JP4770132B2 - HC adsorption catalyst and exhaust gas purification apparatus using the same - Google Patents

HC adsorption catalyst and exhaust gas purification apparatus using the same Download PDF

Info

Publication number
JP4770132B2
JP4770132B2 JP2004183346A JP2004183346A JP4770132B2 JP 4770132 B2 JP4770132 B2 JP 4770132B2 JP 2004183346 A JP2004183346 A JP 2004183346A JP 2004183346 A JP2004183346 A JP 2004183346A JP 4770132 B2 JP4770132 B2 JP 4770132B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
noble metal
adsorption
adsorption catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004183346A
Other languages
Japanese (ja)
Other versions
JP2006006995A (en
Inventor
浩 棚田
康之 初田
健児 守本
賢治 橋本
圭介 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004183346A priority Critical patent/JP4770132B2/en
Publication of JP2006006995A publication Critical patent/JP2006006995A/en
Application granted granted Critical
Publication of JP4770132B2 publication Critical patent/JP4770132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、HC吸着触媒及びこれを用いた排気ガス浄化装置に関する。   The present invention relates to an HC adsorption catalyst and an exhaust gas purification apparatus using the same.

エンジン等から排出される排気ガスには、HC(炭化水素)、NOx(窒素酸化物)、CO(一酸化炭素)等の成分が含まれる。近年の排ガス規制強化に伴い、これらの成分を効果的に浄化するため、高い浄化性能を有する排気ガス浄化装置の開発が要求されている。   The exhaust gas discharged from the engine or the like includes components such as HC (hydrocarbon), NOx (nitrogen oxide), and CO (carbon monoxide). With the recent tightening of exhaust gas regulations, development of exhaust gas purification devices having high purification performance is required to effectively purify these components.

特に、排ガス中のHCは、エンジンの始動時等のような排ガス温度が低い場合(約300℃未満)には、排気ガス浄化装置で浄化されにくく、HCを大量に含んだままの排気ガスが放出されてしまう。そこで、排気ガス浄化装置に各種のゼオライト(FER型、MOR型、FAU型、MFI型、β型ゼオライトなど)からなるHC吸着剤を設け、低温時にはHCを吸着・保持する一方、高温時には吸着・保持したHCを放出すると同時に浄化することにより、排気ガスを確実に処理する技術も開発されている。   In particular, when the exhaust gas temperature is low (less than about 300 ° C.), such as when the engine is started, HC in the exhaust gas is not easily purified by the exhaust gas purification device, and the exhaust gas containing a large amount of HC It will be released. Therefore, an HC adsorbent made of various types of zeolite (FER type, MOR type, FAU type, MFI type, β type zeolite, etc.) is provided in the exhaust gas purification device, and adsorbs and holds HC at low temperatures, while adsorbing and holding at high temperatures. A technology has also been developed for reliably treating exhaust gas by releasing and purifying the retained HC.

実用上は、HCを浄化する排気ガス浄化装置内の三元触媒等が適正に機能する温度まで昇温して、活性化した後に、HC吸着剤からHCが脱離し始めることが望ましいので、HC吸着剤に用いられているゼオライトに種々の条件を付加し、HC吸着剤の最適化を図った排気ガス浄化装置が開発されている(下記、特許文献1を参照。)。   In practice, it is desirable that HC starts to be desorbed from the HC adsorbent after the temperature is raised to a temperature at which the three-way catalyst or the like in the exhaust gas purification device for purifying HC functions properly and activated. An exhaust gas purifying apparatus has been developed in which various conditions are added to the zeolite used for the adsorbent to optimize the HC adsorbent (see Patent Document 1 below).

特開2003−13731号公報JP 2003-13731 A

しかしながら、三元触媒等をエンジンの排気ガス用として使用するには、HCの浄化(酸化)時における酸素の利用効率が低いため、浄化が十分進まないなどの問題がある。また、酸素の供給量不足を補うため、単に多量のOSC(酸素ストレージ機能)剤を担持させることも可能であるが、触媒を劣化させてしまう結果、触媒の耐熱性に問題がでる場合がある。   However, in order to use a three-way catalyst or the like for engine exhaust gas, there is a problem that the purification does not proceed sufficiently because the use efficiency of oxygen at the time of HC purification (oxidation) is low. In addition, in order to compensate for the shortage of oxygen supply, it is possible to simply carry a large amount of OSC (oxygen storage function) agent, but as a result of deteriorating the catalyst, there may be a problem in the heat resistance of the catalyst. .

また、一般に、触媒はコージェライト等のセラミックの担体と、それに担持された貴金属とから構成される。ここで、触媒の浄化性能は、触媒担体に担持された貴金属の量に依存する。しかしながら、触媒に使用する貴金属は量的に貴重な資源であると共に、これを多量に使用することは製品としての排気ガス浄化触媒のコスト増加を招く。   In general, the catalyst is composed of a ceramic carrier such as cordierite and a noble metal supported thereon. Here, the purification performance of the catalyst depends on the amount of the noble metal supported on the catalyst carrier. However, the noble metal used for the catalyst is a valuable resource in quantitative terms, and the use of a large amount of this causes an increase in the cost of the exhaust gas purification catalyst as a product.

本発明は上記状況に鑑みてなされたもので、使用するOSC剤及び貴金属触媒を最適な担持構造とすることにより、耐熱性及び排気ガス浄化性能を向上させたHC吸着触媒及びこれを用いた排気ガス浄化装置、移動手段を提供することを目的とする。   The present invention has been made in view of the above situation, and an HC adsorption catalyst having improved heat resistance and exhaust gas purification performance by using an OSC agent and a noble metal catalyst to be used in an optimal support structure, and an exhaust using the same. It is an object of the present invention to provide a gas purification device and moving means.

上記課題を解決する本発明に係るHC吸着触媒は、
担体と、当該担体上に担持されたHC吸着剤、酸素ストレージ剤及び貴金属触媒とを有するHC吸着触媒において、
前記酸素ストレージ剤は、前記HC吸着触媒の入口側から出口側に向かって、担持濃度が高くなるように漸増して担持され、
前記貴金属触媒は、前記HC吸着触媒の入口側から出口側に向かって、貴金属の担持濃度が低くなるように漸減して担持されている
ことを特徴とするHC吸着触媒である。
The HC adsorption catalyst according to the present invention that solves the above problems is
In an HC adsorption catalyst having a carrier and an HC adsorbent, an oxygen storage agent and a noble metal catalyst supported on the carrier,
The oxygen storage agent is gradually supported from the inlet side to the outlet side of the HC adsorption catalyst so as to increase the supporting concentration,
The HC adsorption catalyst is characterized in that the noble metal catalyst is supported while being gradually decreased from the inlet side to the outlet side of the HC adsorption catalyst so that the concentration of the noble metal supported decreases .

酸素ストレージ剤(OSC剤)を触媒の後段ほど多く担持させて、後段の酸素貯蔵量を確保し、HC脱離時の酸化用酸素が不足することを防止する。また、酸素不足を補うため、多量のOSC剤を担持させるのではなく、上記効率的な担持形態として、OSC剤の使用量を抑制し、触媒の劣化を防止する。   A larger amount of oxygen storage agent (OSC agent) is supported in the subsequent stage of the catalyst to secure the subsequent oxygen storage amount and prevent the oxygen for oxidization from deficient during HC desorption. In addition, in order to compensate for the lack of oxygen, a large amount of OSC agent is not supported, but the amount of the OSC agent used is suppressed as the above efficient support form to prevent catalyst deterioration.

貴金属触媒を触媒の前段ほど多く担持させることにより、触媒の前段付近では高い貴金属担持濃度とし、早期に着火させて脱離したHCを浄化する。また、高価な貴金属を効率よく使用する。   By carrying a larger amount of the noble metal catalyst in the previous stage of the catalyst, a higher noble metal loading concentration is provided in the vicinity of the previous stage of the catalyst, and the HC that has been desorbed by early ignition is purified. Moreover, expensive noble metals are used efficiently.

また、上記HC吸着触媒において、
前記貴金属触媒は、Pt,Rh,Pdのうち少なくとも一種類の貴金属を含有することを特徴とするHC吸着触媒である。
酸化性能の高いPt,Rh,Pdを用いることで、浄化効率が向上する。
In the HC adsorption catalyst,
The noble metal catalyst is an HC adsorption catalyst characterized by containing at least one kind of noble metal among Pt, Rh, and Pd.
By using Pt, Rh, Pd having high oxidation performance, purification efficiency is improved.

上記課題を解決する本発明に係る排気ガス浄化装置は、
内燃機関の排気通路に設けられ、排気方向の上流側に設置される三元触媒と、排気ガスの下流側に設置される上記HC吸着触媒とを有することを特徴とする排気ガス浄化装置である。
An exhaust gas purification apparatus according to the present invention that solves the above problems is
An exhaust gas purification apparatus comprising a three-way catalyst provided in an exhaust passage of an internal combustion engine and installed upstream in an exhaust direction and the HC adsorption catalyst installed downstream of exhaust gas .

上記本発明によれば、HC吸着剤から脱離するHCを浄化するのに十分な酸素を確保することができ、また、高価な貴金属を効率よく使用することができる。また、酸素不足を補うと共に、OSC剤の使用量を抑制して、触媒の劣化を防ぐことができる。   According to the present invention, oxygen sufficient to purify HC desorbed from the HC adsorbent can be secured, and expensive noble metals can be used efficiently. In addition, oxygen shortage can be compensated and the amount of OSC agent used can be suppressed to prevent catalyst deterioration.

以下、図面に基づいて本発明の実施形態を具体的に説明するが、以下の実施形態は本発明を限定するものではない。図1は、本発明の実施形態に係る排気ガス浄化装置を示す概略構成図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the following embodiments do not limit the present invention. FIG. 1 is a schematic configuration diagram showing an exhaust gas purifying apparatus according to an embodiment of the present invention.

図1に示すように、実施形態に係る排気ガス浄化装置10は、内燃機関であるエンジン100に連結された排気通路101の途中に設けられている。排気ガス浄化装置10は、ケーシング11と、ケーシング11内における排気ガス流通方向の上流側に設けられた三元触媒12と、ケーシング11内における排気ガス流通方向の下流側に設けられたHC吸着触媒13とからなる。   As shown in FIG. 1, an exhaust gas purification device 10 according to the embodiment is provided in the middle of an exhaust passage 101 connected to an engine 100 that is an internal combustion engine. The exhaust gas purification apparatus 10 includes a casing 11, a three-way catalyst 12 provided on the upstream side in the exhaust gas flow direction in the casing 11, and an HC adsorption catalyst provided on the downstream side in the exhaust gas flow direction in the casing 11. 13

三元触媒12は、排気ガス中のCO,NOx,HC等の成分をH2O,CO2,N2に酸化して、処理する機能を有する触媒である。HC吸着触媒13は、規定温度未満の低温時(例えば、約150℃未満)にHCを吸着・保持する一方、規定温度以上の高温時(例えば、約150℃以上)にHCを放出すると同時に酸化処理する機能を有する触媒である。 The three-way catalyst 12 is a catalyst having a function of oxidizing and processing components such as CO, NOx, and HC in the exhaust gas into H 2 O, CO 2 , and N 2 . The HC adsorption catalyst 13 adsorbs and retains HC when the temperature is lower than a specified temperature (for example, less than about 150 ° C.), while releasing HC at a higher temperature than the specified temperature (for example, about 150 ° C. or more) and simultaneously oxidizes. It is a catalyst having a function of treating.

図2は、本発明の実施形態に係る排気ガス浄化装置内のHC吸着触媒を示す概略断面構造図である。同図には、HC吸着触媒13のセル構造の一部を断面図にて示してある。同図に示すように、HC吸着触媒13は、セル格子を形成する担体13aの表面にHC吸着層13b及び三元触媒層13cが積層されてなる。   FIG. 2 is a schematic sectional view showing an HC adsorption catalyst in the exhaust gas purifying apparatus according to the embodiment of the present invention. In the figure, a part of the cell structure of the HC adsorption catalyst 13 is shown in a sectional view. As shown in the figure, the HC adsorption catalyst 13 is formed by laminating an HC adsorption layer 13b and a three-way catalyst layer 13c on the surface of a carrier 13a forming a cell lattice.

担体13aとしては、コージライト製ハニカムを採用し、HC吸着層13bとしては、異なる径を有する細孔が内部で交差するゼオライト構造を有する材料で形成した。また、三元触媒層13cとしては、三元触媒12と同様に三元浄化機能を有する貴金属触媒と、これに含有させたOSC剤とから形成した。   A cordierite honeycomb was employed as the carrier 13a, and the HC adsorption layer 13b was formed of a material having a zeolite structure in which pores having different diameters intersected inside. In addition, the three-way catalyst layer 13c was formed from a noble metal catalyst having a three-way purification function similarly to the three-way catalyst 12, and an OSC agent contained therein.

三元触媒層13cに含まれる貴金属触媒は、Pt,Rh,Pdの少なくとも一種類以上の貴金属を用い、主として、排気ガスの温度が規定温度以上の高温時(例えば、約150℃以上)にHC吸着層13bから放出されるHCを浄化する機能を有するが、さらに、三元触媒12を補助する機能も有する。   The noble metal catalyst included in the three-way catalyst layer 13c uses at least one kind of noble metal of Pt, Rh, Pd, and mainly HC when the temperature of the exhaust gas is higher than a specified temperature (for example, about 150 ° C. or higher). Although it has a function of purifying HC released from the adsorption layer 13b, it also has a function of assisting the three-way catalyst 12.

図3は、HC吸着触媒における貴金属及びOSC剤の担持濃度を示すグラフである。同図に示すように、本実施形態では、HC吸着触媒13における排気ガスの入口側から出口側に向かって、担持させる貴金属触媒及びOSC剤の濃度を変化させた。   FIG. 3 is a graph showing the supported concentrations of noble metal and OSC agent in the HC adsorption catalyst. As shown in the figure, in the present embodiment, the concentrations of the noble metal catalyst and the OSC agent to be supported are changed from the exhaust gas inlet side to the outlet side of the HC adsorption catalyst 13.

すなわち、三元触媒である貴金属触媒については、入口側から出口側に向かって担持濃度が徐々に小さくなるようにして担持させた。例えば、入口側を5g/lの担持濃度とし、出口側を3g/lの担持濃度となるように変化させた。   That is, the noble metal catalyst, which is a three-way catalyst, was supported so that the supported concentration gradually decreased from the inlet side toward the outlet side. For example, the loading concentration was changed to 5 g / l on the inlet side and the loading concentration on the outlet side was 3 g / l.

また、OSC剤については、入口側から出口側に向かって担持濃度が徐々に大きくなるようにして担持させた。例えば、入口側を20g/lの担持濃度とし、出口側を40g/lの担持濃度となるように変化させた。なお、HC吸着層13bを形成するHC吸着剤については、入口側から出口側に至るまで均一の構成とした。   In addition, the OSC agent was supported so that the supported concentration gradually increased from the inlet side toward the outlet side. For example, the loading concentration was changed to 20 g / l on the inlet side and the loading concentration on the outlet side was 40 g / l. The HC adsorbent that forms the HC adsorption layer 13b has a uniform configuration from the inlet side to the outlet side.

次に、本実施形態に係るHC吸着触媒について、貴金属触媒及びOSC剤を上述する担持濃度とした理由について詳細に説明する。まず、比較例に係るHC吸着触媒として、触媒の入口側から出口側までHC吸着剤、貴金属触媒及びOSC剤、すべて均一の構成とし、貴金属の担持濃度を5g/l、3g/lとした2種類のHC吸着触媒を用意した。次に、比較例に係るHC吸着触媒をエンジンの排気経路に設置し、エンジン運転開始から所定時間(暖機運転終了まで)、HC吸着触媒通過後の排気ガス中のHC濃度を測定した。   Next, in the HC adsorption catalyst according to the present embodiment, the reason why the noble metal catalyst and the OSC agent are used in the above-described supported concentration will be described in detail. First, as the HC adsorption catalyst according to the comparative example, the HC adsorbent, the noble metal catalyst, and the OSC agent are all uniform from the inlet side to the outlet side of the catalyst, and the noble metal loading concentration is 5 g / l, 3 g / l. Various types of HC adsorption catalysts were prepared. Next, the HC adsorption catalyst according to the comparative example was installed in the exhaust path of the engine, and the HC concentration in the exhaust gas after passing through the HC adsorption catalyst was measured for a predetermined time (until the end of the warm-up operation) from the start of engine operation.

図4は、HC吸着触媒における貴金属の担持量を変化させたときの排出HC濃度を示すグラフであり、上述する比較例に係る2種類のHC吸着触媒の浄化性能の結果を示している。同図において、「3g/l」で示す点線は、貴金属の担持濃度が3g/lのHC吸着触媒のHC浄化性能を示し、「5g/l」で示す点線は、貴金属の担持濃度が5g/lのHC吸着触媒のHC浄化性能を示している。また、横軸はエンジンの運転時間、換言すれば、排気ガス温度を示し、右になるほど長い運転時間、高い排気ガス温度となる。   FIG. 4 is a graph showing the exhaust HC concentration when the amount of noble metal supported on the HC adsorption catalyst is changed, and shows the results of the purification performance of the two types of HC adsorption catalysts according to the comparative example described above. In the figure, a dotted line indicated by “3 g / l” indicates the HC purification performance of the HC adsorption catalyst having a noble metal loading concentration of 3 g / l, and a dotted line indicated by “5 g / l” indicates a noble metal loading concentration of 5 g / l. 1 shows the HC purification performance of 1 HC adsorption catalyst. Further, the horizontal axis indicates the engine operating time, in other words, the exhaust gas temperature, and the longer the right side, the longer the operating time and the higher the exhaust gas temperature.

同図から、担持濃度が高い5g/lのHC吸着触媒では、運転開始直後はHC吸着によりHCの排出濃度は低い。その後、HCの脱離が開始される暖機運転前半にはHC排出濃度が比較的低く、HC浄化(酸化)が効果的に行われていることが分かるが、更に運転時間が経過したとき(暖機運転の後半)にはHC排出濃度が比較的高く、HC浄化(酸化)が効果的に行われていないことが分かる。   From the figure, in the 5 g / l HC adsorption catalyst having a high loading concentration, immediately after the start of operation, the HC emission concentration is low due to HC adsorption. Thereafter, it can be seen that the HC emission concentration is relatively low in the first half of the warm-up operation when HC desorption starts, and that HC purification (oxidation) is effectively performed, but when the operation time has passed ( It can be seen that in the latter half of the warm-up operation, the HC emission concentration is relatively high and HC purification (oxidation) is not effectively performed.

一方、担持濃度が低い3g/lのHC吸着触媒では、運転開始直後は5g/lのときと同様、HC吸着によりHCの排出濃度は低い。その後、暖機運転前半にはHC排出濃度が比較的高く、HC浄化(酸化)が効果的に行われていないことが分かるが、更に運転時間が経過したとき(暖機運転の後半)にはHC排出濃度が比較的低く、HC浄化(酸化)が効果的に行われていることが分かる。   On the other hand, with a 3 g / l HC adsorption catalyst with a low loading concentration, the HC emission concentration is low due to HC adsorption just as at 5 g / l immediately after the start of operation. Thereafter, it can be seen that the HC emission concentration is relatively high in the first half of the warm-up operation and HC purification (oxidation) is not effectively performed, but when the operation time has passed (the second half of the warm-up operation) It can be seen that the HC emission concentration is relatively low and HC purification (oxidation) is effectively performed.

上述するように貴金属の担持濃度によって、運転開始初期に有利なHC吸着触媒となるか、また、運転開始から所定期間経過後に有利なHC吸着触媒となるか、分かれるが、いずれのHC吸着触媒であっても、テスト期間内の全HC浄化量はほぼ同じであった(図5を参照。)。   As described above, depending on the noble metal loading concentration, it may be an advantageous HC adsorption catalyst at the beginning of operation or an advantageous HC adsorption catalyst after a predetermined period from the start of operation. Even in such a case, the total HC purification amount within the test period was almost the same (see FIG. 5).

上述する結果は、触媒中の酸素の使われ方が異なるためと考えられる。すわなち、担持濃度が高い5g/lのHC吸着触媒では、触媒の入口側でHCの脱離が開始される暖機運転前半に貴金属の濃度の高さから効果的にHC浄化(酸化)が行われる結果、触媒の出口側で脱離が開始される暖気運転後半で入口側の酸素消費によりOSCの酸素ストレージが活発なため出口側で酸素欠乏状態となり、HC浄化(酸化)が効果的に行われない結果となったと考えられる。   The above results are considered to be due to the difference in the use of oxygen in the catalyst. In other words, with a 5 g / l HC adsorption catalyst with a high loading concentration, HC purification (oxidation) is effectively performed from the high precious metal concentration in the first half of the warm-up operation when HC desorption starts on the catalyst inlet side. As a result, in the latter half of the warm-up operation where desorption starts on the catalyst outlet side, oxygen storage on the OSC is active due to oxygen consumption on the inlet side, so that the outlet side becomes oxygen-deficient and HC purification (oxidation) is effective. It is thought that the result was not performed.

一方、担持濃度が低い3g/lのHC吸着触媒では、暖機運転前半には触媒濃度の低さからHC浄化(酸化)が効果的に行われない結果、5g/lと比較して浄化率は劣るが、暖機運転後半では入口側で消費されていない残存する酸素で出口側に酸素が供給され、HC浄化(酸化)が効果的に行われる結果となったと考えられる。   On the other hand, in the HC adsorption catalyst having a low supported concentration of 3 g / l, the HC purification (oxidation) is not effectively performed due to the low catalyst concentration in the first half of the warm-up operation. As a result, the purification rate compared with 5 g / l However, in the latter half of the warm-up operation, the remaining oxygen that is not consumed on the inlet side is supplied with oxygen to the outlet side, which is considered to result in effective HC purification (oxidation).

したがって、高効率のHC浄化性能を有するHC吸着触媒とするためには、貴金属の担持濃度と酸素の残存量との関係が重要となる。更に、触媒の製造コストを低減させるためにも、単に貴金属触媒の担持濃度を大きくするだけではなく、貴金属触媒についてもその担持構造を最適なものとする必要がある。   Therefore, in order to obtain an HC adsorption catalyst having a highly efficient HC purification performance, the relationship between the noble metal loading concentration and the remaining amount of oxygen is important. Furthermore, in order to reduce the manufacturing cost of the catalyst, it is necessary not only to increase the support concentration of the noble metal catalyst but also to optimize the support structure of the noble metal catalyst.

そこで、本実施形態に係るHC吸着触媒では、上述するOSC剤及び貴金属触媒の担持構造とした。すなわち、OSC剤については触媒の後段ほど多く担持させ、触媒出口側の酸素欠乏を解消し、貴金属触媒については触媒の前段ほど多く担持させ、浄化効率を向上させた。   Therefore, the HC adsorption catalyst according to the present embodiment has the above-described support structure for the OSC agent and the noble metal catalyst. In other words, the OSC agent was supported in the later stage of the catalyst to eliminate oxygen deficiency on the catalyst outlet side, and the precious metal catalyst was supported in the earlier stage of the catalyst to improve the purification efficiency.

このような担持構造とすることにより、図4において、本発明の指す浄化特性カーブから分かるように、暖気運転前半から後半まで、従来のHC吸着触媒よりも高い浄化性能を有するHC吸着触媒とすることができた(図5を参照。)。   By adopting such a supporting structure, as can be seen from the purification characteristic curve indicated by the present invention in FIG. 4, the HC adsorption catalyst having higher purification performance than the conventional HC adsorption catalyst from the first half to the second half of the warm-up operation is obtained. (See FIG. 5).

一般的に、触媒前段のOSC剤による酸素貯蔵により、触媒の後段ほど、OSC剤の酸素貯蔵量が減って酸素欠乏状態を招くが、OSC剤を触媒の後段ほど多く担持させることにより、後段の酸素貯蔵量を確保することができ、HC脱離時の酸化用酸素が不足することを防ぐことができる。また、貴金属触媒を触媒の前段ほど多く担持させることにより、触媒の前段付近では高い貴金属担持濃度のため、早期に着火して脱離したHCを浄化することができる。   In general, the oxygen storage by the OSC agent in the first stage of the catalyst causes the oxygen storage amount of the OSC agent to decrease as the latter stage of the catalyst leads to an oxygen-deficient state. An oxygen storage amount can be ensured, and it is possible to prevent a lack of oxygen for oxidation during HC desorption. In addition, by loading a larger amount of the noble metal catalyst in the front stage of the catalyst, the HC that has been ignited early and desorbed can be purified because of the higher noble metal loading concentration in the vicinity of the front stage of the catalyst.

本実施形態に係る排気ガス浄化装置とすることにより、HC吸着剤から脱離するHCを浄化するのに十分な酸素を確保することができ、また、高価な貴金属を効率よく使用することができる。また、酸素不足を補うため、多量のOSC剤を担持させる方法に対して、本実施形態のように効率的な担持形態とすることにより、OSC剤の使用量を抑制して、触媒の劣化を防ぐことができる。   By using the exhaust gas purification apparatus according to the present embodiment, sufficient oxygen can be secured to purify HC desorbed from the HC adsorbent, and expensive noble metals can be used efficiently. . In addition, in order to make up for the lack of oxygen, a method for supporting a large amount of OSC agent is used as an efficient support configuration as in this embodiment, thereby suppressing the amount of OSC agent used and reducing the catalyst deterioration. Can be prevented.

なお、本実施形態では、貴金属触媒及びOSC剤の担持構造について、図3に示すように、触媒入口側から出口側に亘って滑らかに変化する濃度勾配としたが、段階的に変化させるようにしてもよい。また、図2に示すように、担体13aの表面にHC吸着層13bと三元触媒層13cを積層した構造としたが、各層を構成する材料を混合して、担体13aの表面に担持させてもよい。また、積層をHC吸着層13bと三元触媒層13cを入れ換えて担持したものでもよい。   In this embodiment, the noble metal catalyst and OSC agent support structure has a concentration gradient that smoothly changes from the catalyst inlet side to the outlet side as shown in FIG. 3, but it is changed stepwise. May be. Further, as shown in FIG. 2, the HC adsorption layer 13b and the three-way catalyst layer 13c are stacked on the surface of the carrier 13a. However, the materials constituting each layer are mixed and supported on the surface of the carrier 13a. Also good. Alternatively, the stack may be supported by replacing the HC adsorption layer 13b and the three-way catalyst layer 13c.

本発明の実施形態に係る排気ガス浄化装置を示す概略構成図である。1 is a schematic configuration diagram showing an exhaust gas purification device according to an embodiment of the present invention. 本発明の実施形態に係る排気ガス浄化装置内のHC吸着触媒を示す概略断面構造図である。1 is a schematic cross-sectional structure diagram showing an HC adsorption catalyst in an exhaust gas purification apparatus according to an embodiment of the present invention. HC吸着触媒における貴金属及びOSC剤の担持濃度を示すグラフである。It is a graph which shows the carrying | support concentration of the noble metal and OSC agent in HC adsorption catalyst. HC吸着触媒における貴金属の担持量を変化させたときの排出HC濃度を示すグラフである。It is a graph which shows discharge | emission HC density | concentration when changing the amount of noble metal carrying | support in an HC adsorption catalyst. 本発明の効果を排出HC量で示したグラフである。It is the graph which showed the effect of the present invention by the amount of exhausted HC.

符号の説明Explanation of symbols

100 エンジン
101 排気通路
10 排気ガス浄化装置
11 ケーシング
12 三元触媒
13 HC吸着触媒
13a 担体
13b HC吸着層
13c 三元触媒層(OSC剤を含む)
DESCRIPTION OF SYMBOLS 100 Engine 101 Exhaust passage 10 Exhaust gas purification apparatus 11 Casing 12 Three-way catalyst 13 HC adsorption catalyst 13a Carrier 13b HC adsorption layer 13c Three-way catalyst layer (including OSC agent)

Claims (3)

担体と、当該担体上に担持されたHC吸着剤、酸素ストレージ剤及び貴金属触媒とを有するHC吸着触媒において、
前記酸素ストレージ剤は、前記HC吸着触媒の入口側から出口側に向かって、担持濃度が高くなるように漸増して担持され、
前記貴金属触媒は、前記HC吸着触媒の入口側から出口側に向かって、貴金属の担持濃度が低くなるように漸減して担持されている
ことを特徴とするHC吸着触媒。
In an HC adsorption catalyst having a carrier and an HC adsorbent, an oxygen storage agent and a noble metal catalyst supported on the carrier,
The oxygen storage agent is gradually supported from the inlet side to the outlet side of the HC adsorption catalyst so as to increase the supporting concentration,
The HC adsorption catalyst, wherein the noble metal catalyst is supported while being gradually decreased from the inlet side to the outlet side of the HC adsorption catalyst so that the concentration of the noble metal supported decreases .
請求項1に記載するHC吸着触媒において、
前記貴金属触媒は、Pt,Rh,Pdのうち少なくとも一種類の貴金属を含有する
ことを特徴とするHC吸着触媒。
In the HC adsorption catalyst according to claim 1,
The HC adsorption catalyst, wherein the noble metal catalyst contains at least one kind of noble metal of Pt, Rh, and Pd.
内燃機関の排気通路に設けられ、排気方向の上流側に設置される三元触媒と、
排気ガスの下流側に設置される請求項1または2に記載するHC吸着触媒とを有する
ことを特徴とする排気ガス浄化装置。
A three-way catalyst provided in the exhaust passage of the internal combustion engine and installed upstream in the exhaust direction;
An exhaust gas purification apparatus comprising the HC adsorption catalyst according to claim 1 or 2 installed downstream of the exhaust gas.
JP2004183346A 2004-06-22 2004-06-22 HC adsorption catalyst and exhaust gas purification apparatus using the same Active JP4770132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183346A JP4770132B2 (en) 2004-06-22 2004-06-22 HC adsorption catalyst and exhaust gas purification apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183346A JP4770132B2 (en) 2004-06-22 2004-06-22 HC adsorption catalyst and exhaust gas purification apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006006995A JP2006006995A (en) 2006-01-12
JP4770132B2 true JP4770132B2 (en) 2011-09-14

Family

ID=35774817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183346A Active JP4770132B2 (en) 2004-06-22 2004-06-22 HC adsorption catalyst and exhaust gas purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP4770132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889585B2 (en) * 2006-07-13 2012-03-07 株式会社アイシーティー Internal combustion engine exhaust gas purification method
EP1913975B1 (en) 2006-10-20 2011-06-08 Faber-Castell AG Cosmetic preparation for dyeing eyelashes and eyebrows
JP2009011976A (en) * 2007-07-06 2009-01-22 Denso Corp Hexagonal-cell honeycomb catalyst body, and exhaust emission control system using the same
US8865082B2 (en) 2009-10-05 2014-10-21 GM Global Technology Operations LLC Method and system for monitoring a hydrocarbon adsorber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622674B2 (en) * 1985-09-24 1994-03-30 マツダ株式会社 Engine exhaust gas purification catalyst
JPH10202105A (en) * 1997-01-22 1998-08-04 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JP3548683B2 (en) * 1997-04-02 2004-07-28 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2001190960A (en) * 2000-01-11 2001-07-17 Toyota Motor Corp Catalyst for exhaust gas cleaning
JP2003200062A (en) * 2001-10-26 2003-07-15 Denso Corp Catalyst for vehicle
JP3855266B2 (en) * 2001-11-01 2006-12-06 日産自動車株式会社 Exhaust gas purification catalyst
JP4306197B2 (en) * 2002-07-16 2009-07-29 トヨタ自動車株式会社 Exhaust gas purification catalyst and catalyst deterioration judgment method
JP2003175318A (en) * 2002-10-24 2003-06-24 Ngk Insulators Ltd Exhaust gas cleaning system and exhaust gas cleaning method

Also Published As

Publication number Publication date
JP2006006995A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP3981915B2 (en) Exhaust gas purification system
JP5607042B2 (en) Lean burn IC engine exhaust system
JP2007501107A (en) Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
JP2007332881A (en) Exhaust emission control device and exhaust emission control method using this device
JP2007162575A (en) Exhaust emission control device
JP2009165904A (en) Exhaust gas purifier
EP2298432A1 (en) Exhaust gas purifier
JP2003314328A (en) Exhaust emission control device
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP4770132B2 (en) HC adsorption catalyst and exhaust gas purification apparatus using the same
JP2007218177A (en) Exhaust emission control system
JP4507018B2 (en) Exhaust gas purification device for internal combustion engine
JP4371241B2 (en) Exhaust gas purification system
JP2009167844A (en) Exhaust emission control catalyst device
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4114581B2 (en) Exhaust purification device
JP4097362B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP2008019820A (en) Exhaust emission control system and exhaust emission control method
JP4998698B2 (en) Exhaust gas purification device
JP3419310B2 (en) Exhaust gas purification device for internal combustion engine
JP2005081250A (en) Exhaust emission control device
JP2004016850A (en) Exhaust gas cleaning catalyst, production method and exhaust gas cleaning system
JP3736373B2 (en) Engine exhaust purification system
JP4371242B2 (en) Exhaust gas purification system
JP2009273989A (en) Exhaust gas cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4770132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350