JP4889585B2 - Internal combustion engine exhaust gas purification method - Google Patents

Internal combustion engine exhaust gas purification method Download PDF

Info

Publication number
JP4889585B2
JP4889585B2 JP2007184706A JP2007184706A JP4889585B2 JP 4889585 B2 JP4889585 B2 JP 4889585B2 JP 2007184706 A JP2007184706 A JP 2007184706A JP 2007184706 A JP2007184706 A JP 2007184706A JP 4889585 B2 JP4889585 B2 JP 4889585B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
active component
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007184706A
Other languages
Japanese (ja)
Other versions
JP2008036629A (en
Inventor
正憲 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Catalyst Technology Inc
Original Assignee
International Catalyst Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Catalyst Technology Inc filed Critical International Catalyst Technology Inc
Priority to JP2007184706A priority Critical patent/JP4889585B2/en
Publication of JP2008036629A publication Critical patent/JP2008036629A/en
Application granted granted Critical
Publication of JP4889585B2 publication Critical patent/JP4889585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、内燃機関排気ガスの浄化方法に関するものである。詳しく述べると、特にディーゼルエンジン等の内燃機関からの排気ガスからパティキュレート等の除去ならびにNOx吸蔵触媒における硫黄化合物等の除去にも優れた浄化方法に関するものである。   The present invention relates to a method for purifying internal combustion engine exhaust gas. More specifically, the present invention relates to a purification method that is excellent in removing particulates and the like from exhaust gas from an internal combustion engine such as a diesel engine and removing sulfur compounds and the like in a NOx storage catalyst.

ディーゼルエンジン等の内燃機関から排出される黒煙やSOF等のPM(粒子状物質)を捕集するため、ディーゼルパティキュレートフィルターが用いられており、その使用に伴いフィルター内にPMが堆積して、圧力損失が大きくなるという問題点がある。   Diesel particulate filters are used to collect PM (particulate matter) such as black smoke and SOF discharged from internal combustion engines such as diesel engines, and PM accumulates in the filters as they are used. There is a problem that the pressure loss becomes large.

そこで、従来、PMの堆積に対しては、フィルターに電熱ヒータ等の加熱装置を配置し、加熱によりPMを燃焼・除去させてフィルターの再生を行なっていた(特許文献1)。   Therefore, conventionally, for PM deposition, a heating device such as an electric heater is disposed in the filter, and the filter is regenerated by burning and removing the PM by heating (Patent Document 1).

しかしながら、このような再生方法では、消費電力が大きく、ランニングコストが高くなるという問題があった。また、フィルター以外に、ヒータ設備の占める体積が必要であり、車両に設置する際に設置場所が制限されるという問題があった。これらの問題点を解決するために、ディーゼルエンジンパティキュレート捕集用フィルターと、該フィルターの排気管上流側に設けられた炭化水素(HC)に対して活性のよい触媒コンバータと、該触媒コンバータに多量のHCを供給可能なHC制御手段とを備えたディーゼル排出ガス浄化装置が提案され、該触媒として、白金、パラジウム、ロジウム等が開示されている(特許文献2)。   However, such a reproduction method has a problem that power consumption is large and running cost is high. In addition to the filter, the heater occupies a large volume, and there is a problem that the installation location is limited when installing in a vehicle. In order to solve these problems, a filter for collecting diesel engine particulates, a catalytic converter active on hydrocarbons (HC) provided upstream of the exhaust pipe of the filter, and a catalytic converter A diesel exhaust gas purification device including an HC control means capable of supplying a large amount of HC has been proposed, and platinum, palladium, rhodium and the like are disclosed as the catalyst (Patent Document 2).

また、触媒成分をフィルター上にコートしたディーゼル排気粒子用フィルターも開示されている(特許文献3)。   A diesel exhaust particle filter in which a catalyst component is coated on a filter is also disclosed (Patent Document 3).

さらに、内燃機関の排気通路に連続再生型ディーゼルパティキュレートフィルターを備え、粒子状物質を捕集するフィルターにおける粒子状物質の捕集量が所定の判定値以上になった時に、再生モード運転を行なって捕集された粒子状物質を除去する内燃機関の排気ガス浄化システムにおいて、前記フィルターに捕集される粒子状物資の捕集量を推定する捕集量推定手段と、該捕集量推定手段によって推定された粒子状物資が所定の判定値以上の時に、内燃機関の最大噴射量を制限する最大噴射量制御手段を備えた内燃機関の排気ガス浄化システムも提案されている(特許文献4)。   Furthermore, a regenerative diesel particulate filter is provided in the exhaust passage of the internal combustion engine, and regeneration mode operation is performed when the collected amount of particulate matter in the filter for collecting particulate matter exceeds a predetermined judgment value. In the exhaust gas purification system for an internal combustion engine that removes the collected particulate matter, the collected amount estimating means for estimating the collected amount of the particulate matter collected by the filter, and the collected amount estimating means An exhaust gas purification system for an internal combustion engine is also proposed that includes a maximum injection amount control means for limiting the maximum injection amount of the internal combustion engine when the particulate matter estimated by the above is greater than or equal to a predetermined determination value (Patent Document 4). .

また、窒素酸化物除去法において、NOx等の除去に用いられるNOx吸蔵触媒にSOx等の硫黄酸化物が吸蔵することによって触媒性能が低下することが知られているが、その性能を回復させる際にも多量の炭化水素を導入し、昇温させることで再生する方法が提案されている。しかし、この方法では再生させるのに適した温度範囲が限られている(特許文献5)。   In addition, in the nitrogen oxide removal method, it is known that the NOx storage catalyst used for the removal of NOx and the like absorbs sulfur oxides such as SOx, thereby reducing the catalyst performance. In addition, a method of regenerating by introducing a large amount of hydrocarbons and raising the temperature has been proposed. However, this method has a limited temperature range suitable for regeneration (Patent Document 5).

また、同一触媒上で流入側および流出側とで異なる触媒量、触媒組成を担持した触媒を用いてエンジン始動時の低温域において排出される炭化水素を効率よく浄化できることが開示されている。この触媒ではエンジン始動域という触媒活性が発現していない低温においてHC吸着剤により一時的にHCを吸着し、温度上昇により触媒活性が発現した時点で浄化されること、酸素放出量を下流側よりも上流側で多くすることに特徴があり、貴金属含有率は排気ガス流入側よりも流出側が高い方が望ましい。しかしながら、このように貴金属含有率が排気ガス流入側よりも流出側が高い場合には、図6〜10に示すように、高濃度の炭化水素の燃焼性向上に対する効果は発現しない。また、本発明は図4および5に示すように、HC濃度の減少量が多い触媒ほどCO濃度が増加しており、一時的なHCの吸着ではなく、式(A)に示す燃焼反応が起こっている。(特許文献6)。 Further, it is disclosed that hydrocarbons discharged in a low temperature range at the time of engine start can be efficiently purified using catalysts carrying different catalyst amounts and catalyst compositions on the inflow side and the outflow side on the same catalyst. In this catalyst, the HC adsorbent is temporarily adsorbed by the HC adsorbent at a low temperature where the catalytic activity is not manifested in the engine starting region, and is purified when the catalytic activity is manifested due to the temperature rise, and the oxygen release amount from the downstream side. However, the precious metal content is preferably higher on the outflow side than on the exhaust gas inflow side. However, when the precious metal content is higher on the outflow side than on the exhaust gas inflow side as described above, as shown in FIGS. Further, as shown in FIGS. 4 and 5, in the present invention, the CO 2 concentration increases as the amount of decrease in the HC concentration increases, so that the combustion reaction represented by the formula (A) is not temporarily adsorbed by HC. is happening. (Patent Document 6).

Figure 0004889585
Figure 0004889585
特許第2953409号公報Japanese Patent No. 2953409 特開昭60−043113号公報JP 60-043113 A 米国特許公開5100632号公報US Patent Publication No. 5100632 特開2004−108207号公報JP 2004-108207 A 特許第3747639号公報Japanese Patent No. 3747639 特開2003−200049号公報JP 2003-200049 A

上記文献記載の方法は電気加熱ヒーターによる方法等と比較して製造コストが安価でかつ設置場所の制限が緩和されるという利点がある反面、多量の炭化水素の供給が必要であり、多量の炭化水素を供給したことによって触媒上に炭化水素が付着する被毒が問題である。この炭化水素被毒は炭化水素供給時の昇温用触媒部の温度が供給炭化水素の沸点以下で炭化水素が供給された場合に起こりやすく、また、炭化水素の濃度が高いほど起りやすい。それは、昇温用触媒部の温度が低い場合には炭化水素の燃焼反応速度が遅いためであり、炭化水素濃度が高い場合には、昇温用触媒の燃焼処理速度よりも炭化水素供給速度の方が速いためである。このため、従来の方法ではエンジン側の制御によって炭化水素の燃焼速度が速い温度まで昇温した後、炭化水素を供給するか、炭化水素が充分燃焼可能な少量を供給するなどの制御が必要であった。しかしながら、このような制御を行った場合には、再生までの時間が長くなり、走行性や環境に悪影響を及ぼす。一方、このような制御を行なわずに多量の炭化水素を低温で供給した場合には、触媒上への炭化水素被毒が起こり易く、炭化水素被毒が起こり触媒性能が低下した場合には、その後に導入された炭化水素が燃焼しないために多量の炭化水素の排出を引き起こす。その結果として、後段にディーゼルパティキュレートフィルターが設置された場合には、高温の排気ガスが供給されないために、ディーゼルパティキュレートフィルター中に補修されたPMが燃焼せず、すすの蓄積が進行し、ひいてはエンジンの停止を招くおそれがある。また、後段にNOx吸蔵触媒が設置された場合には、NOx吸蔵触媒上に蓄積した硫黄酸化物を高温の排ガスにより除去する必要があるが、高温の排気ガスが供給されないために硫黄酸化物が蓄積された状態が続き、NOx浄化性能が低下した状態が続き、NOxの排出を引き起こす。このようなことから、低温での高濃度炭化水素に対する燃焼性の向上による排ガス昇温性の向上が課題である。   The method described in the above document has the advantage that the manufacturing cost is low and the restriction on the installation place is relaxed compared to the method using an electric heater, etc., but on the other hand, a large amount of hydrocarbon needs to be supplied. The poisoning of hydrocarbons adhering to the catalyst due to the supply of hydrogen is a problem. This hydrocarbon poisoning is likely to occur when hydrocarbons are supplied at a temperature of the temperature raising catalyst portion at the time of supplying hydrocarbons that is lower than the boiling point of the supplied hydrocarbons, and also more likely to occur as the concentration of hydrocarbons increases. This is because the hydrocarbon combustion reaction rate is slow when the temperature of the temperature raising catalyst portion is low, and when the hydrocarbon concentration is high, the hydrocarbon feed rate is higher than the combustion treatment rate of the temperature raising catalyst. This is because it is faster. For this reason, in the conventional method, after the temperature is increased to a temperature at which the combustion speed of hydrocarbons is high by control on the engine side, control is required such as supplying hydrocarbons or supplying a small amount capable of sufficiently burning hydrocarbons. there were. However, when such control is performed, the time until regeneration becomes longer, which adversely affects running performance and the environment. On the other hand, when a large amount of hydrocarbon is supplied at a low temperature without performing such control, hydrocarbon poisoning tends to occur on the catalyst, and when hydrocarbon poisoning occurs and the catalyst performance decreases, Since the hydrocarbons introduced thereafter do not burn, a large amount of hydrocarbons are discharged. As a result, when a diesel particulate filter is installed in the latter stage, high temperature exhaust gas is not supplied, so PM repaired in the diesel particulate filter does not burn, soot accumulation proceeds, As a result, the engine may be stopped. In addition, when a NOx storage catalyst is installed in the subsequent stage, it is necessary to remove sulfur oxide accumulated on the NOx storage catalyst with high-temperature exhaust gas. However, since high-temperature exhaust gas is not supplied, The accumulated state continues and the state in which the NOx purification performance deteriorates continues, causing NOx emission. For these reasons, it is a problem to improve the exhaust gas temperature rise performance by improving the combustibility with respect to high-concentration hydrocarbons at low temperatures.

したがって、本発明の目的は、内燃機関排気ガスの新規な昇温方法を提供することにある。   Therefore, an object of the present invention is to provide a novel method for raising the temperature of exhaust gas from an internal combustion engine.

本発明の他の目的は、内燃機関、特にディーゼルエンジンからの排気ガスからのパティキュレート等の除去にも優れた浄化方法を提供することにある。   Another object of the present invention is to provide a purification method excellent in removing particulates and the like from exhaust gas from an internal combustion engine, particularly a diesel engine.

本発明のさらに他の目的は、NOx吸蔵触媒使用時の硫黄酸化物除去にも優れた排ガスの浄化方法を提供することにある。   Still another object of the present invention is to provide an exhaust gas purification method that is excellent in removing sulfur oxides when using a NOx storage catalyst.

本発明のさらに別の目的は、高濃度の炭化水素系燃料を供給するシステムで長期間安定してフィルターの再生を可能にする内燃機関排気ガスの浄化方法を提供することにある。   Still another object of the present invention is to provide an internal combustion engine exhaust gas purification method that enables stable regeneration of a filter for a long period of time in a system that supplies a high-concentration hydrocarbon fuel.

上記諸目的は、下記(1)〜(13)により達成される。   The above objects are achieved by the following (1) to (13).

(1) 内燃機関の排気ガス通路内に該排気ガスの流れに沿って内燃機関排気ガス温度上昇用触媒を該排気ガス浄化用触媒の上流側に設けてなり、かつ温度上昇用触媒の上流側からメタン換算で1,000〜40,000ppmの炭化水素を導入することよりなる該排気ガスの浄化方法であって、該温度上昇用触媒が、耐火性三次元構造体上に該排気ガス流入側より流出側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させてなるものである内燃機関排気ガスの浄化方法。   (1) An internal combustion engine exhaust gas temperature raising catalyst is provided upstream of the exhaust gas purification catalyst in the exhaust gas passage of the internal combustion engine along the flow of the exhaust gas, and upstream of the temperature raising catalyst. The exhaust gas purifying method comprises introducing 1,000 to 40,000 ppm of hydrocarbons in terms of methane from the exhaust gas inflow side on the refractory three-dimensional structure. A method for purifying internal combustion engine exhaust gas, wherein a catalytically active component is supported with a concentration gradient that becomes lower toward the outflow side.

(2) 該温度上昇用触媒が、白金、パラジウムおよびロジウムよりなる群から選ばれた少なくとも1種の貴金属よりなる触媒活性成分(A)を、耐火性無機酸化物粉末(B)に担持させてなる触媒成分を該耐火性三次元構造体上に担持させたものである前記(1)に記載の方法。   (2) A catalyst active component (A) made of at least one noble metal selected from the group consisting of platinum, palladium and rhodium is supported on the refractory inorganic oxide powder (B). The method according to (1) above, wherein the catalyst component is supported on the refractory three-dimensional structure.

(3) 該濃度勾配は段階的に形成させてなる前記(1)または(2)に記載の方法。   (3) The method according to (1) or (2), wherein the concentration gradient is formed stepwise.

(4) 該温度上昇用触媒における触媒活性成分(A)の担持量が0.2〜20g/リットルで、かつ耐火性無機酸化物粉末(B)の担持量が10〜300g/リットルである請求項2または3に記載の方法。   (4) The supported amount of the catalytically active component (A) in the temperature increasing catalyst is 0.2 to 20 g / liter, and the supported amount of the refractory inorganic oxide powder (B) is 10 to 300 g / liter. Item 4. The method according to Item 2 or 3.

(5) 該温度上昇用触媒における触媒成分の該耐火性三次元構造体上の該排気ガス流入側から全長の10〜66.7%における触媒活性成分(A)の担持量が20〜80%を担持させるものであり、かつ流入側の長さの50%における触媒活性成分(A)の担持量が流出側の50%における触媒活性成分(A)の担持量より多いものである請求項2〜4のいずれか一つに記載の方法。   (5) The supported amount of the catalytic active component (A) is 20 to 80% in the total length of 10 to 66.7% from the exhaust gas inflow side on the fire-resistant three-dimensional structure of the catalyst component in the temperature increasing catalyst. The amount of the catalytically active component (A) supported at 50% of the length on the inflow side is larger than the amount of the catalytically active component (A) supported on 50% on the outflow side. The method as described in any one of -4.

(6) 該温度上昇用触媒における該耐火性三次元構造体上の該排気ガス流入側から全長の30〜66.7%における触媒活性成分(A)の担持量が50〜80%を担持させたものであり、かつ流入側の長さの50%における触媒活性成分(A)の担持量が流出側の50%における触媒活性成分(A)の担持量より多いものである請求項2〜4のいずれか一つに記載の方法。   (6) The catalyst active component (A) is supported in an amount of 50 to 80% in 30 to 66.7% of the total length from the exhaust gas inflow side on the refractory three-dimensional structure in the temperature increasing catalyst. 5. The supported amount of the catalytically active component (A) at 50% of the length on the inflow side is larger than the supported amount of the catalytically active component (A) at 50% on the outflow side. The method as described in any one of.

(7) 該炭化水素の導入温度が200〜350℃である前記(1)〜(6)のいずれか一つに記載の方法。   (7) The method according to any one of (1) to (6), wherein the introduction temperature of the hydrocarbon is 200 to 350 ° C.

(8) 該炭化水素の導入量が該排気ガスに対してメタン換算で5,000〜30,000ppmである前記(1)〜(7)のいずれか一つに記載の方法。   (8) The method according to any one of (1) to (7), wherein an introduction amount of the hydrocarbon is 5,000 to 30,000 ppm in terms of methane with respect to the exhaust gas.

(9) 該排気ガス温度上昇用触媒が排気ガス浄化能力を併せ持つものである前記(1)〜(8)のいずれか一つに記載の方法。   (9) The method according to any one of (1) to (8), wherein the exhaust gas temperature raising catalyst also has an exhaust gas purification capability.

(10) 該排気ガスの流れに対して排気ガス温度上昇用触媒の下流側に排気ガス浄化用触媒を設置してなる前記(1)〜(9)のいずれか一つに記載の方法。   (10) The method according to any one of (1) to (9), wherein an exhaust gas purifying catalyst is installed downstream of the exhaust gas temperature raising catalyst with respect to the flow of the exhaust gas.

(11) 該排気ガス浄化用触媒がディーゼルパーティキュレートフィルター、酸化触媒およびNOx吸蔵触媒よりなる群から選ばれた少なくとも1種のものである前記(10)に記載の方法。   (11) The method according to (10), wherein the exhaust gas purification catalyst is at least one selected from the group consisting of a diesel particulate filter, an oxidation catalyst, and a NOx storage catalyst.

(12) 該排気ガス温度上昇用触媒の三次元構造体がハニカムおよび/またはプラグハニカムまたはペレットである前記(1)〜(11)のいずれか一つに記載の方法。   (12) The method according to any one of (1) to (11), wherein the three-dimensional structure of the exhaust gas temperature raising catalyst is a honeycomb and / or a plug honeycomb or a pellet.

(13) 該排気ガス浄化用触媒の三次元構造体がハニカムおよび/またはプラグハニカムまたはペレットである前記(1)〜(12)のいずれか一つに記載の方法。   (13) The method according to any one of (1) to (12), wherein the three-dimensional structure of the exhaust gas purifying catalyst is a honeycomb and / or a plug honeycomb or a pellet.

本発明は、以上のごとき構成を有するものであり、しかも温度上昇用触媒として、耐火性三次元構造上に該排気ガス流入側より流出側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させてなるものであるから、高濃度の触媒活性成分が流入部に存在することで、高濃度炭化水素による流入部での炭化水素被毒を抑制し、導入された炭化水素の一部が燃焼し、触媒温度が上昇するのである。また、流入部より排気ガス流出側に入った部分では、流入部で炭化水素が燃焼したために、その部分での炭化水素濃度が減少し、かつ、流入部での燃焼により排気ガス温度が上昇しているため、炭化水素の燃焼は流入部よりも進行し易い条件となっていると考えられる。したがって、この部分では流入部よりも少ない触媒活性成分量で炭化水素被毒を抑制し、炭化水素が燃焼し、さらに排気ガス温度を上昇させる。同様にして、流入側よりも流出側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させることで、炭化水素被毒を抑制し、排気ガス温度を上昇させることが可能であるという利点がある。   The present invention has a configuration as described above, and further, as a temperature raising catalyst, a catalytic active component having a concentration gradient that becomes lower from the exhaust gas inflow side to the outflow side on the refractory three-dimensional structure. Since it is supported, a high concentration of the catalytically active component is present in the inflow portion, thereby suppressing hydrocarbon poisoning in the inflow portion due to high concentration hydrocarbons, and a part of the introduced hydrocarbons It burns and the catalyst temperature rises. Also, in the part that enters the exhaust gas outflow side from the inflow part, hydrocarbons burned in the inflow part, so the hydrocarbon concentration in that part decreases, and the exhaust gas temperature rises due to combustion in the inflow part. Therefore, it is considered that the combustion of hydrocarbons is more likely to proceed than the inflow portion. Therefore, in this part, hydrocarbon poisoning is suppressed with a smaller amount of catalytic active component than in the inflow part, hydrocarbons burn, and the exhaust gas temperature is further increased. Similarly, by supporting the catalytically active component with a concentration gradient that becomes lower toward the outflow side than the inflow side, it is possible to suppress hydrocarbon poisoning and raise the exhaust gas temperature. There is.

これに対して、流出側よりも流入側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させた場合には、図6〜図10に示すような排気ガス温度の上昇はほとんど起こらない。このことからも、高濃度の炭化水素を流入側で効率よく燃焼させる効果が重要な課題であり、本発明はこの課題に対して効果が著しいために、炭化水素の燃焼が安定して、長期間使用後または高温の排気ガスに曝された場合にも安定して排気ガス温度を上昇させることができるのである。また、このために前記温度上昇用触媒の後段にディーゼルパティキュレートフィルターが設置された場合には、長期間安定してフィルターの再生が可能となり、同様に前記温度上昇用触媒の後段にNOx吸蔵触媒が設置された場合には、蓄積した硫黄酸化物の燃焼除去が安定して行われるのである。また、温度上昇用触媒に流入してくる炭化水素濃度が1000ppmを超えない運転条件においても、流入側よりも流出側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させた場合には、濃度勾配をもたせず触媒活性成分を担持させた場合と比較して同等以上の排気ガスの浄化性能を示す。   On the other hand, when the catalytic active component is supported with a concentration gradient that becomes lower toward the inflow side than the outflow side, the exhaust gas temperature hardly rises as shown in FIGS. . For this reason as well, the effect of efficiently burning high-concentration hydrocarbons on the inflow side is an important issue. Since the present invention has a remarkable effect on this issue, the combustion of hydrocarbons is stable and long. Even after a period of use or when exposed to high-temperature exhaust gas, the exhaust gas temperature can be stably increased. For this reason, when a diesel particulate filter is installed at the subsequent stage of the temperature increasing catalyst, the filter can be stably regenerated for a long period of time. Similarly, the NOx storage catalyst is disposed at the subsequent stage of the temperature increasing catalyst. Is installed, combustion removal of the accumulated sulfur oxide is stably performed. Also, even when the concentration of hydrocarbons flowing into the temperature rising catalyst does not exceed 1000 ppm, when the catalytic active component is supported with a concentration gradient that becomes lower toward the outflow side than the inflow side, Compared with the case where the catalytic active component is supported without a concentration gradient, the exhaust gas purification performance is equal to or higher than that.

つぎに、図面を参照しつつ、本発明をさらに詳細に説明する。すなわち、図1は、本発明による内燃機関の排気ガス浄化装置の概略図を示すものである。   Next, the present invention will be described in more detail with reference to the drawings. That is, FIG. 1 shows a schematic diagram of an exhaust gas purifying apparatus for an internal combustion engine according to the present invention.

すなわち、内燃機関1、例えばディーゼルエンジンに連通する排気管2に、さらに連通して、温度上昇用触媒を充填した昇温域5と、その下流側に連通してパティキュレートフィルターを設置した濾過域6とが設けられている。そして、前記昇温域5の排気ガス流入側の排気管2には、昇温用炭化水素系液体燃料を供給する手段として、必要により逆弁等(図示せず)を設けた燃料供給ノズル4および該ノズル4に連通している燃料供給ポンプ3が取付けられている。   That is, the exhaust pipe 2 that communicates with the internal combustion engine 1, for example, a diesel engine, further communicates with the temperature raising area 5 that is filled with the catalyst for raising the temperature, and the filtration area that communicates with the downstream side of which the particulate filter is installed. 6 are provided. The exhaust pipe 2 on the exhaust gas inflow side of the temperature raising area 5 is provided with a fuel supply nozzle 4 provided with a reverse valve or the like (not shown) as necessary as means for supplying the hydrocarbon liquid fuel for temperature raising. A fuel supply pump 3 communicating with the nozzle 4 is attached.

このように構成される排気ガス浄化装置には、必要により触媒の入口部および出口部の温度および圧力を測定できるように、触媒の入口部にそれぞれ温度センサ7および圧力センサ10が設けられ、また出力部にはそれぞれ温度センサ8および圧力センサ11が設けられ、されに必要によりフィルターを備えた濾過域6の出口には、温度センサ13および圧力センサ12がそれぞれ設けられている。また、各温度センサおよび圧力センサの信号は、コントローラ9に入るよう接続されており、またコントローラの9信号は、ポンプ3に入るように接続されている。   The exhaust gas purification apparatus configured as described above is provided with a temperature sensor 7 and a pressure sensor 10 at the inlet of the catalyst so that the temperature and pressure at the inlet and outlet of the catalyst can be measured if necessary. A temperature sensor 8 and a pressure sensor 11 are respectively provided at the output section, and a temperature sensor 13 and a pressure sensor 12 are respectively provided at the outlet of the filtration zone 6 provided with a filter as necessary. Each temperature sensor and pressure sensor signal is connected to the controller 9, and the controller 9 signal is connected to the pump 3.

また、本発明の他の実施態様としては、ポンプ3および燃料供給ノズル4を設けることなく、コントローラ9の信号により内燃機関1、例えばディーゼルエンジンのシリンダに直接供給することもできる。例えば、内燃機関のシリンダ内の燃料の燃焼終了後排気工程終了前に炭化水素系液体(例えば燃料)を供給してもよい。   Further, as another embodiment of the present invention, the pump 3 and the fuel supply nozzle 4 can be directly supplied to the internal combustion engine 1, for example, a cylinder of a diesel engine by a signal from the controller 9. For example, the hydrocarbon-based liquid (for example, fuel) may be supplied after the combustion of the fuel in the cylinder of the internal combustion engine is completed and before the exhaust process is completed.

つぎに、このように構成される排気ガス浄化装置の作用について述べる。すなわち、図1に示すように。内燃機関1、例えばディーゼルエンジンの排気ガスは、排気管2を通過して、温度上昇用触媒を充填した昇温域5においては、該排気ガス中に含まれる高濃度の未燃焼の炭化水素(HC)が燃焼されて水や二酸化炭素になり、フィルターを充填した濾過域6を経てマフラー(図示せず)等を経て系外に排出される。   Next, the operation of the exhaust gas purification apparatus configured as described above will be described. That is, as shown in FIG. The exhaust gas of the internal combustion engine 1, for example, a diesel engine, passes through the exhaust pipe 2, and in the temperature rising region 5 filled with the catalyst for raising the temperature, the high-concentration unburned hydrocarbons contained in the exhaust gas ( HC) is combusted to become water and carbon dioxide, and is discharged out of the system through a filter area 6 filled with a filter, a muffler (not shown), and the like.

一方、排気ガス中に含まれるパティキュレートは、該濾過域6においてパティキュレートフィルターに捕集されるが、次第に蓄積してくるので、フィルターにかかる圧力が上昇し、その圧力値が一定値に達し、そのフィルター温度が一定温度に達した時点で、ノズル4より炭化水素系液体燃料を噴射させ、昇温域5の温度上昇用触媒5上に供給する。昇温域5と濾過域6のとの間に設けられている圧力センサ11は、濾過域6の圧力を測定することになるので、その測定値が所定の圧力以上になれば、受信した値によりコントローラ9の指令により燃料供給ポンプ3を作動させ、また所定の圧力以下になれば、コントローラ9の指令によりポンプ3の作動は中止される。   On the other hand, the particulates contained in the exhaust gas are collected by the particulate filter in the filtration zone 6, but gradually accumulate, so that the pressure applied to the filter rises and the pressure value reaches a constant value. When the filter temperature reaches a certain temperature, the hydrocarbon liquid fuel is injected from the nozzle 4 and supplied onto the temperature raising catalyst 5 in the temperature raising region 5. Since the pressure sensor 11 provided between the temperature raising area 5 and the filtration area 6 measures the pressure in the filtration area 6, the received value is obtained when the measured value is equal to or higher than a predetermined pressure. Thus, the fuel supply pump 3 is operated by the command of the controller 9, and if the pressure is lower than the predetermined pressure, the operation of the pump 3 is stopped by the command of the controller 9.

また、昇温域5と濾過域6の間に設けられている温度センサ8が所定の値を超えれば、例えば700℃を越えれば、コントローラ9の指令により燃料供給ポンプ3の作動が中止され、また例えば軽油の場合、その90%以上の成分が沸点以上となるのは330℃程度であるが、330℃未満では軽油中の高沸点留分は液体状で昇温域5に導入されるため、触媒表面上への付着が起こりやすく、コントローラ9の指令によりポンプ3からは少量ずつ供給される。さらに、例えば200℃未満ではコントローラ9の指令により燃料供給ポンプ3の作動が中止される。一方、例えば330℃以上500℃未満であれば、炭化水素系燃料の供給量を目的温度に到達するよう調節させる。   Further, if the temperature sensor 8 provided between the temperature raising zone 5 and the filtration zone 6 exceeds a predetermined value, for example, if it exceeds 700 ° C., the operation of the fuel supply pump 3 is stopped by a command from the controller 9, Further, for example, in the case of light oil, 90% or more of the components have a boiling point or higher at about 330 ° C. However, if the temperature is lower than 330 ° C., the high boiling fraction in the light oil is liquid and is introduced into the temperature raising zone 5. Adhesion on the catalyst surface is likely to occur, and a small amount is supplied from the pump 3 in accordance with a command from the controller 9. Further, for example, when the temperature is lower than 200 ° C., the operation of the fuel supply pump 3 is stopped by a command from the controller 9. On the other hand, if it is 330 degreeC or more and less than 500 degreeC, for example, the supply amount of hydrocarbon fuel will be adjusted so that the target temperature may be reached.

昇温域5入口の圧力センサ10は、通常昇温域5と濾過域6との間に設けられる圧力センサ11が設置されない場合に設置され、昇温域5および濾過域にかかる圧力を検出するものであり、圧力センサ10と圧力センサ12との差から昇温触媒および濾過域にかかる圧力を測定するものである。   The pressure sensor 10 at the inlet of the temperature raising zone 5 is installed when the pressure sensor 11 provided between the normal temperature raising zone 5 and the filtration zone 6 is not installed, and detects the pressure applied to the temperature raising zone 5 and the filtration zone. The pressure applied to the temperature rising catalyst and the filtration zone is measured from the difference between the pressure sensor 10 and the pressure sensor 12.

コントロールユニット9は、一般的には、フィルターにかかる圧力を計測後、フィルター前後(あるいはフィルター内部)の温度、圧力情報がコントロールユニットに送られ、ある値を超えると燃料噴射装置に燃料供給信号が送られ、フィルター再生制御(燃料供給)が開始される。燃料供給中にも圧力センサによりフィルターの圧力値がコントロールユニットに送られ、圧力値がある値まで下がった時点で再生制御を停止する。   In general, after measuring the pressure applied to the filter, the control unit 9 sends the temperature and pressure information before and after the filter (or inside the filter) to the control unit, and when a certain value is exceeded, a fuel supply signal is sent to the fuel injection device. The filter regeneration control (fuel supply) is started. During the fuel supply, the pressure value of the filter is sent to the control unit by the pressure sensor, and the regeneration control is stopped when the pressure value drops to a certain value.

この場合、炭化水素としては、燃焼反応により発熱する炭化水素であればよく、メタン、エタン、プロパン、ガソリン、メタノール、エタノール、ジメチルエーテル、軽油等があり、好ましくは軽油である。その使用量は、排気ガスに対してメタン換算で1,000〜40,000ppm、好ましくは5,000〜30,000ppm、さらに好ましくは5,000〜20,000ppm、最も好ましくは5,000〜15,000ppmである。炭化水素使用量が少ないと目的とする温度まで上昇させるためには複数回の添加が必要であり、迅速な昇温が行えない問題がある。また、図9に示したように供給した全炭化水素濃度が1,000ppm以下では本発明の効果は得られない。一方、炭化水素使用量が多いと前述のとおり炭化水素被毒が起こり易く、触媒性能が低下しやすい問題があり、炭化水素を供給する際の排気ガス温度をエンジン制御で上昇させるなどの制御を行なうか触媒活性成分量を増す必要があり、コストが高くなるなどの問題が生じる。   In this case, the hydrocarbon may be a hydrocarbon that generates heat by a combustion reaction, and includes methane, ethane, propane, gasoline, methanol, ethanol, dimethyl ether, light oil, and the like, preferably light oil. The amount used is 1,000 to 40,000 ppm, preferably 5,000 to 30,000 ppm, more preferably 5,000 to 20,000 ppm, and most preferably 5,000 to 15 ppm in terms of methane with respect to the exhaust gas. 1,000 ppm. If the amount of hydrocarbon used is small, a plurality of additions are required to raise the temperature to the target temperature, and there is a problem that rapid temperature rise cannot be performed. Further, as shown in FIG. 9, the effect of the present invention cannot be obtained when the total hydrocarbon concentration supplied is 1,000 ppm or less. On the other hand, if the amount of hydrocarbon used is large, there is a problem that hydrocarbon poisoning is likely to occur as described above, and the catalyst performance is likely to deteriorate, and control such as increasing the exhaust gas temperature when supplying hydrocarbons by engine control is performed. It is necessary to carry out or increase the amount of the catalytically active component, resulting in problems such as high costs.

なお、本発明に排気ガスの上流とは、当該上昇用触媒の上流であればよいが、好ましくはエンジンの燃焼後から当該上昇用触媒の上流である。また、エンジンの燃焼後とは、エンジン排ガスの後流であってもよいし、エンジン内であってもよい。   In the present invention, the upstream of the exhaust gas may be upstream of the rising catalyst, but preferably upstream of the rising catalyst after combustion of the engine. Further, “after combustion of the engine” may be a wake of the engine exhaust gas or may be in the engine.

しかして、炭化水素の導入温度は、200℃〜600℃、好ましくは200℃〜350℃、さらに好ましくは200℃〜300℃である。   Thus, the introduction temperature of the hydrocarbon is 200 ° C. to 600 ° C., preferably 200 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C.

また、炭化水素系液体(燃料)を内燃機関に直接供給する場合も同様である。   The same applies to the case where the hydrocarbon liquid (fuel) is directly supplied to the internal combustion engine.

本発明において使用される温度上昇用触媒は、耐火性三次元構造体上に該排気ガス流入側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させてなるものである。
そして、該温度上昇用触媒は、白金、パラジウムおよびロジウムよりなる群から選ばれた少なくとも1種の貴金属よりなる触媒活性成分(A)を、耐火性無機酸化物粉末(B)に担持させた触媒成分を含むものである。すなわち、本願発明に係る温度上昇用触媒は、耐火性三次元構造体と、触媒活性成分(A)と、耐火性無機酸化物粉末(B)とを含むものである。
The temperature increasing catalyst used in the present invention is obtained by supporting a catalytically active component on a refractory three-dimensional structure with a concentration gradient that decreases toward the exhaust gas inflow side.
The temperature increasing catalyst is a catalyst in which a catalytic active component (A) made of at least one noble metal selected from the group consisting of platinum, palladium and rhodium is supported on a refractory inorganic oxide powder (B). Contains ingredients. That is, the temperature increasing catalyst according to the present invention includes a refractory three-dimensional structure, a catalytically active component (A), and a refractory inorganic oxide powder (B).

また、該温度上昇用触媒における触媒活性成分(A)の担持量は0.2〜20g/リットル、好ましくは1〜15g/リットルであり、また耐火性無機酸化物粉末(B)の担持量は10〜300g/リットル、好ましくは20〜200g/リットルである。   The supported amount of the catalytically active component (A) in the temperature increasing catalyst is 0.2 to 20 g / liter, preferably 1 to 15 g / liter, and the supported amount of the refractory inorganic oxide powder (B) is 10 to 300 g / liter, preferably 20 to 200 g / liter.

前記貴金属のうち、白金が好ましく、白金−パラジウムおよび/またはロジウムでもよい。その質量比は、20/1〜1/1であり、好ましくは5/1〜2/1である。   Of the noble metals, platinum is preferred, and may be platinum-palladium and / or rhodium. The mass ratio is 20/1 to 1/1, preferably 5/1 to 2/1.

白金の出発原料としては、硝酸白金、ジニトロジアンミン白金、塩化白金酸等の無機化合物、ビス白金等の有機化合物等があり、またロジウムの出発原料としては、硝酸ロジウム、塩化ロジウム、酢酸ロジウム等があり、パラジウムの出発原料としては、硝酸パラジウム、塩化パラジウム、酢酸パラジウム等がある。   Examples of platinum starting materials include inorganic compounds such as platinum nitrate, dinitrodiammine platinum, and chloroplatinic acid, and organic compounds such as bisplatinum. Examples of rhodium starting materials include rhodium nitrate, rhodium chloride, and rhodium acetate. There are palladium starting materials such as palladium nitrate, palladium chloride, and palladium acetate.

