JP4891018B2 - 半導体集積回路装置の製造方法 - Google Patents

半導体集積回路装置の製造方法 Download PDF

Info

Publication number
JP4891018B2
JP4891018B2 JP2006258631A JP2006258631A JP4891018B2 JP 4891018 B2 JP4891018 B2 JP 4891018B2 JP 2006258631 A JP2006258631 A JP 2006258631A JP 2006258631 A JP2006258631 A JP 2006258631A JP 4891018 B2 JP4891018 B2 JP 4891018B2
Authority
JP
Japan
Prior art keywords
film
etching
wiring
gas
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006258631A
Other languages
English (en)
Other versions
JP2006352168A (ja
Inventor
裕之 榎本
一農 田子
厚志 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2006258631A priority Critical patent/JP4891018B2/ja
Publication of JP2006352168A publication Critical patent/JP2006352168A/ja
Application granted granted Critical
Publication of JP4891018B2 publication Critical patent/JP4891018B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体集積回路装置の製造技術に関し、特に、ダマシン(Damascene)法を用いた銅(Cu)配線の形成に適用して有効な技術に関する。
微細化、高集積化が進んだ近年の半導体集積回路装置の製造プロセスでは、例えば酸化シリコン膜と窒化シリコン膜のような異種の絶縁膜相互のエッチング速度差を利用することによって、シリコン基板に素子分離溝を形成したり、MISFET(Metal Insulator Semiconductor Field Effect Transistor)のゲート電極に対して自己整合(セルフアライン)でコンタクトホールを形成したりすることが行われている。
特開平10−321838号公報(特許文献1)は、酸化シリコン膜または窒化シリコン膜からなるサイドウォールスペーサが形成されたゲート電極上に炭化シリコン(SiC)膜を介して酸化シリコン膜を堆積することによって、ゲート電極に対して自己整合でコンタクトホールを形成する技術を開示している。ここで、酸化シリコン膜のドライエッチングには、CF、CHF、Cなどのハイドロフルオロカーボン系ガスまたはフルオロカーボン系ガスが使用されるが、これらのガスではエッチングされ難い炭化シリコン膜が、ゲート電極材料やサイドウォールスペーサ材料の削れを防ぐエッチングストッパとして機能する。一方、コンタクトホールの底部に露出した炭化シリコン膜を除去するには、CFと酸素(O)の混合ガスを用いたプラズマ処理が用いられる。このプラズマ処理を行うと、混合ガス中の酸素の作用で炭化シリコン膜が酸化シリコン膜に改質され、混合ガス中のCFから発生するフッ素ラジカルおよびイオンによって除去される。
特開平7−161690号公報(特許文献2)は、電極上に炭化シリコン基板を配置した真空チャンバ内にフッ素系ガス(例えばSF、CF、NF)と酸素の混合ガスを供給し、上記電極と対向電極との間にプラズマを発生させて上記炭化シリコン基板をリアクティブイオンエッチングする際、上記基板を上記電極の面積と近似した大きさの石英ガラスまたはシリコンからなる皿に載せた状態で上記電極上に配置する技術を開示している。この方法によれば、基板に比べて面積の大きい電極が皿で覆われるので電極材料(例えばアルミニウム)のスパッタが防止され、このスパッタに伴うマイクロマスク現象(電極材料がスパッタされて基板表面に付着し、エッチングの進行を妨げる現象)を回避することができる。
特開2000−355779号公報(特許文献3)は、エッチング装置の耐蝕部品に関するものであるが、塩素系またはフッ素系のプラズマガスのように、腐食性の強いエッチングガスに曝される部品の耐蝕効果を高める目的で、上記部品の表面を、3C結晶系の多結晶からなり、部品表面に対して平行に(111)面が配向した炭化シリコン膜で被覆する技術を開示している。
特開平6−208977号公報(特許文献4)は、例えば酸化シリコン膜、窒化シリコン膜、アモルファスシリコン膜のような異種の膜を積層してなる多層膜をドライエッチングする際、異種膜相互間のエッチング速度差に起因するエッチング形状不良(逆テーパ、アンダーカットなど)を防止する対策として、CFと酸素との混合ガスを使って上記多層膜をドライエッチングした後、エッチング形状の不良を補正するために、SFガスまたはこれに酸素を混合したガスを使って上記多層膜をさらにドライエッチングする技術を開示している。
特開平7−235525号公報(特許文献5)は、被処理基板を収容したドライエッチング装置の容器内に、別の領域で予め励起させたフッ素を含むガスを第1のガス導入口か導入し、フッ素以外のハロゲン元素を含むガスを第2のガス導入口から導入してエッチングを行うことにより、被処理基板上のシリコン窒化膜をシリコン酸化膜に対して高選択比でエッチングする技術を開示している。
特開平5−232649号公報(特許文献6)は、LOCOS酸化の耐酸化マスクに用いる窒化シリコン膜のパターニングに際して、NFを主たるエッチャントとし、これにレジストおよび酸化シリコンに対する窒化シリコンのエッチング選択比を高めるガス(例えばHBr、酸素など)を添加したエッチングガスを用いることによって、窒化シリコン膜の側面が順テーパ状となるのを防ぎ、LOCOS酸化で問題となるフィールド絶縁膜端部のバーズビークを抑制する技術を開示している。
特開平5−267246号公報(特許文献7)は、レジストパターンをマスクに用いた反応性イオンエッチングでシリコン窒化膜をパターニングする際、エッチングの雰囲気ガスとしてSF、HBr、Heおよび酸素を混合した第1のエッチングガス、または上記第1のエッチングガスに少なくとも窒素、フロンガス、NFおよび不活性ガスのうちの一つを混合した第2のエッチングガスを用いることによって、レジストに対する窒化シリコン膜のエッチング選択比を大きくする技術を開示している。
特開2001−210627号公報(特許文献8)は、アルミニウムや銅からなる配線の上部に、炭化シリコンなどからなるエッチングストッパ膜を介して形成したSiCxHyOzで表される有機無機ハイブリッド膜を良好にプラズマエッチングするために、フッ素、炭素および窒素を含むエッチングガスを用いる技術を開示している。
特開平10−321838号公報 特開平7−161690号公報 特開平6−208977号公報 特開平6−208977号公報 特開平5−232649号公報 特開平5−232649号公報 特開平5−267246号公報 特開2001−210627号公報
近年、LSIの高集積化による配線の微細化に伴って配線抵抗の増大が顕著となり、特に高性能なロジックLSIにおいては、配線抵抗の増大がさらなる高性能化を阻害する大きな要因となっている。その対策として、シリコン基板上の層間絶縁膜に配線溝を形成し、次いで配線溝の内部を含む層間絶縁膜上にCu膜を堆積した後、配線溝の外部の不要なCu膜を化学機械研磨(Chemical Mechanical Polishing ;CMP)法で除去する、いわゆるダマシン(Damascene)法を用いた埋め込みCu配線の導入が進められている。また、配線容量を低減することによってロジックLSIの高性能化を推進する観点から、上記Cu配線の導入と並行して、酸化シリコン膜に比べて誘電率が低い有機ポリマー系絶縁膜材料を使った層間絶縁膜の導入が進められている。
上記有機ポリマー系絶縁膜材料を使った層間絶縁膜に配線溝を形成してその内部にCu配線を形成する一般的なプロセスでは、まず、下層のCu配線の上部に拡散バリア層を堆積し、次に拡散バリア層の上部に層間絶縁膜を堆積する。拡散バリア層は、下層のCu配線中のCuが有機絶縁膜中に拡散するのを防止するために形成する。拡散バリア層は、例えば窒化シリコン膜で構成するが、配線容量を低減する観点からは、窒化シリコン膜(比誘電率=7)よりも比誘電率が小さい炭化シリコン(比誘電率=4.3〜4.5)を使用することが望ましい。
次に、上記有機絶縁膜およびその下層の拡散バリア層をドライエッチングすることにより、その底部に下層のCu配線が露出する配線溝を形成する。続いて、配線溝の内部を含む有機絶縁膜上にCu膜を堆積した後、有機絶縁膜上の不要なCu膜を化学機械研磨法で除去することにより、配線溝の内部にCu配線が形成される。
ところが、本発明者らが上記拡散バリア層を構成する炭化シリコン膜をドライエッチングする際に、CF、CHF、Cなどのハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)とArと酸素の混合ガスを用いたところ、配線溝の底部に露出した下層のCu配線の表面に絶縁性の反応物が付着すると共に、配線溝の側壁に露出した炭化シリコン膜や有機絶縁膜がサイドエッチングされるという不良が発生した。
