JP2012217942A - Gas adsorbing material and vacuum insulation material obtained by using the same - Google Patents

Gas adsorbing material and vacuum insulation material obtained by using the same Download PDF

Info

Publication number
JP2012217942A
JP2012217942A JP2011087035A JP2011087035A JP2012217942A JP 2012217942 A JP2012217942 A JP 2012217942A JP 2011087035 A JP2011087035 A JP 2011087035A JP 2011087035 A JP2011087035 A JP 2011087035A JP 2012217942 A JP2012217942 A JP 2012217942A
Authority
JP
Japan
Prior art keywords
gas
zsm
adsorbent
type zeolite
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011087035A
Other languages
Japanese (ja)
Inventor
Noriyuki Miyaji
法幸 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011087035A priority Critical patent/JP2012217942A/en
Priority to PCT/JP2012/000958 priority patent/WO2012111311A1/en
Priority to US13/983,504 priority patent/US20130306655A1/en
Priority to CN2012800088806A priority patent/CN103384556A/en
Priority to EP12747650.5A priority patent/EP2676714A1/en
Publication of JP2012217942A publication Critical patent/JP2012217942A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas adsorbing material in which deterioration in the nitrogen adsorptivity of copper ion-exchanged ZSM-5 zeolite due to adsorbing steam (moisture) is suppressed.SOLUTION: The gas adsorbing material 1 is obtained by covering the periphery of the copper ion-exchanged ZSM-5 zeolite 2, which has 8-25 silica/alumina ratio in a zeolite skeleton, with a moisture chemically-adsorbing material 3 which has the water adsorptivity higher than that of the copper ion-exchanged ZSM-5 zeolite 2. A gas adsorbing material pack 4 is obtained by packing the gas adsorbing material 1 in a three-side sealed bag of a low-density polyethylene film 5, which has moderate gas permeability and 15 μm thickness, and heat-sealing an opening of the gas adsorbing material-packed bag.

Description

本発明は、気体吸着材、及びそれを用いた真空断熱材に関するものである。   The present invention relates to a gas adsorbent and a vacuum heat insulating material using the same.

近年、地球環境問題である温暖化の対策として、省エネルギーを推進する動きが活発となっており、温冷熱利用機器に関しては、熱を有効活用するという観点から、優れた断熱性能を有する真空断熱材が普及しつつある。   In recent years, there has been an active movement to promote energy conservation as a countermeasure against global warming, which is a global environmental problem, and with regard to equipment that uses heat and cold heat, a vacuum heat insulating material with excellent heat insulation performance from the viewpoint of effective use of heat. Is spreading.

真空断熱材とは、袋状に加工したガスバリア性を有するラミネートフィルム内へ、グラスウールのように気相容積比率が高く微細な空隙を構成する芯材を挿入し、芯材を減圧密封したものである。   A vacuum heat insulating material is a gas-barrier laminated film processed into a bag-like shape, and a core material having a high gas phase volume ratio and a fine gap is inserted like glass wool, and the core material is sealed under reduced pressure. is there.

芯材の空隙径を、減圧下における気体分子の平均自由行程よりも小さくすることで、気体熱伝導成分は小さくなり、また、1mm程度の微細な空隙では対流熱伝達成分の影響は無視できるようになる。   By making the gap diameter of the core material smaller than the mean free path of gas molecules under reduced pressure, the gas heat conduction component becomes small, and the influence of the convective heat transfer component can be ignored in a fine gap of about 1 mm. become.

さらに、室温付近では、輻射成分の影響は軽微であるため、真空断熱材における熱伝導は、芯材の固体熱伝導成分と僅かに残る気体熱伝導成分が支配的であるため、真空断熱材の熱伝導率は他の断熱材と比較して非常に小さいとされている。   Furthermore, since the influence of the radiation component is slight near room temperature, the heat conduction in the vacuum heat insulating material is dominated by the solid heat conduction component of the core material and the slightly remaining gas heat conduction component. The thermal conductivity is said to be very small compared to other heat insulating materials.

しかしながら、ラミネートフィルムを介して真空断熱材中へ空気が徐々に侵入すると、気体熱伝導成分が増加するため、真空断熱材の熱伝導率は徐々に増加してゆくという課題を有していた。   However, when air gradually enters the vacuum heat insulating material through the laminate film, the gas heat conduction component increases, so that the heat conductivity of the vacuum heat insulating material gradually increases.

このような課題を解決する手段として、非蒸発型バリウムゲッターであるBa−Li合金を用いた窒素吸着材が提案されている(特許文献1参照)。   As means for solving such a problem, a nitrogen adsorbent using a Ba-Li alloy which is a non-evaporable barium getter has been proposed (see Patent Document 1).

また、さらに水分も同時に吸着可能としたBa−Li合金と乾燥剤とを含むゲッター物質をアルミニウム容器へ封入した真空用ゲッターが提案されている(特許文献2参照)。   Furthermore, a vacuum getter has been proposed in which a getter material containing a Ba-Li alloy and a desiccant that can simultaneously adsorb moisture is enclosed in an aluminum container (see Patent Document 2).

また、精製対象ガスから窒素などの不純物ガスを除去する方法として、銅イオン交換したZSM−5型ゼオライトからなる吸着材が提案されている(特許文献3参照)。   Further, as a method for removing impurity gases such as nitrogen from the gas to be purified, an adsorbent made of ZSM-5 type zeolite subjected to copper ion exchange has been proposed (see Patent Document 3).

特許文献1および特許文献2で開示された構成では、窒素を化学的に吸着することは可能であるが、合金材料であるためゲッター自身の熱伝導率が高く、また構成材料であるBaがPRTR指定物質であり、作業環境に規制が設けられている。   In the configurations disclosed in Patent Document 1 and Patent Document 2, it is possible to chemically adsorb nitrogen, but since it is an alloy material, the getter itself has high thermal conductivity, and the constituent material Ba is PRTR. It is a designated substance and has restrictions on the work environment.

また、特許文献3で開示された構成では、乾燥状態では窒素の吸着が可能であるが、窒素よりも水分との反応性が高いため、断熱材中に必ず存在する水蒸気(水分)や経過時間と共に徐々に侵入してくる水蒸気(水分)により酸化され窒素に対して不活性となる。   Further, in the configuration disclosed in Patent Document 3, nitrogen can be adsorbed in a dry state, but since it has a higher reactivity with moisture than nitrogen, water vapor (moisture) always present in the heat insulating material and elapsed time are present. At the same time, it is oxidized by water vapor (water) that gradually enters and becomes inactive to nitrogen.

これらの課題を解決する手段として、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトの周囲を化学的水分吸着材で覆った気体吸着材が提案されている(特許文献4参照)。   As a means for solving these problems, a gas adsorbent in which the periphery of a ZSM-5 type zeolite subjected to copper ion exchange having a silica to alumina ratio in the zeolite framework of 8 to 25 is covered with a chemical moisture adsorbent has been proposed. (See Patent Document 4).

特開平5−131134号公報JP-A-5-131134 特表平9−512088号公報Japanese National Patent Publication No. 9-512088 特開2003−311148号公報JP 2003-31148 A 特開2006−043604号公報JP 2006-043604 A

しかしながら、上記特許文献4に開示された構成であっても、水蒸気(水分)に対する吸着活性(表面における吸着エネルギー)が、銅イオン交換したZSM−5型ゼオライトの方が化学的水分吸着材より大きい場合には、銅イオン交換したZSM−5型ゼオライトが選択的に水蒸気(水分)を吸着してしまい、窒素吸着活性を低下させてしまう課題が起こりうる。   However, even with the configuration disclosed in Patent Document 4, the ZSM-5 type zeolite in which the adsorption activity (adsorption energy on the surface) with respect to water vapor (moisture) is exchanged with copper ions is larger than the chemical moisture adsorbent. In some cases, the ZSM-5 type zeolite exchanged with copper ions selectively adsorbs water vapor (moisture), which may cause a problem of reducing nitrogen adsorption activity.

そこで、本発明は、銅イオン交換したZSM−5型ゼオライトが水蒸気(水分)の吸着により窒素吸着活性を低下するのを抑制できる気体吸着材、及びそれを用いた真空断熱材を提供することを目的としている。   Therefore, the present invention provides a gas adsorbent capable of suppressing the reduction of nitrogen adsorption activity of ZSM-5 type zeolite subjected to copper ion exchange due to adsorption of water vapor (water), and a vacuum heat insulating material using the same. It is aimed.

上記目的を達成するために、本発明の気体吸着材は、閉空間の空気を吸着して前記閉空間の減圧状態を維持するために用いる気体吸着材であって、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトの周囲を、水に対する吸着活性が前記銅イオン交換したZSM−5型ゼオライトよりも大きい化学的水分吸着材で覆ったのである。   In order to achieve the above object, the gas adsorbent according to the present invention is a gas adsorbent used for adsorbing air in a closed space and maintaining a reduced pressure state of the closed space, wherein silica vs. alumina in a zeolite skeleton is used. The periphery of the ZSM-5 type zeolite subjected to the copper ion exchange having a ratio of 8 or more and 25 or less was covered with a chemical moisture adsorbent having a higher adsorption activity for water than the ZSM-5 type zeolite subjected to the copper ion exchange.

上記構成により、化学的水分吸着材が先に水蒸気(水分)と接触して水蒸気(水分)を吸着固定化するが、化学的水分吸着材は銅イオン交換したZSM−5型ゼオライトよりも水に対する吸着活性が高いため、化学的水分吸着材で吸着されずに銅イオン交換したZSM−5型ゼオライトの周囲を覆う化学的水分吸着材の隙間を通過して銅イオン交換したZSM−5型ゼオライトに到達する水蒸気(水分)の量が減少し、銅イオン交換したZSM−5型ゼオライトが水蒸気(水分)により活性が失われないことから、銅イオン交換したZSM−5型ゼオライトの窒素吸着活性の低下を抑制する。そのため大容量の窒素吸着能力を備えた気体吸着材を得ることができる。   With the above configuration, the chemical moisture adsorbent comes into contact with water vapor (moisture) first and adsorbs and immobilizes the water vapor (moisture). However, the chemical moisture adsorbent is more resistant to water than ZSM-5 type zeolite exchanged with copper ions. Because the adsorption activity is high, the ZSM-5 type zeolite exchanged with copper ions through the gap of the chemical moisture adsorbent that covers the periphery of the ZSM-5 type zeolite that is not adsorbed by the chemical moisture adsorbent and that is exchanged with copper ions. The amount of water vapor (moisture) that reaches is reduced, and the activity of the ZSM-5 type zeolite that has undergone copper ion exchange is not lost due to water vapor (water). Suppress. Therefore, a gas adsorbent having a large capacity of nitrogen adsorption can be obtained.

また、本発明の真空断熱材は、少なくとも芯材と、上記本発明の気体吸着材を適度なガス透過性を有する袋内に充填した気体吸着材パックとを、ガスバリア性を有する外被材で覆い、前記外被材の内部を減圧したものである。   Further, the vacuum heat insulating material of the present invention comprises at least a core material and a gas adsorbent pack in which the gas adsorbing material of the present invention is filled in a bag having an appropriate gas permeability with an outer covering material having a gas barrier property. Covering and depressurizing the inside of the jacket material.

上記構成において、前記気体吸着材を適度なガス透過性を有する袋内に充填しているため、経過時間と共に侵入してくる水蒸気は濃度が薄く、そのほとんどが化学的水分吸着材に選択的に吸着固定化され、銅イオン交換したZSM−5型ゼオライトが長期に亘って高い窒素吸着活性を維持することができる。したがって、その気体吸着材を備えた真空断熱材は長期間劣化しないものとなる。   In the above configuration, since the gas adsorbent is filled in a bag having appropriate gas permeability, the concentration of water vapor entering with the passage of time is thin, most of which is selectively used as a chemical moisture adsorbent. ZSM-5 type zeolite that has been adsorbed and immobilized and subjected to copper ion exchange can maintain high nitrogen adsorption activity over a long period of time. Therefore, the vacuum heat insulating material provided with the gas adsorbent does not deteriorate for a long time.

本発明の気体吸着材は、化学的水分吸着材が銅イオン交換したZSM−5型ゼオライトよりも先に水分を吸着固定化するため、銅イオン交換したZSM−5型ゼオライトの窒素吸着活性の低下を抑制する。そのため大容量の窒素吸着能力を備えた気体吸着材を得ることができる。また、それを使用した真空断熱材は長期間劣化しないものとなる。   Since the gas adsorbent of the present invention adsorbs and immobilizes moisture prior to the ZSM-5 type zeolite in which the chemical water adsorbent has exchanged copper ions, the decrease in nitrogen adsorption activity of the ZSM-5 type zeolite in which copper ions have been exchanged. Suppress. Therefore, a gas adsorbent having a large capacity of nitrogen adsorption can be obtained. Moreover, the vacuum heat insulating material using it does not deteriorate for a long time.

本発明の実施の形態1における気体吸着材の模式図The schematic diagram of the gas adsorbent in Embodiment 1 of this invention 本発明の実施の形態2における気体吸着材パックの模式図Schematic diagram of the gas adsorbent pack in Embodiment 2 of the present invention 本発明の実施の形態2における真空断熱材を表す模式断面図Model sectional drawing showing the vacuum heat insulating material in Embodiment 2 of this invention

第1の発明は、閉空間の空気を吸着して前記閉空間の減圧状態を維持するために用いる気体吸着材であって、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトの周囲を、水に対する吸着活性が前記銅イオン交換したZSM−5型ゼオライトよりも大きい化学的水分吸着材で覆ったものである。   1st invention is the gas adsorption material used in order to adsorb | suck the air of closed space, and to maintain the pressure reduction state of the said closed space, Comprising: The copper ion whose silica-to-alumina ratio in a zeolite frame is 8-25 The periphery of the exchanged ZSM-5 type zeolite is covered with a chemical moisture adsorbent having a higher adsorption activity for water than that of the ZSM-5 type zeolite exchanged with copper ions.

上記構成により、化学的水分吸着材が先に水蒸気(水分)と接触して水蒸気(水分)を吸着固定化するが、化学的水分吸着材は銅イオン交換したZSM−5型ゼオライトよりも水に対する吸着活性が高いため、化学的水分吸着材で吸着されずに銅イオン交換したZSM−5型ゼオライトの周囲を覆う化学的水分吸着材の隙間を通過して銅イオン交換したZSM−5型ゼオライトに到達する水蒸気(水分)の量が減少し、銅イオン交換したZSM−5型ゼオライトが水蒸気(水分)により活性が失われないことから、銅イオン交換したZSM−5型ゼオライトの窒素吸着活性の低下を抑制する。そのため大容量の窒素吸着能力を備えた気体吸着材を得ることができる。   With the above configuration, the chemical moisture adsorbent comes into contact with water vapor (moisture) first and adsorbs and immobilizes the water vapor (moisture). However, the chemical moisture adsorbent is more resistant to water than ZSM-5 type zeolite exchanged with copper ions. Because the adsorption activity is high, the ZSM-5 type zeolite exchanged with copper ions through the gap of the chemical moisture adsorbent that covers the periphery of the ZSM-5 type zeolite that is not adsorbed by the chemical moisture adsorbent and that is exchanged with copper ions. The amount of water vapor (moisture) that reaches is reduced, and the activity of the ZSM-5 type zeolite that has undergone copper ion exchange is not lost due to water vapor (water). Suppress. Therefore, a gas adsorbent having a large capacity of nitrogen adsorption can be obtained.

まず、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトの調整方法を述べる。   First, a method for preparing a copper ion exchanged ZSM-5 type zeolite having a silica to alumina ratio in the zeolite skeleton of 8 to 25 will be described.

はじめに、ZSM−5型ゼオライト骨格中のシリカ対アルミナ比が8以上25以下であるナトリウム型ゼオライトへ銅イオン交換を行う。イオン交換は、従来から行われている既知の方法にて行うことができるが、塩素銅水溶液やアンミン酸銅水溶液など銅の可溶性塩の水溶液に浸漬する方法が一般的であり、中でもプロピオン酸銅(II)や酢酸銅(II)などカルボキシラトを含むCu2+溶液を用いた方法や、硝酸銅(II)溶液を用いた方法で調整されたものは、窒素吸着活性が高い。 First, copper ion exchange is performed on sodium-type zeolite having a silica to alumina ratio of 8 to 25 in the ZSM-5 type zeolite framework. Ion exchange can be performed by a known method that has been performed conventionally, but is generally a method of immersing in an aqueous solution of a soluble salt of copper such as an aqueous solution of copper chloride or an aqueous solution of copper ammine, and in particular, copper propionate. A method using a Cu 2+ solution containing carboxylate such as (II) or copper (II) acetate or a method using a copper nitrate (II) solution has high nitrogen adsorption activity.

また、銅イオン交換率は、イオン交換可能な量の少なくとも50%以上であることが望ましい。   The copper ion exchange rate is preferably at least 50% of the ion exchangeable amount.

イオン交換後は、十分に推薦、乾燥後、低圧下にて適切な熱処理を行うことにより、イオン交換により導入されたCu2+がCu4+へと還元され、窒素吸着能を発言するものである。 After ion exchange, it is fully recommended, dried, and then subjected to appropriate heat treatment under low pressure, so that Cu 2+ introduced by ion exchange is reduced to Cu 4+ and speaks nitrogen adsorption ability. is there.

熱処理時の圧力は10mPa以下、好ましくは1mPa以下であり、温度は350℃以上、好ましくは500℃以上である。   The pressure during the heat treatment is 10 mPa or less, preferably 1 mPa or less, and the temperature is 350 ° C. or higher, preferably 500 ° C. or higher.

次いで、本発明の気体吸着材の作成方法について述べる。熱処理され窒素吸着活性となったゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトは、窒素や水、酸素に触れることなく、Arなどの不活性ガス雰囲気下で化学的水分吸着材により周囲が覆われるように混合する。   Next, a method for producing the gas adsorbent of the present invention will be described. ZSM-5 type zeolite exchanged with copper ions with a silica-to-alumina ratio of 8 to 25 in the zeolite skeleton that has been subjected to heat treatment and nitrogen adsorption activity is an inert gas such as Ar without contact with nitrogen, water, or oxygen. Mix so that the surroundings are covered with a chemical moisture adsorbent under an atmosphere.

この時、得られた銅イオンを置換したZSM−5型ゼオライトの水に対する活性度よりも、周囲に混合する化学的水分吸着材の水に対する活性度よりも大きい関係ある化学的水分吸着材を選択する。   At this time, the chemical water adsorbent having a relation larger than the activity of water of the chemical water adsorbent mixed in the surrounding is selected than the activity of the ZSM-5 type zeolite substituted with the obtained copper ion with respect to water. To do.

この活性度の差は、大きければ大きいほど良いが、実用的には2倍以上が好ましい。   The larger the difference in the activity, the better. However, practically, the difference in activity is preferably twice or more.

なお、ZSM−5型ゼオライトに銅一価イオンを担持させたものは有害性情報が無く、環境負荷も低いと考えられる。   In addition, the thing which carry | supported the copper monovalent ion to ZSM-5 type zeolite has no harmful information, and it is thought that an environmental load is also low.

また、第2の発明は、少なくとも芯材と、第1の発明の気体吸着材を適度なガス透過性を有する袋内に充填した気体吸着材パックとを、ガスバリア性を有する外被材で覆い、前記外被材の内部を減圧したものである。   In the second invention, at least the core material and the gas adsorbent pack filled with the gas adsorbent of the first invention in a bag having appropriate gas permeability are covered with a jacket material having gas barrier properties. The inside of the jacket material is decompressed.

上記構成において、第1の発明の気体吸着材におけるゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトが、工業的真空排気プロセスで除去しきれない窒素を吸着し、その結果、真空断熱材の断熱性能の向上を図ることができる一方で、気体吸着材が適度なガス透過性を有する袋内に充填されているため、残存していた水分が一気に気体吸着材内へ流れ込むことがなく、また、気体吸着材を構成する化学的水分吸着材の水に対する活性度が銅イオン交換したZSM−5型ゼオライトの水に対する活性度よりも大きいため、残存していた水分が化学的水分吸着材を通り抜けて銅イオン交換したZSM−5型ゼオライトへ到達する水分がごく僅かとなり、銅イオン交換したZSM−5型ゼオライトの窒素吸着能を低下させることがない。   In the above configuration, the ZSM-5 type zeolite exchanged with copper ions having a silica-to-alumina ratio of 8 to 25 in the zeolite skeleton in the gas adsorbent of the first invention cannot be removed by an industrial vacuum exhaust process. As a result, it is possible to improve the heat insulation performance of the vacuum heat insulating material, while the gas adsorbing material is filled in a bag having an appropriate gas permeability, so that the remaining water can be absorbed at once. It does not flow into the gas adsorbent, and the activity of the chemical moisture adsorbent constituting the gas adsorbent with respect to water is greater than the activity of copper ion-exchanged ZSM-5 type zeolite with respect to water. The moisture that has passed through the chemical moisture adsorbent reaches the ZSM-5 type zeolite that has undergone copper ion exchange, and the amount of water that reaches the ZSM-5 type zeolite has undergone copper ion exchange. It is not reduced nitrogen adsorption capacity of the yarn.

なお、本発明で用いる芯材としては、ポリウレタンやポリスチレンなどの連通気泡体や、ガラス繊維やセラミックファイバーなどの無機繊維やポリエステル繊維などの有機繊維、及びシリカやパーライトなどの無機粉末などが利用できる。また、それらの複合体であっても良い。   As the core material used in the present invention, open cell bodies such as polyurethane and polystyrene, inorganic fibers such as glass fibers and ceramic fibers, organic fibers such as polyester fibers, and inorganic powders such as silica and pearlite can be used. . Moreover, those composites may be sufficient.

また、適度なガス透過度を有する袋には、低密度ポリエチレンフィルムやポリプロピレンフィルムなどが使用できる。または、それらのフィルムを穴加工して微小のガスを穴から侵入するようガスバリア性を調整しても良い。または、不織布はポリエステル繊維とポリプロピレン繊維を加熱延展したもの、あるいはスパンボンド方式により造られたものなどが使用できる。   Moreover, a low density polyethylene film, a polypropylene film, etc. can be used for the bag which has moderate gas permeability. Alternatively, the gas barrier property may be adjusted so that a minute gas enters from the hole by drilling those films. Alternatively, as the nonwoven fabric, a polyester fiber and a polypropylene fiber that are heated and stretched, or a nonwoven fabric that is made by a spunbond method can be used.

このとき、適度とは、残存する水分の量によってフィルムの選択が可能であり、水分の残存量が多い場合は、水蒸気透過度の低い材料、水分の残存量が少ない場合は水蒸気透過度の高い材料を選択し、気体透過度はできる限り大きなものを選択することが好ましい。   At this time, “moderate” means that the film can be selected depending on the amount of water remaining. When the amount of remaining water is large, the material has a low water vapor transmission rate. When the amount of water remaining is small, the film has a high water vapor transmission rate. It is preferable to select a material and select a gas permeability that is as large as possible.

これらフィルムのガスガスバリア性は、そのフィルムの水蒸気透過度、及び窒素透過度によって決定されるが、ガスバリア性に合わせてその厚みを決めることができる。   The gas gas barrier properties of these films are determined by the water vapor permeability and nitrogen permeability of the films, but the thickness can be determined according to the gas barrier properties.

また、外被材とは、真空断熱材の真空度を維持する役割を果たすものであり、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルムとして金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムを、それぞれラミネートしたラミネートフィルムが使用できる。   Further, the jacket material plays a role of maintaining the vacuum degree of the vacuum heat insulating material, and is a heat-welded film as the innermost layer, and a resin film on which metal foil or metal atoms are vapor-deposited as a gas barrier film as an intermediate layer A laminate film in which a surface protective film is laminated as the outermost layer can be used.

なお、熱溶着フィルムとしては、特に指定するものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等の熱可塑性樹脂、或いはそれらの混合体が使用できる。   The heat welding film is not particularly specified, but is a thermoplastic resin such as a low density polyethylene film, a linear low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or a mixture thereof. Can be used.

また、ガスバリアフィルムとしては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体へアルミニウムや銅等の金属や金属酸化物を蒸着したフィルム等が使用できる。   Moreover, as a gas barrier film, metal foils, such as aluminum foil and copper foil, the film which vapor-deposited metals and metal oxides, such as aluminum and copper, to a polyethylene terephthalate film or an ethylene-vinyl alcohol copolymer etc. can be used.

また、化学的水分吸着材の配置方法は、外殻と接するように化学的水分吸着材を配置す
る方法や、芯材の中間に配置する方法があるが、芯材の中間に配置する方が好ましい。
In addition, the chemical moisture adsorbing material can be placed in the middle of the core material by placing the chemical water adsorbing material in contact with the outer shell or in the middle of the core material. preferable.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the same components as those of the above-described embodiments will be denoted by the same reference numerals, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における気体吸着材の模式図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a gas adsorbent according to Embodiment 1 of the present invention.

本実施の形態の気体吸着材1は、閉空間の空気を吸着して閉空間の減圧状態を維持するために用いる気体吸着材1であって、窒素吸着活性であるゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライト2と、化学的水分吸着材3とを含み、銅イオン交換したZSM−5型ゼオライト2の周囲を、化学的水分吸着材3で覆っており、化学的水分吸着材3の水に対する吸着活性が前記銅イオン交換したZSM−5型ゼオライトよりも大きいものである。   A gas adsorbent 1 according to the present embodiment is a gas adsorbent 1 used for adsorbing air in a closed space and maintaining a reduced pressure state in the closed space, and is silica-alumina in a zeolite skeleton having nitrogen adsorption activity. A copper ion exchanged ZSM-5 type zeolite 2 having a ratio of 8 or more and 25 or less and a chemical water adsorbent 3, and around the ZSM-5 type zeolite 2 subjected to copper ion exchange, the chemical water adsorbent 3 The chemical water adsorbing material 3 has a higher adsorption activity for water than the ZSM-5 type zeolite subjected to the copper ion exchange.

上記構成により、化学的水分吸着材3が先に水蒸気(水分)と接触して水蒸気(水分)を吸着固定化するが、化学的水分吸着材3は銅イオン交換したZSM−5型ゼオライト2よりも水に対する吸着活性が高いため、化学的水分吸着材3で吸着されずに銅イオン交換したZSM−5型ゼオライト2の周囲を覆う化学的水分吸着材3の隙間を通過して銅イオン交換したZSM−5型ゼオライト2に到達する水蒸気(水分)の量が減少し、銅イオン交換したZSM−5型ゼオライト2が水蒸気(水分)により活性が失われないことから、銅イオン交換したZSM−5型ゼオライト2の窒素吸着活性の低下を抑制する。そのため本実施の形態の気体吸着材1は、大容量の窒素吸着能力を備える。   With the above configuration, the chemical moisture adsorbing material 3 comes into contact with water vapor (moisture) first and adsorbs and immobilizes the water vapor (moisture). The chemical moisture adsorbing material 3 is obtained from the ZSM-5 type zeolite 2 exchanged with copper ions. Since the adsorption activity to water is also high, the copper ions are exchanged through the gap of the chemical moisture adsorbing material 3 that covers the periphery of the ZSM-5 type zeolite 2 that is not adsorbed by the chemical moisture adsorbing material 3 and is subjected to the copper ion exchange. Since the amount of water vapor (moisture) reaching the ZSM-5 type zeolite 2 decreases and the activity of the ZSM-5 type zeolite 2 subjected to copper ion exchange is not lost by the water vapor (water content), the ZSM-5 subjected to copper ion exchange Suppression of nitrogen adsorption activity of type 2 zeolite 2 is suppressed. For this reason, the gas adsorbent 1 of the present embodiment has a large capacity of nitrogen adsorption.

(実施の形態2)
図2は、本発明の実施の形態2における気体吸着材の模式図である。図3は、本発明の実施の形態2における真空断熱材を表す模式断面図である。
(Embodiment 2)
FIG. 2 is a schematic diagram of a gas adsorbent according to Embodiment 2 of the present invention. FIG. 3 is a schematic cross-sectional view showing a vacuum heat insulating material in Embodiment 2 of the present invention.

図2、図3に示すように本実施の形態の真空断熱材6は、ガラス繊維からなる芯材7と、実施の形態1の気体吸着材1を適度なガス透過性を有する厚さ15μmの低密度ポリエチレンフィルム5の三方シール袋内に充填し袋の開口部をヒートシールよりパックした気体吸着材パック4とを、ガスバリア性を有するラミネートフィルムからなる外被材8で覆い、外被材8の内部を減圧したものである。   As shown in FIGS. 2 and 3, the vacuum heat insulating material 6 of the present embodiment includes a core material 7 made of glass fiber and the gas adsorbing material 1 of the first embodiment having a thickness of 15 μm and appropriate gas permeability. A gas adsorbent pack 4 filled in a three-side sealed bag of low-density polyethylene film 5 and packed in an opening of the bag by heat sealing is covered with a jacket material 8 made of a laminate film having a gas barrier property. The pressure inside is reduced.

本実施の形態では、気体吸着材1を適度なガス透過性を有する厚さ15μmの低密度ポリエチレンフィルム5からなる袋内に充填しているため、経過時間と共に侵入してくる水蒸気は濃度が薄く、そのほとんどが化学的水分吸着材3に選択的に吸着固定化され、銅イオン交換したZSM−5型ゼオライト2が長期に亘って高い窒素吸着活性を維持することができる。したがって、その気体吸着材1を備えた真空断熱材6は長期間劣化しないものとなる。   In the present embodiment, the gas adsorbent 1 is filled in a bag made of a low-density polyethylene film 5 having a suitable gas permeability and having a thickness of 15 μm. Most of them are selectively adsorbed and immobilized on the chemical moisture adsorbent 3, and the ZSM-5 type zeolite 2 exchanged with copper ions can maintain a high nitrogen adsorption activity over a long period of time. Therefore, the vacuum heat insulating material 6 provided with the gas adsorbent 1 does not deteriorate for a long time.

また、気体吸着材1におけるゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライト2が、工業的真空排気プロセスで除去しきれない窒素を吸着し、その結果、真空断熱材6の断熱性能の向上を図ることができる一方で、気体吸着材1が適度なガス透過性を有する厚さ15μmの低密度ポリエチレンフィルム5の袋内に充填されているため、残存していた水分が一気に気体吸着材1内へ流れ込むことがなく、また、気体吸着材1を構成する化学的水分吸着材3の水に対する活性度が銅イオン交換したZSM−5型ゼオライト2の水に対する活性度よりも大きいため、残存していた水分が化学的水分吸着材3を通り抜けて銅イオン交換したZSM−5型ゼオライ
ト2へ到達する水分がごく僅かとなり、銅イオン交換したZSM−5型ゼオライト2の窒素吸着能を低下させることがない。
Further, the ZSM-5 type zeolite 2 which is exchanged with copper ions having a silica-to-alumina ratio of 8 to 25 in the zeolite skeleton in the gas adsorbent 1 adsorbs nitrogen that cannot be removed by an industrial vacuum exhaust process. As a result, while the heat insulation performance of the vacuum heat insulating material 6 can be improved, the gas adsorbent 1 is filled in a bag of a low density polyethylene film 5 having a thickness of 15 μm and having an appropriate gas permeability. The remaining moisture does not flow into the gas adsorbent 1 at once, and the activity of the chemical moisture adsorbent 3 constituting the gas adsorbent 1 with respect to water is exchanged with copper ions of the ZSM-5 type zeolite 2 Since the activity with respect to water is larger, the remaining water passes through the chemical water adsorbent 3 and reaches the ZSM-5 type zeolite 2 subjected to the copper ion exchange. It does not decrease the nitrogen adsorption capacity of the ZSM-5 type zeolite 2 was copper ion exchange.

(実施例1)
窒素吸着能を持つシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライト2と、化学的水分吸着材3として酸化カルシウムを用意し、その水に対する活性度を測定した。
Example 1
A copper ion-exchanged ZSM-5 type zeolite 2 having a silica-to-alumina ratio of 8 to 25 with nitrogen adsorption ability and calcium oxide as a chemical water adsorbent 3 were prepared, and the activity with respect to water was measured.

酸化カルシウムの活性度の測定方法は、試料25gを温水1L(BTB指示薬入り)の中に入れ、攪拌しながら4N塩酸水溶液にて中和滴定を行う。その後10分間に消費した4N塩酸水溶液量を活性度とした。   As a method for measuring the activity of calcium oxide, 25 g of a sample is placed in 1 L of warm water (containing a BTB indicator), and neutralization titration is performed with a 4N hydrochloric acid aqueous solution while stirring. Thereafter, the amount of 4N hydrochloric acid aqueous solution consumed for 10 minutes was defined as the activity.

その結果、酸化カルシウムの活性度は223mlであった。   As a result, the activity of calcium oxide was 223 ml.

銅イオン交換したZSM−5型ゼオライト2の活性度は、同様の測定では測定できないため、デシケータ中で湿度の変化を測定し、酸化カルシウムの水に対する活性度と比較した。   Since the activity of the ZSM-5 type zeolite 2 exchanged with copper ions cannot be measured by the same measurement, a change in humidity was measured in a desiccator and compared with the activity of calcium oxide with respect to water.

上記酸化カルシウムを95%RHになるよう調整したデシケータ中に入れ、10分後の放置後、湿度は4%RHとなった。   The calcium oxide was placed in a desiccator adjusted to 95% RH, and after standing for 10 minutes, the humidity was 4% RH.

一方、銅イオン交換したZSM−5型ゼオライト2を同様に95%RHになるよう調整したデシケータ中に入れ、10分後の湿度は12%となった。   On the other hand, the ZSM-5 type zeolite 2 subjected to the copper ion exchange was put in a desiccator similarly adjusted to 95% RH, and the humidity after 10 minutes became 12%.

上記酸化カルシウムを90%と銅イオン交換したZSM−5型ゼオライトを10%混合した気体吸着材1をガラス繊維からなる芯材7と、ラミネートフィルムからなる外被材8に挿入し、チャンバー圧が1Paになるまで真空排気して真空断熱材6を作製した。   The gas adsorbent 1 in which 90% of the calcium oxide and 10% of ZSM-5 type zeolite exchanged with copper ion are mixed is inserted into the core material 7 made of glass fiber and the jacket material 8 made of a laminate film, and the chamber pressure is increased. The vacuum heat insulating material 6 was produced by evacuating to 1 Pa.

この真空断熱材6の熱伝導率は、0.0017W/mKであった。この状態で100℃雰囲気に放置し、200日後の熱伝導率を測定すると0.0019W/mKであった。   The heat conductivity of the vacuum heat insulating material 6 was 0.0017 W / mK. In this state, it was left in an atmosphere of 100 ° C., and the thermal conductivity after 200 days was measured to be 0.0019 W / mK.

(比較例1)
実施例1と同様に活性度が125mlの製法の異なる酸化カルシウムを準備し、同様にデシケータ中で10分後の湿度を測定したところ、湿度は27%RHであった。
(Comparative Example 1)
Similarly to Example 1, calcium oxide having a different activity of 125 ml was prepared. Similarly, when the humidity after 10 minutes was measured in a desiccator, the humidity was 27% RH.

この酸化カルシウムを90%と銅イオン交換したZSM−5型ゼオライトを10%混合した気体吸着材をガラス繊維からなる芯材7と、ラミネートフィルムからなる外被材8に挿入し、チャンバー圧が1Paになるまで真空排気して真空断熱材を作製した。   A gas adsorbing material in which 90% of calcium oxide and 10% of ZSM-5 type zeolite exchanged with copper ion are mixed is inserted into a core material 7 made of glass fiber and an outer covering material 8 made of a laminate film, and the chamber pressure is 1 Pa. The vacuum heat insulating material was produced by evacuating until it became.

この真空断熱材の熱伝導率は、0.0017W/mKであった。この状態で100℃雰囲気に放置し、200日後の熱伝導率を測定すると0.0027W/mKであった。   The heat conductivity of this vacuum heat insulating material was 0.0017 W / mK. In this state, it was left in an atmosphere of 100 ° C., and the thermal conductivity after 200 days was measured to be 0.0027 W / mK.

実施例1と比較例1の比較から、水に対する活性度が、酸化カルシウムの方が銅イオン交換したZSM−5型ゼオライト2よりも大きい実施例1では、200日後の熱伝導率が初期の熱伝導率からほとんど劣化していないのに対して、水に対する活性度が、酸化カルシウムの方が銅イオン交換したZSM−5型ゼオライト2よりも小さい比較例1では、200日後の熱伝導率は0.001W/mK劣化している。   From the comparison between Example 1 and Comparative Example 1, in Example 1, where the activity with respect to water is higher than that of ZSM-5 type zeolite 2 in which calcium oxide is exchanged with copper ions, the thermal conductivity after 200 days is the initial heat. In Comparative Example 1, in which the activity to water is smaller than that of ZSM-5 type zeolite 2 subjected to copper ion exchange, the thermal conductivity after 200 days is 0, while the conductivity is hardly deteriorated. .001 W / mK deteriorated.

これは200日以内の範囲で実施例1では、外部から侵入する空気成分を吸着し続けているのに対して、比較例1では吸着されなくなったと考える。   This is within the range of 200 days. In Example 1, air components entering from the outside continue to be adsorbed, whereas in Comparative Example 1, it is considered that they are no longer adsorbed.

(実施例2)
低密度ポリエチレンフィルムの40℃、90%RHにおける透湿度は32g/m2であり、窒素透過度は4700cc/m2・24Hである。
(Example 2)
The moisture permeability of the low density polyethylene film at 40 ° C. and 90% RH is 32 g / m 2 , and the nitrogen permeability is 4700 cc / m 2 · 24H.

実施例1と同様の手順で真空断熱材を作製し、初期の熱伝導率を測定すると0.0017W/mKであり、100℃で200日後の熱伝導率も同様に0.0017W/mKであった。これは更に銅イオン交換したZSM−5型ゼオライトが劣化せず安定した吸着能力を維持しているものと考える。   A vacuum heat insulating material was prepared in the same procedure as in Example 1, and the initial thermal conductivity was measured to be 0.0017 W / mK. The thermal conductivity after 200 days at 100 ° C. was also 0.0017 W / mK. It was. This is because the ZSM-5 type zeolite exchanged with copper ions does not deteriorate and maintains a stable adsorption capacity.

本発明の気体吸着材は、化学的水分吸着材が銅イオン交換したZSM−5型ゼオライトよりも先に水分を吸着固定化するため、銅イオン交換したZSM−5型ゼオライトの窒素吸着活性の低下を抑制し、そのため大容量の窒素吸着能力を備えるものであり、真空断熱材に適している。また、本発明の真空断熱材は、冷蔵庫やジャーポット、炊飯器、自動販売機、住宅など真空断熱材が適用可能なあらゆる用途にて利用可能である。   Since the gas adsorbent of the present invention adsorbs and immobilizes moisture prior to the ZSM-5 type zeolite in which the chemical water adsorbent has exchanged copper ions, the decrease in nitrogen adsorption activity of the ZSM-5 type zeolite in which copper ions have been exchanged. Therefore, it has a large capacity of nitrogen adsorption and is suitable for a vacuum heat insulating material. Moreover, the vacuum heat insulating material of this invention can be utilized for all the uses which can apply vacuum heat insulating materials, such as a refrigerator, a jar pot, a rice cooker, a vending machine, and a house.

1 気体吸着材
2 銅イオン交換したZSM−5型ゼオライト
3 化学的水分吸着材
4 気体吸着材パック
6 真空断熱材
7 芯材
8 外被材
DESCRIPTION OF SYMBOLS 1 Gas adsorption material 2 Copper ion exchanged ZSM-5 type zeolite 3 Chemical moisture adsorption material 4 Gas adsorption material pack 6 Vacuum heat insulating material 7 Core material 8 Cover material

Claims (2)

閉空間の空気を吸着して前記閉空間の減圧状態を維持するために用いる気体吸着材であって、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM−5型ゼオライトの周囲を、水に対する吸着活性が前記銅イオン交換したZSM−5型ゼオライトよりも大きい化学的水分吸着材で覆ったことを特徴とする気体吸着材。 A gas adsorbent used for adsorbing air in a closed space and maintaining a reduced pressure state in the closed space, wherein the ratio of silica to alumina in the zeolite framework is from 8 to 25 and is exchanged with copper ions ZSM-5 type A gas adsorbent characterized in that the periphery of zeolite is covered with a chemical moisture adsorbent having a higher adsorption activity for water than the ZSM-5 type zeolite subjected to the copper ion exchange. 少なくとも芯材と、請求項1記載の気体吸着材を適度なガス透過性を有する袋内に充填した気体吸着材パックとを、ガスバリア性を有する外被材で覆い、前記外被材の内部を減圧したことを特徴とする真空断熱材。 At least a core material and a gas adsorbent pack filled with the gas adsorbent according to claim 1 in a bag having appropriate gas permeability are covered with a jacket material having a gas barrier property, and the inside of the jacket material is covered. A vacuum heat insulating material characterized by being decompressed.
JP2011087035A 2011-02-14 2011-04-11 Gas adsorbing material and vacuum insulation material obtained by using the same Pending JP2012217942A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011087035A JP2012217942A (en) 2011-04-11 2011-04-11 Gas adsorbing material and vacuum insulation material obtained by using the same
PCT/JP2012/000958 WO2012111311A1 (en) 2011-02-14 2012-02-14 Heat insulation box body
US13/983,504 US20130306655A1 (en) 2011-02-14 2012-02-14 Heat-insulating box
CN2012800088806A CN103384556A (en) 2011-02-14 2012-02-14 Heat insulation box body
EP12747650.5A EP2676714A1 (en) 2011-02-14 2012-02-14 Heat insulation box body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087035A JP2012217942A (en) 2011-04-11 2011-04-11 Gas adsorbing material and vacuum insulation material obtained by using the same

Publications (1)

Publication Number Publication Date
JP2012217942A true JP2012217942A (en) 2012-11-12

Family

ID=47270059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087035A Pending JP2012217942A (en) 2011-02-14 2011-04-11 Gas adsorbing material and vacuum insulation material obtained by using the same

Country Status (1)

Country Link
JP (1) JP2012217942A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107226A (en) * 2014-12-09 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Adsorbent and vacuum heat insulation material using the same
JPWO2015177984A1 (en) * 2014-05-22 2017-04-20 パナソニックIpマネジメント株式会社 Airtight container, insulator, and gas adsorption device
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure
US10549257B2 (en) 2016-06-01 2020-02-04 Samsung Electronics Co., Ltd. Gas adsorbing material particle, gas adsorbing material body, making method of the same and vacuum insulation material including the same
JP2021065402A (en) * 2019-10-23 2021-04-30 東京ガスエンジニアリングソリューションズ株式会社 Suction apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234346A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulating body
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234346A (en) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd Heat insulating body
JP2006307995A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Heat insulating body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015177984A1 (en) * 2014-05-22 2017-04-20 パナソニックIpマネジメント株式会社 Airtight container, insulator, and gas adsorption device
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
JP2016107226A (en) * 2014-12-09 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. Adsorbent and vacuum heat insulation material using the same
US10549257B2 (en) 2016-06-01 2020-02-04 Samsung Electronics Co., Ltd. Gas adsorbing material particle, gas adsorbing material body, making method of the same and vacuum insulation material including the same
WO2019167666A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Vacuum heat insulating material, heat insulating structure using vacuum heat insulating material, and home electric appliance, house wall, and transport device using vacuum heat insulating material and heat insulating structure
JPWO2019167666A1 (en) * 2018-02-27 2020-12-10 パナソニックIpマネジメント株式会社 Vacuum heat insulating materials, heat insulating structures using them, and home appliances, residential walls and transportation equipment using them.
JP2021065402A (en) * 2019-10-23 2021-04-30 東京ガスエンジニアリングソリューションズ株式会社 Suction apparatus
JP7167003B2 (en) 2019-10-23 2022-11-08 東京ガスエンジニアリングソリューションズ株式会社 suction device

Similar Documents

Publication Publication Date Title
JP2012217942A (en) Gas adsorbing material and vacuum insulation material obtained by using the same
JP6229898B2 (en) Insulator containing gas adsorbent
WO2006080416A1 (en) Thermal insulator
JP2006307995A (en) Heat insulating body
JP2006234346A (en) Heat insulating body
JP4862569B2 (en) Glass panel
JP6114928B1 (en) Gas adsorbent and vacuum heat insulating material provided with gas adsorbent
JP2012102758A (en) Vacuum heat insulation material
JP6726842B2 (en) Insulation
CN203525724U (en) Composite getter for vacuum insulation plate
JP2014113524A (en) Adsorbent, adsorption device and vacuum heat insulating material
JP2016084833A (en) Vacuum heat insulating material and heat insulating box
JP2006043604A (en) Gas adsorption material and heat-insulation body
KR20130125429A (en) Gatter having nano porous material and manufacturing method thereof
JP5719995B2 (en) Gas adsorption device
JP2009063033A (en) Heat insulator
JP5493706B2 (en) Gas adsorption device and method of using gas adsorption device
JP2007155088A (en) Vacuum heat insulator manufacturing method and vacuum heat insulator
RU2663675C2 (en) Vacuum thermal insulating material, thermal insulating camera and method of manufacture of vacuum thermal insulating material
JP2014213240A (en) Gas absorption device and vacuum insulation material
JP4613557B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JP2016101574A (en) Gas adsorbent, and vacuum heat insulation material using the same
CN103316629A (en) Composite getter for vacuum insulated plate and preparation method thereof
JP2006167572A (en) Gas adsorbent and heat insulating body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124