本発明に用いられる耐火性無機酸化物成分としては、通常、触媒担体として用いられるものであれば何れでもよく、例えば、α−アルミナ、若しくはγ、δ、η、θなどの活性アルミナ、ゼオライト、チタニア、もしくはジルコニア、チタニア、酸化珪素またはこれらの複合酸化物、例えば、アルミナ‐チタニア、アルミナ‐ジルコニア、チタニア‐ジルコニアなどを用いることができるが、好ましくは、活性アルミナの粉体である。耐火性無機酸化物の使用量は、一体構造体1リットル当たり、通常、10〜300g、好ましくは50〜150gである。10g未満であると貴金属が十分に分散できず、耐久性が十分でなく、一方、300gを越えると、貴金属と温度上昇用に導入される炭化水素との接触状態が悪く、温度上昇が起こりにくいため好ましくない。   As the refractory inorganic oxide component used in the present invention, any component can be used as long as it is usually used as a catalyst carrier. For example, α-alumina, activated alumina such as γ, δ, η, θ, zeolite, Titania, or zirconia, titania, silicon oxide or a composite oxide thereof such as alumina-titania, alumina-zirconia, titania-zirconia, etc. can be used, and activated alumina powder is preferable. The amount of the refractory inorganic oxide used is usually 10 to 300 g, preferably 50 to 150 g, per liter of the integral structure. If it is less than 10 g, the precious metal cannot be sufficiently dispersed and durability is not sufficient. On the other hand, if it exceeds 300 g, the contact state between the noble metal and the hydrocarbon introduced for temperature rise is poor and temperature rise hardly occurs. Therefore, it is not preferable.

該耐火性無機酸化物のBET比表面積は50〜750m/g、好ましくは150〜750m/gである。また、該耐火性無機酸化物粉末の平均粒径は0.5〜150μm、好ましくは1〜100μmである。 The refractory inorganic oxide has a BET specific surface area of 50 to 750 m 2 / g, preferably 150 to 750 m 2 / g. The average particle size of the refractory inorganic oxide powder is 0.5 to 150 μm, preferably 1 to 100 μm.

前記触媒における触媒成分の一例を挙げると、例えば触媒活性成分(A)としての白金およびパラジウムおよび耐火性無機酸化物粉末(B)としての活性アルミナおよびβ−ゼオライトよりなるものがある。   An example of the catalyst component in the catalyst includes, for example, platinum and palladium as the catalyst active component (A) and active alumina and β-zeolite as the refractory inorganic oxide powder (B).

本発明による温度上昇用触媒の調製法について、具体的に述べると、触媒活性成分と耐火性無機酸化物粉末とよりなる所定濃度の触媒活性成分を含むスラリー中に、三次元構造体を、次のように浸漬することにより得られる。   The preparation method of the catalyst for raising the temperature according to the present invention will be specifically described. In the slurry containing the catalytic active component having a predetermined concentration composed of the catalytic active component and the refractory inorganic oxide powder, the three-dimensional structure is It is obtained by soaking.

(a)三次元構造体がハニカム型の場合、三次元構造体を全体的に浸漬したのち、引上げて乾燥した後、空気雰囲気下で焼成する。ついで、このようにして得られた触媒活性成分被覆三次元構造体を部分的に浸漬したのち乾燥して、焼成する。さらに部分的に厚みの大きな触媒活性成分被覆三次元構造体を順次、必要なだけ繰り返すことにより一端部において被覆厚が最も大きく、前記浸漬および乾燥を繰り返した回数に応じて順次他端部に至るまで被覆厚が小さくなった触媒が得られる。   (A) When the three-dimensional structure is a honeycomb type, after the three-dimensional structure is entirely immersed, the three-dimensional structure is pulled up and dried, and then fired in an air atmosphere. Next, the catalytically active component-coated three-dimensional structure thus obtained is partially immersed, dried and fired. Further, the catalytically active component-coated three-dimensional structure having a large thickness is sequentially repeated as many times as necessary, whereby the coating thickness is the largest at one end, and the other end is sequentially reached according to the number of repetitions of the dipping and drying. Thus, a catalyst with a reduced coating thickness can be obtained.

(b)三次元構造体がハニカム型の場合、ベースの基材のみを前記触媒成分で被覆したのち、触媒活性成分の溶液を部分的に順次被覆する方法。   (B) A method in which when the three-dimensional structure is a honeycomb type, only the base substrate is coated with the catalyst component, and then the catalyst active component solution is partially coated sequentially.

(c)三次元構造体がハニカム型の場合、高濃度触媒活性成分含有スラリーを部分的、例えば1/3まで被覆し、低濃度触媒活性成分含有スラリーを残りの部分、例えば2/3に反対側から被覆する方法。   (C) When the three-dimensional structure is a honeycomb type, the slurry containing the high concentration catalytic active component is partially coated, for example, up to 1/3, and the slurry containing the low concentration catalytic active component is opposed to the remaining portion, for example, 2/3 Method of coating from the side.

(d)三次元構造体がハニカム型の場合、高濃度触媒活性成分含有スラリーを部分的、例えば1/3まで被覆し、低濃度触媒活性成分含有スラリーを他方から部分的、例えば他端から1/3被覆する方法。(流入側に触媒活性成分を多く存在させることが重要。)
(e)三次元構造体を複数個に分割し、それぞれを順次触媒活性成分の触媒成分中の濃度を変えて浸漬および乾燥を行なって、それぞれ触媒活性成分の担持量の異なるものを調製し、これらをパスが連通するように、かつ高濃度のものが排気ガス流入側にくるように順次直列に配置する。
(D) When the three-dimensional structure is a honeycomb type, the high-concentration catalytic active component-containing slurry is partially covered, for example, 1/3, and the low-concentration catalytic active component-containing slurry is partially applied from the other, for example, 1 from the other end. / 3 Method of coating. (It is important that a large amount of catalytically active components exist on the inflow side.)
(E) Dividing the three-dimensional structure into a plurality of parts, sequentially changing the concentration of the catalytically active component in the catalytic component, immersing and drying, respectively, and preparing different loaded amounts of the catalytically active component, These are sequentially arranged in series so that the paths communicate with each other and the high concentration is on the exhaust gas inflow side.

(f)三次元構造体がペレット型の場合、複数種の異なる触媒活性成分担持のものを調製し、触媒活性成分担持量の多いものほど排気ガス流入側に充填し、順次担持量の少ないものを充填する。   (F) When the three-dimensional structure is a pellet type, a plurality of different types of catalyst active component supported are prepared. Fill.

上記方法において、排気ガスの流入側よりも流出側に向かって低くなるような濃度勾配をもって触媒活性成分を担持させ、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも多くすることが重要であるが、好ましくは流入側から全長10〜66.7%における触媒活性成分の量が20〜80%(全触媒活性成分の量を100%とした場合)に担持したものであり、さらに好ましくは流入側から全長の30〜66.7%における触媒活性成分の量が50〜80%に担持したものである。流入部のみ触媒活性成分の担持量を多くした場合には流入部より流出側では炭化水素が充分燃焼しないため好ましくなく、炭化水素が燃焼し、はつ燃焼が持続するために必要な触媒活性成分が存在することで炭化水素被毒が抑制され、炭化水素が燃焼し、排気ガス温度が上昇する。また、触媒活性成分の量は前記のごとく、流入側よりも流出側に向かって低くなるような濃度勾配をもって担持すればよく、触媒活性成分を除く触媒成分の量は流入側よりも流出側に向かって低くなるように担持しなくてもよいが、好ましくは、触媒活性成分を除く触媒成分の量も触媒活性成分と同様の比率をもって流入側よりも流出側に向かって低くなるような濃度勾配をもって担持したものである。   In the above method, the catalytically active component is supported with a concentration gradient that becomes lower from the inflow side to the outflow side of the exhaust gas, and the amount of the catalytically active component on the inflow side 50% It is important to make the amount larger than the amount, but preferably the amount of the catalytically active component in the total length of 10 to 66.7% from the inflow side is 20 to 80% (when the amount of all the catalytically active components is 100%). More preferably, the amount of the catalytically active component at 30 to 66.7% of the total length from the inflow side is supported at 50 to 80%. When the amount of the catalytically active component supported is increased only in the inflow portion, it is not preferable because the hydrocarbon does not sufficiently burn on the outflow side from the inflow portion, and the catalytic active component necessary for the combustion of the hydrocarbon and the continuous combustion is required. As a result, hydrocarbon poisoning is suppressed, hydrocarbons burn, and the exhaust gas temperature rises. Further, as described above, the amount of the catalytically active component may be supported with a concentration gradient that becomes lower toward the outflow side than the inflow side, and the amount of the catalytic component excluding the catalytically active component is more on the outflow side than the inflow side. The concentration gradient is such that the amount of the catalyst component excluding the catalytically active component becomes lower from the inflow side to the outflow side at the same ratio as the catalytically active component. It is supported by.

これらの触媒成分被覆三次元構造体は、これらを乾燥したのち、好ましくは300〜1200℃、より好ましくは300〜800℃、さらに好ましくは400〜600℃で15分〜2時間、好ましくは30分〜1時間焼成することにより温度上昇用触媒が得られる。   These catalyst component-coated three-dimensional structures are preferably dried at 300 to 1200 ° C., more preferably 300 to 800 ° C., and still more preferably 400 to 600 ° C. for 15 minutes to 2 hours, preferably 30 minutes. A catalyst for raising the temperature is obtained by calcination for ˜1 hour.

必要により用いられるゼオライトとしては、BEA型、MFI型、FER型、FAU型、MOR型等があり、目的に応じて好ましい結晶構造は異なるため、特に限定されるものではない。   Zeolite used as necessary includes BEA type, MFI type, FER type, FAU type, MOR type and the like, and the preferred crystal structure varies depending on the purpose, and is not particularly limited.

上記触媒成分を被覆する耐火性三次元一体構造体としては、ハニカム担体などの耐熱性担体が挙げられるが一体成型のハニカム構造体が好ましく、例えば、モノリスハニカム担体、メタルハニカム担体、プラグハニカム担体等、また、三次元一体構造体ではなくても、ペレット担体等も挙げることができる。   Examples of the fire-resistant three-dimensional monolithic structure covering the catalyst component include a heat-resistant carrier such as a honeycomb carrier, but a monolithic honeycomb structure is preferable. For example, a monolith honeycomb carrier, a metal honeycomb carrier, a plug honeycomb carrier, etc. In addition, a pellet carrier or the like can be used instead of a three-dimensional integrated structure.

モノリス担体としては、通常、セラミックハニカム担体と称されるものであればよく、特に、コージエライト、ムライト、α−アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、ベタライト、スポンジュメン、アルミノシリケート、マグネシムシリケートなどを材料とするハニカム担体が好ましく、なかでもコージエライト質のものが特に好ましい。その他、ステンレス鋼、Fe−Cr−Al合金などの酸化抵抗性の耐熱性金属を用いて一体構造体としたものが用いられる。   As the monolithic carrier, what is usually called a ceramic honeycomb carrier may be used. A honeycomb carrier made of a material such as cordierite is particularly preferable. In addition, an integrated structure using an oxidation-resistant heat-resistant metal such as stainless steel or Fe—Cr—Al alloy is used.

なお、耐火性三次元構造体としてペレット担体を使用する場合には、前記材質のペレット担体に対する触媒活性成分の担持量が多い触媒を排気ガス流入側に、触媒活性成分の担持量がより小さい触媒を排気ガス流入側になるように順次充填することが望ましい。   When a pellet carrier is used as the refractory three-dimensional structure, a catalyst with a large amount of the catalytically active component supported on the pellet carrier of the above material is placed on the exhaust gas inflow side, and a catalyst with a small amount of the catalytically active component supported on the exhaust gas inflow side. It is desirable to sequentially fill the gas so as to be on the exhaust gas inflow side.

これらのモノリス担体は、押出成型法やシート状素子を巻き固める方法などで製造される。そのガス通過口(セル形状)の形は、六角形、四角形、三角形またはコルゲーション形のいずれであってもよい。セル密度(セル数/単位断面積)は100〜600セル/平方インチであれば十分に使用可能であり、好ましくは200〜500セル/平方インチである。   These monolith carriers are manufactured by an extrusion molding method or a method of winding and solidifying a sheet-like element. The shape of the gas passage port (cell shape) may be any of a hexagon, a square, a triangle, and a corrugation. A cell density (number of cells / unit cross-sectional area) of 100 to 600 cells / square inch can be sufficiently used, and preferably 200 to 500 cells / square inch.

本発明において、NO吸蔵触媒を被覆する方法としては、特に限定されるものではないが、通常、含浸法が好適に用いられる。 In the present invention, the method for coating the NO x storage catalyst is not particularly limited, but usually an impregnation method is suitably used.

本発明で使用されるプラグハニカムとしては、種々のものがあり、公知のものが使用できるが、例えばコージエライト製フィルター、耐熱性の高い炭化ケイ素製フィルター等がある。   There are various types of plug honeycombs used in the present invention, and known ones can be used. Examples thereof include cordierite filters and silicon carbide filters having high heat resistance.

また、後段触媒としては、コージエライト、炭化ケイ素、ステンレス鋼等の三次元構造体、例えばハニカム担体で粒子状物質を捕集することができるもので、触媒成分をコートしていないもの、例えばディーゼルパティキュレートフィルター、プラグフィルタ等や前記フィルターに前記温度上昇用触媒と同様の触媒成分をコートしたもの、その他触媒を使用する過程で高温を必要とするものなどがある。さらに、後段触媒としては、酸化触媒、NO吸蔵触媒等がある。 Further, as the post-stage catalyst, a particulate material can be collected by a three-dimensional structure such as cordierite, silicon carbide, stainless steel, such as a honeycomb carrier, and a catalyst component is not coated, such as a diesel catalyst. There are a curate filter, a plug filter and the like, a filter coated with the same catalyst component as the temperature raising catalyst, and a filter that requires a high temperature in the process of using the catalyst. Further, as the stage catalyst, there is an oxidation catalyst, NO X storage catalyst and the like.

つぎに、実施例を挙げて本発明方法を、さらに詳細に説明する。   Next, the method of the present invention will be described in more detail with reference to examples.

比較例1
白金2gに相当する量のジニトロジアンミン白金水溶液およびパラジウム0.5gに相当する量の硝酸パラジウム水溶液、活性アルミナ(γ−Al、BET比表面積200m/g、平均一次粒径6μm)120gをボールミルにて湿式粉砕することにより合計300gの水性スラリー(A)を調製した。このスラリーを、図2(A)および図6(A)に示すように、断面積1平方インチ当り400個のセルを有する直径24mmかつ長さ50mmのコージエライト製ハニカム担体101に1リットル当り122.5gとなるように被覆(ウォッシュコート)して触媒層102を形成し、120℃で8時間乾燥したのち、500℃で1時間の焼成を行ない、触媒Aを得た。
Comparative Example 1
120 g of dinitrodiammine platinum aqueous solution equivalent to 2 g of platinum and palladium nitrate aqueous solution equivalent to 0.5 g of palladium, activated alumina (γ-Al 2 O 3 , BET specific surface area 200 m 2 / g, average primary particle size 6 μm) A total of 300 g of the aqueous slurry (A) was prepared by wet pulverizing the mixture with a ball mill. As shown in FIGS. 2 (A) and 6 (A), this slurry was applied to a honeycomb carrier 101 made of cordierite having a diameter of 24 mm and a length of 50 mm having 400 cells per square inch of cross-sectional area of 122. The catalyst layer 102 was formed by coating (wash coat) so as to be 5 g, dried at 120 ° C. for 8 hours, and then calcined at 500 ° C. for 1 hour to obtain Catalyst A.

実施例1
比較例1の方法で、得られたスラリー(A)を、図2(B)に示すように、比較例1と同様のコージエライト製ハニカム担体101に1リットル当り61.25gとなるように、全体に被覆(触媒層102)し、乾燥後500℃で1時間焼成したのち、同じスラリー(A)を用いてハニカム担体1リットル当り61.25gとなるように流入側から全長の66.7%の長さまで被覆(触媒層103)し、乾燥後500℃で1時間焼成して、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも多い触媒Bを得た。
Example 1
As shown in FIG. 2 (B), the slurry (A) obtained by the method of Comparative Example 1 was placed on the cordierite honeycomb carrier 101 similar to Comparative Example 1 so that the total amount was 61.25 g per liter. (Catalyst layer 102), dried and fired at 500 ° C. for 1 hour, and using the same slurry (A), 66.7% of the total length from the inflow side to 61.25 g per liter of honeycomb carrier Covered to the length (catalyst layer 103), dried and calcined at 500 ° C. for 1 hour to obtain catalyst B in which the amount of the catalytically active component on the inflow side 50% was larger than the amount of the catalytically active component on the outflow side 50% .

実施例2
比較例1の方法で得られたスラリー(A)を、図2(C)に示すように、比較例1と同様のコージエライト製ハニカム担体101に1リットル当り40.8gとなるように、全体に被覆(触媒層102)し、乾燥後500℃で1時間焼成した後、全長の66.7%の長さまで被覆(触媒層103)し、乾燥後500℃で1時間焼成し、さらにハニカム担体1リットル当り40.8gとなるように、流入側から全長の33.3%の長さまで被覆(触媒層104)し、乾燥後500℃で1時間焼成して、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも多い触媒Cを得た。
Example 2
As shown in FIG. 2C, the slurry (A) obtained by the method of Comparative Example 1 is placed on the cordierite honeycomb carrier 101 similar to Comparative Example 1 so that the amount is 40.8 g per liter. After coating (catalyst layer 102), firing and firing at 500 ° C. for 1 hour, coating (catalyst layer 103) to a length of 66.7% of the total length, drying and firing at 500 ° C. for 1 hour, and further honeycomb support 1 Cover the catalyst from the inflow side to a length of 33.3% of the total length (catalyst layer 104) so as to be 40.8 g per liter, and after drying, calcinate for 1 hour at 500 ° C. Catalyst C was obtained in which the amount was greater than the amount of catalytically active component at 50% on the outflow side.

実施例3
比較例1の方法で得られたスラリー(A)を、図2(D)に示すように、比較例1と同様のコージエライト製ハニカム担体101に1リットル当り108.9gとなるように全体に被覆(触媒層102)し、乾燥後500℃で1時間焼成したのち、同じスラリーAを用いてハニカム担体1リットル当り13.6gとなるように流入側から全長の12.5%の長さまで被覆(触媒層103)し、乾燥後500℃で1時間焼成して、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも多い触媒Dを得た。
Example 3
As shown in FIG. 2 (D), the slurry (A) obtained by the method of Comparative Example 1 is entirely coated on a cordierite honeycomb carrier 101 similar to Comparative Example 1 so that the amount is 108.9 g per liter. (Catalyst layer 102), and after baking for 1 hour at 500 ° C. after drying, the same slurry A was used to cover 12.5% of the total length from the inflow side to 13.6% per liter of honeycomb carrier ( The catalyst layer 103) was dried and calcined at 500 ° C. for 1 hour to obtain a catalyst D in which the amount of the catalytically active component on the inflow side 50% was larger than the amount of the catalytically active component on the outflow side 50%.

実施例4
直径24mmかつ長さ50mmの触媒A、B,CおよびDを800℃で16時間焼成を行なったのち、それぞれ排気ガスとしてNO500ppm、CO300ppm、O10%、CO6%、HO6%および残り窒素よりなるガスを、S.V.(空間速度)50,000hr−1で流通させ、触媒層温度が200℃になり安定した時点でプロパン2,000ppm(メタン換算、以下同様)およびプロピレン8,000ppmよりなる炭化水素を流通させ(条件1)、このときの触媒出口の温度を時間の経過とともに測定したところ、図3の結果が得られた。また、このときの触媒層出口の炭化水素濃度を時間の経過とともに測定したところ、図4の結果が得られた。さらに、このときの触媒層出口のCOの濃度を時間の経過とともに測定したところ、図5の結果が得られた。
Example 4
Catalysts A, B, C and D having a diameter of 24 mm and a length of 50 mm were calcined at 800 ° C. for 16 hours, and then exhausted as NO 500 ppm, CO 300 ppm, O 2 10%, CO 2 6%, H 2 O 6% and The remaining nitrogen gas is converted to S.P. V. (Space velocity) circulated at 50,000 hr −1 , and when the catalyst layer temperature became 200 ° C. and stabilized, propane 2,000 ppm (methane conversion, the same applies hereinafter) and propylene 8,000 ppm hydrocarbon were circulated (conditions 1) When the temperature of the catalyst outlet at this time was measured over time, the result of FIG. 3 was obtained. Further, when the hydrocarbon concentration at the catalyst layer outlet at this time was measured over time, the result of FIG. 4 was obtained. Furthermore, when the concentration of CO 2 at the catalyst layer outlet at this time was measured over time, the result of FIG. 5 was obtained.

比較例2
比較例1の方法で得られたスラリー(A)を、図6(E)に示すように、比較例1と同様のコージエライト製ハニカム担体201に1リットル当り40.8gとなるように全体に被覆(触媒層202)し、乾燥後、500℃で1時間焼成したのち、同じスラリー(A)を用いて、ハニカム担体1リットル当り40.8gとなるように、流出側から全長の66.7%の長さまで被覆(触媒層203)し、乾燥後500℃で1時間焼成し、さらにハニカム担体1リットル当り40.8gとなるように、流出側から全長の33.3%の長さまで被覆(触媒層204)し、乾燥後500℃で1時間焼成して、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも少ない触媒Eを得た。
Comparative Example 2
The slurry (A) obtained by the method of Comparative Example 1 is coated on the entire cordierite honeycomb carrier 201 similar to Comparative Example 1 so as to give 40.8 g per liter as shown in FIG. 6 (E). (Catalyst layer 202), dried, and calcined at 500 ° C. for 1 hour, and using the same slurry (A), 66.7% of the total length from the outflow side to 40.8 g per liter of honeycomb carrier Coating (catalyst layer 203), followed by drying at 500 ° C. for 1 hour, and further coating (catalyst catalyst) from the outflow side to a length of 33.3% of the total length so as to be 40.8 g per liter of honeycomb carrier. Layer 204) and dried and calcined at 500 ° C. for 1 hour to obtain catalyst E in which the amount of catalytically active component on the inflow side 50% is smaller than the amount of catalytically active component on the outflow side 50%.

比較例3
比較例1の方法で得られたスラリー(A)を、図6(F)に示すように、比較例1と同様のコージエライト製ハニカム担体201に1リットル当り108.9gとなるように全体に被覆(触媒層202)したのち、乾燥後、500℃で1時間焼成し、同じスラリー(A)を用いてハニカム担体1リットル当り13.6gとなるように流出側から全長の12.5%の長さまで被覆(触媒層203)し、乾燥後500℃で1時間焼成して、流入側50%における触媒活性成分の量が流出側50%における触媒活性成分の量よりも少ない触媒Fを得た。
Comparative Example 3
The slurry (A) obtained by the method of Comparative Example 1 was coated on the entire cordierite honeycomb carrier 201 similar to Comparative Example 1 so that the slurry (A) was 108.9 g per liter, as shown in FIG. 6 (F). (Catalyst layer 202) After drying, it was fired at 500 ° C. for 1 hour, and 12.5% of the total length from the outflow side to 13.6 g per liter of honeycomb carrier using the same slurry (A). The catalyst F was further coated (catalyst layer 203), dried and then calcined at 500 ° C. for 1 hour to obtain a catalyst F in which the amount of catalytically active component on the inflow side 50% was smaller than the amount of catalytically active component on the outflow side 50%.

比較例4
触媒A、EおよびFを800℃で16時間焼成を行なったのち、それぞれに排気ガスとしてNO500ppm、CO300ppm、O10%、CO6%、HO6%および残り窒素をS.V.(空間速度)50,000hr−1で流通させた。触媒層温度が200℃になり安定した時点でプロパン2,000ppm(メタン換算、以下同様)およびプロピレン8,000ppmよりなる炭化水素を流通させ(条件1)、このときの触媒出口の温度を時間の経過とともに測定したところ、図7の結果が得られた。
Comparative Example 4
Catalysts A, E, and F were calcined at 800 ° C. for 16 hours, and then NO, 500 ppm, CO 300 ppm, O 2 10%, CO 2 6%, H 2 O 6%, and the remaining nitrogen were used as exhaust gases. V. (Space velocity) circulated at 50,000 hr −1 . When the catalyst layer temperature became 200 ° C. and stabilized, 2,000 ppm of propane (converted to methane, the same applies hereinafter) and 8,000 ppm of propylene were circulated (Condition 1). When measured over time, the results of FIG. 7 were obtained.

比較例5
触媒AおよびCを800℃で16時間焼成を行なったのち、それぞれに排気ガスとしてNO500ppm、CO300ppm、O10%、CO6%、HO6%および残り窒素をS.V.(空間速度)50,000hr−1で流通させた。触媒層温度が250℃になり、安定した時点で軽油10,000ppm(メタン換算)を流過させ(条件2)、このときの触媒出口の炭化水素濃度を時間の経過とともの測定したところ、図8の結果が得られた。
Comparative Example 5
After the catalysts A and C were calcined at 800 ° C. for 16 hours, NO 500 ppm, CO 300 ppm, O 2 10%, CO 2 6%, H 2 O 6%, and the remaining nitrogen were used as the exhaust gas. V. (Space velocity) circulated at 50,000 hr −1 . When the catalyst layer temperature reached 250 ° C. and was stabilized, 10,000 ppm (converted to methane) of light oil was allowed to flow (Condition 2), and the hydrocarbon concentration at the catalyst outlet at this time was measured over time. The result of FIG. 8 was obtained.

比較例6
触媒AおよびCを800℃で16時間焼成を行なったのち、それぞれに排気ガスとしてNO500ppm、CO300ppm、O10%、CO6%、HO6%および残り窒素をS.V.(空間速度)50,000hr−1で流通させた。触媒層温度が200℃になり、安定した時点でプロパン200ppm(メタン換算)およびプロピレン800ppm(メタン換算)よりなる炭化水素を流過させ(条件3)、このときの触媒出口の炭化水素濃度を時間の経過とともに測定したところ、図9の結果が得られた 比較例7 触媒AおよびCを800℃で16時間焼成を行なったのち、それぞれに排気ガスとしてNO500ppm、CO300ppm、O10%、CO6%、HO6%および残り窒素をS.V.(空間速度)50,000hr−1で流通させた。触媒層温度が200℃になり、安定した時点でプロパン600ppm(メタン換算)およびプロピレン2400ppm(メタン換算)よりなる炭化水素を流過させ(条件4)、このときの触媒出口の炭化水素濃度を時間の経過とともに測定したところ、図10の結果が得られた。
Comparative Example 6
After the catalysts A and C were calcined at 800 ° C. for 16 hours, NO 500 ppm, CO 300 ppm, O 2 10%, CO 2 6%, H 2 O 6%, and the remaining nitrogen were used as the exhaust gas. V. (Space velocity) circulated at 50,000 hr −1 . When the temperature of the catalyst layer reaches 200 ° C., a hydrocarbon composed of 200 ppm of propane (converted to methane) and 800 ppm of propylene (converted to methane) is allowed to flow (condition 3), and the hydrocarbon concentration at the catalyst outlet at this time is set to the time. 9 was obtained, and the results of FIG. 9 were obtained. Comparative Example 7 Catalysts A and C were calcined at 800 ° C. for 16 hours, and then exhausted as NO 500 ppm, CO 300 ppm, O 2 10%, CO 2, respectively. 6%, 6% H 2 O and the remaining nitrogen V. (Space velocity) circulated at 50,000 hr −1 . When the catalyst layer temperature reaches 200 ° C. and stabilizes, hydrocarbons consisting of 600 ppm of propane (converted to methane) and 2400 ppm of propylene (converted to methane) are allowed to flow (Condition 4). As a result of measurement, the result of FIG. 10 was obtained.

本発明により排気ガス浄化装置の概略を示す概略図である。It is the schematic which shows the outline of an exhaust-gas purification apparatus by this invention. (A)〜(D)は、比較例1および実施例1〜3においてそれぞれ用いられる温度上昇用触媒の模式を示す断面図である。(A)-(D) are sectional drawings which show the model of the catalyst for a temperature rise used in the comparative example 1 and Examples 1-3, respectively. 本発明で使用される温度上昇用触媒の炭化水素添加時の触媒出口の温度と時間との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the catalyst exit at the time of hydrocarbon addition of the temperature raising catalyst used by this invention, and time. 本発明で使用される温度上昇用触媒の炭化水素添加時の触媒出口から排出された炭化水素濃度と時間との関係を示すグラフである。It is a graph which shows the relationship between the hydrocarbon density | concentration discharged | emitted from the catalyst exit at the time of hydrocarbon addition of the temperature rising catalyst used by this invention, and time. 本発明で使用される温度上昇用触媒の炭化水素添加時の触媒出口から排出されたCO濃度と時間との関係を示すグラフである。Is a graph showing the relationship between been CO 2 concentration and time discharged from the catalyst outlet when the hydrocarbon addition of temperature increase for the catalyst used in the present invention. 比較例の触媒の模式を示す断面図である。It is sectional drawing which shows the model of the catalyst of a comparative example. 比較例の触媒を用いた炭化水素添加時の触媒出口の温度と時間との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the catalyst exit at the time of hydrocarbon addition using the catalyst of a comparative example, and time. 比較例の触媒を用いた炭化水素添加時の触媒出口から排出された炭化水素濃度と時間との関係を示すグラフである。It is a graph which shows the relationship between the hydrocarbon density | concentration discharged | emitted from the catalyst exit at the time of the hydrocarbon addition using the catalyst of a comparative example, and time. 比較例の触媒を用いた炭化水素添加時の触媒出口から排出される炭化水素濃度と時間との関係を示すグラフである。It is a graph which shows the relationship between the hydrocarbon concentration discharged | emitted from the catalyst exit at the time of the hydrocarbon addition using the catalyst of a comparative example, and time. 比較例の触媒を用いた触媒出口から排出された炭化水素濃度と時間との関係を示すグラフである。It is a graph which shows the relationship between the hydrocarbon density | concentration discharged | emitted from the catalyst exit using the catalyst of a comparative example, and time.

Claims (11)

内燃機関の排気ガス通路内に該排気ガスの流れに沿って内燃機関排気ガス温度上昇用触媒を該排気ガス浄化用触媒の上流側に設けてなり、かつ温度上昇用触媒の上流側からメタン換算で1,000〜40,000ppmの炭化水素を導入することよりなる該排気ガスの浄化方法であって、
該温度上昇用触媒が、白金、パラジウムおよびロジウムよりなる群から選ばれた少なくとも1種の貴金属よりなる触媒活性成分(A)を、耐火性無機酸化物粉末(B)に担持させてなる触媒成分を耐火性三次元構造体上に担持させたものであり、
該触媒活性成分(A)が、該耐火性三次元構造体上に該排気ガス流入側より流出側に向かって低くなるような濃度勾配をもって担され、
該温度上昇用触媒における触媒成分の該耐火性三次元構造体上の該排気ガス流入側から全長の10〜66.7%における触媒活性成分(A)の担持量が20〜80%を担持させるものであり、かつ流入側の長さの50%における触媒活性成分(A)の担持量が流出側の50%における触媒活性成分(A)の担持量より多いものである
内燃機関排気ガスの浄化方法。
An internal combustion engine exhaust gas temperature raising catalyst is provided upstream of the exhaust gas purification catalyst along the flow of the exhaust gas in the exhaust gas passage of the internal combustion engine, and converted into methane from the upstream side of the temperature raising catalyst. A method for purifying the exhaust gas comprising introducing 1,000 to 40,000 ppm of hydrocarbon,
A catalyst component in which the catalyst for raising temperature is supported on a refractory inorganic oxide powder (B) with a catalytically active component (A) made of at least one noble metal selected from the group consisting of platinum, palladium and rhodium. Is supported on a fire-resistant three-dimensional structure,
The catalytically active component (A), is responsible lifting with a concentration gradient such that lower toward the outlet side of the exhaust gas inlet side on the refractory three-dimensional structure,
The catalyst active component (A) is supported at 20 to 80% of the total length of 10 to 66.7% from the exhaust gas inflow side of the catalyst component in the temperature increasing catalyst from the exhaust gas inflow side on the refractory three-dimensional structure. And the amount of the catalytically active component (A) supported at 50% of the length on the inflow side is larger than the amount of the catalytically active component (A) supported on 50% on the outflow side .
An internal combustion engine exhaust gas purification method.
該耐火性無機酸化物粉末(B)が、該耐火性三次元構造体上に該排気ガス流入側より流出側に向かって低くなるような濃度勾配をもって担持されるものである、請求項1に記載の方法。The refractory inorganic oxide powder (B) is supported on the refractory three-dimensional structure with a concentration gradient that becomes lower from the exhaust gas inflow side to the outflow side. The method described. 該炭化水素の導入温度が200〜600℃である請求項1または2に記載の方法。 The method according to claim 1 or 2 , wherein the introduction temperature of the hydrocarbon is 200 to 600 ° C. 該温度上昇用触媒が、触媒成分に被覆された耐火性三次元構造体を300〜1200℃で焼成することにより得られる請求項1〜3のいずれか1項に記載の方法。The method according to any one of claims 1 to 3, wherein the temperature raising catalyst is obtained by calcining a fire-resistant three-dimensional structure coated with a catalyst component at 300 to 1200 ° C. 該濃度勾配は段階的に形成させてなる請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the concentration gradient is formed stepwise. 該温度上昇用触媒における触媒活性成分(A)の担持量が0.2〜20g/リットルで、かつ耐火性無機酸化物粉末(B)の担持量が10〜300g/リットルである請求項のいずれか1項に記載の方法。 Supporting amount of the catalytically active components (A) in the temperature raising catalyst with 0.2 to 20 g / l, and supporting amount of the refractory inorganic oxide powder (B) is 10 to 300 g / liter claim 1 6. The method according to any one of 5 above. 該炭化水素の導入量が該排気ガスに対してメタン換算で5,000〜30,000ppmである請求項1〜6のいずれか一つに記載の方法。   The method according to any one of claims 1 to 6, wherein an introduction amount of the hydrocarbon is 5,000 to 30,000 ppm in terms of methane with respect to the exhaust gas. 該排気ガス温度上昇用触媒が排気ガス浄化能力を併せ持つものである請求項1〜7のいずれか一つに記載の方法。   The method according to any one of claims 1 to 7, wherein the exhaust gas temperature raising catalyst has an exhaust gas purification capability. 該排気ガスの流れに対して排気ガス温度上昇用触媒の下流側に排気ガス浄化用触媒を設置してなる請求項1〜8のいずれか一つに記載の方法。   The method according to any one of claims 1 to 8, wherein an exhaust gas purification catalyst is installed downstream of the exhaust gas temperature raising catalyst with respect to the flow of the exhaust gas. 該排気ガス浄化用触媒がディーゼルパーティキュレートフィルター、酸化触媒およびNOx吸蔵触媒よりなる群から選ばれた少なくとも1種のものである請求項9に記載の方法。   The method according to claim 9, wherein the exhaust gas purification catalyst is at least one selected from the group consisting of a diesel particulate filter, an oxidation catalyst, and a NOx storage catalyst. 該排気ガス浄化用触媒の三次元構造体がハニカムおよび/またはプラグハニカムまたはペレットである請求項1〜10のいずれか一つに記載の方法。   The method according to any one of claims 1 to 10, wherein the three-dimensional structure of the exhaust gas purifying catalyst is a honeycomb and / or a plug honeycomb or a pellet.
JP2007184706A 2006-07-13 2007-07-13 Internal combustion engine exhaust gas purification method Active JP4889585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184706A JP4889585B2 (en) 2006-07-13 2007-07-13 Internal combustion engine exhaust gas purification method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006193072 2006-07-13
JP2006193072 2006-07-13
JP2007184706A JP4889585B2 (en) 2006-07-13 2007-07-13 Internal combustion engine exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2008036629A JP2008036629A (en) 2008-02-21
JP4889585B2 true JP4889585B2 (en) 2012-03-07

Family

ID=39172246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184706A Active JP4889585B2 (en) 2006-07-13 2007-07-13 Internal combustion engine exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4889585B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558013B2 (en) * 2009-03-04 2014-07-23 ジョンソン・マッセイ・ジャパン合同会社 Exhaust purification catalyst and exhaust treatment apparatus using the same
GB201121468D0 (en) * 2011-12-14 2012-01-25 Johnson Matthey Plc Improvements in automotive catalytic aftertreatment
KR101745150B1 (en) 2015-10-13 2017-06-09 현대자동차주식회사 Lnt catalyst
JP6700108B2 (en) * 2016-06-06 2020-05-27 株式会社Soken Method for manufacturing exhaust gas purifying catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
JP3217602B2 (en) * 1994-08-11 2001-10-09 株式会社アイシーティー Method for activating catalyst for purifying exhaust gas of internal combustion engine
JPH10202105A (en) * 1997-01-22 1998-08-04 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JP2004124859A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Exhaust emission control system
JP2005248787A (en) * 2004-03-03 2005-09-15 Mitsubishi Fuso Truck & Bus Corp Exhaust cleaner
JP4770132B2 (en) * 2004-06-22 2011-09-14 三菱自動車工業株式会社 HC adsorption catalyst and exhaust gas purification apparatus using the same
JP2006125206A (en) * 2004-10-26 2006-05-18 Ict:Kk Purification method and device for internal combustion engine exhaust gas
GB2406803A (en) * 2004-11-23 2005-04-13 Johnson Matthey Plc Exhaust system comprising exotherm-generating catalyst

Also Published As

Publication number Publication date
JP2008036629A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP6312210B2 (en) Internal combustion engine exhaust gas purification method
KR101331967B1 (en) Method for treating exhaust gas from internal combustion engine
US7977275B2 (en) Catalytically coated particle filter and method for producing the same and its use
CN105983339B (en) Catalyst
KR101006220B1 (en) Catalyst for exhaust gas purification
US9630146B2 (en) Particulate filter containing a nickel-copper catalyst
KR20090071604A (en) Washcoated particulate filter substrate
CN111148571A (en) Catalyst for exhaust gas purification
CN105983405A (en) Catalytic converter
WO2007052817A1 (en) Exhaust gas purification apparatus
JP4006645B2 (en) Exhaust gas purification device
JP2006125206A (en) Purification method and device for internal combustion engine exhaust gas
JP4889585B2 (en) Internal combustion engine exhaust gas purification method
JP2008151100A (en) Exhaust emission control device
JP4239864B2 (en) Diesel exhaust gas purification device
JP5502885B2 (en) Oxidation catalyst suitable for burning light oil components
JP4582806B2 (en) Exhaust gas purification device
JP2008229459A (en) Exhaust gas cleaning device
JP2006257920A (en) Exhaust emission control device
JP2012217937A (en) Exhaust gas purifying catalyst, and exhaust gas purifying apparatus equipped therewith
JP2014206076A (en) Exhaust gas purifying system, and scr catalyst reproduction method
WO2014178632A1 (en) Catalyst system for purifying exhaust gas from gasoline engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250