本発明の目的は、炭化シリコン膜と有機絶縁膜とを含む層間絶縁膜をドライエッチングして下層のCu配線の上部に配線溝を形成する際、配線溝の底部に露出した下層のCu配線の表面に絶縁性の反応物が付着したり、配線溝の側壁に露出した炭化シリコン膜や有機絶縁膜がサイドエッチングされるという不具合を抑制することができる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
(1)本発明の半導体集積回路装置の製造方法は、以下の工程を含んでいる。
(a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
(b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
(c)CHFまたはCFのいずれかを含むガスとNとからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
(2)本発明の半導体集積回路装置の製造方法は、以下の工程を含んでいる。
(a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
(b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
(c)CHFおよびCFの少なくとも一方とNとからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
(3)本発明の半導体集積回路装置の製造方法は、以下の工程を含んでいる。
(a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
(b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
(c)SF、HCl、HBr、Cl、ClF、CHFおよびCFからなる群より選択された少なくとも一種の第1エッチングガスと、N、NHおよびNからなる群より選択された少なくとも一種の第2エッチングガスとの混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
(4)本発明の半導体集積回路装置の製造方法は、以下の工程を含んでいる。
(a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
(b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
(c)CHF、CFおよびNからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
銅を主成分として含む導電層の上部の炭化シリコンを主成分として含む第1絶縁膜をドライエッチングする際、第1絶縁膜を異方的にエッチングすることができる。
また、導電層の表面に堆積物や反応物が生成する不具合を抑制することができる。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
なお、以下の実施の形態では、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
さらに、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示したときおよび原理的に明らかに特定の数に限定されるときを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。さらに、以下の実施の形態において、その構成要素(要素ステップなどを含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合を除き、必ずしも必須のものではないことはいうまでもない。
また、その構成要素(ガス、元素、分子、材料等)は、特に明示した場合および原理的に明らかにそうでない場合を除き、その他の要素を排除するものではない。従って、例えばウエハを処理するガス雰囲気について、エッチャントまたはエッチングガスとして特定のガスの組み合わせに言及して、その他のガスに言及しない場合においても、その他のエッチングガス、アルゴン、ヘリウムなどの希釈ガス、その他の添加、調整用ガスの存在を排除するものではない。
同様に、以下の実施の形態において、構成要素などの形状、位置関係などに言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合を除き、実質的にその形状などに近似または類似するものなどを含むものとする。このことは、上記数値および範囲についても同様である。
また、本願において半導体集積回路装置というときは、特に単結晶シリコン基板上に作られるものだけでなく、特にそうでない旨が明示された場合を除き、SOI(Silicon On Insulator)基板やTFT(Thin Film Transistor)液晶製造用基板などといった他の基板上に作られるものを含むものとする。また、ウエハとは半導体集積回路装置の製造に用いる単結晶シリコン基板(一般にほぼ円盤形)、SOS基板、ガラス基板その他の絶縁、半絶縁または半導体基板などやそれらを複合した基板をいう。
(実施の形態1)
本発明の実施の形態であるCMOS−LSIの製造方法を図1〜図15を用いて工程順に説明する。
本発明の実施の形態であるCMOS−LSIの製造方法を図1〜図15を用いて工程順に説明する。
まず、図1に示すように、例えば1〜10Ωcm程度の比抵抗を有するp型の単結晶シリコンからなる半導体基板(以下、基板またはウエハという)1に素子分離溝2を形成する。素子分離溝2を形成するには、素子分離領域の基板1をエッチングして溝を形成した後、溝の内部を含む基板1上にCVD法で酸化シリコン膜3を堆積し、続いて溝の外部の酸化シリコン膜3を化学機械的に研磨することによって除去する。
次に、基板1の一部にホウ素をイオン注入し、他の一部にリンをイオン注入することによって、p型ウエル4およびn型ウエル5を形成した後、基板1をスチーム酸化することによって、p型ウエル4およびn型ウエル5のそれぞれの表面にゲート酸化膜6を形成する。
次に、図2に示すように、p型ウエル4およびn型ウエル5のそれぞれの上部にゲート電極7を形成する。ゲート電極7を形成するには、例えばゲート酸化膜6の上部にCVD法で多結晶シリコン膜を堆積した後、p型ウエル4の上部の多結晶シリコン膜にリンをイオン注入し、n型ウエル5の上部の多結晶シリコン膜にホウ素をイオン注入した後、フォトレジスト膜をマスクにしたドライエッチングで多結晶シリコン膜をパターニングする。
次に、p型ウエル4にリンまたはヒ素をイオン注入することによって低不純物濃度のn-型半導体領域8を形成し、n型ウエル5にホウ素をイオン注入することによって低不純物濃度のp-型半導体領域9を形成する。
次に、図3に示すように、基板1上にCVD法で窒化シリコン膜を堆積し、続いてこの窒化シリコン膜を異方的にエッチングすることによって、ゲート電極7の側壁にサイドウォールスペーサ10を形成した後、p型ウエル4にリンまたはヒ素をイオン注入することによって高不純物濃度のn+型半導体領域11(ソース、ドレイン)を形成し、n型ウエル5にホウ素をイオン注入することによって高不純物濃度のp+型半導体領域12(ソース、ドレイン)を形成する。
次に、基板1の表面を洗浄した後、ゲート電極7、n+型半導体領域11(ソース、ドレイン)およびp+型半導体領域12(ソース、ドレイン)のそれぞれの表面にシリサイド層13を形成する。シリサイド層13を形成するには、基板1上にスパッタリング法でCo(コバルト)膜を堆積し、次いで窒素ガス雰囲気中で熱処理を行って基板1およびゲート電極7とCo膜とを反応させた後、未反応のCo膜をウェットエッチングで除去する。ここまでの工程で、nチャネル型MISFETQnおよびpチャネル型MISFETQpが完成する。
次に、図4に示すように、基板1上にCVD法で窒化シリコン膜15および酸化シリコン膜16を堆積し、続いてn+型半導体領域11(ソース、ドレイン)およびp+型半導体領域12(ソース、ドレイン)のそれぞれの上部の酸化シリコン膜16および窒化シリコン膜15をドライエッチングしてコンタクトホール17を形成した後、コンタクトホール17の内部にメタルプラグ18を形成する。酸化シリコン膜16をエッチングするときは、下層の窒化シリコン膜15のエッチング速度を小さくするために、CF、CHF(炭素数が2以下の低炭素数の非環状フルオロカーボン、またはフッ素系エッチャント)、C(炭素数が3以上の高炭素数の環状フルオロカーボン、環状フッ素系エッチャント、非環状フルオロカーボン、または鎖状フルオロカーボンフッ素系エッチャントなども使用可能である)などのハイドロフルオロカーボン系ガスまたはフルオロカーボン系ガスを使用する。また、窒化シリコン膜15をエッチングするときは、ハイドロフルオロカーボン系ガス(CHFやCHなど)に酸素とAr(希釈ガス)とを加えた混合ガスを使用する。メタルプラグ18を形成するには、コンタクトホール17の内部を含む酸化シリコン膜16上にCVD法でTiN(窒化チタン)膜とW(タングステン)膜とを堆積し、続いて酸化シリコン膜16の上部の不要なTiN膜およびW膜を化学機械研磨(CMP)法またはエッチバック法によって除去する。なお、酸化シリコン膜16は、モノシラン(SiH)をソースガスに用いた通常のCVD法で形成される酸化シリコン膜の他、BPSG(Boron-doped Phospho Silicate Glass)膜、あるいはスピン塗布法によって形成されるSOG(Spin On Glass)膜などで構成してもよい。
次に、図5に示すように、酸化シリコン膜16の上部に有機絶縁膜19および酸化シリコン14を堆積した後、フォトレジスト膜をマスクにして酸化シリコン膜14および有機絶縁膜19をドライエッチングすることにより、コンタクトホール17の上部に配線溝20を形成する。
有機絶縁膜19は、配線容量を低減するために、酸化シリコン(比誘電率=4.7)よりも比誘電率が小さい絶縁材料で構成する。このような低誘電率(Low−k)の絶縁材料としては、例えば「SiLK」(米国The Dow Chemical社製芳香族ポリマー:比誘電率=2.7)、あるいは「FLARE」(米国Honeywell Electronic Materials社製ポリアリルエーテル(PAE):比誘電率=2.8)など、スピン塗布法で成膜する有機塗布膜(完全有機型絶縁膜)が例示される。また、酸化シリコン14は、エッチングストッパ層として機能する。
次に、図6に示すように、配線溝20の内部に第1層目のCu配線21を形成する。Cu配線21は、バリアメタル膜とCu膜との積層膜で構成し、次のような方法で形成する。まず、配線溝20の内部を含む酸化シリコン膜14上にバリアメタル膜とCu膜とを堆積し、続いて非酸化性雰囲気(例えば水素雰囲気)中で熱処理(リフロー)を施してCu膜を配線溝20の内部に隙間なく埋め込んだ後、配線溝20の外部の不要なCu膜とバリアメタル膜とを化学機械研磨法で除去する。Cu膜とバリアメタル膜とを研磨するには、例えばアルミナなどの砥粒と過酸化水素水または硝酸第二鉄水溶液などの酸化剤とを主成分とし、これらを水に分散または溶解させた研磨スラリを使用する。
上記バリアメタル膜は、Cu配線21中のCuが有機絶縁膜19中に拡散するのを防止する機能、Cu配線21と有機絶縁膜19との接着性を向上させる機能および上記Cu膜をリフローする際の濡れ性を向上させる機能を有している。このような機能を持ったバリアメタル膜としては、例えばスパッタリング法で堆積したTiN膜、WN(窒化タングステン)膜、TaN(窒化タンタル)などの高融点金属窒化物からなる膜や、これらの積層膜などが例示される。
上記Cu膜は、スパッタリング法、CVD法、メッキ法(電解メッキ法または無電解メッキ法)のいずれかの方法で形成する。メッキ法でCu膜を形成する場合は、あらかじめバリアメタル膜の表面にスパッタリング法などを用いて薄いCu膜からなるシード層を形成し、次に、このシード層の表面にCu膜を成長させる。また、スパッタリング法でCu膜を形成する場合は、ロングスロースパッタリング法やコリメートスパッタリング法のような指向性の高いスパッタリング法を用いることが好ましい。Cu膜は、単体のCuの他、Cuを主成分として含むCu合金で構成してもよい。
次に、図7に示すように、Cu配線21の上部に炭化シリコン膜22、有機絶縁膜23、酸化シリコン膜24、有機絶縁膜25、酸化シリコン膜26および炭化シリコン膜27を順次堆積する。酸化シリコン膜24、26は、CVD法で堆積し、有機絶縁膜23、25は、配線容量を低減するために、前述した「SiLK」や「FLARE」のような、酸化シリコンよりも比誘電率が小さい絶縁材料をスピン塗布法で堆積する。炭化シリコン膜22、27は、例えば「BLOk」(米国Applied Materials社製炭化シリコン:比誘電率=4.3)を使用する。「BLOk」は、トリメチルエトキシシランと窒素の混合ガスをソースガスに用いたプラズマCVD法で堆積する。
Cu配線21と有機絶縁膜23との間に介在する炭化シリコン膜22は、Cu配線21中のCuが有機絶縁膜23中に拡散するのを防止する拡散バリア層として機能する。Cuの拡散を防ぐバリア層としては、窒化シリコン膜を使用することもできるが、窒化シリコン(比誘電率=7)に比べて比誘電率が小さい炭化シリコンを使用することにより、配線容量を低減することができる。酸化シリコン膜24、26は、有機絶縁膜23、25に配線溝を形成する際のエッチングストッパ層として機能する。また、最上層の炭化シリコン膜27は、酸化シリコン膜24をエッチングする際に上層の酸化シリコン膜26がエッチングされるのを防ぐハードマスクとして機能する。なお、上記エッチングストッパ層は、酸化シリコン膜24、26に代えて、後述するシロキサン(SiO)系の絶縁膜、あるいは炭化シリコン膜を使用することもできる。
次に、上記炭化シリコン膜27、酸化シリコン膜26、有機絶縁膜25、酸化シリコン膜24、有機絶縁膜23および炭化シリコン膜22からなる積層膜をドライエッチングして配線溝を形成し、続いてこの配線溝の内部に、第1層目のCu配線21と電気的に接続される第2層目のCu配線を形成する。
本発明者らは、上記積層膜をドライエッチングするに際して、次のような実験を行った。
まず、酸化シリコン膜のエッチングガスとしてCとArと酸素の混合ガス、有機絶縁膜のエッチングガスとして窒素と水素を含む混合ガス、炭化シリコン膜のエッチングガスとしてCF、CHF、Cなどのハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)とArと酸素の混合ガスをそれぞれ用い、上記積層膜をドライエッチングしてCu配線21の上部に配線溝を形成することを試みた。
ところが、上記ハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)とArと酸素の混合ガスを用いて最下層の炭化シリコン膜22をドライエッチングした際、配線溝の底部に露出したCu配線21の表面に絶縁性の反応物が付着すると共に、配線溝の側壁に露出した炭化シリコン膜22や有機絶縁膜23、25がサイドエッチングされるという不良が発生した。
Cu配線21の表面に付着した上記反応物は、Cuの酸化物が主成分であったことから、この反応物の生成は、エッチングガス中に含まれる酸素によってCu配線21の表面が酸化されたことが主な原因であると予測された。そこで次に、上記混合ガスから酸素を取り除いたガス、すなわちハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)とArの混合ガスを用いて炭化シリコン膜22をドライエッチングしたところ、Cu配線21の酸化は防止できたが、配線溝の底部に露出したCu配線21の表面や配線溝の側壁にフルオロカーボン系の有機物を主成分とする堆積物が多量に付着した。
次に、本発明者らは、上記実験結果に基づいて、炭化シリコン膜のエッチングに最適なガス種の検討を行った。
Cu配線の表面を覆う炭化シリコン膜をドライエッチングする際に要求される条件としては、
(a)配線溝の側壁を異方的にエッチングできること、すなわち配線溝の側壁が垂直にエッチングされること、および、
(b)配線溝の底部に露出するCu配線の表面に堆積物や反応物が生じ難いことが挙げられる。
前述した実験から、Cu配線の表面に反応物が生じるのを防ぐためには、実質的に酸素を含まないエッチングガスを選択することが要求される。酸素を含んだエッチングガスは、Cu配線の表面を酸化して絶縁性の反応物を生じ、配線溝の内部に形成されるCu配線と下層のCu配線との接続不良を引き起こす。
また、配線溝の側壁を異方的にエッチングしたり、Cu配線の表面に堆積物が付着しないようにするためには、配線溝の側壁に堆積物を生成するガス種と、この側壁堆積物をエッチングするガス種とを共に含んだエッチングガスを選択することが要求される。すなわち、エッチングの過程で配線溝の側壁に堆積物が生成しない場合は、側壁に露出した有機絶縁膜や炭化シリコン膜がガスに曝されてサイドエッチングされるため、側壁の加工形状が垂直にならない。他方、側壁に堆積物が生成しても、この堆積物をエッチングするガスが存在しない場合は、エッチングの進行につれて堆積物の膜厚が厚くなるために、側壁の加工形状がテーパ状になったり、Cu配線の表面に堆積物が過剰に堆積したりする。
本発明者らは、多数のガス種について、その分解によって生じるイオンやラジカルの吸着特性を密度汎関数理論に基づく分子軌道計算によって算出した結果、SF、HCl、HBr、Cl、ClF、CFのうちの少なくとも一種からなる第1エッチングガスと、NとHの混合ガス、NH、Nのうちの少なくとも一種からなる第2エッチングガスの混合ガスが、上記した条件(a)、(b)を満たすエッチングガスとして最適であるという結論を得た。
上記第1エッチングガスは、いずれも分子中にハロゲン(F、Cl、Br)を含んだガスである。このことから、これらのガスの分解によって生じるハロゲンイオンやハロゲンラジカルが炭化シリコン分子中のシリコンと結合して蒸気圧の低い化合物を生成したり、配線溝の側壁に付着する堆積物をエッチングしたりするものと想定される。一方、第2エッチングガスは、いずれも分子中に窒素と水素を含んでいることが特徴である。このことから、これらのガスの分解によって生じるイオンやラジカルが炭化シリコン分子中の炭素と結合して炭素、窒素、水素を含んだ有機系の化合物を生成し、これが配線溝の側壁に堆積物として付着するものと推定される。また、上記第1エッチングガスと第2エッチングガスの混合ガスは、酸素を含んでいないことから、Cu配線の表面に酸化物が形成される虞れもない。さらに、フルオロカーボンポリマーを生成するCF、CHF、Cなどのハイドロフルオロカーボン系ガスやフルオロカーボン系ガスを含んでいないことから、配線溝の側壁やCu配線の表面に過剰の堆積物が形成される虞れもない。
上記第1エッチングガスのうち、SFとCFは、最も毒性が少ないので扱いが容易であるが、CFは炭素を含んでいるので堆積物が生じやすい。従って、第1エッチングガスの中では、SFが最も扱いやすい。HCl、HBr、Cl、ClFは、この順で毒性が弱くなる。一方、第2エッチングガスのうち、NHはNよりも毒性が弱く、扱いやすい。また、NとHの混合ガスは毒性はないが、Hに爆発性がある。従って、第2エッチングガスの中では、NHが最も扱いやすい。以上のことから、Cu配線の表面を覆う炭化シリコン膜をドライエッチングする際に用いるガスとしては、SFとNHの混合ガスが最も取扱い易いといえる。
炭化シリコン膜をドライエッチングする際に用いるガスとしては、上記第1エッチングガスと第2エッチングガスの混合ガスに、前記条件(a)、(b)が満たされる範囲内で第3のガスを添加したものも含まれる。例えば上記第1エッチングガスと第2エッチングガスの混合ガスに、その濃度や流量などを調整する目的でArなどの不活性ガスを添加することも可能である。但し、この場合は、不活性ガスの添加量が増加するにつれてエッチング速度が低下する。また、第1エッチングガスと第2エッチングガスの混合ガスに水を添加すると、酸化シリコン膜に対する炭化シリコン膜のエッチング選択比が向上する効果がある。但し、この場合は、水分子に含まれる酸素がCu配線の表面を酸化する虞れがあるため、水の添加量は、Cu配線の表面を実質的に酸化しない程度の量とすることが好ましい。さらに、第2エッチングガスとしてNHまたはNを使用する場合は、水素または窒素を添加することによって、NとHの流量比を微調整することも可能である。
次に、前記炭化シリコン膜27、酸化シリコン膜26、有機絶縁膜25、酸化シリコン膜24、有機絶縁膜23および炭化シリコン膜22からなる積層膜をドライエッチングして配線溝を形成する方法の具体例を説明する。
図8は、配線溝の形成に用いるドライエッチング装置100を示す概略図である。
高周波電源101から生成される300MHz〜900MHzの高周波は、アンテナ(対向電極)102を通じて処理室104内に導入される。この高周波は、アンテナ102とその近傍のアンテナアース103との間で共鳴し、効率よく処理室104内に伝播される。この高周波は、処理室104の周囲に配置されたソレノイドコイル105が生成するECR(Electron Cyclotron Resonance)またはそれ以上の軸方向磁界と相互作用し、高密度(1×1017/m以上)のプラズマを0.3Pa程度の低圧力領域で生成する。
処理室104の中央に設置されたステージ106の上面には、図示しない静電チャック機構によってウエハ(基板)1が吸着、固定される。ステージ106の上面に固定されたウエハ1とアンテナ102との間隔は、20mm〜150mmの範囲内で任意に設定される。ステージ106には、第2の高周波電源107から生成される400kHz〜13.56MHzの高周波が印加され、プラズマの生成とは独立にウエハ1へのイオン入射エネルギーが制御される。エッチングガスは、ガス流量コントローラ108で流量が最適化された後、ガス導入口109を通じて処理室104内に導入され、前記プラズマによって分解される。また、排ガスは、排気ポンプ110によって処理室104の外部に排気される。処理室104の内部の圧力は、排気系に設置された調整バルブ111の開閉によって調整される。処理室104の内壁、ステージ106、ガス導入口109など、プラズマと接する各部の温度は、図示しない温調器によって制御される。
上記エッチング装置を用いて配線溝を形成するには、まず図9に示すように、フォトレジスト膜28をマスクに用いたドライエッチングで配線溝形成領域の炭化シリコン膜27を除去する。このとき、エッチングガスとしてSFとNHの混合ガスを用いることにより、炭化シリコン膜27が異方的にエッチングされると共に、下地の酸化シリコン膜26でエッチングが停止される。
次に、フォトレジスト膜28を除去した後、図10に示すように、フォトレジスト膜29をマスクに用いたドライエッチングで配線溝形成領域の一部の酸化シリコン膜26を除去する。このとき、エッチングガスとしてCとArと酸素の混合ガスを用いることにより、酸化シリコン膜26が異方的にエッチングされると共に、下地の有機絶縁膜25でエッチングが停止される。
次に、図11に示すように、上記のエッチングで露出した有機絶縁膜25とフォトレジスト膜29とを同時にドライエッチングする。このとき、エッチングガスとしてNH、NまたはNとHの混合ガスなど、窒素と水素を含んだガスを用いることにより、有機絶縁膜25が異方的にエッチングされると共に、有機絶縁膜25の下地の酸化シリコン膜24、およびフォトレジスト膜29の下地の炭化シリコン膜27、酸化シリコン膜26でエッチングが停止される。
次に、図12に示すように、上記のエッチングで露出した酸化シリコン膜24、26をドライエッチングする。このとき、エッチングガスとしてCとArと酸素の混合ガスを用いることにより、酸化シリコン膜24、26が異方的にエッチングされると共に、有機絶縁膜23および炭化シリコン膜27でエッチングが停止される。
次に、図13に示すように、上記のエッチングで露出した有機絶縁膜25、23をドライエッチングする。このとき、エッチングガスとしてNH、NまたはNとHの混合ガスなど、窒素と水素を含んだガスを用いることにより、有機絶縁膜25、23が異方的にエッチングされると共に、有機絶縁膜25の下地の酸化シリコン膜24、および有機絶縁膜23の下地の炭化シリコン膜22でエッチングが停止される。
次に、図14に示すように、上記のエッチングで露出した炭化シリコン膜22をドライエッチングしてCu配線21の一部を露出させることにより、Cu配線21の上部に配線溝30を形成する。また、最上層の炭化シリコン膜27を同時にドライエッチングして下層の酸化シリコン膜26を露出させる。
このとき、炭化シリコン膜22、27のドライエッチングに用いるエッチングガスは、前述したSFとNHの混合ガスであり、エッチング条件は、一例として、ガス圧力=4Pa、流量比=SF/NH:25/25(ml/分)、対向電極(102)に印加する高周波パワー=600W、ステージ(106)に印加する高周波パワー=200W、ステージ温度=30℃である。
上記の混合ガスを用いて炭化シリコン膜22、27をドライエッチングすることにより、配線溝30の側壁が垂直に加工されると共に、有機絶縁膜23および炭化シリコン膜27でエッチングが停止され、しかも配線溝30の底部に露出したCu配線21の表面に堆積物や反応物が付着する不具合も抑制された。
このように、炭化シリコン膜27、酸化シリコン膜26、有機絶縁膜25、酸化シリコン膜24、有機絶縁膜23および炭化シリコン膜22からなる積層膜をドライエッチングしてCu配線21の上部に配線溝30を形成する際、前述した第1エッチングガスと第2エッチングガスの混合ガスを使って炭化シリコン膜22、27をエッチングすることにより、配線溝30の側壁を異方的にエッチングできると共に、配線溝30の底部に露出するCu配線21の表面に堆積物や反応物が生じる不具合を抑制することができる。
なお、配線溝30の形成に使用するエッチング装置は、前記図8に示したドライエッチング装置100以外のもの、例えばマグネトロンから発振される2.45GHzのマイクロ波を利用したマイクロ波プラズマエッチング装置、高周波誘導を利用したTCP(Transfer Coupled Plasma)方式のドライエッチング装置、ヘリコン波を利用したヘリコン波プラズマエッチング装置など、前述した第1エッチングガスと第2エッチングガスの混合ガスをプラズマ分解することが可能な各種ドライエッチング装置を使用することができる。また、上記混合ガスの圧力、流量比、エッチング温度なども上記した条件に限定されるものではなく、使用する装置に応じて適宜最適化することはいうまでもない。
次に、図15に示すように、配線溝30の内部に第2層目のCu配線31を形成する。第2層目のCu配線31は、前述した第1層目のCu配線21の形成方法(図6参照)に準じて形成すればよい。
図示は省略するが、その後、前述した工程を繰り返し、第2層目のCu配線31の上部に複数層のCu配線を形成することにより、本実施形態のCMOS−LSIが完成する。
(実施の形態2)
本実施の形態では、層間絶縁膜材料としてシロキサン(SiO)系の低誘電率(Low−k)絶縁膜を使用し、拡散バリア層およびエッチングストッパ層として窒化シリコン膜を使用する場合について説明する。なお、ここでは、層間絶縁膜材料として比誘電率が3.5のSiOF膜を使用するが、その他の無機または有機シロキサン系材料(有機ガラス系絶縁膜)、例えばHSQ(hydrogen silsesquioxane)、MSQ(methyl silsesquioxane)、ポーラスHSQ、ポーラスMSQなどを使用することもできる。
HSQ系材料としては、例えば「OCD T−12」(東京応化工業製、比誘電率=3.4〜2.9)、「FOx」(米Dow Corning社製、比誘電率=2.9)、「OCL T−32」(東京応化工業製、比誘電率=2.5)などがあり、MSQ系材料としては、例えば「OCD T−9」(東京応化工業社製、比誘電率=2.7)、「LKD−T200」(JSR社製、比誘電率=2.7〜2.5)、「HOSP」(米Honeywell Electronic Materials社製、比誘電率=2.5)、「HSG−RZ25」(日立化成工業社製、比誘電率=2.5)、「OCL T−31」(東京応化工業社製、比誘電率=2.3)、「LKD−T400」(JSR社製、比誘電率=2.2〜2、耐熱温度=450℃)などがある。
ポーラスHSQ系材料としては、例えば「XLK」(米Dow Corning社製、比誘電率=2.5〜2)、「OCL T−72」(東京応化工業社製、比誘電率=2.2〜1.9)、「Nanoglass」(米Honeywell Electronic Materials社製、比誘電率=2.2〜1.8)、「MesoELK」(米Air Productsand Chemicals社製、比誘電率=2以下)などがあり、ポーラスMSQ系材料としては、例えば「HSG−6211X」(日立化成工業社製、比誘電率=2.4)、「ALCAP−S」(旭化成工業社製、比誘電率=2.3〜1.8)、「OCL T−77」(東京応化工業社製、比誘電率=2.2〜1.9)、「HSG−6210X」(日立化成工業社製、比誘電率=2.1)または「silica aerogel」(神戸製鋼所社製、比誘電率1.4〜1.1)などがある。
まず、図16に示すように、nチャネル型MISFETQnおよびpチャネル型MISFETQpの上部に第1層目のCu配線21を形成する。ここまでの工程は、前記実施の形態1の図1〜図6に示した工程と同じである。
次に、図17に示すように、Cu配線21の上部にCVD法で窒化シリコン膜32、SiOF膜33、窒化シリコン膜34、SiOF膜35、窒化シリコン膜36を順次堆積する。
次に、上記窒化シリコン膜36、SiOF膜35、窒化シリコン膜34、SiOF膜33、窒化シリコン膜32を順次ドライエッチングして配線溝を形成するが、Cu配線21を覆う窒化シリコン膜32をドライエッチングする際に要求される条件は、前記実施の形態1と同様、
(a)配線溝の側壁を異方的にエッチングできること、すなわち配線溝の側壁が垂直にエッチングされること、および
(b)配線溝の底部に露出するCu配線の表面に堆積物や反応物が生じ難いことである。
本発明者らは、多数のガス種について、その分解によって生じるイオンやラジカルの吸着特性を密度汎関数理論に基づく分子軌道計算によって算出した結果、SFとHBrとN(またはNに代えてNH)の混合ガスが、上記した条件(a)、(b)を満たすエッチングガスとして最適であるという結論を得た。
上記混合ガスは、その分解によって生じるハロゲンイオンやハロゲンラジカルの一部が窒化シリコン分子中のシリコンと結合して配線溝の側壁に堆積物を生じると共に、他の一部がこの堆積物をエッチングし、N(またはNH)の分解によって生じるイオンやラジカルが窒化シリコン分子中の窒素と結合して窒素ガスを生成するものと推定される。また、この混合ガスは、酸素を含んでいないことから、Cu配線の表面に酸化物が形成される虞れもない。さらに、フルオロカーボンポリマーを生成するCF、CHF、Cなどのハイドロフルオロカーボン系ガスやフルオロカーボン系ガスを含んでいないことから、配線溝の側壁やCu配線の表面に過剰の堆積物が形成される虞れもない。NとNHはいずれを使用してもよいが、Nは全く毒性がないという利点があるので、SFとHBrとNHの混合ガスよりは、SFとHBrとNの混合ガスの方が扱い易いといえる。
また、ドライエッチング装置は、前記図8に示したような装置や、マイクロ波プラズマエッチング装置、TCP方式のドライエッチング装置、ヘリコン波プラズマエッチング装置など、上記混合ガスをプラズマ分解することが可能な各種ドライエッチング装置を使用することができる。
例えば前記図8に示したドライエッチング装置を用いて配線溝を形成するには、まず図18に示すように、フォトレジスト膜37をマスクに用いたドライエッチングで配線溝形成領域の窒化シリコン膜36を除去する。このとき、エッチングガスとしてSFとHBrとNの混合ガスを用いることにより、窒化シリコン膜36が異方的にエッチングされると共に、下地のSiOF膜35でエッチングが停止される。
次に、フォトレジスト膜37を除去した後、図19に示すように、フォトレジスト膜38をマスクに用いたドライエッチングで配線溝形成領域の一部のSiOF膜35、窒化シリコン膜34、SiOF膜33を順次除去する。このとき、SiOF膜35、33のエッチングガスとしてCとArと酸素の混合ガスを用いることにより、SiOF膜35、33が異方的にエッチングされると共に、下地の窒化シリコン膜34、32でエッチングが停止される。また、窒化シリコン膜34のエッチングガスとしてSFとHBrとNの混合ガスを用いることにより、窒化シリコン膜34が異方的にエッチングされると共に、下地のSiOF膜33でエッチングが停止される。
次に、フォトレジスト膜38を除去した後、図20に示すように、窒化シリコン膜36、34をマスクに用いたドライエッチングでSiOF膜35をエッチングする。SiOF膜35のエッチングガスは、前述したCとArと酸素の混合ガスである。
次に、図21に示すように、SiOF膜35を覆う窒化シリコン膜36、SiOF膜33を覆う窒化シリコン膜34およびCu配線21を覆う窒化シリコン膜32をドライエッチングすることによって、Cu配線21の上部に配線溝40を形成する。
このとき、窒化シリコン膜36、34、32のドライエッチングに用いるエッチングガスは、前述したSFとHBrとNの混合ガスであり、エッチング条件は、一例として、ガス圧力=4Pa、流量比=SF/HBr/N:25/15/10(ml/分)、対向電極(102)に印加する高周波パワー=600W、ステージ(106)に印加する高周波パワー=200W、ステージ温度=30℃である。
上記の混合ガスを用いて窒化シリコン膜36、34、32をドライエッチングすることにより、配線溝40の側壁が垂直に加工されると共に、配線溝40の底部に露出したCu配線21の表面に堆積物や反応物が付着する不具合も抑制された。なお、上記混合ガスの圧力、流量比、エッチング温度などは、上記した条件に限定されるものではなく、使用する装置に応じて適宜最適化することはいうまでもない。
次に、図22に示すように、配線溝40の内部に第2層目のCu配線41を形成する。第2層目のCu配線41は、前述した第1層目のCu配線21の形成方法に準じて形成すればよい。図示は省略するが、その後、前述した工程を繰り返し、第2層目のCu配線41の上部に複数層のCu配線を形成する。
(実施の形態3)
本実施の形態によるCMOS−LSIの製造方法を図23〜図33を用いて工程順に説明する。
まず、図23に示すように、基板1上にnチャネル型MISFETQnおよびpチャネル型MISFETQpを形成した後、それらの上部に第1層目のCu配線21を形成する。ここまでの工程は、前記実施の形態1の図1〜図6に示した工程と同一である。
次に、図24に示すように、Cu配線21の上部に炭化窒化シリコン(SiCN)膜42、有機絶縁膜23、酸化シリコン膜24、有機絶縁膜25、酸化シリコン膜26および炭化窒化シリコン膜43を順次堆積する。酸化シリコン膜24、26は、CVD法で堆積し、有機絶縁膜23、25は、前述した「SiLK」や「FLARE」など、酸化シリコンよりも比誘電率が小さい絶縁材料をスピン塗布法で堆積する。炭化窒化シリコン膜22、27は、例えば「BLOk」(米国Applied Materials社製:比誘電率=4.3)を使用し、トリメチルシランとアンモニアの混合ガスをソースガスに用いたプラズマCVD法で堆積する。
Cu配線21と有機絶縁膜23との間に介在する炭化窒化シリコン膜42は、前記炭化シリコン膜22と同様、Cu配線21中のCuが有機絶縁膜23中に拡散するのを防止する拡散バリア層として機能する。また、最上層の炭化窒化シリコン膜43は、前記炭化シリコン膜27と同様、酸化シリコン膜24をエッチングする際に上層の酸化シリコン膜26がエッチングされるのを防ぐハードマスクとして機能する。
次に、上記炭化窒化シリコン膜43、酸化シリコン膜26、有機絶縁膜25、酸化シリコン膜24、有機絶縁膜23および炭化窒化シリコン膜42からなる積層膜をドライエッチングして配線溝を形成する。この積層膜をドライエッチングする方法は、最下層の炭化窒化シリコン膜42をエッチングする際に使用するガスを変更する以外は、前記実施の形態1の図9〜図14に示したドライエッチング方法と同じでよい。
すなわち、上記積層膜が堆積された基板1を前記図8に示すエッチング装置100の処理室104に搬入し、まず図25に示すように、フォトレジスト膜28をマスクに用いたドライエッチングで配線溝形成領域の炭化窒化シリコン膜43を除去する。このとき使用するエッチングガスは、前述したSF、HCl、HBr、Cl、ClF、CFのうちの少なくとも一種からなる第1エッチングガスと、NとHの混合ガス、NH、Nのうちの少なくとも一種からなる第2エッチングガスの混合ガス、特にSFとNHの混合ガスである。この混合ガスを使用した炭化窒化シリコン膜43のエッチング条件は、炭化シリコン膜をエッチングするときの条件とほぼ同じである。
次に、フォトレジスト膜28を除去した後、図26に示すように、フォトレジスト膜29をマスクに用いたドライエッチングで配線溝形成領域の一部の酸化シリコン膜26を除去する。このとき使用するエッチングガスは、CとArと酸素の混合ガスである。
次に、図27に示すように、上記のエッチングで露出した有機絶縁膜25とフォトレジスト膜29とを同時にドライエッチングする。このとき使用するエッチングガスは、NH、NまたはNとHの混合ガスなど、窒素と水素を含んだガスである。
次に、図28に示すように、上記のエッチングで露出した酸化シリコン膜24、26をドライエッチングする。このとき使用するエッチングガスは、CとArと酸素の混合ガスである。
次に、図29に示すように、上記のエッチングで露出した有機絶縁膜25、23をドライエッチングする。このとき、エッチングガスとしてNH、NまたはNとHの混合ガスなど、窒素と水素を含んだガスを用いることにより、有機絶縁膜25、23が異方的にエッチングされると共に、有機絶縁膜25の下地の酸化シリコン膜24の表面、および有機絶縁膜23の下地の炭化窒化シリコン膜42の表面でエッチングが停止される。
次に、図30に示すように、上記のエッチングで露出した炭化窒化シリコン膜42をドライエッチングしてCu配線21の一部を露出させることにより、Cu配線21の上部に配線溝30を形成する。また、最上層の炭化窒化シリコン膜43を同時にドライエッチングして下層の酸化シリコン膜26を露出させる。
このとき、炭化窒化シリコン膜42、43のエッチングに使用するガスは、前記実施の形態1で炭化シリコン膜のエッチングに使用したSFとNHの混合ガスでもよいが、本実施の形態では、CHFとNの混合ガスを使用する。
前記実施の形態1で説明したように、CHFのようなハイドロフルオロカーボン系ガスとArの混合ガスを使用して炭化シリコン膜をドライエッチングした場合は、Cu配線21の表面や配線溝の側壁にフルオロカーボン系の有機物を主成分とする堆積物が多量に付着した。従って、化学組成が炭化シリコン膜に類似した炭化窒化シリコン膜42、43のエッチングにCHFとArの混合ガスを使用した場合は、Cu配線21の表面や配線溝の側壁にフルオロカーボン系の有機物を主成分とする堆積物が多量に付着することが予想される。
ところが、本発明者らの実験によると、CHFとNの混合ガス、およびこの混合ガスにさらにArを加えた混合ガスをそれぞれ使用して炭化窒化シリコン膜42、43をドライエッチングしたところ、配線溝の側壁を異方的にエッチングできること、すなわち配線溝の側壁が垂直にエッチングされること、および配線溝の底部に露出するCu配線21の表面に堆積物や反応物がほとんど生じないことが判明した。また、これらの混合ガスを使用して炭化シリコン膜をドライエッチングした場合も、Cu配線21の表面に堆積物や反応物がほとんど生じないことが判明した。さらに、これらの混合ガスは、酸素を含んでいないので、Cu配線21の表面が酸化されることもなかった。
また、CHFとNの混合ガスに代えてCHとNの混合ガス、およびCFとNの混合ガスをそれぞれ使用して炭化窒化シリコン膜および炭化シリコン膜をそれぞれドライエッチングしたところ、CHとNの混合ガスを使用した場合は、エッチングが途中で停止してしまった。これは、水素(H)の組成比が高いハイドロフルオロカーボン系ガスを使用すると、Cu配線21の表面に堆積物が多く生じるためと考えられる。一方、分子中に水素を含まないCFとNの混合ガスを使用した場合は、エッチングが速やかに進行し、Cu配線21の表面の堆積物も、CHFとNの混合ガスを使用した場合よりさらに少なかった。しかし、この混合ガスを使用した場合は、配線溝の側壁に付着する堆積物も減少するため、側壁に若干のサイドエッチングが生じた。
従って、Cu配線21を覆う炭化シリコン膜または炭化窒化シリコン膜をドライエッチングしてCu配線21の表面を露出させる際に使用できるエッチングガスのうち、ハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)を含むエッチングガスとしては、CHFとNの混合ガスとCFとNの混合ガスを挙げることができ、特にCHFとNの混合ガスが使いやすさの面で優れている。また、CHFとNの混合ガスに適量のCFを加えることによって、エッチング特性の微調整を行うこともできる。
さらに、CHFやCFのようなハイドロフルオロカーボン系ガス(またはフルオロカーボン系ガス)は、従来から広く使用されているエッチングガスであることから、CHFとNの混合ガスやCFとNの混合ガスを使用する場合は、新規の設備導入が必要ないという利点があり、かつ毒性がないので取り扱いも容易である。
CHFとNの混合ガスを使用して炭化窒化シリコン膜または炭化シリコン膜をドライエッチングする場合、CHFとNの適切な流量比は、CHF:N=1:0.1〜200の範囲であり、好ましくはCHF:N=1:0.2〜20の範囲、より好ましくはCHF:N=1:0.5〜10の範囲である。
また、この混合ガスに、その濃度や流量などを調整する目的でArなどの不活性ガスを添加することも可能である。例えば、排気能力が高いエッチング装置を使用する場合は、Arなどの不活性ガスで希釈した混合ガスを処理室内に多量に供給し、エッチングによって生成した反応生成物を速やかに排出してやることにより、基板1の表面に堆積物が付着し難くなる。
また、上記混合ガスは、Cu配線21の表面の酸化を防ぐために、酸素の含有量を実質的に0にしたものを処理室内に供給すべきである。ただし、処理室内に供給された混合ガスには、石英ガラス製の器材などから発生する微量の酸素が1〜2%程度混入することがある。しかし、この場合でも混合ガス中の酸素の含有率は、最大でも3%以下、好ましくは1.5%以下に抑える必要がある。
なお、Cuの拡散を防止する拡散バリア層およびエッチングストッパ層としては、上記炭化窒化シリコン膜や炭化シリコン膜の他、前記実施の形態2で使用した窒化シリコン膜がある。また、窒化シリコン膜より誘電率が小さい炭化酸化シリコン(SiOC)膜も一部で導入が検討されている。本実施の形態のエッチングガス(CHFとNの混合ガスおよびCFとNの混合ガス)は、Cuの拡散を防止する拡散バリア層およびエッチングストッパ層として、窒化シリコン膜または炭化酸化シリコン膜を使用する場合にも適用可能である。
図31は、上記の方法で形成した配線溝30の内部に第2層目のCu配線31を形成した状態を示している。Cu配線31は、前記実施の形態1と同様の方法で形成することができる。
図32は、第3層目のCu配線を形成するために、第2層目のCu配線31の上部に複数の絶縁膜からなる積層膜を形成し、続いてこの積層膜をドライエッチングして配線溝49を形成した状態を示している。
上記積層膜の最下層は、Cu配線31の拡散バリア層として機能する炭化窒化シリコン膜44である。Cu配線31の拡散バリア層は、炭化シリコン膜で構成してもよい。
炭化窒化シリコン膜44の上部には、層間絶縁膜である2層のSiOF膜45、47とエッチングストッパ層である2層の窒化シリコン膜46、48が形成されている。層間絶縁膜は、SiOF膜の他、前記実施の形態2で例示したHSQ、MSQなどの酸化シリコン系絶縁膜を使用することもできる。
配線溝49の形成方法は、積層膜をドライエッチングするガスの種類が異なる他は、下層の配線溝30の形成方法と同じである。SiOF膜45、47のエッチングには、前記実施の形態2で使用したCとArと酸素の混合ガスを使用し、窒化シリコン膜46、48のエッチングには、同じく前記実施の形態2で使用したSFとHBrとNの混合ガスを使用する。
Cu配線31の拡散バリア層である炭化窒化シリコン膜44のエッチングには、下層の炭化窒化シリコン膜42をエッチングする際に使用したCHFとNの混合ガスやCFとNの混合ガスを使用することもできるが、これらの混合ガスは、炭素(C)を含んでいるために、酸化シリコン系のSiOF膜45、47に対する選択比を確保することが難しい。すなわち、配線溝49の側壁にSiOF膜45、47が露出した状態で上記混合ガスを使用して炭化窒化シリコン膜42をエッチングすると、混合ガスに含まれる炭素(C)とSiOF膜45、47に含まれる酸素(O)が反応し、一酸化炭素(CO)または二酸化炭素(CO)として排出されるため、配線溝49の側壁がサイドエッチングされる。
従って、層間絶縁膜が酸化シリコン系絶縁膜で構成されている場合、Cu配線31の拡散バリア層である炭化窒化シリコン膜44のエッチングには、前記実施の形態1で使用したSFとNHの混合ガスを使用する方がよい。
図33は、上記の方法で形成した配線溝49の内部に第3層目のCu配線50を形成した状態を示している。Cu配線50は、前記実施の形態1と同様の方法で形成することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明は、ダマシン(Damascene)法を用いてCu配線を形成する半導体集積回路装置の製造に利用することができる。
本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態で用いるドライエッチング装置の概略図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の一実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。 本発明の他の実施の形態である半導体集積回路装置の製造方法を示す半導体基板の要部断面図である。
符号の説明
1 半導体基板(ウエハ)
2 素子分離溝
3 酸化シリコン膜
4 p型ウエル
5 n型ウエル
6 ゲート酸化膜
7 ゲート電極
8 n-型半導体領域
9 p-型半導体領域
10 サイドウォールスペーサ
11 n+型半導体領域(ソース、ドレイン)
12 p+型半導体領域(ソース、ドレイン)
13 シリサイド層
14 酸化シリコン膜
15 窒化シリコン膜
16 酸化シリコン膜
17 コンタクトホール
18 メタルプラグ
19 有機絶縁膜
20 配線溝
21 Cu配線
22 炭化シリコン膜
23 有機絶縁膜
24 酸化シリコン膜
25 有機絶縁膜
26 酸化シリコン膜
27 炭化シリコン膜
28、29 フォトレジスト膜
30 配線溝
31 Cu配線
32 窒化シリコン膜
33 SiOF膜
34 窒化シリコン膜
35 SiOF膜
36 窒化シリコン膜
37、38 フォトレジスト膜
40 配線溝
41 Cu配線
42、43、44 炭化窒化シリコン膜
45 SiOF膜
46 窒化シリコン膜
47 SiOF膜
48 窒化シリコン膜
49 配線溝
50 Cu配線
100 ドライエッチング装置
101 高周波電源
102 アンテナ
103 アンテナアース
104 処理室
105 ソレノイドコイル
106 ステージ
107 高周波電源
108 ガス流量コントローラ
109 ガス導入口
110 排気ポンプ
111 調整バルブ
Qn nチャネル型MISFET
Qp pチャネル型MISFET

Claims (7)

  1. 以下の工程を含む半導体集積回路装置の製造方法:
    (a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
    (b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
    (c)CHFまたはCFのいずれかを含むガスとNとからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
  2. 前記混合ガスは、CHFまたはCFとNの流量比がCHFまたはCF:N=1:0.1〜200の範囲であることを特徴とする請求項1記載の半導体集積回路装置の製造方法。
  3. 前記混合ガスは、CHFまたはCFとNの流量比がCHFまたはCF:N=1:0.2〜20の範囲であることを特徴とする請求項1記載の半導体集積回路装置の製造方法。
  4. 前記混合ガスは、CHFまたはCFとNの流量比がCHFまたはCF:N=1:0.5〜10の範囲であることを特徴とする請求項1記載の半導体集積回路装置の製造方法。
  5. 以下の工程を含む半導体集積回路装置の製造方法:
    (a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
    (b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
    (c)CHFおよびCFの少なくとも一方とNとからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
  6. 以下の工程を含む半導体集積回路装置の製造方法:
    (a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
    (b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
    (c)SF、HCl、HBr、Cl、ClF、CHFおよびCFからなる群より選択された少なくとも一種の第1エッチングガスと、N、NHおよびNからなる群より選択された少なくとも一種の第2エッチングガスとの混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
  7. 以下の工程を含む半導体集積回路装置の製造方法:
    (a)半導体基板の主面上に銅を主成分として含む導電層を形成する工程、
    (b)前記導電層の上部に炭化窒化シリコンからなる第1絶縁膜を形成する工程、
    (c)CHF、CFおよびNからなる混合ガスを用いて前記第1絶縁膜の一部をドライエッチングすることにより、その底部に前記導電層の表面が露出する開口を形成する工程。
JP2006258631A 2001-08-07 2006-09-25 半導体集積回路装置の製造方法 Expired - Fee Related JP4891018B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258631A JP4891018B2 (ja) 2001-08-07 2006-09-25 半導体集積回路装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001239712 2001-08-07
JP2001239712 2001-08-07
JP2006258631A JP4891018B2 (ja) 2001-08-07 2006-09-25 半導体集積回路装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002100235A Division JP3914452B2 (ja) 2001-08-07 2002-04-02 半導体集積回路装置の製造方法

Publications (2)

Publication Number Publication Date
JP2006352168A JP2006352168A (ja) 2006-12-28
JP4891018B2 true JP4891018B2 (ja) 2012-03-07

Family

ID=37647592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258631A Expired - Fee Related JP4891018B2 (ja) 2001-08-07 2006-09-25 半導体集積回路装置の製造方法

Country Status (1)

Country Link
JP (1) JP4891018B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6339963B2 (ja) 2015-04-06 2018-06-06 東京エレクトロン株式会社 エッチング方法
JP7493378B2 (ja) * 2019-07-05 2024-05-31 東京エレクトロン株式会社 エッチング処理方法及び基板処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100265771B1 (ko) * 1998-07-09 2000-10-02 윤종용 감광성 폴리머를 사용하는 듀얼 다마신 공정에 의한 금속 배선형성방법
WO2000079586A1 (fr) * 1999-06-24 2000-12-28 Hitachi, Ltd. Procede de production de dispositif a circuit integre semi-conducteur et dispositif a circuit integre semi-conducteur
US6342733B1 (en) * 1999-07-27 2002-01-29 International Business Machines Corporation Reduced electromigration and stressed induced migration of Cu wires by surface coating

Also Published As

Publication number Publication date
JP2006352168A (ja) 2006-12-28

Similar Documents

Publication Publication Date Title
JP3914452B2 (ja) 半導体集積回路装置の製造方法
US9640424B2 (en) Integrated metal spacer and air gap interconnect
US9653327B2 (en) Methods of removing a material layer from a substrate using water vapor treatment
US7132369B2 (en) Method of forming a low-K dual damascene interconnect structure
US7419916B2 (en) Manufacturing method of semiconductor device
JP6469705B2 (ja) エッチング後のインターフェースを安定化し、次の処理ステップ前のキュータイム問題を最小化する方法
US20080026579A1 (en) Copper damascene process
JP2003332426A (ja) 半導体装置の製造方法および半導体装置
JP2003188254A (ja) 半導体装置の製造方法および半導体装置
JP2003142579A (ja) 半導体装置の製造方法および半導体装置
US6355572B1 (en) Method of dry etching organic SOG film
US7129171B2 (en) Selective oxygen-free etching process for barrier materials
JP2002009058A (ja) エッチング方法
JP2006179948A (ja) 半導体装置の製造方法および半導体装置
KR20080053239A (ko) 듀얼 다마신 분야에서 바닥부 무반사 코팅층의 2단계 에칭
JP4891018B2 (ja) 半導体集積回路装置の製造方法
US7745335B2 (en) Semiconductor device manufactured by reducing hillock formation in metal interconnects
US6489238B1 (en) Method to reduce photoresist contamination from silicon carbide films
JP2003332337A (ja) 半導体装置の製造方法
US6638848B1 (en) Method of etching insulating film and method of forming interconnection layer
US6511920B2 (en) Optical marker layer for etch endpoint determination
JP2005340460A (ja) 半導体装置の形成方法
JP2005303191A (ja) 半導体装置の製造方法
JP2003332340A (ja) 半導体装置の製造方法
JP2008085297A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4891018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees