をばらつきなく安定的に長期にわたって、実現することが可能である。   As described above, in the present embodiment, it is possible to stably realize the performance of an excellent vacuum heat insulator stably over a long period without variation.

以上のように、本発明にかかる真空断熱材は、高い断熱性能があり、かつ信頼性の高いものであり、例えば冷蔵庫、保温保冷容器、自動販売機、電気湯沸かし器、自動車、鉄道車両、及び住宅等の断熱体に広く適用することができる。   As described above, the vacuum heat insulating material according to the present invention has high heat insulating performance and high reliability. For example, a refrigerator, a heat insulating container, a vending machine, an electric water heater, an automobile, a railway vehicle, and a house. It can be widely applied to a thermal insulator such as

本発明の一実施の形態における真空断熱体の製造方法での真空排気前の断面図Sectional drawing before the vacuum exhaustion in the manufacturing method of the vacuum heat insulating body in one embodiment of this invention 同実施の形態における真空断熱体に使用する充填容器の拡大断面図The expanded sectional view of the filling container used for the vacuum heat insulating body in the embodiment 同実施の形態における真空断熱体の製造方法での真空排気終了直前の断面図Sectional drawing just before completion | finish of evacuation in the manufacturing method of the vacuum heat insulating body in the embodiment 同実施の形態における真空断熱体の製造方法での真空包装後の真空断熱体の断面図Sectional drawing of the vacuum heat insulating body after the vacuum packaging in the manufacturing method of the vacuum heat insulating body in the embodiment

符号の説明Explanation of symbols

1 外被容器
2 多孔質芯材
3 空気成分吸着材
4 充填容器
5 非吸着性ガス
8 接合部
9 潤滑材
14 開口部
15 真空断熱体
DESCRIPTION OF SYMBOLS 1 Outer container 2 Porous core material 3 Air component adsorption material 4 Filling container 5 Non-adsorbable gas 8 Joint part 9 Lubricant 14 Opening part 15 Vacuum heat insulator

Claims (3)

容器外の圧力が容器内の圧力に比較して所定値以上小さくなると開口する充填容器に空気成分吸着材と前記空気成分吸着材に吸着されない非吸着性ガスとを封入し、前記充填容器を多孔質芯材と共に外被容器の内部に配設し、前記充填容器は、2つの容器の開口部を重ね合わせて接合した構成であり、前記充填容器外の圧力と前記充填容器内の圧力との圧力差により、重ね合わせて接合した部分が外れるものであって、前記外被容器内の空気と共に、前記充填容器の接合した部分が外れてできた開口部を通じて、前記充填容器の中の前記非吸着性ガスも排気した後、前記外被容器を密閉封止する真空断熱体の製造方法。 When the pressure outside the container becomes smaller than a predetermined value compared to the pressure inside the container, an air component adsorbing material and a non-adsorbing gas that is not adsorbed by the air component adsorbing material are sealed in the opening filling container, and the filling container Arranged inside the outer container together with the core material , the filling container has a structure in which the openings of the two containers are overlapped and joined, and the pressure outside the filling container and the pressure inside the filling container Due to the pressure difference, the overlapped and joined part is removed, and together with the air in the outer container, the non-filled container in the filled container is opened through an opening formed by removing the joined part of the filled container. A method for manufacturing a vacuum heat insulating body, wherein after the adsorbing gas is also exhausted, the envelope container is hermetically sealed. 前記充填容器は、重ね合わせて接合した部分に潤滑材があらかじめ塗布されてなる請求項の真空断熱体の製造方法。 The manufacturing method of the vacuum heat insulating body according to claim 1 , wherein the filling container is preliminarily coated with a lubricant at a portion where they are overlapped and joined. 少なくとも、接合部が外れて開口部を有する充填容器の中に配設された空気成分吸着材と、多孔質芯材と、これらを収納する外被容器とから成り、前記空気成分吸着材は前記開口部を通じて前記外被容器内部と連続空間でつながっていることを特徴とする請求項1または2の製造方法を用いた真空断熱体。 At least an air component adsorbing material disposed in a filling container having an opening portion with a joint portion removed, a porous core material, and an outer container for storing these, the air component adsorbing material is The vacuum heat insulator using the manufacturing method according to claim 1, wherein the vacuum container is connected to the inside of the outer casing container through a continuous space in a continuous space.
JP2005354423A 2005-09-26 2005-12-08 Method for manufacturing vacuum insulator and vacuum insulator Expired - Fee Related JP4892944B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2005354423A JP4892944B2 (en) 2005-12-08 2005-12-08 Method for manufacturing vacuum insulator and vacuum insulator
KR1020077029856A KR100940975B1 (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US11/995,832 US7988770B2 (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
CN2010101280285A CN101799100B (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
CN2006800261645A CN101223397B (en) 2005-09-26 2006-09-22 Gas adsorbing device
EP12189866A EP2554891A3 (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
PCT/JP2006/318825 WO2007034906A1 (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
EP12166138.3A EP2484952B1 (en) 2005-09-26 2006-09-22 Gas absorbing device and vacuum heat insulator making use of the gas absorbing device
EP06810438.9A EP1903271B1 (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
CN2010101280552A CN101799101B (en) 2005-09-26 2006-09-22 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US12/796,396 US8147598B2 (en) 2005-09-26 2010-06-08 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US12/796,323 US8282716B2 (en) 2005-09-26 2010-06-08 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US12/796,274 US8308852B2 (en) 2005-09-26 2010-06-08 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
US12/796,362 US8152901B2 (en) 2005-09-26 2010-06-08 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354423A JP4892944B2 (en) 2005-12-08 2005-12-08 Method for manufacturing vacuum insulator and vacuum insulator

Publications (2)

Publication Number Publication Date
JP2007155088A JP2007155088A (en) 2007-06-21
JP4892944B2 true JP4892944B2 (en) 2012-03-07

Family

ID=38239719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354423A Expired - Fee Related JP4892944B2 (en) 2005-09-26 2005-12-08 Method for manufacturing vacuum insulator and vacuum insulator

Country Status (1)

Country Link
JP (1) JP4892944B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361679B (en) 2009-03-24 2014-03-19 松下电器产业株式会社 Fabrication method for gas-adsorbing device, gas-adsorbing device, and method of using the same
JP6986332B2 (en) * 2016-04-28 2021-12-22 三星電子株式会社Samsung Electronics Co., Ltd. Insulation materials, vacuum heat insulating materials, their manufacturing methods and refrigerators equipped with them
WO2017188571A1 (en) 2016-04-28 2017-11-02 Samsung Electronics Co., Ltd. Vacuum insulator, method of manufacturing the same and refrigerator having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337195A (en) * 1991-05-14 1992-11-25 Hitachi Ltd Vacuum heat insulator
JP4216516B2 (en) * 2002-03-15 2009-01-28 象印マホービン株式会社 Vacuum insulation panel
JP4175821B2 (en) * 2002-03-15 2008-11-05 象印マホービン株式会社 Vacuum insulation panel

Also Published As

Publication number Publication date
JP2007155088A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4752422B2 (en) Method for manufacturing vacuum insulator
CN106794413B (en) Gas adsorption device and vacuum heat insulation member using the same
US9205368B2 (en) Gas adsorbing device and hollow body housing the same
JP5198167B2 (en) Vacuum insulation box
US20070209516A1 (en) Vacuum heat insulation tube
JP2010060045A (en) Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material
WO2007034906A1 (en) Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP4892944B2 (en) Method for manufacturing vacuum insulator and vacuum insulator
JP6726842B2 (en) Insulation
JP2010096291A (en) Vacuum heat insulated casing
JP2012217942A (en) Gas adsorbing material and vacuum insulation material obtained by using the same
JP5194823B2 (en) Vacuum insulation box
JP2009287791A (en) Vacuum heat insulating housing
JP5140966B2 (en) Vacuum insulation
JP2009063033A (en) Heat insulator
JP5719995B2 (en) Gas adsorption device
JP2007017053A (en) Refrigerator
JP4941313B2 (en) Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box
CN109896073A (en) A kind of manufacturing process of molecular sieve packet
JP5493706B2 (en) Gas adsorption device and method of using gas adsorption device
CN210102405U (en) Molecular sieve package
JP6095598B2 (en) Vacuum heat insulating material, heat insulating box, and method for manufacturing vacuum heat insulating material
JP7209352B2 (en) Gas adsorption device and vacuum insulation
JP5256595B2 (en) Gas adsorption device and vacuum equipment equipped with gas adsorption device
JPH0592136A (en) Adsorbent packing bag and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R151 Written notification of patent or utility model registration

Ref document number: 4892944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees