JP4175821B2 - Vacuum insulation panel - Google Patents

Vacuum insulation panel Download PDF

Info

Publication number
JP4175821B2
JP4175821B2 JP2002072318A JP2002072318A JP4175821B2 JP 4175821 B2 JP4175821 B2 JP 4175821B2 JP 2002072318 A JP2002072318 A JP 2002072318A JP 2002072318 A JP2002072318 A JP 2002072318A JP 4175821 B2 JP4175821 B2 JP 4175821B2
Authority
JP
Japan
Prior art keywords
plate member
flat plate
side plate
members
insulation panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002072318A
Other languages
Japanese (ja)
Other versions
JP2003269687A (en
Inventor
隆 東野
武男 神野
昭人 皆木
和昭 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Corp filed Critical Zojirushi Corp
Priority to JP2002072318A priority Critical patent/JP4175821B2/en
Publication of JP2003269687A publication Critical patent/JP2003269687A/en
Application granted granted Critical
Publication of JP4175821B2 publication Critical patent/JP4175821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温の液化ガスなどを搬送するためのタンクや冷凍庫などに使用される真空断熱パネルに関するものである。
【0002】
【従来の技術】
一般に、冷凍庫などの壁面には断熱効果を高めるために真空断熱パネルが設けられている。この真空断熱パネルには、内部を真空引きした際に変形しないように、ウレタンフォームなどの多孔質材料からなるコア材が収容されている。
【0003】
このような真空断熱パネルの外壁は、前記コア材の対向する平面を被覆する一対の金属製薄板からなる平板部材と、前記コア材の外周部を被覆する金属製薄板からなる側板部材とを備えている。そして、その製造時には、一方の平板部材の所定位置に側板部材を位置決めして接合し、その内部にコア材を収容した後、前記コア材を圧縮しながら他方の平板部材を位置決めして接合している。
【0004】
【発明が解決しようとする課題】
しかしながら、前記真空断熱パネルは、少しでも熱伝導を少なくすることを目的として、各板部材は可能な限り薄く形成するのが一般的である。そのため、接合前の状態では簡単に撓むため、各板部材を所定位置に高精度に位置決めするのは非常に困難である。なお、この問題は、形成する真空断熱パネルが大型になるほど顕著に現れる。そのため、大型の真空断熱パネルを形成するには、板部材を高精度に位置決めするために大型の治具が必要になり、設備費用などの製造コストが高くなるという問題がある。
【0005】
そこで、本発明では、簡単な治具で高精度に位置決めし、溶接が可能な真空断熱パネルを提供することを課題とする。
【0006】
【課題を解決するための手段】
前記課題を解決するため、本発明の真空断熱パネルは、熱伝導度の低い材料からなる複数のコア材と、前記コア材の対向する面を被覆した金属製薄板からなる一対の平板部材と、これら平板部材の外周部に接合した金属製の一対の枠部材と、これら枠部材にかけて延び、これらに接合した金属製薄板からなる側板部材とを備え、前記側板部材の板厚を、前記平板部材の板厚より薄くするとともに、前記コア材における前記平板部材と接触しない面に通気溝を設けた構成としている。
【0007】
前記真空断熱パネルを製造する際には、例えば、側板部材の両端に枠部材を接合した後、その枠部材の一方に平板部材を接合する。そして、これらにより囲繞された空間に前記コア材を収容した後、枠部材の他方に平板部材を接合する。
【0008】
即ち、金属製薄板からなる平板部材および側板部材は、それぞれ枠部材を介して接合されるため、各板部材を位置決めする際には、枠部材に対して押圧しても各板部材に対して撓みを生じさせることはない。そのため、位置決め作業性の向上を図ることができる。
【0009】
前記真空断熱パネルでは、前記枠部材に、その内面の一端から他端に向けて延びる段部を全周にかけて設け、該段部に前記側板部材の縁を位置決めすることが好ましい。このようにすれば、位置決めに係る作業性を向上できる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
図1から図3は、本発明の実施形態に係る真空断熱パネルを示す。この真空断熱パネルは、大略、金属製の外装体1と、該外装体1内に収容する複数(本実施形態では4個)のコア材9A〜9Dおよびゲッター12とからなる。
【0011】
前記外装体1は、一対の平板部材2A,2Bと、一対の枠部材6A,6Bと、側板部材8とからなる。これらの構成部材は、本実施形態ではステンレス(SUS304)により形成されている。
【0012】
前記平板部材2A,2Bは、正方形状とした薄板からなる。そのうち、上側に位置する平板部材2Aには、その中央に排気部3が設けられている。この排気部3は、真空排気時には外方に円錐台形状に突出し、真空排気後には内方に没入される変形部4を有する。この変形部4の中央には貫通した排気孔が設けられ、この排気孔にチップ管5が接合されている。
【0013】
前記枠部材6A,6Bは、前記平板部材2A,2Bと同一の外形で、断面正方形状とした肉厚の環状枠からなる。この枠部材6A,6Bには、内面の一端から他端に向けて延びる段部7(図2参照。)が全周にかけて設けられている。
【0014】
前記側板部材8は、薄板を前記段部7に内嵌する四角筒状としたものである。この側板部材8は、例えば、長尺な帯状金属シートの所定位置を折曲げるとともに両端を突き合わせ、その突き合わせ部分を接合することにより形成される。
【0015】
図2に具体的に示すように、本実施形態の外装体1は、前記平板部材2A,2Bの板厚を約0.5mm、前記枠部材6A,6Bの断面正方形状をなす各厚さを約10mm、前記側板部材8の板厚を約0.3mmとしている。即ち、本実施形態では、側板部材8の板厚を平板部材2A,2Bの板厚より薄くしている。これにより、一方の平板部材2A,2Bから他方の平板部材2B,2Aに伝わる熱の伝導効率の抑制することができる。また、前記段部7の深さは、前記側板部材8の板厚と同一に設定されている。これにより、枠部材6A,6Bの内面と側板部材8の内面とが面一に位置するように構成されている。
【0016】
前記コア材9A,9B,9C,9Dは、ウレタンフォームなどの発泡樹脂、グラスウールあるいはケイ酸カルシウム粉末、パーライト粉末を充填したものなどの熱伝導度の低い微細多孔質材料を、前記外装体1内に収容できるように直方体形状としたものである。これらコア材9A〜9Dは、積み上げた状態の高さが、外装体1の高さの高さより高くなる肉厚とされている。
【0017】
前記コア材9A〜9Dのうち、最上段に配置されるコア材9Aには、その下面にそれぞれ同方向に延びる複数の通気溝10aが設けられているとともに、その中央には前記排気部3が没入するための貫通孔11が設けられている。また、中央に配置されるコア材9B,9Cには、その下面にコア材9Aと同様に通気溝10aが設けられるとともに、その上面に通気溝10と直交方向に延びる複数の通気溝10bが設けられている。また、最下段に配置されるコア材9Dには、その上面にコア材9B,9Cと同様に通気溝10bが設けられている。即ち、通気溝10a,10bは、肉薄の平板部材2A,2Bと接触しない面にのみ設け、真空排気時の排気効率の向上を図るとともに、外装体1の変形を防止している。
【0018】
前記ゲッター12は、前記外装体1内に遊離するガスを吸収するもので、予め活性化させた後、不活性ガスとともに金属製のアルミ箔13で密閉状態に包装して形成される。このように構成したゲッター12は、活性化されているにも関わらず、密閉状態を維持している間は、水素などのガスを吸収することを防止できる。また、本実施形態のゲッター12は、中央部に貫通した空間を有する環状に形成されている。
【0019】
次に、前記真空断熱パネルの製造方法について説明する。
図4に示すように、まず、設置台14上に、四角筒状とした側板部材8を設置する。その後、一方の枠部材6Aを、その段部7の開放位置が下側になるように側板部材8の上端に配置し、側板部材8の縁が段部7内に位置するように外嵌させる。この枠部材6Aを外嵌して位置決めする作業は、前記段部7により容易に行うことができる。
【0020】
ついで、枠部材6Aの内部に、外向きに張り出す方向に移動可能な押圧部材15を配置し、枠部材6Aの段部7に位置させる。この押圧部材15は、その内端に外広がりに傾斜する斜面16を備えたものである。その後、押圧部材15の内側に、該押圧部材15を斜面16の傾斜に従って外向きに移動させる移動部材17を挿入する。これにより、押圧部材15は、枠部材6Aの段部7に位置する側板部材8の上端を外向きに移動させ、該側板部材8の上端を枠部材6Aに対して押圧して隙間の発生を防止する。
【0021】
この状態で、枠部材6Aと側板部材8との組み合わせ部分を、図示しない溶接トーチによって照射し、これら枠部材6Aと側板部材8とを隙間なく接合する。
【0022】
ついで、図5に示すように、接合した枠部材6Aを下側に位置させて側板部材8を設置台14上に設置する。その後、前記枠部材6Aと同様に、段部7の開放位置が下側になるように枠部材6Bを側板部材8の上端に配置し、側板部材8の縁が段部7内に位置するように外嵌させる。
【0023】
ついで、枠部材6Bの段部7に押圧部材15が位置するように配置する。その後、押圧部材15の内側に移動部材17を挿入し、側板部材8の上端を枠部材6Bに対して押圧して隙間の発生を防止する。そして、この状態で、前記と同様に、これら枠部材6Bと側板部材8とを隙間なく接合する。
【0024】
ついで、図6に示すように、接合した枠部材6Bの上側に、下側に位置する平板部材2Bを配置する。この際、枠部材6Bは、撓みや変形が生じないため、簡単に平板部材2Bの縁と枠部材6Bとの縁を一致させることができる。そして、この状態で、前記と同様に、これら枠部材6Bと平板部材2Bとを接合する。
【0025】
ついで、図7に示すように、接合した平板部材2Bが下側に位置するように設置台14上に設置し、上向きに開放した状態とする。その後、前記平板部材2Bおよび側板部材8により囲繞された空間に、下段に位置するコア材9D〜9Aを順次収容させる。
【0026】
この際、上下方向に隣接するコア材9A〜9Dは、それらに設けた通気溝10a,10bが互いに直交方向に位置するように配置する。また、これらコア材9A〜9Dの収容状態では、最上段のコア材9Aの上端面が枠部材6Aの上端面より上方に突出している。この状態で、コア材9Aにおける貫通孔11内に、アルミ箔13により密閉したゲッター12を収容させる。ここで、ゲッター12は、その中央の空間とチップ管5の軸心とが一致するように配置する。
【0027】
ついで、図8に示すように、上方に突出したコア材9Aの上面に平板部材2Aを配置する。その後、平板部材2Aの上面に圧縮治具18を配置するとともに、側板部材8の外面に該側板部材8の変形を防止するための規制治具19を配置する。そして、図9に示すように、前記平板部材2Aを介してコア材9A〜9Dを圧縮し、平板部材2Aの下面を枠部材6Aの上端面に当接させる。この状態で、前記と同様に、これら枠部材6Aと平板部材2Aとを接合する。
【0028】
このように、本発明の真空断熱パネルでは、撓みや変形が生じない肉厚の枠部材6A,6Bを設け、該枠部材6A,6Bに対して側板部材8を接合するため、各板部材2A,2B,8を位置決めする際には、枠部材6A,6Bに対して押圧しても撓みが生じることはない。そのため、大型の真空断熱パネルを製造する場合でも、周知の位置決め用治具を用い、高精度な位置決めが可能になる。その結果、製造コストが高くなることを防止できる。
【0029】
なお、組立状態のパネルは、前記コア材9A〜9Dの圧縮により、これらコア材9A〜9Dが外装体1を構成する平板部材2A,2Bおよび側板部材8の内面に密着する。
【0030】
次に、接合した外装体1内の真空排気について説明する。
まず、図10に示すように、接合されたチップ管5の内部に棒材20を挿入し、該棒材20で外装体1内に収容したゲッター12のアルミ箔13を突き破る。この際、本実施形態では、ゲッター12を環状に形成し、その貫通した空間がチップ管5の軸心と一致するように配置しているため、前記突き破る作業は容易である。そして、これにより、ゲッター12は、金属材料から放出され、遊離した水素などのガスを吸収することができる。
【0031】
このようにしてアルミ箔13を突き破ると、同時にパネルを70℃で所定時間加熱しつつ、図11に示すように、平板部材2Aに接合したチップ管5を通して、真空にすべき外装体1の内部空間から空気を排出して減圧しつつ、外装体1から放出された水素(H)、一酸化炭素(CO)および水(HO)を放出する。
【0032】
この際、本実施形態では、組立状態のパネルは、コア材9A〜9Dが外装体1の内面に密着しているが、これらコア材9A〜9Dに通気溝10a,10bを設けているため、真空効率を向上でき、真空排気時間を大幅に短縮することができる。具体的には、コア材9A〜9Dに通気溝10a,10bを設けていないものと設けたものとでは、その排気時間を半分以下に短縮することができる。
【0033】
外装体1内が所定の真空度に達すると、図12に示すように、チップ管5を封止する。なお、この封止後では、外装体1内に残留して遊離している水素、一酸化炭素および水は、ゲッター12に吸収され、外装体1の内部空間が真空に維持される。
【0034】
ついで、排気部3における平坦な上端面を下向きに押圧することにより、図13に示すように、排気部3を外装体1の内部に没入させる。
【0035】
このように、本実施形態では、予め活性化させたゲッター12を使用し、真空状態に排気する直前にガスを吸収可能な状態とするため、ゲッター12を活性化させるための加熱時間を削減することができる。そのため、加熱・排気時間の短縮を図ることができる。また、ゲッター12は、排気直前まで大気中に放置されるのではなく、アルミ箔13により密閉されているため、ゲッター12を機能的に使用可能な期間(寿命)を長期化することができる。
【0036】
なお、本発明の真空断熱パネルは、前記実施形態の構成に限定されるものではない。
例えば、前記実施形態では、平板部材2Aに真空排気後に内部に没入する排気部3を設けたが、単に平板部材2Aにチップ管5を接合した構成としてもよい。また、このチップ管5は、平板部材2Aに必ずしも設ける必要はなく、枠部材6A,6Bまたは側板部材8に設けてもよい。
【0037】
また、前記実施形態では、枠部材6A,6Bは、段部7を設けた断面正方形状の環状枠により構成したが、図14および図15に示すように、断面L字形状とした環状枠により構成しても前記と同様の作用、効果を得ることができる。
【0038】
また、前記実施形態では、外装体1を平面視で正方形状に形成したが、正六角形状、正三角形状、円形状など、その形状は希望に応じて種々の変形が可能である。
【0039】
【発明の効果】
以上の説明から明らかなように、本発明の真空断熱パネルでは、撓みが生じ易い金属製薄板からなる平板部材および側板部材を、枠部材を介して接合する構成としているため、各板部材を位置決めし、溶接する際には、枠部材に対して押圧しても各板部材に対して撓みを生じさせることはない。そのため、高精度に位置決めするために高価な治具を使用することなく、簡単に高精度な位置決めが可能になる。その結果、設備費用などの製造コストが高くなることを防止できる
また、側板部材の板厚を平板部材の板厚より薄くしているため、一方の平板部材から他方の平板部材に伝わる熱の伝導効率の抑制することができる。さらに、コア材には通気溝を設けているため、真空排気時の排気効率の向上を図ることができる。しかも、通気溝は、肉薄の平板部材と接触しない面に設けているため、平板部材の変形を防止できる。
【図面の簡単な説明】
【図1】 本発明の真空断熱パネルを示す断面図である。
【図2】 図1の要部拡大断面図である。
【図3】 図1の分解斜視図である。
【図4】 組立作業の第1工程を示す断面図である。
【図5】 組立作業の第2工程を示す断面図である。
【図6】 組立作業の第3工程を示す断面図である。
【図7】 組立作業の第4工程を示す断面図である。
【図8】 組立作業の第5工程を示す断面図である。
【図9】 組立作業の第6工程を示す断面図である。
【図10】 真空排気作業の第1工程を示す断面図である。
【図11】 真空排気作業の第2工程を示す断面図である。
【図12】 真空排気作業の第3工程を示す断面図である。
【図13】 真空排気作業の第4工程を示す断面図である。
【図14】 真空断熱パネルの変形例を示す断面図である。
【図15】 真空断熱パネルの他の変形例を示す断面図である。
【符号の説明】
1…外装体、2A,2B…平板部材、5…チップ管、6A,6B…枠部材、7…段部、8…側板部材、9A〜9D…コア材、10…通気溝、12…ゲッター。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum heat insulation panel used for a tank or a freezer for conveying a low-temperature liquefied gas or the like.
[0002]
[Prior art]
Generally, a vacuum heat insulating panel is provided on a wall surface of a freezer or the like in order to enhance a heat insulating effect. The vacuum insulation panel accommodates a core material made of a porous material such as urethane foam so as not to be deformed when the inside is evacuated.
[0003]
The outer wall of such a vacuum heat insulation panel includes a flat plate member made of a pair of metal thin plates covering the opposing flat surfaces of the core material, and a side plate member made of a metal thin plate covering the outer periphery of the core material. ing. At the time of manufacturing, the side plate member is positioned and bonded to a predetermined position of one flat plate member, and after the core material is accommodated therein, the other flat plate member is positioned and bonded while compressing the core material. ing.
[0004]
[Problems to be solved by the invention]
However, in the vacuum heat insulation panel, each plate member is generally formed as thin as possible for the purpose of reducing heat conduction as much as possible. Therefore, since it bends easily in the state before joining, it is very difficult to position each plate member at a predetermined position with high accuracy. This problem becomes more prominent as the vacuum insulation panel to be formed becomes larger. Therefore, in order to form a large-sized vacuum heat insulation panel, a large-sized jig is required for positioning the plate member with high accuracy, and there is a problem that manufacturing costs such as equipment costs increase.
[0005]
Therefore, an object of the present invention is to provide a vacuum heat insulation panel that can be positioned with high accuracy and can be welded with a simple jig.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the vacuum heat insulation panel of the present invention includes a plurality of core members made of a material having low thermal conductivity, and a pair of flat plate members made of metal thin plates covering the opposing surfaces of the core material, A pair of metal frame members joined to the outer peripheral portions of the flat plate members, and side plate members made of a thin metal plate extending over and joined to the frame members, the plate thickness of the side plate members being determined by the flat plate members And a ventilation groove is provided on the surface of the core material that does not contact the flat plate member .
[0007]
When manufacturing the said vacuum heat insulation panel, for example, after joining a frame member to the both ends of a side plate member, a flat plate member is joined to one side of the frame member. And after accommodating the said core material in the space enclosed by these, a flat plate member is joined to the other of a frame member.
[0008]
That is, since the flat plate member and the side plate member made of a metal thin plate are respectively joined via the frame members, when positioning the respective plate members, even if they are pressed against the frame members, It does not cause bending. Therefore, the positioning workability can be improved.
[0009]
Wherein the vacuum insulation panel, the frame member is provided over a stepped portion extending from one end to the other end of the inner surface of the entire circumference, it is preferable to position the edge of the side plate member to the stepped portion. In this way, workability related to positioning can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a vacuum heat insulation panel according to an embodiment of the present invention. This vacuum heat insulation panel is generally composed of a metal exterior body 1, and a plurality (four in this embodiment) of core materials 9 </ b> A to 9 </ b> D and getters 12 accommodated in the exterior body 1.
[0011]
The exterior body 1 includes a pair of flat plate members 2A and 2B, a pair of frame members 6A and 6B, and a side plate member 8. These constituent members are made of stainless steel (SUS304) in this embodiment.
[0012]
The flat plate members 2A and 2B are made of a thin plate having a square shape. Among them, the flat plate member 2A located on the upper side is provided with an exhaust part 3 in the center thereof. The exhaust part 3 has a deformed part 4 that protrudes outward in the shape of a truncated cone during vacuum evacuation, and is recessed inward after evacuation. A penetrating exhaust hole is provided at the center of the deformed portion 4, and the tip tube 5 is joined to the exhaust hole.
[0013]
The frame members 6A and 6B are formed of a thick annular frame having the same outer shape as the flat plate members 2A and 2B and a square cross section. The frame members 6A and 6B are provided with stepped portions 7 (see FIG. 2) extending from one end of the inner surface toward the other end over the entire circumference.
[0014]
The side plate member 8 is formed in a rectangular tube shape in which a thin plate is fitted into the stepped portion 7. The side plate member 8 is formed, for example, by bending a predetermined position of a long band-shaped metal sheet, butting both ends and joining the butted portions.
[0015]
As specifically shown in FIG. 2, the exterior body 1 of the present embodiment has a thickness of about 0.5 mm for the flat plate members 2A and 2B, and a thickness that forms a square cross section of the frame members 6A and 6B. The plate thickness of the side plate member 8 is about 0.3 mm. That is, in this embodiment, the plate thickness of the side plate member 8 is made thinner than the plate thickness of the flat plate members 2A and 2B. Thereby, the conduction efficiency of the heat transmitted from one flat plate member 2A, 2B to the other flat plate member 2B, 2A can be suppressed. Further, the depth of the stepped portion 7 is set to be the same as the plate thickness of the side plate member 8. Thereby, it is comprised so that the inner surface of frame member 6A, 6B and the inner surface of the side-plate member 8 may be located flush.
[0016]
The core materials 9A, 9B, 9C, and 9D are made of a microporous material having a low thermal conductivity, such as a foam resin such as urethane foam, glass wool, calcium silicate powder, or pearlite powder, and the like. It has a rectangular parallelepiped shape so that it can be accommodated. These core materials 9 </ b> A to 9 </ b> D have a thickness in which the height in the stacked state is higher than the height of the exterior body 1.
[0017]
Among the core materials 9A to 9D , the core material 9A arranged at the uppermost stage is provided with a plurality of ventilation grooves 10a extending in the same direction on the lower surface thereof, and the exhaust part 3 at the center thereof. A through hole 11 for immersion is provided. In addition, the core material 9B, 9C disposed in the center is provided with a ventilation groove 10a on the lower surface thereof similarly to the core material 9A, and a plurality of ventilation grooves 10b extending in a direction orthogonal to the ventilation groove 10 is provided on the upper surface thereof. It has been. Further, the core material 9D arranged at the lowest level is provided with a ventilation groove 10b on the upper surface thereof in the same manner as the core materials 9B and 9C. In other words, the ventilation grooves 10a and 10b are provided only on the surfaces that do not come into contact with the thin flat plate members 2A and 2B, thereby improving the exhaust efficiency during vacuum exhaust and preventing deformation of the exterior body 1.
[0018]
The getter 12 absorbs the gas liberated in the exterior body 1 and is formed by being previously activated and then packaged in a sealed state with an aluminum foil 13 together with an inert gas. Although the getter 12 configured in this manner is activated, the getter 12 can be prevented from absorbing a gas such as hydrogen while maintaining a sealed state. In addition, the getter 12 of the present embodiment is formed in an annular shape having a space penetrating in the center.
[0019]
Next, the manufacturing method of the said vacuum heat insulation panel is demonstrated.
As shown in FIG. 4, first, the side plate member 8 having a rectangular tube shape is installed on the installation table 14. Thereafter, one frame member 6A is disposed at the upper end of the side plate member 8 so that the opening position of the stepped portion 7 is on the lower side, and is fitted so that the edge of the side plate member 8 is positioned in the stepped portion 7. . The work of externally fitting and positioning the frame member 6A can be easily performed by the stepped portion 7.
[0020]
Next, a pressing member 15 that is movable in the outwardly projecting direction is disposed inside the frame member 6A and is positioned on the step portion 7 of the frame member 6A. This pressing member 15 is provided with a slope 16 that slopes outwardly at its inner end. Thereafter, a moving member 17 that moves the pressing member 15 outward according to the inclination of the slope 16 is inserted inside the pressing member 15. Thus, the pressing member 15 moves the upper end of the side plate member 8 positioned on the step portion 7 of the frame member 6A outward, and presses the upper end of the side plate member 8 against the frame member 6A to generate a gap. To prevent.
[0021]
In this state, the combined portion of the frame member 6A and the side plate member 8 is irradiated with a welding torch (not shown), and the frame member 6A and the side plate member 8 are joined without a gap.
[0022]
Next, as shown in FIG. 5, the joined frame member 6 </ b> A is positioned on the lower side, and the side plate member 8 is installed on the installation table 14. Thereafter, similarly to the frame member 6A, the frame member 6B is disposed at the upper end of the side plate member 8 so that the opening position of the step portion 7 is on the lower side, and the edge of the side plate member 8 is positioned in the step portion 7. Fit outside.
[0023]
Subsequently, it arrange | positions so that the press member 15 may be located in the step part 7 of the frame member 6B. Thereafter, the moving member 17 is inserted inside the pressing member 15, and the upper end of the side plate member 8 is pressed against the frame member 6B to prevent the generation of a gap. In this state, the frame member 6B and the side plate member 8 are joined together without any gaps as described above.
[0024]
Next, as shown in FIG. 6, the flat plate member 2B positioned on the lower side is disposed on the upper side of the joined frame member 6B. At this time, since the frame member 6B is not bent or deformed, the edge of the flat plate member 2B and the edge of the frame member 6B can be easily matched. In this state, the frame member 6B and the flat plate member 2B are joined in the same manner as described above.
[0025]
Next, as shown in FIG. 7, the flat plate member 2 </ b> B is installed on the installation base 14 so as to be positioned on the lower side and is opened upward. Thereafter, the core materials 9D to 9A located in the lower stage are sequentially accommodated in the space surrounded by the flat plate member 2B and the side plate member 8.
[0026]
At this time, the core members 9A to 9D adjacent in the up-down direction are arranged so that the ventilation grooves 10a, 10b provided in them are positioned in the orthogonal direction. Further, in the accommodated state of these core members 9A to 9D, the upper end surface of the uppermost core member 9A projects upward from the upper end surface of the frame member 6A. In this state, the getter 12 sealed with the aluminum foil 13 is accommodated in the through hole 11 in the core material 9A. Here, the getter 12 is arranged so that the central space thereof coincides with the axis of the tip tube 5.
[0027]
Next, as shown in FIG. 8, the flat plate member 2A is disposed on the upper surface of the core material 9A protruding upward. Thereafter, the compression jig 18 is disposed on the upper surface of the flat plate member 2 </ b> A, and the regulation jig 19 for preventing the deformation of the side plate member 8 is disposed on the outer surface of the side plate member 8. Then, as shown in FIG. 9, the core members 9A to 9D are compressed via the flat plate member 2A, and the lower surface of the flat plate member 2A is brought into contact with the upper end surface of the frame member 6A. In this state, the frame member 6A and the flat plate member 2A are joined as described above.
[0028]
Thus, in the vacuum heat insulation panel of the present invention, since the thick frame members 6A and 6B that are not bent or deformed are provided and the side plate member 8 is joined to the frame members 6A and 6B, each plate member 2A is provided. When positioning the frame members 6A and 6B, no bending occurs. Therefore, even when manufacturing a large vacuum heat insulation panel, it is possible to perform highly accurate positioning using a known positioning jig. As a result, an increase in manufacturing cost can be prevented.
[0029]
In the assembled panel, the core materials 9A to 9D are brought into close contact with the inner surfaces of the flat plate members 2A and 2B and the side plate member 8 constituting the exterior body 1 by the compression of the core materials 9A to 9D.
[0030]
Next, the evacuation in the bonded exterior body 1 will be described.
First, as shown in FIG. 10, a bar 20 is inserted into the joined tip tube 5, and the aluminum foil 13 of the getter 12 accommodated in the exterior body 1 is pierced by the bar 20. At this time, in the present embodiment, the getter 12 is formed in an annular shape, and the penetrating space is arranged so as to coincide with the axis of the tip tube 5, so that the above-described work is easy. As a result, the getter 12 can absorb a gas such as hydrogen released and released from the metal material.
[0031]
When the aluminum foil 13 is pierced in this way, while the panel is heated at 70 ° C. for a predetermined time at the same time, as shown in FIG. 11, the inside of the exterior body 1 to be evacuated is passed through the chip tube 5 joined to the flat plate member 2A. While discharging air from the space and reducing the pressure, hydrogen (H), carbon monoxide (CO), and water (H 2 O) released from the outer package 1 are released.
[0032]
At this time, in this embodiment, in the assembled panel, the core materials 9A to 9D are in close contact with the inner surface of the exterior body 1. However, since the core materials 9A to 9D are provided with ventilation grooves 10a and 10b, The vacuum efficiency can be improved and the evacuation time can be greatly shortened. Specifically, the exhaust time can be reduced to less than half when the core members 9A to 9D are not provided with the ventilation grooves 10a and 10b.
[0033]
When the inside of the outer package 1 reaches a predetermined degree of vacuum, the tip tube 5 is sealed as shown in FIG. After this sealing, hydrogen, carbon monoxide, and water remaining and liberated in the exterior body 1 are absorbed by the getter 12, and the internal space of the exterior body 1 is maintained in a vacuum.
[0034]
Next, by pressing the flat upper end surface of the exhaust part 3 downward, the exhaust part 3 is immersed in the exterior body 1 as shown in FIG.
[0035]
As described above, in the present embodiment, the getter 12 activated in advance is used, and the gas can be absorbed immediately before exhausting to a vacuum state. Therefore, the heating time for activating the getter 12 is reduced. be able to. Therefore, the heating / exhaust time can be shortened. Moreover, since the getter 12 is not left in the atmosphere until immediately before the exhaust, but is sealed with the aluminum foil 13, the period during which the getter 12 can be used functionally (lifetime) can be extended.
[0036]
In addition, the vacuum heat insulation panel of this invention is not limited to the structure of the said embodiment.
For example, in the above embodiment, the flat plate member 2A is provided with the exhaust portion 3 that is immersed in the flat plate after being evacuated, but the tip tube 5 may be simply joined to the flat plate member 2A. The tip tube 5 is not necessarily provided on the flat plate member 2 </ b> A, and may be provided on the frame members 6 </ b> A and 6 </ b> B or the side plate member 8.
[0037]
Moreover, in the said embodiment, although frame member 6A, 6B was comprised by the cyclic | annular frame of the cross-sectional square shape which provided the step part 7, as shown to FIG. 14 and FIG. Even if it comprises, the effect | action and effect similar to the above can be acquired.
[0038]
Moreover, in the said embodiment, although the exterior body 1 was formed in square shape by planar view, various deformation | transformation is possible for the shape, such as a regular hexagon shape, a regular triangle shape, and circular shape, as desired.
[0039]
【The invention's effect】
As is clear from the above description, in the vacuum heat insulation panel of the present invention, the flat plate member and the side plate member made of a thin metal plate that are likely to be bent are joined via the frame member, so that each plate member is positioned. And when welding, even if it presses with respect to a frame member, it does not produce bending with respect to each board member. Therefore, high-precision positioning can be easily performed without using an expensive jig for high-precision positioning. As a result , it is possible to prevent an increase in manufacturing costs such as equipment costs .
Moreover, since the plate | board thickness of the side plate member is made thinner than the plate | board thickness of a flat plate member, the conduction efficiency of the heat | fever transmitted from one flat plate member to the other flat plate member can be suppressed. Furthermore, since the core material is provided with a ventilation groove, it is possible to improve exhaust efficiency during vacuum exhaust. Moreover, since the ventilation groove is provided on a surface that does not contact the thin flat plate member, the flat plate member can be prevented from being deformed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a vacuum heat insulation panel of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of FIG.
FIG. 3 is an exploded perspective view of FIG. 1;
FIG. 4 is a cross-sectional view showing a first step of assembly work.
FIG. 5 is a sectional view showing a second step of the assembling work.
FIG. 6 is a cross-sectional view showing a third step of the assembling work.
FIG. 7 is a sectional view showing a fourth step of the assembling work.
FIG. 8 is a sectional view showing a fifth step of the assembling work.
FIG. 9 is a sectional view showing a sixth step of the assembling work.
FIG. 10 is a cross-sectional view showing a first step of evacuation work.
FIG. 11 is a cross-sectional view showing a second step of the vacuum exhaust operation.
FIG. 12 is a cross-sectional view showing a third step of evacuation work.
FIG. 13 is a cross-sectional view showing a fourth step of the vacuum evacuation operation.
FIG. 14 is a cross-sectional view showing a modified example of the vacuum heat insulating panel.
FIG. 15 is a cross-sectional view showing another modification of the vacuum heat insulation panel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exterior body, 2A, 2B ... Flat plate member, 5 ... Tip tube, 6A, 6B ... Frame member, 7 ... Step part, 8 ... Side plate member, 9A-9D ... Core material, 10 ... Ventilation groove, 12 ... Getter.

Claims (2)

熱伝導度の低い材料からなる複数のコア材と、
前記コア材の対向する面を被覆した金属製薄板からなる一対の平板部材と、
これら平板部材の外周部に接合した金属製の一対の枠部材と、
これら枠部材にかけて延び、これらに接合した金属製薄板からなる側板部材とを備え、
前記側板部材の板厚を、前記平板部材の板厚より薄くするとともに、
前記コア材における前記平板部材と接触しない面に通気溝を設けたことを特徴とする真空断熱パネル。
A plurality of core materials made of a material having low thermal conductivity;
A pair of flat plate members made of metal thin plates covering the opposing surfaces of the core material;
A pair of metal frame members joined to the outer periphery of these flat plate members;
It extends over these frame members, and comprises a side plate member made of a thin metal plate joined thereto ,
While making the plate thickness of the side plate member thinner than the plate thickness of the flat plate member,
A vacuum heat insulating panel , wherein a ventilation groove is provided on a surface of the core material that does not contact the flat plate member .
前記枠部材に、その内面の一端から他端に向けて延びる段部を全周にかけて設け、該段部に前記側板部材の縁を位置決めするようにしたことを特徴とする請求項1に記載の真空断熱パネル。It said frame member, a stepped portion extending from one end to the other end of the inner surface is provided over the entire circumference, in claim 1, characterized in that so as to position the edge of the side plate member to the stepped portion The vacuum insulation panel described.
JP2002072318A 2002-03-15 2002-03-15 Vacuum insulation panel Expired - Fee Related JP4175821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072318A JP4175821B2 (en) 2002-03-15 2002-03-15 Vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072318A JP4175821B2 (en) 2002-03-15 2002-03-15 Vacuum insulation panel

Publications (2)

Publication Number Publication Date
JP2003269687A JP2003269687A (en) 2003-09-25
JP4175821B2 true JP4175821B2 (en) 2008-11-05

Family

ID=29202347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072318A Expired - Fee Related JP4175821B2 (en) 2002-03-15 2002-03-15 Vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP4175821B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256596B2 (en) * 2006-09-01 2013-08-07 パナソニック株式会社 Gas adsorption device and vacuum insulation
JP5256597B2 (en) * 2006-09-01 2013-08-07 パナソニック株式会社 Gas adsorption device and vacuum insulation
JP4892944B2 (en) * 2005-12-08 2012-03-07 パナソニック株式会社 Method for manufacturing vacuum insulator and vacuum insulator
JP4752422B2 (en) * 2005-09-26 2011-08-17 パナソニック株式会社 Method for manufacturing vacuum insulator
CN101799100B (en) 2005-09-26 2013-04-10 松下电器产业株式会社 Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator
JP5256595B2 (en) * 2006-09-01 2013-08-07 パナソニック株式会社 Gas adsorption device and vacuum equipment equipped with gas adsorption device
JP5194812B2 (en) * 2008-01-15 2013-05-08 パナソニック株式会社 Vacuum heat insulating material and building material to which vacuum heat insulating material is applied
JP5194823B2 (en) * 2008-01-18 2013-05-08 パナソニック株式会社 Vacuum insulation box
JP5609940B2 (en) * 2012-09-10 2014-10-22 パナソニック株式会社 Gas adsorption device and vacuum insulation
JP2016200232A (en) * 2015-04-13 2016-12-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation body and heat insulation container and heat insulation wall using the same
CN108194766A (en) * 2018-01-22 2018-06-22 深圳市博新美纳米科技有限公司 House ornamentation heat-insulating pipe and its manufacturing method

Also Published As

Publication number Publication date
JP2003269687A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP4216516B2 (en) Vacuum insulation panel
JP4175821B2 (en) Vacuum insulation panel
JP5313800B2 (en) Thermal insulation panel
US7938289B2 (en) Thermal insulating container for a heat generating unit of a fuel cell system
JP4755412B2 (en) Improved vacuum insulation panel
CN103370120B (en) Gas absorption device and the Vacuumed insulation panel possessing this gas absorption device
KR101572823B1 (en) vacuum insulation panel
KR100362831B1 (en) A fuel cell with a gas manifold
JP2013532807A (en) Vacuum insulation panel
KR101283045B1 (en) Hot press device for manufacturing membrane-electrode assembly of fuel cell
JP5049468B2 (en) Insulated container and manufacturing method thereof
JP4175905B2 (en) Vacuum insulation panel
JP5129169B2 (en) Vacuum double structure and manufacturing method thereof
JP5969359B2 (en) Manufacturing method of vacuum insulation panel
KR102698625B1 (en) Insulation Device For Battery Pack And Method Of Manufacturing The Same
JP2006275188A (en) Insulated container and its manufacturing method
JP2005127433A (en) Vacuum insulating panel
JP5222218B2 (en) CORE MATERIAL, CORE MATERIAL MANUFACTURING METHOD, AND VACUUM DOUBLE STRUCTURE USING CORE MATERIAL
JP2007327549A (en) Vacuum structure
JP2573351Y2 (en) Vacuum insulation panel
JP7209352B2 (en) Gas adsorption device and vacuum insulation
JP2560921Y2 (en) Vacuum insulation panel
JP2011038594A (en) Using method of vacuum heat insulating material and the vacuum heat insulating material
JP4836863B2 (en) Insulation panel and method for producing insulation container
JPH05200922A (en) Vacuum heat insulating panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4175821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140829

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees